Directory

CHAP	TER 1 9	AFETY REMINDER	1
1.1	Safe	ty Notes	1
1.2	Pred	autions for storage	2
1.3	Pred	autions for transportation	2
1.4	Not	es on installation	3
1.5	Wir	ing Precautions	4
1.6	runt	ime considerations	6
1.7	Mai	ntenance and Inspection Precautions	6
СНАР	TER 2 I	PRODUCT INFORMATION	8
2.1	Driv	e form factor	8
	2.1.1 l	nstallation dimensions of E1, E2, E3, EA structure drives	9
	2.1.2	EA/-E installation dimensions	12
2.2	Nan	neplate Description	13
	2.2.1 E	structure servo drive nameplate	13
	2.2.2 N	Notor nameplate	13
2.3	Driv	e Specifications	15
2.4	Driv	e selection	19
	2.4.1 E	-structure 220V driver selection	19
	2.4.2 E	structure 380V driver selection	19
2.5	Mee	et the standards	20
CHAP	TER 3 \	NIRING	21
3.1	Driv	e overview	21
	3.1.1	E structure servo drive	21
3.2	Mai	n circuit wiring	22
	3.2.1	Main circuit terminal names and functions	
	3.2.2	Typical Main Circuit Wiring Example	23
	3.2.3	Main circuit wiring precautions	
3.3	Enc	oder signal wiring	26
	3.3.1	Pin assignment of the encoder connection port (CN2)	26
	3.3.2	The pin definition of the encoder connection port (CN2)	26
3.4			27
	์ Inpเ	ıt/Output Signal Wiring	
	Inpu 3.4.1	Pin assignment of input/output signal port (CN3)	
			27
	3.4.1	Pin assignment of input/output signal port (CN3)	27 27
	3.4.1 3.4.2 3.4.3	Pin assignment of input/output signal port (CN3) Pin definition and function of input/output signal port (CN3)	27 27 28
3.5	3.4.1 3.4.2 3.4.3	Pin assignment of input/output signal port (CN3) Pin definition and function of input/output signal port (CN3) Position command input wiring example	27 27 28 32
3.5	3.4.1 3.4.2 3.4.3 Con	Pin assignment of input/output signal port (CN3) Pin definition and function of input/output signal port (CN3) Position command input wiring example munication signal wiring	27 27 28 32 32

	3.6.1	Wiring Recommendations	34
	3.6.2	Anti-interference countermeasures	35
СНАР	PTER 4 F	ANEL DISPLAY AND KEYBOARD OPERATION	38
4.	1 Intro	oduction to panel composition	38
	4.1.1	E Structure Servo Driver Panel	38
4.	2 pan	el operation mode	38
	4.2.1	E Structure Servo Driver Panel	38
4.	3 Puls	e servo status display	39
4.	4 Para	meter read and write	39
	4.4.1	Display rules for numbers of different lengths	39
	4.4.2	Parameter setting steps	40
4.	5 Fund	ctional operation	41
	4.5.1	Fn000 reset drive function	41
	4.5.2	Fn001 Jog test run function	42
	4.5.3	Fn002 Restore all parameters to factory defaults	42
	4.5.4	Fn003 Download program reset	43
	4.5.5	Fn004 Learn asynchronous motor encoder parameters	44
	4.5.6	Fn005 Learn related parameters of synchronous motor encoder	44
	4.5.7	Fn006 Single parameter gain adjustment	45
	4.5.8	Fn007 Learning load inertia	45
	4.5.9	Fn008 update FPGA program reset	46
	4.5.10	Fn009 restores all factory parameters except P00 and P01 parameter groups	
	4.5.11	Fn010 backup all parameters	46
	4.5.12	Fn011 restore the parameters that have been backed up	47
	4.5.13	Fn012 restart RS232 communication	47
	4.5.14	In Fn013 full-closed loop mode, the polarity of self-learning feedback and the number of	of
puls	es of th	e second encoder corresponding to one rotation of the motor	47
	4.5.15	Fn014 clears the absolute value encoder circle value (only for Nikon 24-bit encoder)	48
	4.5.16	Fn016 Self-learning synchronous motor current loop PI gain	
4.	6 Vari	able monitoring	48
СНАР	PTER 5 \	/C210 SERVO CONTROL MODE	49
5.	1 Basi	c parameter setting	51
	5.1.1	control mode	51
	5.1.2	Servo start and stop	51
	5.1.3	Servo braking method	53
	5.1.4	command reverse	54
5.	2 posi	tion mode	54
	5.2.1	Position command source and direction selection	54
	5.2.2	The position command comes from the pulse command	55
	5.2.3	The position command is derived from the multi-segment position command plan	58
	5.2.4	Electronic gear ratio	79

5.2.5	Electronic gear ratio smooth switching function	81
5.2.6	Position command filter function	81
5.2.7	Positioning complete/proximity function	84
5.2.8	Pulse frequency division output function	86
5.2.9	Z point pulse output function	88
5.2.10	Homing	88
5.2.11	Interrupt fixed length function	
5.2.12	4th power position curve function	116
5.2.13	Full closed loop function	117
5.2.14	Torque limit function	121
5.2.15	Travel limit function	121
5.2.16	Internal implementation block diagram of position mode	
5.2.17	Typical Wiring Diagram for Position Mode	124
5.2.18	Example of position mode XY pulse (pulse + direction) moving position	
5.3 spe	ed mode	129
5.3.1	Speed command source	129
5.3.2	Multi-stage speed mode	132
5.3.3	UP/DOWN speed mode	144
5.3.4	Ramp control and speed command filtering	144
5.3.5	speed limit	146
5.3.6	Torque limit	150
5.3.7	Zero position fixation function	153
5.3.8	Other functions	154
5.3.9	Internal operation block diagram of speed mode	
5.3.10	Typical Wiring Diagram for Speed Mode	
5.3.11	Servo uses analog quantity to control the speed	165
5.4 Tore	que mode	166
5.4.1	Torque command source	166
5.4.2	Torque limiting	
5.4.3	speed limit	
5.4.4	Torque reaches output	
5.4.5 9	mall torque jitter suppression	
5.4.6	Internal block diagram of torque mode	179
5.4.7	Typical wiring diagram of torque mode	
CHAPTER 6	NPUTS AND OUTPUTS FUNCTION	182
6.1 Ent	ty DI/DO function	
6.2 Virt	ual DI/DO function	
6.3 Ana	log input and analog output AI/AO function	203
6.3.1	Analog input AI	203
6.3.2	Analog output AO	209
CHAPTER 7	AUXILIARY FUNCTIONS	212

7.	1 Faul	t protection	212
	7.1.1	Fault Downtime	212
	7.1.2	All faults	214
	7.1.3	Troubleshooting	226
	7.1.4	Motor overload protection	242
	7.1.5	Braking resistor overload protection	244
	7.1.6	Motor overheat protection	245
	7.1.7	Motor phase loss protection	246
7.2	2 Hold	ling brake output function	247
	7.2.1	Braking process	247
7.3	3 Deso	cription of dynamic braking function	251
7.4	4 Intro	oduction of STO safety terminal	251
7.5	5 Insti	ructions for the use of absolute value encoder	253
7.6	6 Oth	er auxiliary functions	255
	7.6.1	Internal flip-flop function	255
	7.6.2	Software counter function	255
	7.6.3	U disk update/save parameter function	257
СНАР	PTER 8 A	ADJUSTMENT	. 258
8 -	1 Con	trol loop gain adjustment	258
0	8.1.1	Current loop PI gain adjustment	
	8.1.2	Speed loop PI gain adjustment	
	8.1.3	Position loop P gain adjustment	
	8.1.4	List of parameters that need to be adjusted in different gain gain adjustment modes	
8.2	2 Feed	lforward gain adjustment	
		peed feedforward	
		orque feedforward	
8.3		r time adjustment	
8.4		torque compensation function	
8.5		hanical resonance suppression function	
8.6		frequency vibration suppression	
8.7		del Predictive Control Capability	
СНАР			
9.2	1 Mor	Ibus wiring requirement	276
9.2		Ibus parameter setting steps	
-			
9.3		ction codes supported by Modbus	
	9.3.1	Function code 1 or function code 2 (read bit)	
	9.3.2	Function code 3 or function code 4 (read register)	
	9.3.3	Function code 5 (write bit)	
	9.3.4	Function code 6 (write single word register)	
	9.3.5	Function code 16 (write double word register)	
CHAP	PTER 10	PARAMETER LIST	. 287

10.1	P00 group parameters - motor and encoder parameters	287
10.2	P01 group parameters - driver hardware parameters	299
10.3	P02 group parameters - basic control parameters	305
10.4	P03 Group parameter - position mode parameter	312
10.5	P04 group parameter - speed mode related parameters	324
10.6	P05 group parameter - torque mode related parameters	328
10.7	P06 group parameter -Inputs and Outputs Function	333
10.8	P07 group parameters - loop control parameters	348
10.9	P08 group parameters - communication parameters	361
10.10	P09 group parameters - advanced debugging parameters	367
10.11	P10 group parameters - fault protection parameters	374
10.12	P11 group parameters - multi-speed parameters	389
10.13	P12 group parameters - virtual DI DO parameters	400
10.14	P13 group parameters - multi-segment position parameters	414
СНАРТЕ	R 11 COMMISSIONING	. 426
11.1	Factory debugging matching motor steps	426
11.2	Location Mode Debugging Guidelines	427
11	2.1 Position Mode Block Diagram	427
11	2.2 Preliminary analysis of the curve	428
11	2.3 Current loop understanding and tuning	429
11.	2.4 Speed loop understanding and tuning	432
11	2.5 Position loop understanding and adjustment	434
VERSION	UPDATE RECORD	. 435

Chapter 1 safety reminder

This chapter describes important matters that users must observe, including product identification, storage, transportation, installation, wiring, operation, and inspection.

1.1 Safety Notes

• Turn off the power for more than 5 minutes before disassembling and installing the driver, otherwise it may cause electric shock due to residual voltage.

• Do not disassemble or install the driver when the servo unit is powered on, otherwise it may cause electric shock, stop the product or burn it out.

• Please never touch the inside of the servo drive, otherwise it may cause electric shock.

• When the power is turned on and for a period of time after the power is cut off, the heat sink of the servo drive, the external braking resistor, the servo motor, etc. may be high temperature, please do not touch, otherwise it may cause burns. To prevent inadvertent contact with hands or parts (such as cables, etc.), take safety measures such as installing a cover.

• Please use the power supply specification that conforms to the product for the power supply of the servo drive, otherwise it may cause the product to burn out, electric shock or fire.

• Between the power supply and the main circuit power supply of the servo drive, be sure to connect a magnetic contactor and a non-fuse circuit breaker. Otherwise, when the servo drive fails, the large current cannot be cut off, resulting in a fire.

• The ground terminal of the servo drive must be grounded, otherwise it may cause electric shock.

• Unless you are a professional, do not set up, disassemble, or repair the product, as this may result in electric shock or injury.

• Please never modify this product, otherwise injury or mechanical damage may result.

• Do not damage or pull the cable too hard, do not subject the cable to excessive force, do not place it under heavy objects or cause it to be pinched, otherwise it will cause malfunction, damage, and electric shock.

• When the servo motor is running, please never touch its rotating parts, otherwise you may be injured.

• Do not use this product near places where it will be splashed with water, corrosive environments, flammable gas environments and combustibles, otherwise it may cause electric shock or fire.

• Please install the servo drive, servo motor and external braking resistor on

incombustible materials, otherwise it may cause fire.

• In the servo driver and servo motor, do not mix flammable foreign objects such as oil and grease, and conductive foreign objects such as screws and metal pieces, otherwise it may cause a fire.

• When installing it on the supporting machine and starting to run, please put the servo motor in a state where it can be stopped at any time in advance, otherwise it may cause injury.

• In the state where the servo motor and the machine are connected, if an operation error occurs, it will not only cause mechanical damage, but may also lead to personal accidents.

• Install an external emergency stop device to ensure that the power is turned off and operation is stopped immediately when an error occurs.

• Please use a noise filter, etc. to reduce the influence of electromagnetic interference, otherwise it will cause electromagnetic interference to the electronic devices used near the servo unit.

• Servo unit and servo motor should be used in the specified combination.

1.2 Precautions for storage

• Do not place too much of this product on top of one another, as this may cause injury or malfunction.

• Please store in the following environment:

• Places without direct sunlight;

• Places where the ambient temperature is within the range of -20° C to

+65°C;

• The relative humidity is in the range of 0% to 95%, and there is no condensation;

- Places without water droplets, steam, dust and oily dust;
- Places without high-heating devices;
- Non-corrosive, flammable gas and liquid places;
- Places that are not easy to be splashed with water, oil, medicines, etc.;
- Places that will not be exposed to radioactive radiation;
- Strong and vibration-free place;
- A place without electromagnetic noise interference.

Storage in an environment other than the above may result in product failure or damage.

1.3 Precautions for transportation

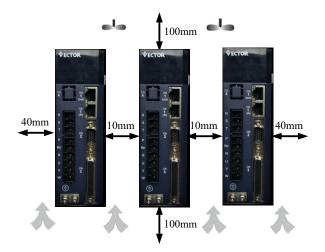
• When operating the servo unit and servo motor, be careful of sharp parts such as the corners of the equipment, otherwise injury may result.

• Do not place too much of this product on top of one another, as this may cause injury or malfunction.


• This is a precision device, please do not drop it or apply strong impact to it, otherwise it will cause malfunction or damage.

 \bullet Do not apply shock to the connector part, otherwise it will cause poor connection or malfunction.

1.4 Notes on installation


• Please install the drive on a dry and sturdy platform, maintain good ventilation and heat dissipation, and maintain a good grounding during installation.

• Please install it in the prescribed direction to avoid malfunction.

• When installing, please make sure to keep the specified distance between the servo drive and the inner surface of the electric cabinet and other machines, otherwise it will cause fire or failure.

• When installing, do not block the air inlet and air outlet, and do not allow foreign objects to enter the product, otherwise it may cause malfunction or fire due to the aging of the internal components.

• Do not place heavy objects on or on top of this product, as this may result in injury.

• Please install in the following environment:

- Places without direct sunlight;
- Locations where the ambient temperature is in the range of 0° C to 55° C;
- •The relative humidity is in the range of 0% to 95%, and there is no condensation;
 - Places without water droplets, steam, dust and oily dust;
 - Places without high-heating devices;
 - Non-corrosive, flammable gas and liquid places;
 - Places that are not easy to be splashed with water, oil, medicines, etc.;
 - Places that will not be exposed to radioactive radiation;
 - A firm and vibration-free place;
 - A place without electromagnetic noise interference.

Installation in an environment other than the above may result in product failure or damage.

1.5 Wiring Precautions

• It is recommended not to use single-phase 220V main power supply, as the electrolytic capacitor may be damaged due to lack of phase.

• Do not change the wiring while the power is on, otherwise electric shock or injury may result.

• Please have professional technicians perform wiring or inspection operations, otherwise it will cause electric shock or product failure.

• Please check the wiring and power supply carefully. The output circuit may be short-circuited due to incorrect wiring or the application of different voltages. When

the above fault occurs, the brake does not operate, so it may cause mechanical damage or personal injury.

• Do not connect the input power cable to the U, V, W terminals of the drive, otherwise the servo drive will be damaged.

• When wiring, do not pass the power cable and the signal cable through the same pipe, and do not bundle them together. The distance between the two should be more than 30cm to avoid interference.

• The ground terminal of the driver must be connected to the ground to avoid leakage and reduce the interference to the system, and the diameter of the ground wire should be the same or larger than that of the power supply wire.

• When connecting the AC power supply and DC power supply to the servo unit, please connect to the designated terminals, otherwise it may cause malfunction or fire.

• For the wiring length, the maximum length of the command input line is 3m, and the maximum length of the encoder line is 20m.

• Please use twisted-pair shielded cables for signal cables and encoder cables, and the shielding layer is grounded at one end.

• The U, V, W terminals of the driver and the U, V, W terminals of the motor should be connected one by one according to their names. If they are connected incorrectly, the motor cannot run normally.

 \bullet Products that share the DC bus should have a varistor, and the wiring should be secure.

• Please wait at least 5 minutes after the power is turned off before performing the inspection. Even if the power is turned off, high voltage may still remain inside the servo drive. Therefore, within 5 minutes after the power is turned off, do not touch the power terminals, otherwise it will cause electric shock.

• Do not turn on/off the power frequently. When it is necessary to repeatedly turn on/off the power continuously, please control it to less than once a minute. Since the power supply part of the servo driver has a capacitor, a large charging current will flow (charging time 0.2 seconds) when the power is turned ON/OFF. Therefore, if the power is turned on/off frequently, the performance of the main circuit components inside the servo drive will be degraded.

 \bullet Do not power on when the terminal block screws or cables are loose, otherwise it may cause fire.

• In the following places, please take appropriate shielding measures, otherwise it may cause damage to the machine:

- Places where there is interference due to static electricity;
- Places where strong electric or magnetic fields are generated;
- places where radiation exposure may occur;
- Places with power lines nearby.

1.6 runtime considerations

• During the test run, in order to prevent accidents, please run the servo motor with no load (not connected to the transmission shaft), otherwise it may cause injury.

• When it is installed on the matching machine and starts to run, please set the user parameters that match the machine in advance. If the operation is started without parameter setting, it may cause loss of control or malfunction of the machine.

• To avoid accidents, please install a limit switch or stopper at the end of the moving part of the machine, otherwise it will cause damage to the machine or injury to personnel.

• Do not make extreme changes to the parameter settings, otherwise it will cause unstable movement, mechanical damage or injury.

• When the power is turned on or the power is just cut off, the heat sink, external braking resistor, motor, etc. of the servo drive may be in a high temperature state. Please do not touch it, otherwise it may cause burns.

• When using a servo motor on a vertical axis, please install a safety device to prevent the work piece from falling in the state of alarm, over travel, etc. In addition, please set the stop setting of the servo lock when over travel occurs, otherwise the work piece may drop in the over travel state.

• Do not enter the operating range of the machine during operation, otherwise injury may result.

• Do not touch the servo motor and the moving parts of the machine during operation, otherwise injury may result.

• Install a safety system to ensure safety even in the event of a signal line disconnection or other failure. For example, when the forward over-travel switch (P-OT) and reverse over-travel switch (N-OT) signals are disconnected at the factory settings, a safety action is performed.

• When turning off the power, be sure to set the servo OFF status.

• Do not turn on/off the power frequently. After starting the actual operation, the interval between power ON/OFF should be more than 1 hour, otherwise the components inside the servo unit will be aged prematurely.

• When an alarm occurs, reset the alarm after eliminating the cause and ensuring safety, and restart the operation. Otherwise, injury may occur.

• Do not use the brake of the brake motor for normal braking, otherwise it may cause malfunction.

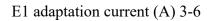
1.7 Maintenance and Inspection Precautions

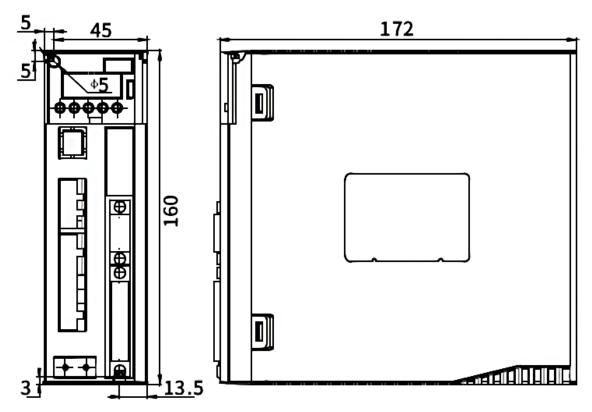
• Do not change the wiring while the power is on. Doing so may result in electric shock or injury.

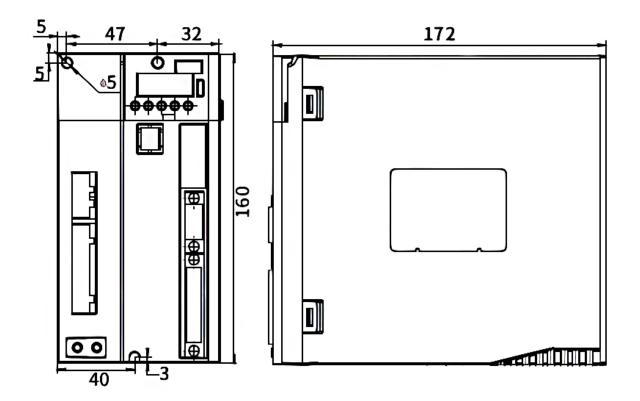
• Please have professional technicians perform wiring or inspection operations, otherwise it will cause electric shock or product failure.

• Please wait at least 5 minutes after the power is turned off before performing the inspection. Even if the power is turned off, high voltage may still remain inside the servo drive. Therefore, within 5 minutes after the power is turned off, do not touch the power terminals, otherwise it will cause electric shock.

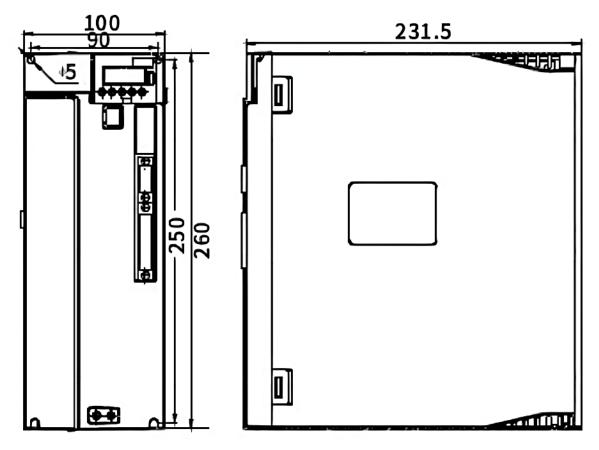
• When replacing the servo drive, please back up the user parameters of the servo drive to be replaced before replacing, and transfer the backup to the new servo drive, and then restart the operation, otherwise the machine may be damaged.

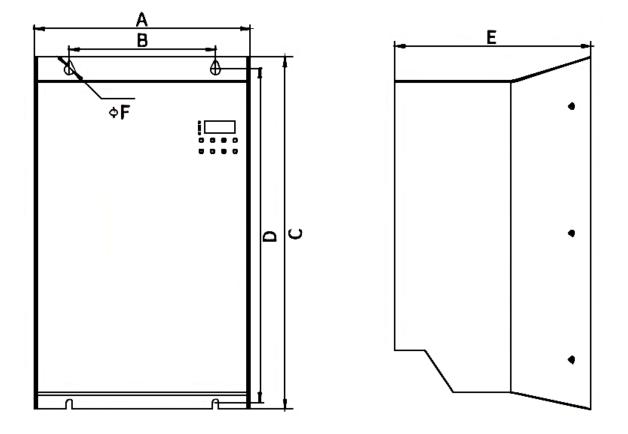

Chapter 2 Product Information


2.1 Drive form factor


E structure intelligent servo drive

2.1.1 Installation dimensions of E1, E2, E3, EA structure drives





E2 Adapter Current (A) 7-12

E3 adaptation current (A) 16-32

2.1.2 EA/-E installation dimensions

EA installation dimension drawing comparison table

Current (A)	38-45	60	75-90
А	220	226	262
В	149	150	160
С	363	439	499
D	349	428	488
E	200	250	251
F	5.5	6.5	6.5

-E installation dimension drawing comparison table

Current (A)	38-45	60	75-90	110-170						
А	220	226		226		226		226		305
В	149	150		150		150		160		
С	363	439		605						
D	349	428		428		594				
E	200	250		236						
F	5.5	6.5		6.5		6.5				

2.2 Nameplate Description

2.2.1 E structure servo drive nameplate

VC series nameplate description:

VEC-VCXXX-00323-E

VEC		Trademarks								
VC		VC-Series								
XXX	Serial No.	210 smart drive								
00323	Drive rated	Nameplate logo						243		
	current	rated	003	3.0A	00	6.0A	007	7.0A	012	12.0A
	and	current			6					
	voltage	Rated voltage	2	220V	2	220V	3	380V	4	440V
		Single/Dual	3	Three	3	Three	3	Three	3	Three
		/Three		-phas		-phas		-phas		-phas
		Phase		е		е		е		е
		Electricity								
Е		structure type								

2.2.2 Motor nameplate

200FMB-LR4015E33F1-MF2*

200	Square flange size (mm)					
F		Mark	cooling method			
	cooling method	F	air cooling			
		Default	natural cold			
	Product Series		mark			
MB		ME				
IVID		MB				
			ME1			

		MD							
			МН						
	Moment of	Mark	inertia						
L	woment of	L	low inertia						
L	inertia	М		m	edium	inertia			
	mertia	Н			high In	ertia			
		Mark		9	Specific	ation			
		R40			0.4K	W			
R40	rated power	1R5			1.5K	W			
		003			3KV	V			
		7R5			7.5K	W			
		020			20K	N			
		Mark			Rated s	peed			
		10			1000R				
15	Rated speed	15			1500R				
15	nated speed	20		2000RPM					
		25		2500RPM					
		30			3000R	PM			
	Installation	Mark	Specification						
Е	mstandtion	Α	IMB5						
-	method	D	IMB3			3			
		E	IMB35						
		Mark		ation					
		23	2	220V	3	Three-phase power			
33	Voltage level	33	3	380V	3	Three-phase power			
		43	4	440V	3	Three-phase power			
		Mark		9	Specific	ation			
		F				with oil seal			
	Brake	В		Built-in ho	lding bı	ake has oil seal			
F	вгаке	Α		No hold	ing bra	ke no oil seal			
r		С	w	With holding brake and without oil seal					
	Shaft connection	Mark		9	specific	ation			
1	Shart connection	1			Optical	axis			
	method	Default		Кеуе	ed threa	ded hole			
B.4		Mark	1	E	ncoder	Signal			
Μ	Encoder type	М		Incrementa	l photo	electric encoder			
		Ν	Ì	Wire-saving	g photo	electric encoder			

		Х	resolver encoder			
		В	23-bit multi-turn absolute value			
			photoelectric encoder			
		C1A 17-bit single-turn absolute valu				
		magnetic encoder				
		C2A 17-bit multi-turn absolute value mag				
		encoder				
		S 24-bit multi-turn absolute value photoelectric encoder				
		Mark	Specification			
	Number of		1024C/T			
		F2	2500C/T			
F2	encoder lines	F5	5000C/T			
		F6	6000C/T			
			Mark			
			М			
		LA				
		Z				
*	Factory logo	D				
^		U				
			С			
		N				
	1					

2.3 Drive Specifications

	Project	Description
		Single-phase/three-phase full-bridge rectification
Voltage	control mode	SVPWM drive
		(Input voltage range AC $220V/380V \pm 10\%$)
		Incremental photoelectric encoder
		Wire-saving photoelectric encoder;
	encoder feedback	17-bit single-turn Tamagawa absolute value encoder;
		23-bit single-turn Tamagawa absolute value encoder;
		17-bit multi-turn Tamagawa absolute value encoder;
Encoder		23-bit multi-turn Tamagawa absolute value encoder;
		24-bit Nikon absolute value encoder;
		Resolver (requires angle-resolving card), the principle of
		angle-resolving card: convert resolver signal to non-wire-saving
		signal.
		BISS-C
Pulse input	Pulse type	Differential input, open collector

	Frequency Range	Differential input: 0-500kHz, pulse width greater than 1us		
	Trequency Trange	Open collector circuit: 0-300kHz, pulse width greater than 2.5us		
	Pulse Mode	pulse+direction; AB pulse; CW+CCW;		
	Pulse type	Differential input		
High-	Frequency Range	0~4MHz		
speed		pulse+direction;		
pulse input	pulse mode	AB pulses; CW+CCW;		
	voltage range	-10V to 10V		
Analog	Input impedance	10k Ω		
input	Maximum frequency	1.5kHz		
Analog	voltage range -10V to 10V			
output Update Cycle		1ms		
DI/DO Inter	face Type	NPN/PNP		
Communicat	tion method	Modbus		
Brake handli	ing	External Brake Resistor		
fault respons	se	Dynamic braking, deceleration stop, freewheel stop		
Protective fu	inction	Overcurrent, overvoltage, undervoltage, overload, locked rotor, etc.		
auxiliary fun	oction	Gain adjustment, alarm record, jog operation		
	Instruction input method	 pulse command internal position planning Plan according to target position, speed, acceleration and deceleration time Trapezoidal speed curve cubic velocity curve Absolute/relative command mode 		
	command smooth	low pass filter/median filter		
position mode	way Electronic gear ratio	N/M;(M=1~2147483647,N=1~2147483647)		
	Torque limit	Internal torque limit Analog torque limit		
		Speed feedforward/torque feedforward		

	compensation			
	Torque	Fixed torque compensation/analog torque		
	compensation	compensation/automatic torque compensation;		
	way of command input	Pulse frequency/analog input/internal speed planning		
	speed control range	1~Maximum speed		
	bandwidth	3kHz		
speed	Torque limit	Internal torque limit/analog torque limit		
control mode	Command smoothing method	Low-pass filter/median filter		
	Feedforward compensation	Torque feedforward		
	Torque	Fixed torque compensation/analog torque		
	compensation	compensation/automatic torque compensation;		
Torque	Instruction input method	Internal torque given/analog control torque		
control	Torque	Fixed torque compensation/analog torque		
	compensation	compensation/automatic torque compensation;		
	speed limit	Internal Speed Limit/Analog Speed Limit		
digital input	speed limitInternal Speed Limit/Analog Speed LimitUp to 10 digital inputs, the function of each digital input can be assigned arbitrarily, the assignable functions include:Enable drive, reset drive, torque command A/B switch, torque command reverse enable, forward torque limit A/B switch, Negative direction torque limit A/B switch positive speed limit A/B switch, negative speed limit A/B switch, forward jog, reverse jog, speed command reverse enable, Main speed source A/B switch, speed stop enable clear position count, zero position fixed in speed mode, multi-speed speed selection 0 multi-speed speed selection 1, multi-speed speed selection 2, multi-speed speed selection 3,Position command prohibition, position command reverse, pulse command prohibition, electronic gear ratio switch 1, position error clearing, zero return triggering multi-segment position and direction selection 2, multi-segment position 			

digital output	Up to 6 digital outputs, the function of each digital output can be assigned arbitrarily, the assignable functions include:Drive enabling, speed reaching, decelerating, accelerating, zero-speed, speed overrun, forward running, reverse running, fault output, forward speed limit in torque mode,Negative speed limit in torque mode, speed limit in torque mode, positioning completion output, positioning approaching output, origin return completion output, position error too large output,Interrupt fixed length completion signal output, software limit signal output, brake signal output, input command valid, always OFF, always ON, torque limit signal output, torque arrival signal, internal trigger status, internal counter count arrival, The speed is consistent and the pulse position command is zero signal output.				
fault protection	the pulse position command is zero signal output. Software overcurrent, hardware overcurrent, overvoltage, undervoltage, current sensor failure, encoder failure, EEPROM verification failure, phase sampling failure,FPGA and ARM communication failure, large current change failure, magnetic encoder failure, current phase sequence learning failure, Z point not scanned during self-learning, and Z point offset not found,Hall code value learning error, over temperature of the drive, no feedback of hall value from the wire-saving encoder when power-on, mismatch of motor encoder types, when the origin is returned to zero, the origin switch INFn.34 is not set,Repeated assignment of INFn.xx, overspeed, position error is too large, interrupt fixed-length trigger signal INFn.40 is not set, no return to zero before absolute point motion, motor overload, software limit, hardware limit, curve planning failure, full closed loop Position error is too large,Forward (reverse) rotation is prohibited, Z point signal is unstable, RPDO reception timeout, motor stall, braking resistor overload, forward travel switch input function bit INFn.43 is not assigned to entity DI, reverse travel switch input function bit INFn.43 is not assigned to entity DI, reverse travel switch input function bit INFn.44 not assigned to entity DI,Origin search error, lap overflow in absolute value mode, absolute encoder battery failure, inertia learning failure, when learning full closed-loop parameters, the position value detected by the second encoder is too small, bus error, motor overheating, DI function code no assignment,AI zero drift is too large, zero return timeout, absolute encoder battery failure, wrong motor rotation direction during absolute encoder self-learning, and absolute encoder battery voltage is too low.				
	air pressure	86~106kPa			
Installation	ambient temperature	0~55℃			
Environment Requirement	environment humidity	0~90%RH (No dew condensation			
S	IP level	IP20			
	vibration	0~4.9m/s^2			

2.4 Drive selection

The parameters of the servo factory default maximum current can be viewed through P05.10~P05.20 parameters. If P05.13 defaults to 300%, it means that the factory default maximum output current of the driver is 3 times the rated current of the driver, but it does not represent the maximum current that the servo can output. If you need to further open the current of the driver, please contact our technical personnel for inquiry.

2.4.1 E-structure 220V driver selection

Drive model	Output rated current A	Output maximum current A	Hardware output maximum current A
VC210-00323	3	9	15
VC210-00623	6	18	23
VC210-01223	12	36	47
VC210-01523	15	36	47
VC210-02723	27	54	86

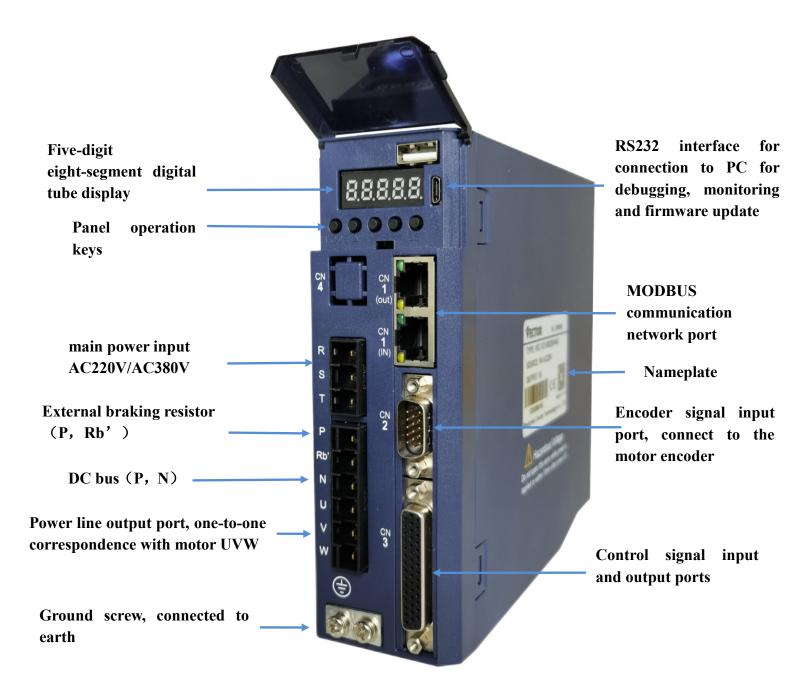
2.4.2 E structure 380V driver selection

Drive model	Output rated current A	Output maximum current A	Hardware output maximum current A
VC210-00733	7	14	28
VC210-01233	12	24	47
VC210-01633	16	32	57
VC210-02033	20	40	64
VC210-02733	27	54	86
VC210-03233	32	64	107
VC210-03833	38	76	129
VC210-04533	45	67.5	143
VC210-06033	60	90	135
VC210-07533	75	112.5	168
VC210-09033	90	135	202
VC210-11033	110	165	247
VC210-15033	150	225	337

2.5 Meet the standards

This product meets the following CE certification standards:

1. EN 61800-5-1:2007+A1:2017 (Part 5-1 Safety Requirements for Electricity, Heat and Energy of Speed Regulating Electric Drive System), the corresponding national standard is GB12668.501-2013;


2. EN IEC 61800-3:2018 (Part 3 Electromagnetic Compatibility Standard and Its Specific Test Methods for Speed-governing Electric Drive Systems), the corresponding national standard is GB12668.3-2012.

Chapter 3 Wiring

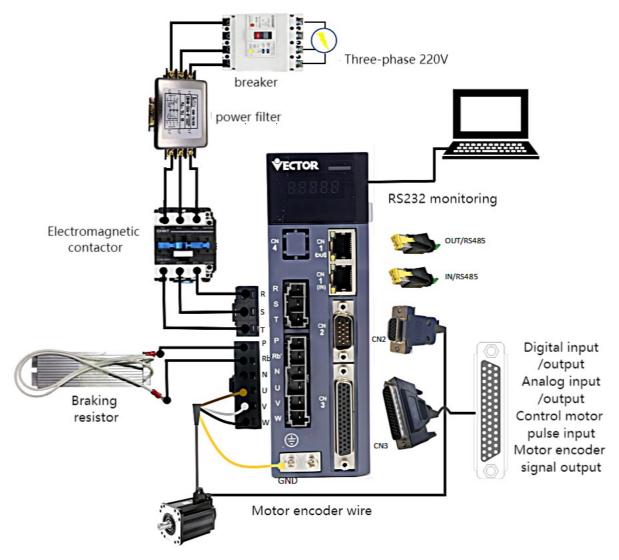
This chapter describes the wiring method of the servo drive and the definitions of various signals.

3.1 Drive overview

3.1.1 E structure servo drive

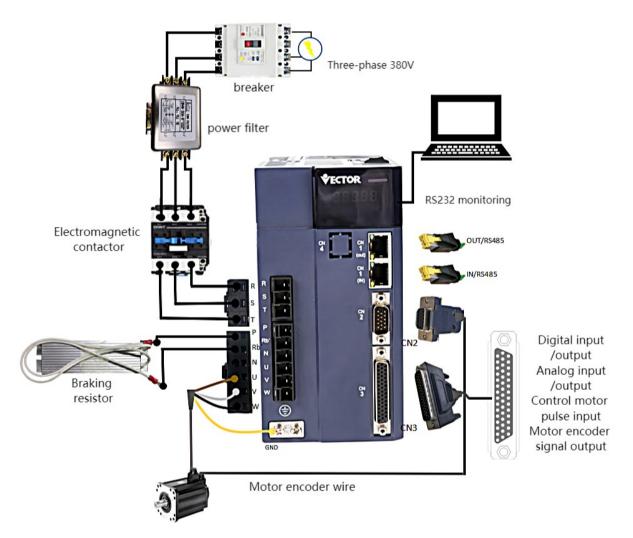
3.2 Main circuit wiring

This section describes the functions of the main circuit terminals, main circuit wiring examples, and main circuit wiring precautions.


3.2.1 Main circuit terminal names and functions

Terminal symbol	Name	Function	
R、S、T	Main circuit power	Three-phase 380V driver: power supply access R, S, T;	
$K_{\lambda} = S_{\lambda} = I$	supply input	Three-phase 220V driver: power supply access R, S, T;	
U, V, W	Motor Terminals	One-to-one connection with motors U, V, W	
P、Rb'	Braking resistor terminal	External braking resistor	
P, N	DC bus terminal	External power saving module or shared DC bus	
Ē	Earth terminal	Connect to the ground and connect to the ground wire of the motor at the same time	

Note when sharing DC bus: 380V driver can only share DC bus with 380V driver, 220V driver can only share DC bus with 220V driver.


3.2.2 Typical Main Circuit Wiring Example

(1) E structure driver is three-phase 220V

• The +24V power supply of IO needs to be provided by the user.

(2) E structure driver is three-phase 380V

• The +24V power supply of IO needs to be provided by the user.

3.2.3 Main circuit wiring precautions

(1) Do not connect the input power cable to the P, RB', N, U, V, W terminals of the drive, otherwise the servo drive will be damaged.

(2) The U, V, W terminals of the driver and the U, V, W terminals of the motor should be connected one by one according to their names, and the motor will not run normally if they are connected incorrectly.

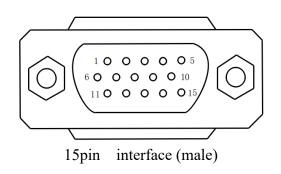
(3) The braking resistor cannot be connected to the terminals P and N of the DC bus, otherwise it may cause a fire!

(4) The ground terminal of the driver must be connected to the ground to avoid leakage and reduce the interference to the system, and the diameter of the ground wire should be the same or larger than that of the power supply wire.

(5) When wiring, do not pass the power cable and the signal cable through the same pipe, and do not bundle them together. The distance between them should be more than 30cm to avoid interference.

(6) Use twisted-pair shielded cables for signal lines and encoder lines.

(7) For the wiring length, the maximum length of the command input line is 3m, and the maximum length of the encoder line is 20m.


(8) Even if the power is turned off, high voltage may still remain inside the servo drive. Therefore, after turning off the power, do not touch the power terminals for 5 minutes.

(9) Do not turn on the power when the terminal block screws are loose or the cables are loose, otherwise it may cause fire.

(10) Please do not turn on/off the power frequently. When you need to repeatedly turn on/off the power continuously, please control it to less than once a minute. Since there is a capacitor in the power supply part of the servo driver, when the power is turned on, a large charging current will flow (charging time 0.2 seconds). If the power is turned on/off frequently, the performance of the main circuit components inside the servo drive will be degraded and the service life will be shortened.

3.3 Encoder signal wiring

3.3.1 Pin assignment of the encoder connection port (CN2)

3.3.2 The pin definition of the encoder connection port (CN2)

The VC210 servo model supports incremental photoelectric encoder/wire-saving photoelectric encoder/absolute encoder. The pin definitions of the encoder connection port are shown in the table below.

15PIN pin (male header)					
Pin No.	Signal name	Pin No.	Signal name		
1	A+ or BISS-C	2	A- or BISS-C		
	encoder CLK+		encoder CLK-		
3	B+ or BISS-C	4	B- or BISS-C		
	encoder		encoder DATA-		
	DATA+				
5	Z+or(SD)	6	Z-or(SD-)		
	absolute value		absolute value		
	encoder signal		encoder signal		
	positive		negative		
7	U+	8	U-		
9	V+	10	V-		
11	W+	12	W-		
13	+5V	14	0V		
15	hold	C	(FG)Shielded		
13	noia	Case	network layer		

Input/Output Signal Wiring 3.4

In order to facilitate communication with the upper controller, the VECTOR servo drive provides 10 groups of digital input terminals and 6 groups of digital output terminals that can be arbitrarily configured. In addition, it also provides XY pulse input and encoder differential output signals OA+, OA-, OB+, OB- and analog input and output signals that can be arbitrarily divided.

Pin assignment of input/output signal port (CN3) 3.4.1

VC210 control signal input and output port CN3 adopts 44PIN (female) interface.

3.4.2 Pin definition and function of input/output signal port (CN3)

44PIN pin definition						
Pin No.	Define	Functional Description	Pin No.	Define	Functional Description	
10、26	+24V	External DC24V power	21	RST	Reset	
9, 25	COM	supply, for DI, DO work	12	AGND	Built-in Analog Ground	
3	DO1		14	AI1	Angleginnut	
18	DO2		15	AI2	Analog input	
2	DO3		44	AO1	Programmable Analog Output	
17	DO4		28	Y2+	High-speed pulse position	
		Programmable Digital	29	Y2-	command input	
1	DO5	Output	13	X2+ (SIG+)	(Default high-speed pulse position command input (can be customized as	
16	DO6		30	X2- (SIG-)	Tension sensor signal input, the tension sensor can be powered through pins 35	

					and 36 (only for rewinding and unwinding)) Two functions can be selected)
24	DI1		37	OA+	Select the encoder signal
8	DI2		38	OA-	frequency division output or
23	DI3		39	OB+	the second encoder input
7	DI4		40	OB-	through parameter P03.78
22	DI5	Programmable digital input	41	OZ+	Encoder Z point signal
6	DI6		42	OZ-	output
5	DI7		35	+5V	
20	DI8		36	0V	Built-in +5V power
4	DI9		11	SW-DO	DO's NPN/PNP jumper
19	DI10		27	SW-DI	DI's NPN/PNP jumper
31	X+		42	VVDU	XXX in most multiplication
32	Х-	Position command input, input signal type can choose differential signal or open collector	43	ХҮРН	XY input pull-up resistor
33	Y+			Shielded	Connect to the ground wine
34	Y-		Case	network layer	Connect to the ground wire of the driver

3.4.3 Input and output signal type selection

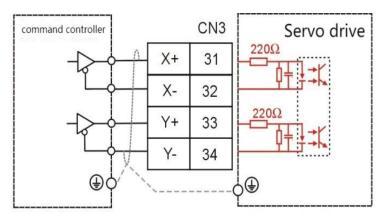
Depending on the type of the host controller, the DI and DO signals of the VECTOR servo drive are designed to be selected by jumpers.

1) DIx jumper selection

SW-DI (pin 27 of CN3) and +24V (pin 26) are short-circuited as NPN, and SW-DI (pin 27 of CN3) and COM (pin 25) are short-circuited as PNP;

2) DOx jumper selection

SW-DO (pin 11 of CN3) and COM (pin 25) are short-circuited as NPN, and SW-DO (pin 11 of CN3) and +24V (pin 26) are short-circuited as PNP;

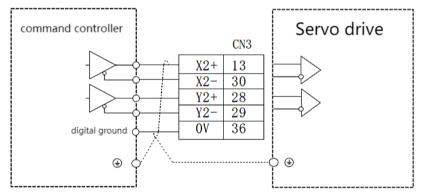

Remarks: External DC24V power supply is connected to pin 9 (COM) and pin 10 (+24V).

3.4.3 Position command input wiring example

The following describes the wiring method of the position command input in the CN3 port in detail. There are two options for the input signal type, namely differential signal input and open collector input. Details are as follows:

(1) When differential signal input

Maximum input frequency ≤ 500 KHz (before frequency multiplication)



When working, please ensure that:

• $3.2V \leq [(high level)-(low level)] \leq 5.1V$

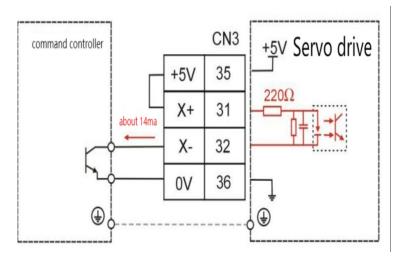
If the above formula cannot be satisfied, the input pulse of the servo drive will be unstable, and the phenomenon of pulse loss or command inversion may occur.

(2) High-speed pulse position command input (differential signal input) Maximum input frequency ≤ 4MHz (before frequency multiplication)

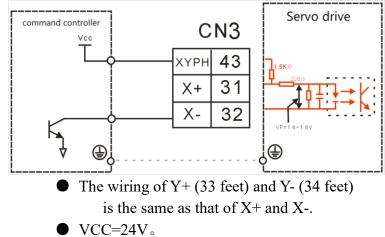
When working, please ensure that:

• $3.2V \leq [(high level)-(low level)] \leq 5.1V$

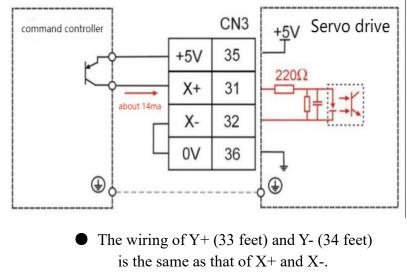
If the above formula cannot be satisfied, the input pulse of the servo drive will be

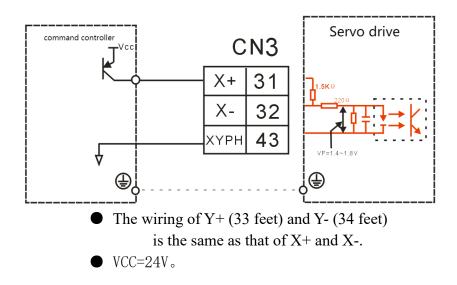

unstable, and the phenomenon of pulse loss or command inversion may occur.

(3) Open collector input


Maximum input frequency \leq 300KHz (before frequency multiplication)

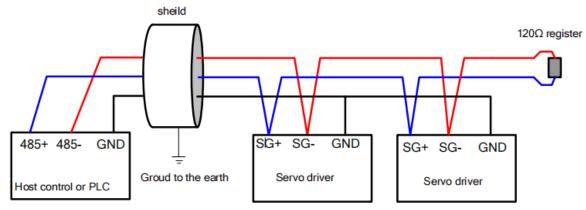
(1)The upper controller is NPN type (Japanese PLC such as Mitsubishi, Panasonic, Omron, etc.)


a.When using the drive's internal 5V power supply:


- The wiring of Y+ (33 feet) and Y- (34 feet) is the same as that of X+ and X-.
- b. When using an external power supply prepared by the user:

⁽²⁾The upper controller is PNP type (European PLC such as Siemens) a. When using the drive's internal 5V power supply:

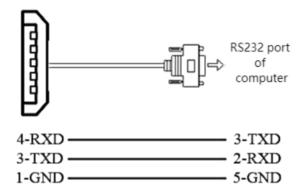
b. Use a user-prepared external power supply



3.5 Communication signal wiring

3.5.1 Pin assignment and definition of VC210 servo E structure communication port

Location and function	Terminal shape	Description					
		Both interfac	Both interfaces are defined the same.				
		Pin.No	Position	Description			
		1	NC	dangling			
		2	NC	dangling			
		3	GND	power ground			
		4	SG+	The signal of RS485 is positive			
		5	SG-	The signal of RS485 is negative			
CN1		6	NC	dangling			
CIVI		7	NC	dangling			
		8	GND	power ground			
		(1)It is necessary to connect the power ground of the					
		<u>controller (P</u>	LC) with the	power ground of the servo			
		drive					
		(2)When multiple drives use the RS485 bus in					
		parallel, please add a 120 Ω terminal resisto					
	between the SG+ and SG- terminals of th						
		<u>remote drive</u>					


Note: When wiring, please connect the GND terminal of the host device and the GND terminal of the servo drive together.

3.5.2 E structure monitoring port pin assignment and definition

Location and function	Terminal shape	Description			
CN5		Pin No. 1 2 3 4 5	Define GND NC TXD RXD NC	Descriptionpower grounddanglingRS232 sendRS232 receivedangling	

The connection to the computer is as shown below:

RS232 baud rate selection parameters are as follows:

parameter no.	Parameter Description	Setting range	Units	Function	Setting method	Effective way	Defaults	read and write method
P08.26	RS232 monitor port baud rate 0- 9600 1- 38400 2- 115200	0~2	bps	Set the baud rate of the RS232 monitor port.	anytime	Immediately	2	RW

3.6 Wiring suggestions and anti-interference countermeasures

3.6.1 Wiring Recommendations

For the safety and stability of the product, please pay attention to the following matters when wiring:

1. For the cables related to the command input and encoder wiring, please select the shortest distance wiring.

2. The ground wire should be as thick as possible (above 2mm²).

•All parts of the system (servo driver, servo motor, noise filter, host controller, switching power supply, HMI, etc.) must be grounded, and must be grounded at one point.

• The recommended grounding resistance is 100Ω or less.

•Use shielded cables for motor cables.

3.Do not bend or strain the cable.

•The core wire diameter of the signal cable is only 0.2mm or 0.3mm, please use it carefully.

To prevent radio frequency interference, please use a noise filter.

•Install a noise filter on the input side of the power cord when using it near a home or worrying about radio frequency interference.

In order to prevent malfunction caused by noise, the following processing methods can be adopted:

•Install the host device and noise filter as close to the servo driver as possible.

•Install surge suppressors on the coils of relays and AC contactors.

•When wiring, please separate the strong current line and the weak current line, and keep an interval of more than 30cm, do not put them in the same pipe or bundle them together.

•Do not share the power supply with electric welding machines, electrical discharge machining equipment, etc. Even if the power supply is not shared, install a noise filter on the input side of the wire when there is a high-frequency generator nearby.

6.Protect the power cord with a wiring circuit breaker or fuse.

•Be sure to use a circuit breaker or fuse for wiring in order to prevent cross-electric shock in the servo system.

3.6.2 Anti-interference countermeasures

1. Servo motor housing ground

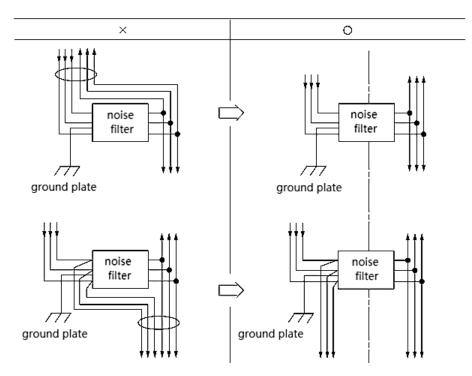
Be sure to connect the ground terminal "" of the servo motor directly with the ground terminal "" of the servo drive. In addition, connect the ground terminal "" of the driver to the ground. Otherwise, when the servo motor is mechanically grounded, the switching disturbance current will flow from the main circuit of the drive through the parasitic capacitance of the servo motor.

2. When there is interference on the command input cable

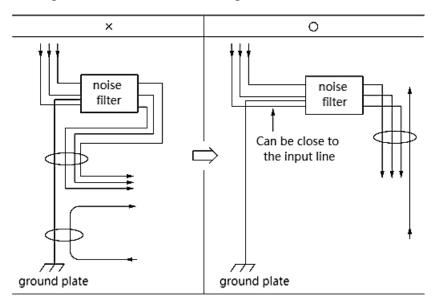
When there is interference on the command input line, please connect the 0V line of the input line to the ground, the main circuit wiring of the motor passes through the metal conduit, and connect the conduit and the junction box to the ground.

- Please perform the above grounding treatment and ground all of them at one point.
 - Servo drive Noise filter (Note 3) U R AC S ν м power Т W \rightarrow Outer box, more than 3.5mm² (Note 1) control unit (Note 3) (Note 2) 3.5mm^2 2mm^2 above above powe filter Z Outer box, more than 2mm² (Note 1) \rightarrow Outer box, more than Outer box, more than 3.5mm² (Note 1) 3.5mm² (Note 1) ground plate
- 3. Anti-interference wiring example

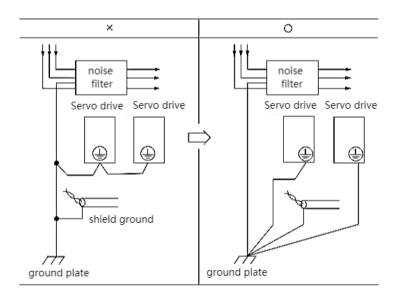
Note 1: Please use a thick wire of 3.5mm2 or more for the connection wire of the outer box used for grounding (braided copper wire is recommended).

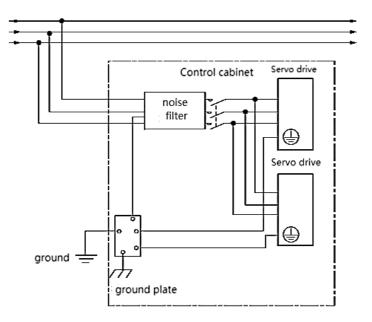

Note 3: When using a noise filter, please observe the precautions described in the following "How to use the noise filter".

4. How to use the noise filter


In order to prevent the interference of the power line and reduce the influence of the servo drive on other equipment, please select a noise filter that can make the servo system

meet the IEC/EN 61800-3 electromagnetic compatibility standard according to the power of the servo drive, and observe the The following notes:


• Please separate the input wiring and output wiring of the noise filter, do not put them in the same bushing, and do not bundle them together.


• Please separate the ground wire of the noise filter from the output wiring, do not put them in the same casing, and do not bundle them together.

• Please connect the ground wire of the noise filter to the ground plane separately. Do not connect other ground wires.

•When the noise filter and the servo drive are installed in the same control cabinet, please connect the ground wire of the noise filter and the ground wires of other devices in the control cabinet to the grounding plate of the control cabinet, and then ground.

Chapter 4 Panel Display and Keyboard Operation

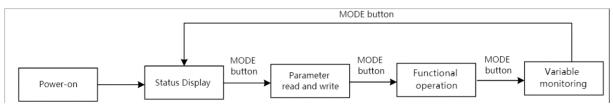
4.1 Introduction to panel composition

4.1.1 E Structure Servo Driver Panel

The panel contains 5 buttons and 5 digital tubes. The general functions of the 5 buttons are shown in the table below.

button name	Button function
Mode	Mode switch, return to the previous menu
▲ Increase	Increase the value of the blinking digit of the LED nixie tube
▼ decrease	Decrease the value of the blinking digits of the LED nixie tube
	Move the flashing bit of the LED digital tube to the left; check the
	high-order value of the data whose length is greater than 5 digits; reset the
ement	fault; execute the Fn function
SET	Read/write parameter value, enter Fn function page

4.2 panel operation mode


4.2.1 E Structure Servo Driver Panel

There are a total of 4 operating modes, namely status display, parameter reading and writing, variable monitoring, and function operation.

operating mode	Mode introduction
Status Display	Display the status of the drive, such as reset (panel display rst), ready (panel display rdy), running (panel display run), fault (Er.xxx), or monitor a specific variable in operation (such as speed, bus voltage, etc. Wait)
Parameter read and	read and write all parameters

write					
Variable	Manitana variable or IO status of the drive				
monitoring	Monitor a variable or IO status of the drive				
Functional	Execute specific functions, such as jog test run, parameter reset to factory				
operation	value, drive reset				

Each mode is switched through the MODE button.

4.3 Pulse servo status display

In this mode, the status of the drive is displayed, and there are several statuses as follows.

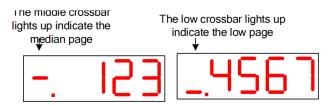
Status name	Status introduction	panel
Status Halle	Status Introduction	display
Deget state	The driver enters this state after power-on initialization or	
Reset state	re-reset and restart.	
Dee dry state	The servo drive is initialized and enters the ready state	rdy
Ready state	when there is no fault in the hardware detection.	
running state	When the driver is enabled, the motor is powered on	run
fault state	The drive reports a fault, and the panel displays the reported	Er.xxx
fault state	fault code	

In the non-fault state of state display, the panel can be set to display a specific variable through P02.05. For bus type servo status display, refer to the corresponding bus protocol chapter.

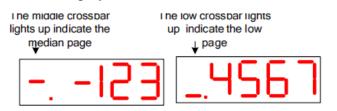
4.4 Parameter read and write

When entering the parameter read/write mode for the first time, Pxx.yy is displayed. Among them, xx is the parameter group, and yy is the parameter number in the group. The parameters of the driver are divided into $0\sim13$ groups, and each group can accommodate up to 99 16-bit parameters. There are four types of parameters, namely unsigned 16-bit parameters, signed 16-bit parameters, unsigned 32-bit parameters, and signed 32-bit parameters. The range of values for the unsigned 16-bit parameter is 0 to 65535. The value range for signed 16-bit parameters is -32767 to 32767. The value range of the unsigned 32-bit parameter is 0 to 4294967295. The value range for signed 32-bit parameters is -2147483647 to 2147483647.

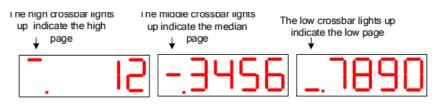
4.4.1 Display rules for numbers of different lengths

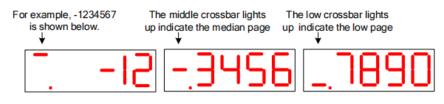

Negative numbers less than 4 digits and positive numbers less than 5 digits can be

displayed through 5 digital tubes. Such as -9999 and 12345 are displayed as follows.



Negative numbers with more than 4 digits or positive numbers with more than 5 digits are displayed on the 2nd or 3rd page. The switching between pages is realized by long pressing the " \blacktriangleleft " (shift) key. The leftmost nixie tube of each page identifies the number of pages displayed at this time. The high horizontal bar is lit to represent the high page, the middle horizontal bar is lit to represent the middle page, and the low horizontal bar is lit to represent the low page.


For example, 1234567 is displayed as follows.


For example, -1234567 is displayed as follows.

1234567890 is displayed as follows.

-1234567890 is displayed as follows.

4.4.2 Parameter setting steps

For example, the process of setting P00.02 to 4000 is as follows.

① Press the MODE button to switch the mode to the parameter reading and writing mode, and the keyboard displays P00.00 at this time;

② Combined with "▲" (increase), "◄◄" (shift), "▼" (decrease) three keys to modify the parameter number to P00.02;

③ Press the SET key, first read the value of P00.02;

④ Combine the "▲" (increase), "◄◄" (shift), "▼" (decrease) three keys to set the

parameter value to 4000;

- (5) Press the SET key to write the set parameter value into P00.02.
- For data displayed on multiple pages, you can automatically shift to other pages by "•
- " (shift), or you can directly shift to other pages by long pressing "••" (shift).

4.5 Functional operation

Currently the servo supports the following functions.

Function No.	Function	
Fn000	Reset the drive	
Fn001	Jog test run	
Fn002	Parameter reset to factory value	
Fn003	Update ARM firmware	
Fn004	Learning the parameters of asynchronous motors	
Fn005	Learn motor pole pairs and encoder parameters	
Fn006	Single parameter gain adjustment	
Fn007	Learning load inertia	
Fn008	Update the FPGA program	
Fn009	Restore all factory parameters except P00 and P01 parameter	
1 1100 7	groups	
Fn010	Backup all parameters	
Fn011	Restoring backed up parameters	
Fn012	Restart RS232 communication	
	Self-learning full-closed loop polarity and the number of pulses	
Fn013	of the second encoder corresponding to one rotation of the	
	motor	
Fn014	Clears the revolution value of the absolute encoder	
Fn016	Current loop PI parameters of self-learning synchronous motor	

4.5.1 Fn000 reset drive function

The operation steps are as follows:

① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;

② Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn000;

③ Press the SET key, the drive will be reset directly.

<u>Note: In any state, pressing the "▲" (increase) and "▼" (decrease) keys</u> <u>simultaneously for 2 seconds can reset the drive.</u>

4.5.2 Fn001 Jog test run function

The operation steps are as follows:

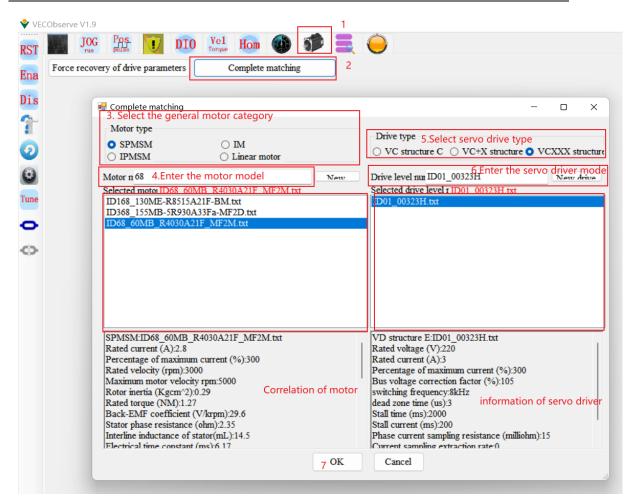
① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;

② Combine the " \blacktriangle " (increase), " $\triangleleft \dashv$ " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn001;

③ Press the SET key, at this time the drive is enabled and the digital tube displays the motor speed in real time.

④ Press the "▲" (increase) key to increase the Jog speed by 10rpm, press the "▼" (decrease) key to reduce the Jog speed by 10rpm, press the "◄<" (shift) key to set the Jog speed to 0; long Press the "◄<" (shift) key to change the speed increase rate to 500rpm.

(5) After the Jog trial run, press the MODE button to exit the Jog mode, and the servo is disabled at this time.


Note: When the drive is enabled, the jog test operation function is invalid.

4.5.3 Fn002 Restore all parameters to factory defaults

All parameters are restored to factory defaults, and the drive will restore its related parameters according to the set motor model P00.06 and drive level P01.15. If Er609 is reported, it means that the drive level P01.15 is set incorrectly, and the servo does not have the drive parameters of this drive level temporarily. If Er610 is reported, it means that the motor model P00.06 is set incorrectly, and the servo does not have the motor parameters of this motor model. When Er609 or Er610 is reported, if you need to forcefully restore a group of drive parameters, you can set P10.33=32767 to shield the above errors, and then restore the factory defaults.

The operation steps are as follows:

① Confirm the motor model P00.06 and drive grade P01.15. Motor models and drive level can be found on the VECObserve Complete Matching page. As shown below.

2 Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;

③ Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " ∇ " (decrease) three buttons to set the display value of the digital tube to Fn002;

④ Press the SET key to display rECY;

⑤ Long press the "◄◄" (shift) key;

6 If the recovery is successful, it will display donE, and if it fails, it will display Err. **Notice:**

<u>*When the drive is enabled, the function of parameter restoring to factory default is</u> invalid.

<u>*When power on, if you press the "▲", "▼", "◀◀" keys at the same time, the</u> parameters can also be restored to the factory values.

4.5.4 Fn003 Download program reset

The operation steps are as follows:

① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;

② Combined with "▲" (increase), "◄◄" (shift), "▼" (decrease) 3 buttons to set the display value of the nixie tube to Fn003;

- ③ Click SET to display UPd; (Update)
- ④ Long press the "<<" (shift) key to reset the drive;
- (5) At this point, the ARM firmware can be updated via RS232.

4.5.5 Fn004 Learn asynchronous motor encoder parameters

This function can self-learn the relevant parameters of the asynchronous motor. Including P00.05 motor pole pair number, P00.11 motor encoder resolution, P00.47 induction motor stator resistance (Ω), P00.48 induction motor rotor resistance (Ω), P00.49 induction motor total leakage inductance (mH), P00.50 induction motor magnetizing inductance (mH). During the self-learning process, the motor maintains the smooth axis, and the motor rotates to the rated speed.

The operation steps are as follows:

① Set the motor rated frequency P00.51;

② Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn004;

③ Click SET to display SEL0; (Self-Learn0)

④ Press the "< " (shift) key to start self-learning. After the self-learning is completed, it will automatically turn off the enable or report a fault.

Note: 1. When the driver is enabled, this function is invalid.

2. The asynchronous motor self-learning encoder can only be realized through this function, and the monitoring software learning is invalid.

3. During the learning process, the motor will run at high speed, please make sure that the motor is fixed and safe to operate.

4.5.6 Fn005 Learn related parameters of synchronous motor encoder

When using motors other than our company, it is necessary to learn the encoder parameters.

Before self-learning, set the self-learning maximum current limit P02.36 (50% of motor rated current), motor maximum speed P00.03, motor rated speed P00.02, motor Rated current P00.01, drive rated current P01.03.

The operation steps are as follows:

① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;

2 Combine the " \blacktriangle " (increase), " \checkmark " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn005;

③ Click SET to display SEL1; (Self-Learn1)

④ Press the "<<" (shift) key to start self-learning. After the self-learning is completed, it will automatically turn off the enable or report a fault. The main learning parameters are as follows: P00.05 Motor pole pairs, P00.71 Z point offset, P00. 11 Motor encoder resolution, P00.72 Encoder AB phase sequence.

If the overcurrent Er.100 is reported during the learning process, parameters P02.36

(maximum current limit of self-learning), P07.01 (current loop proportional gain) and P07.02 (current loop integral gain) can be appropriately reduced.

Note: When the driver is enabled, this function is invalid.

4.5.7 Fn006 Single parameter gain adjustment

Single parameter gain adjustment refers to adjusting one parameter to achieve the purpose of adjusting servo rigidity. Before single-parameter gain adjustment, the servo load inertia ratio P07.29 must be accurately obtained. For the method of obtaining the load inertia ratio, refer to Fn007.

The operation steps are as follows:

① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;

② Combine the " \blacktriangle " (increase), " \checkmark " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn006;

③ Click SET to display the value of rigidity level P07.28;

④ Press the "<<" (shift) key, the motor starts to rotate forward and reverse;

(5) By pressing " \blacktriangle " or " \checkmark ", gradually increase or decrease the value of the rigidity level until the rigidity of the servo meets the actual application. Under normal circumstances, the rigidity level can be gradually increased until the motor has abnormal noise, and then reduce the rigidity level by 1-2.

Note: When the driver is enabled, this function is invalid.

For VC210 series servo, every time the rigidity level is adjusted, the parameters will not be automatically saved in the servo. If the adjustment is completed, the user needs to manually long press the "<<" (shift) key to save the adjusted rigidity level in the servo.

4.5.8 Fn007 Learning load inertia

The load inertia is the most important parameter of the servo system. Only when the inertia is matched can the servo perform optimally.

(1) VC210 Servo Load Inertia Learning

The operation steps are as follows:

① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;

② Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " ∇ " (decrease) three buttons to set the display value of the digital tube to Fn007;

③ Click SET to display SEL4; (Self-Learn 4)

(4) Press the " $\triangleleft \dashv$ " (shift) key to start self-learning. The servo drive enters the state of automatically learning the habit, and the learned inertia will be automatically displayed on the panel.

(5) Press " \blacktriangle ", the motor rotates forward for 2 circles, and press " \checkmark ", the motor rotates reversely for 2 circles. The load inertia value will be updated to the panel every time it rotates. Press continuously for several times until the inertia is stable, the inertia at this time is the

learned load inertia. After stabilization, long press "< < " (shift) to save the learned value to the servo drive.

If the overcurrent Er.100 is reported during the learning process, P07.01 (current loop proportional gain), P07.02 (current loop integral gain), P07.03 (speed loop proportional gain), P07.04 can be appropriately reduced (speed loop integral gain).

If the load inertia is large, low frequency oscillation may occur during self-learning. At this time, it is necessary to manually increase P07.03 and decrease P07.04 before self-learning.

Notice:

1. When the drive is enabled, this function is invalid.

- 2. When the load inertia is large, low-frequency oscillation may occur in self-learning, and it is necessary to manually increase P07.03 and decrease P07.04, and then self-learn.
- 3. <u>When the load inertia is small, reduce the inertia self-learning acceleration and deceleration time P07.33.</u>
- 4. When the machine vibrates, the position loop gain P07.05 needs to be reduced.

4.5.9 Fn008 update FPGA program reset

The operation steps are as follows:

① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;

② Combine the " \blacktriangle " (increase), " \checkmark " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn008;

③ Click SET to display FUPd; (FPGA Update)

④ Long press the "<<" (shift) key to reset the drive;

5 At this point, the FPGA firmware can be updated through the "VECTOR FPGA Firmware Update Tool".

4.5.10 Fn009 restores all factory parameters except P00 and P01 parameter groups

The operation steps are as follows:

① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;

② Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " ∇ " (decrease) three buttons to set the display value of the digital tube to Fn009;

- ③ Click SET to display -rECy; (-Recovery)
- ④ Long press the "◄◄" (shift) key;
- (5) If the recovery is successful, it will display donE, and if it fails, it will display Err.
- 4.5.11 Fn010 backup all parameters

The operation steps are as follows:

① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;

② Combine the " \blacktriangle " (increase), " \blacktriangleleft " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn010;

- ③ Click SET to display bcuP; (backup Parameter)
- ④ Long press the "◄◄" (shift) key;
- ⑤ If the backup is successful, it will display donE, and if it fails, it will display Err.

Note: The drive backup parameters are stored in another address area of the drive memory.

4.5.12 Fn011 restore the parameters that have been backed up

The operation steps are as follows:

① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;

2 Combine the " \blacktriangle " (increase), " $\triangleleft \dashv$ " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn011;

③ Click SET to display rESto. (restore)

4 Long press the "••" (shift) key;

⑤ If the restoration is successful, it will display donE, and if it fails, it will display Err.

4.5.13 Fn012 restart RS232 communication

When the servo RS232 does not communicate for a long time, it will automatically turn off. RS232 communication can be restarted via Fn012.

The operation steps are as follows:

① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;

2 Combine the " \blacktriangle " (increase), " \checkmark " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn012;

- ③ Click SET to display SEnd;
- ④ Press the "< " (shift) key;

4.5.14 In Fn013 full-closed loop mode, the polarity of self-learning feedback and the number of pulses of the second encoder corresponding to one rotation of the motor

In full-closed loop mode, it is necessary to set the full-closed loop feedback polarity P03.33 and P03.34. The appropriate value can be automatically calculated through this function operation. When performing this function operation, please ensure that the second encoder measuring wheel can be tightly and The material connection ensures that no slippage occurs between the measuring wheel and the material.

The operation steps are as follows:

① Press the MODE button to switch the mode to the functional operation mode, at this

time the first two digits of the digital tube display Fn;

② Combine the " \blacktriangle " (increase), " \checkmark " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn013;

- ③ Click SET to display LFCP. (Learn Full_Close Parameter);
- ④ Press the "<<" (shift) key; the motor will rotate forward 3 times at a speed of 10rpm.

4.5.15 Fn014 clears the absolute value encoder circle value (only for Nikon 24-bit encoder)

The operation steps are as follows:

① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;

2 Combine the " \blacktriangle " (increase), " $\triangleleft \dashv$ " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn014;

- ③ Click SET to display CLrEn. (Clear Encoder);
- (4) Press the " \triangleleft " (shift) key; clear the absolute encoder turns.

4.5.16 Fn016 Self-learning synchronous motor current loop PI gain

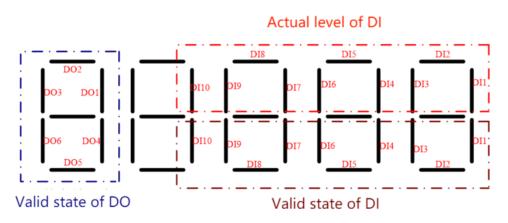
The operation steps are as follows:

① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;

② Combine the " \blacktriangle " (increase), " \checkmark " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn016;

- ③ Click SET to display SELC.
- ④ Press the "<<" (shift) key; start learning the current loop PI gain.

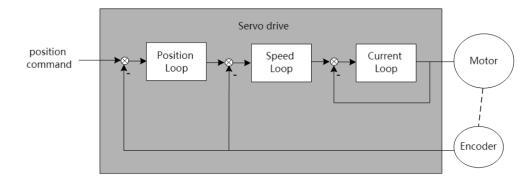
4.6 Variable monitoring


Press the MODE key several times to switch the mode to variable monitoring mode, and the first two digits of the digital tube display Un. Combine the " \blacktriangle " (increase), " $\triangleleft \dashv$ " (shift), " \checkmark " (decrease) three buttons to set the display value of the digital tube to the number that needs to be monitored (for example, Un007 is to monitor the DIDO status). Press SET to display the variables to be monitored.

At present, the drive can monitor 13 variables, and the values corresponding to the monitoring numbers are shown in the table below.

Number	corresponding value		
Un000	Motor speed rpm		
Un001	Bus capacitor voltage V		
Un002	temperature °C		
Un003	Current RMS A		
Un004	Command pulse count value		

Un005	Motor encoder pulse count value			
Un006	Second encoder pulse count value			
Un007	DIDO status			
Un008	Voltage value of AI1			
Un009	Voltage value of AI2			
	Output motor instantaneous			
Un011	current percentage			
	Output motor instantaneous			
Un012	power percentage			
	Percentage of output drive rated			
Un013	current			
Un014	Motor load rate			


It should be noted that, for DIDO status monitoring, the actual level of DI (high level on, low level off), the valid state of DI (valid on, invalid off), DO can be monitored simultaneously on 5 digital tubes Valid state (valid on, invalid off). The meaning of each segment in the digital tube is as follows.

As shown in the figure above, the first digital tube displays the valid states of DO1~DO6, and the state of each DO corresponds to the on-off of the corresponding segment of the digital tube, valid on, invalid off. The upper 3 segments of the last 4-digit digital tubes correspond to the actual levels of DI1~DI10 respectively, high level is on, and low level is off. The lower 3 segments of the last 4-digit digital tubes correspond to the valid states of DI1~DI10 respectively, high level is on, and low level is off. The lower 3 segments of the last 4-digit digital tubes correspond to the valid states of DI1~DI10 respectively, DIDO is on when valid, and off when invalid.

Chapter 5 VC210 Servo Control Mode

Servo system consists of three main parts: servo driver, motor and encoder.

The servo driver is the control core of the servo system. By processing the input signal and feedback signal, the servo driver can control the precise position, speed and torque of the servo motor, that is, the position, speed, torque and mixed control mode. Among them, position control is the most important and most commonly used control mode of servo system.

Each control mode is briefly described as follows:

Position control refers to controlling the position of the motor through position commands. The target position of the motor is determined by the total number of position commands, and the rotation speed of the motor is determined by the frequency of the position command. The position command can be given by the combination of external pulse input, the total number of internal given position commands + speed limit. Through the internal encoder (the servo motor has its own encoder) or the second encoder (full closed-loop control), the servo drive can realize fast and precise control of the mechanical position and speed. Therefore, the position control mode is mainly used in occasions requiring positioning control, such as manipulators, placement machines, engraving, milling and engraving (pulse sequence commands), CNC machine tools, etc.

Speed control refers to controlling the speed of the machine through the speed command. Through digital, analog voltage or communication given speed command, the servo drive can achieve fast and precise control of the mechanical speed. Therefore, the speed control mode is mainly used to control the rotation speed. If you want to use the host computer to achieve speed control, you can input the output of the host computer as a speed command to the servo drive, such as an analog engraving and milling machine.

Torque control refers to controlling the output torque of the motor through the torque command. The torque command is given by digital, analog voltage or communication. The torque control mode is mainly used in devices that have strict requirements on the force of the material, such as some tension control occasions such as rewinding and unwinding devices. The torque given value should ensure that the force of the material is not affected by the change of the winding radius.

Hybrid control mode refers to a working mode realized by DI terminal, which can switch the control mode in real time under the servo running state.

5.1 Basic parameter setting

5.1.1 control mode

The servo drive has 3 basic control modes, namely position mode, speed mode and torque mode. A variety of hybrid control modes can be derived from the 3 basic control modes. Which mode to use can be set by P02.01 parameter.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
P02.01	Drive control mode. Used to select the servo drive control mode.	0~7	-	anytime	Immediately	0	RW
	 0- position mode 1- speed mode 2- torque mode 3- Position/torque mode I0 mode 4- Position/speed mode I0 mode 5- Torque/speed mode I0 mode 6- Position/torque/speed m 7- Specialized Servo Contract) switching, switching, s node IO swit	switch thro witching thr ching, throu	ough INFn.3 rough INFn.36, b workin Speed Torque	36, when the sig 36, when the si	gnal is valid, gnal is valid,	it is speed

The relevant input function bits are as follows.

Function bits	Bit description	
INFn.36	Control mode toggle switch 0	
INFn.37	Control mode toggle switch 1	

5.1.2 Servo start and stop

When the servo activates the internal input function bit INFn.01 of the drive through IO or communication, the servo is enabled. After OUTFn.25 is output, the command input command is valid, the position/speed/torque command is accepted, and the servo runs.

The servo will perform stop action under the following three working conditions. One is

to stop activating the internal input function bit INFn.01; the second is to stop when a fault occurs; the third is to stop when the emergency stop signal INFn.58 is input. The shutdown modes of the 3 working conditions can be set separately. The shutdown mode is set by P02.13. Refer to "7.1.1 Troubleshooting" for fault shutdown mode, and emergency stop shutdown mode is set by P02.14.

The servo has 5 kinds of stopping methods to choose from. The first is free stop; the second is rapid deceleration to stop, the enable is disconnected after stopping, and the motor is powered off; the third is slow deceleration to stop, the enable is disconnected after parking, and the motor is powered off; the fourth is Quickly decelerate to stop, keep the enable after stopping, the user needs to disconnect the enable signal to disable the enable; the fifth is slow deceleration to stop, keep enable after stopping, the user needs to disconnect the enable signal to disable the enable signal

Free parking means that the drive is turned off and the motor is free to stop by friction resistance. Deceleration to stop means that the servo drive drives the motor to decelerate, and the motor remains powered on during this process. The deceleration time of rapid deceleration and stop is set by P02.16. The deceleration time of slow deceleration and stop is set by P02.17. Deceleration time refers to the time it takes to decelerate from the rated speed to zero. The actual deceleration time is determined by the speed at the time of failure and the set deceleration time.

```
Actual deceleration time = set deceleration time \times \frac{\text{The speed at which the failure occurs}}{\text{Rated speed}}
```

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method		
P02.13	Select the method of	0~2	-	anytime	Immediate	0	RW		
	enabling shutdown				ly				
	Set the deceleration mode of	the servo n	notor from r	otation to st	op and the mo	otor state afte	er stop when		
	the servo is off.								
	0- Off-enable freewheel stop								
	1- Turn off enable after fast d	leceleration	and stop						
	2- Disable enable after slow deceleration and stop								
P02.14	Emergency stop mode	0~4	_	anytime	Immediate	0	RW		
	selection	0.4		anytime	ly	0	RW		
	Set the deceleration method	of the servo	motor from	rotation to s	top and the m	otor state afte	er stop when		
	the servo is in emergency sto	p.							
	0- Off-enable freewheel stop								
	1- Turn off enable after fast d	leceleration	and stop						
	2- Disable enable after slow	deceleration	and stop						
	3- Quickly decelerate to stop and keep enabled								
	4- Slowly decelerate to stop a	and keep ena	abled						

Related parameters are as follows.

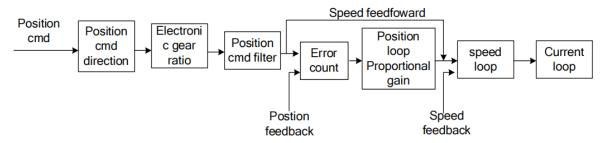
P02.16	fast stop time	0~6553	ms	anytime	Immediate	500	RW
	Set the stop time when the	5			ly		
	servo is stopped quickly						
P02.17	Slow stop time	0~6553	ms	anytime	Immediate	1000	RW
	Set the stop time when the	5			ly		
	servo is slow to stop						

5.1.3 Servo braking method

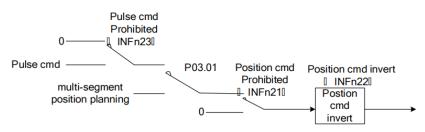
When the motor decelerates, it will feed back energy to the bus capacitor. When the bus capacitor voltage is too large, an overvoltage fault will be reported. Therefore, a braking resistor needs to be connected to the servo to consume the excess bus voltage on the braking resistor. When the capacitor voltage is high, the dynamic braking circuit is activated. For 220V drives, when the DC bus voltage is greater than 380VDC, the dynamic braking circuit is activated; for 380V drives, when the DC bus voltage is greater than 680VDC, the dynamic braking circuit is activated. The user can select the servo braking mode through P02.20 to release the excess voltage on the bus.

Parameter No.	Parameter Description	Set range	units	Set method	Effectiv e way	Defaults	read and write method			
P02.20	Start dynamic braking	0~3	-	anytime	Immediat	2	RW			
	selection				ely					
	When the busbar voltage exceeds the limit voltage, select the way to start the dynamic braking circuit.									
	0- Dynamic braking never sta	arts								
	1- Dynamic braking can only	be activate	d when deco	elerating						
	2- Ready to activate dynamic braking at any time									
	3- Braking is only possible when the energy is fed back									

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
P02.21	Braking resistor value	0~3276.7	Ω	anytime	Immediately	0	RW
P02.22	Maximum power of braking resistor	0~3276.7	Kw	anytime	Immediately	0	RW
P02.23	Braking resistor heat dissipation coefficient	0~100	%	anytime	Immediately	50	RW
If P02.23 is set	to 100%, it means that the	time required	l to drop fr	om the max	timum heat to	0 is 10s.	


5.1.4 command reverse

The speed, torque and position commands can be reversed by setting the register P02.50. P02.50 contains 16-bit binary. When the 0th bit is valid, the position command is reversed; when the 1st bit is valid, the speed command is reversed; When 2 bits are valid, the torque command is reversed.


Ра	arameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
	P02.50	command reverseWhen the 0th bit is valid, thepositioninstructionreversed;When the 1st bit is valid, thespeed command reverses;When the 2nd bit is valid, thetorque command reverses	0~7	-	anytime	Immediately	0	RW

5.2 position mode

The position mode is a control mode in which the motor position is the control target, and is often used to achieve high-precision positioning. The implementation of the location pattern is shown in the following figure.

5.2.1 Position command source and direction selection

The position command can be derived from the pulse command, or from the internal multi-segment position planning, or switch between the pulse and the internal multi-segment position planning command through IO.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method		
P03.01	position command	0~6	-	anytime	Immediate	0	RW		
	source ly								
	In position control mode, it is used to select the source of position command.								
	0- From external pulse command								
	1- From internal multi-se	gment locatio	n planning	ç					
	2- Switch between extern	al pulse com	mand and	internal pos	sition planni	ng comma	nd through		
	INFn.35								
	3- The command pulse su	perimposes th	ne second	encoder pul	se as the pos	sition comr	nand		
	4- Command pulse superimposed internal position planning as position command								
	5- Round pressure round sleeve label								
	6- Sine wave								

Related input function bits.

Function bits	Bit description
INFn.21	Position command prohibited, when valid, the position command is prohibited from being input
	to the servo
INFn.22	The position command is reversed. When it is valid, the position command is reversed and then
1101/11.22	input to the servo.
INFn.23	Pulse command prohibition, when valid, the pulse command prohibits input into the servo
INFn.35	Switch the source of the position command. When it is invalid, it is from the multi-segment
111111.33	position command; when it is valid, it is from the XY pulse.

5.2.2 The position command comes from the pulse command

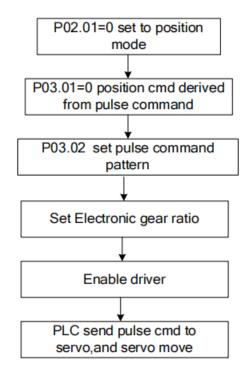
For the pulse command, there are five pulse forms, and which form to use needs to be set through P03.02.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method					
P03.02	Command pulse	0~4	-	Disable	Immediately	2	RW					
	shape	shape settings										
	When the position command is derived from the pulse command, it is used to select the pulse command											
	form.											
	0- Pulse plus direction po	sitive logic										
	1- Pulse plus direction ne	gative logic										
	2- AB pulse											
	3- CW+CCW positive logic											
	4- CW+CCW negative lo	gic										

Pulse command form	input port	Forward rotation command	Reverse command
Pulse plus direction	Х		
positive logic	Y	High level	Low level
Pulse plus direction	Х		
negative logic	Y	Low level	High level
AB pulse	Х	- + - 90° 	- + + - −90° ,
AB pulse	Y		
CW+CCW positive	Х	Low level	
logic	Y		Low level
CW+CCW negative	Х	High level	
logic	Y		High level

The detailed description of the pulse command is shown in the following figure:

For the pulse command, the pulse can be filtered by hardware to eliminate the influence of interference on the pulse command, and the filtering parameters can be set through P03.03.


Parameter No.	Parameter Description	Set range	units	Set method	Effecti ve way	Defaults	read and write method
P03.03	Command pulse hardware filter, used to set the time of pulse command hardware filter.	0~32767	20ns	Disable settings	Immedi ately	50	RW

The count value of pulse command can be monitored through parameter P03.04.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
P03.04	Command pulse	-	-	-	-	-	RO
	count value, used						
	to display the						
	number of pulse						

	aammanda			
	commanus.			

When the position comes from the pulse command, the parameter setting steps of the drive are as follows.

5.2.3 The position command is derived from the multi-segment position command plan

It is derived from the multi-segment position command, which means that the user pre-sets the mechanical position command, speed, acceleration/deceleration time, number of segments and other parameters to be run through the parameters, and then triggers the operation of the multi-segment position, and then the motor moves according to the set rules. Starting and stopping the multi-segment position is realized by operating INFn.27. When P13.92=0, the rising edge of INFn.27 starts the operation of the multi-segment position, and the falling edge of INFn.27 stops the operation of the multi-segment position; when P13.92=1, the rising edge of INFn.27 sets the operation of the multi-segment position until the execution of the multi-segment position is completed. The list of relevant parameters is as follows. It should be noted that the set position command refers to the mechanical position command.

Note: The position command of the multi-segment position will be multiplied by the electronic gear ratio, which is the position P00.13 of the motor encoder; but the speed setting of the multi-segment position is not affected by the electronic gear ratio.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effectiv e way	Defaults	read and write method
P13.01	Multi-segment	0~2	-	When the	Disable	Immediat	0	RW
	position working			position	settings	ely		
	mode			command				
	0- Downtime after a			comes from a				
	single run			multi-segment				
	1- Cycle run			position				
	2- DI switch operation,			command, it				
	read the value of			is used to set				
	INFn.31, INFn.30,			the				
	INFn.29, INFn.28 as the			multi-segment				
	segment number to run			position				
				operation				
				mode.				
P13.02	total number of	1~16	-	Sets the total	anytime	Immediat	16	RW
	segments			number of		ely		
				segments for				
				the position				
				instruction.				
P13.03	idle waiting time	0~1	-	When using	anytime	Immediat	1	RW
	unit			the		ely		
	0- milliseconds			multi-segment				

	1-seconds			position				
				function, the				
				unit of				
				waiting time.				
P13.04	surplus processing	0~1	-	Pause occurs	anytime	Immediat	0	RW
	method			when using		ely		
	0- Re-jump to the			the				
	first segment			multi-segment				
	position command			position				
	to run			function to				
	1- Start where the			run, and when				
	previous segment left			the				
	off			multi-segment				
				position				
				function is				
				resumed, set				
				the segment				
				number of the				
				starting				
				segment.				
P13.05	Absolute or relative	0~1	-	When running	anytime	Immediat	1	RW
	position command			with		ely		
	settings			multi-segment				
	0- absolute position			position				
	command			function, set				
	1- relative position			the type of				
	command			position				
				command.				
P13.10	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	$47 \sim$	units	pulse		ely		
	first segment	21474836		commands				
	position	47		at the first				
				segment				
				position				
P13.12	The running speed	0~32767	rpm	The running	anytime	Immediat	500	RW
	of the first segment		1	speed of the		ely		
	of the multi-segment			first segment				
	position command			of the multi-				
	1			segment				
				position				
				command				
P13.13	The acceleration	0~32767	ms	Set the time	anytime	Immediat	500	RW
1 13.13		0~32707	1115	for the first	anytime		500	IX VV
	time of the first			for the first		ely		

	segment of the			segment to				
	multi-segment			accelerate				
	position command			from 0 to				
				rated speed.				
				Actual				
				acceleration				
				time=change				
				of speed				
				command/rate				
				d speed \times				
				speed				
				command				
				acceleration				
				time.				
P13.90	The deceleration	0~32767	ms	The	anytime	Immediat	500	RW
	time of the first			deceleration		ely		
	segment of the			time for the				
	multi-segment			first stage				
	position command			position to				
				decelerate				
				from the rated				
				speed to 0.				
				Actual				
				deceleration				
				time=change				
				of speed				
				command/rate				
				d speed \times				
				speed				
				command				
				deceleration				
				time.				
P13.14	Waiting idle time for	0~32767	ms(s)	The waiting	anytime	Immediat	1	RW
	the end of the first			time before		ely		
	segment of the			running the				
	multi-segment			next stage of				
	position command			movement				
	The unit of this			after the first				
	parameter is determined			stage of the				
	by P13.03.			multi-stage				
				position				
				command is				
				completed.				

VECTOR

VC210 series servo driver instruction manual

D12.15	Normhan af mala	21474926	T	TT 1		T 1. (10000	DW
P13.15	Number of pulse	-21474836	User	The number	anytime	Immediat	10000	RW
	commands at the	47 ~	units	of position		ely		
	second segment	21474836		commands for				
	position	47		the second				
D12 17	T1 · 1	0.22767		segment.		T 1. 4	500	DW
P13.17	The running speed of the second	0~32767	rpm	The running	anytime	Immediat	500	RW
				speed of the		ely		
	segment of the			second				
	multi-segment			segment of the				
	position command							
				multi-segment				
D12 10	TT1 1	0.007/7		position.		T 1.	500	D117
P13.18	The acceleration	0~32767	ms	The time for	anytime	Immediat	500	RW
	time of the second			the second		ely		
	segment of the			stage position				
	multi-segment			to accelerate				
	position command			from 0 to				
D12.01		0.007/7		rated speed.		T 1	500	D117
P13.91	The deceleration	0~32767	ms	The	anytime	Immediat	500	RW
	time of the second			deceleration		ely		
	segment of the			time for the				
	multi-segment			second stage				
	position command			position to decelerate				
				from the rated				
D12 10	Waiting idle time for	0~32767	m a(a)	speed to 0.	4 :	T	1	DW
P13.19	8	0~32707	ms(s)	The waiting time before	anytime	Immediat ely	1	RW
				running the		ery		
	second segment of the multi-segment			next stage of				
	position command			movement				
	position command			after the				
				second stage				
				of the				
				multi-stage				
				position				
				command is				
				completed.				
P13.20	Number of pulse	-21474836	User	The number	anytime	Immediat	10000	RW
F 13.20	commands at the	-214/4830 47 ~	units	of position	anythine	ely	10000	IX VV
	third segment	47~ 21474836	units	commands for		CIY		
	position segment	47		the third				
	position	'1 /						
				segment.				

D12.22	The	0 22767		TI :		T 12.	500	DW
P13.22	The running speed	0~32767	rpm	The running	anytime	Immediat	500	RW
	of the third segment			speed of the		ely		
	of the multi-segment			third segment				
	position command			of the				
				multi-segment				
				position.				
P13.23	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
	deceleration time of			time from 0 to		ely		
	the third segment of			rated speed in				
	the multi-segment			the third stage				
	position command			position; or				
				deceleration				
				time from				
				rated speed to				
				0.				
P13.24	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the third			that needs to		ely		
	segment of the			be waited				
	multi-segment			after the third				
	position command			position				
				command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.25	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse		ely		
	fourth segment	21474836		commands at				
	position	47		the fourth				
				segment				
				position				
P13.27	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
	of the fourth			fourth		ely		
	segment of the			segment of				
	multi-segment			the				
	position command			multi-segment				
				position.				
P13.28	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
	deceleration time of			time from 0 to		ely		
	the fourth segment			rated speed in				
	of the multi-segment			the fourth				
	position command			stage position;				

			[[
				or				
				deceleration				
				time from				
				rated speed to				
				0.				
P13.29	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the fourth			that needs to		ely		
	segment of the			be waited				
	multi-segment			after the				
	position command			fourth				
				position				
				command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.30	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse		ely		
	fifth segment	21474836		commands at				
	position	47		the fifth				
	-			segment				
				position				
P13.32	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
	of the fifth segment		-	fifth segment		ely		
	of the multi-segment			of the				
	position command			multi-segment				
	-			position.				
P13.33	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
	deceleration time of			time from 0 to		ely		
	the fifth segment of			rated speed in				
	the multi-segment			the fifth stage				
	position command			position; or				
	1			deceleration				
				time from				
				rated speed to				
				0.				
P13.34	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the fifth		(5)	that needs to	,	ely	-	
	segment of the			be waited				
	multi-segment			after the fifth				
	position command			position				
	position command			command of				

				the				
				multi-segment				
				position				
				command				
				ends				
P13.35	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse		ely		
	sixth segment	21474836		commands at				
	position	47		the sixth				
				segment				
				position				
P13.37	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
	of the sixth segment			sixth segment		ely		
	of the multi-segment			of the				
	position command			multi-segment				
				position.				
P13.38	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
	deceleration time of			time from 0 to		ely		
	the sixth segment of			rated speed in				
	the multi-segment			the sixth stage				
	position command			position; or				
	-			deceleration				
				time from				
				rated speed to				
				0.				
P13.39	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the sixth			that needs to		ely		
	segment of the			be waited				
	multi-segment			after the sixth				
	position command			position				
	1			command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.40	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
- 10.10	commands at the	47~	units	pulse	,	ely		
	seventh segment	21474836		commands at		- 5		
	position	47		the seventh				
	r control	.,		segment				
				position				
P13.42	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
113.72	The running speed	0 52101	rhun	Speed of the	unythine	minoulut	500	17.11

of the seventh segment of the		seventh		ely		
C				-		
		segment of				
multi-segment		the				
position command		multi-segment				
		position.				
P13.43 The acceleration and 0~32767	ms	Acceleration	anytime	Immediat	500	RW
deceleration time of		time from 0 to		ely		
the seventh segment		rated speed in				
of the multi-segment		the seventh				
position command		stage position;				
		or				
		deceleration				
		time from				
		rated speed to				
		0.				
P13.44 Waiting idle time for 0~32767 1	ms(s)	The idle time	anytime	Immediat	1	RW
the end of the		that needs to		ely		
seventh segment of		be waited				
the multi-segment		after the				
position command		seventh				
		position				
		command of				
		the				
		multi-segment				
		position				
		command				
		ends				
P13.45 Number of pulse -21474836	User	Number of	anytime	Immediat	10000	RW
commands at the $47 \sim$	units	pulse		ely		
eighth segment 21474836		commands at				
position 47		the eighth				
		segment				
		position				
P13.47 The running speed 0~32767	rpm	speed of the	anytime	Immediat	500	RW
of the eighth	-	eighth		ely		
segment of the		segment of				
multi-segment		the				
position command		multi-segment				
		position.				
P13.48 The acceleration and 0~32767	ms	Acceleration	anytime	Immediat	500	RW
deceleration time of		time from 0 to		ely		
the eight segment of		rated speed in		-		
the multi-segment		the eight stage				

					[
	position command			position; or				
				deceleration				
				time from				
				rated speed to				
				0.				
				Immediately				
P13.49	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the eight			that needs to		ely		
	segment of the			be waited				
	multi-segment			after the eight				
	position command			position				
				command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.50	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
1 1010 0	commands at the	47~	units	pulse	5	ely	10000	
	ninth segment	21474836		commands at)		
	position	47		the ninth				
	position	17		segment				
				position				
P13.52	The running speed	0~32767		speed of the	anytime	Immediat	500	RW
P15.52	U 1	0~32707	rpm	_	anytime		300	KW
	of the ninth segment			ninth segment		ely		
	of the multi-segment			of the				
	position command			multi-segment				
D 10 D				position.				
P13.53	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
	deceleration time of			time from 0 to		ely		
	the ninth segment of			rated speed in				
	the multi-segment			the ninth stage				
	position command			position; or				
				deceleration				
				time from				
				rated speed to				
				0.				
P13.54	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the ninth			that needs to		ely		
	segment of the			be waited				
	multi-segment			after the ninth				
	position command			position				
1	-			command of				

				_		[
				the				
				multi-segment				
				position				
				command				
				ends				
P13.55	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse		ely		
	tenth segment	21474836		commands at				
	position	47		the tenth				
				segment				
				position				
P13.57	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
	of the tenth segment			tenth segment		ely		
	of the multi-segment			of the				
	position command			multi-segment				
				position.				
P13.58	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
	deceleration time of			time from 0 to		ely		
	the tenth segment of			rated speed in				
	the multi-segment			the tenth stage				
	position command			position; or				
				deceleration				
				time from				
				rated speed to				
				0.				
P13.59	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the tenth			that needs to		ely		
	segment of the			be waited				
	multi-segment			after the tenth				
	position command			position				
				command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.60	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse		ely		
	eleventh segment	21474836		commands at		-		
	position	47		the eleventh				
		47		segment				
		47						
		47						

			1		1			
	of the eleventh			eleventh		ely		
	segment of the			segment of				
	multi-segment			the				
	position command			multi-segment				
				position.				
P13.63	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
	deceleration time of			time from 0 to		ely		
	the eleventh			rated speed in				
	segment of the			the eleventh				
	multi-segment			stage position;				
	position command			or				
				deceleration				
				time from				
				rated speed to				
				0.				
P13.64	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the			that needs to		ely		
	eleventh segment of			be waited				
	the multi-segment			after the				
	position command			eleventh				
	-			position				
				command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.65	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse		ely		
	twelfth segment	21474836		commands at				
	position	47		the twelfth				
				segment				
				position				
P13.67	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
_ * •	of the twelfth		1	twelfth		ely		
	segment of the			segment of		5		
	multi-segment			the				
	position command			multi-segment				
	1			position.				
P13.68	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	[[[
1 10.00	deceleration time of	5 52101	1115	time from 0 to		ely	200	LLL
	the twelfth segment			rated speed in				
	of the multi-segment			the twelfth				
	or the multi-segment			uie twentii				

	position command			stage position;				
				or				
				deceleration				
				time from				
				rated speed to				
				0.				
P13.69	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the			that needs to		ely		
	twelfth segment of			be waited				
	the multi-segment			after the				
	position command			twelfth				
				position				
				command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.70	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse		ely		
	thirteenth segment	21474836		commands at		5		
	position	47		the thirteenth				
	Politica	.,		segment				
				position				
P13.72	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
115.72	of the thirteenth	0 52101	ipin	thirteenth	unythic	ely	500	1
	segment of the			segment of		ery		
	multi-segment			the				
	position command			multi-segment				
	position command			position.				
D12 72	The acceleration and	0 22767		Acceleration		Immediat	500	DW
P13.73		0~32767	ms		anytime		500	RW
	deceleration time of			time from 0 to		ely		
	the thirteenth			rated speed in				
	segment of the			the thirteenth				
	multi-segment			stage position;				
	position command			or				
				deceleration				
				time from				
				rated speed to				
				0.				
P13.74	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the			that needs to		ely		
	thirteenth segment			be waited				

-	[Γ				
	of the multi-segment			after the				
	position command			thirteenth				
				position				
				command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.75	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	$47 \sim$	units	pulse		ely		
	fourteenth segment	21474836		commands at				
	position	47		the fourteenth				
				segment				
				position				
P13.77	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
	of the fourteenth		1	fourteenth		ely		
	segment of the			segment of				
	multi-segment			the				
	position command			multi-segment				
	1			position.				
P13.78	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
1 101/0	deceleration time of	0 02/0/		time from 0 to	5	ely	000	
	the fourteenth			rated speed in		5		
	segment of the			the fourteenth				
	multi-segment			stage position;				
	position command			or				
	position commune			deceleration				
				time from				
				rated speed to				
				0.				
P13.79	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
F13./9	the end of the	0~32707	1115(5)	that needs to	anythine	ely	1	K VV
				be waited		ery		
	fourteenth segment							
	of the multi-segment			after the				
	position command			fourteenth				
				position				
				command of				
				the				
				multi-segment				
				position				
				command				
				ends				

VECTOR

VC210 series servo driver instruction manual

P13.80	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse	5	ely		
	fifteenth segment	21474836		commands at				
	position	47		the fifteenth				
	1			segment				
				position				
P13.82	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
	of the fifteenth		-	fifteenth		ely		
	segment of the			segment of				
	multi-segment			the				
	position command			multi-segment				
				position.				
P13.83	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
	deceleration time of			time from 0 to		ely		
	the fifteenth			rated speed in				
	segment of the			the fifteenth				
	multi-segment			stage position;				
	position command			or				
				deceleration				
				time from				
				rated speed to				
				0.				
P13.84	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the			that needs to		ely		
	fifteenth segment of			be waited				
	the multi-segment			after the				
	position command			fifteenth				
				position				
				command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.85	Number of pulse	-21474836	User	Number of	anytime	Immediat	10000	RW
	commands at the	47 ~	units	pulse		ely		
	sixteenth segment	21474836		commands at				
	position	47		the sixteenth				
				segment				
				position				
P13.87	The running speed	0~32767	rpm	speed of the	anytime	Immediat	500	RW
	of the sixteenth			sixteenth		ely		
	segment of the			segment of				

				r	I			
	multi-segment			the				
	position command			multi-segment				
				position.				
P13.88	The acceleration and	0~32767	ms	Acceleration	anytime	Immediat	500	RW
	deceleration time of			time from 0 to		ely		
	the sixteenth			rated speed in				
	segment of the			the sixteenth				
	multi-segment			stage position;				
	position command			or				
				deceleration				
				time from				
				rated speed to				
				0.				
P13.89	Waiting idle time for	0~32767	ms(s)	The idle time	anytime	Immediat	1	RW
	the end of the			that needs to		ely		
	sixteenth segment of			be waited				
	the multi-segment			after the				
	position command			sixteenth				
				position				
				command of				
				the				
				multi-segment				
				position				
				command				
				ends				
P13.92	Multi-segment	0~3	-	0: The rising	anytime	Immediat	3	RW
	position command			edge of INFn.27		ely		
	trigger signal type			triggers the				
	BIT0-INFn.27 Rising			multi-segment				
	edge triggers to start			position, and				
	running multi-segment			the falling edge				
	position; falling edge			stops executing				
	triggers to stop running			the				
	multi-segment position			multi-segment				
	BIT1-INFn.27 Rising			position. When				
	edge triggers set to run			the				
	multi-segment position,			multi-segment				
	falling edge does not			position comes				
	work			from DI, a				
				change in DI				
				automatically				
				triggers the				
				multi-segment				

F		 1			
			position.		
			1: INFn.27		
			rising edge		
			trigger, not		
			stop		
			2: When the		
			multi-segment		
			position		
			comes from		
			DI, the DI		
			change does		
			not		
			automatically		
			trigger the		
			multi-segment		
			position, and		
			the position		
			execution will		
			only be		
			triggered		
			when INFn.27		
			is		
			re-triggered.		
			3: INFn.27		
			rising edge		
			trigger, not		
			stop, when the		
			multi-segment		
			position		
			comes from		
			DI, the DI		
			change does		
			not		
			automatically		
			trigger the		
			multi-segment		
			position, only		
			when INFn.27		
			is re-triggered		
			will the		
			position		
			execution be		
			triggered.		
	1		30		

P13.93	Condition for	0~1	-	Set the	anytime	Immediat	0	RW
	sending the next			sending		ely		
	command			conditions of				
	0- You must wait for the			the next				
	previous position to			command				
	complete the output and							
	then delay the idle time							
	before sending the next							
	position command							
	1- After the previous							
	position command is							
	sent, wait for the idle							
	time to directly send the							
	second position							
	command							

The absolute position command refers to the position of the size of the position command relative to the origin, and the relative position command refers to the position of the size of the position command relative to the current position. Therefore, the origin return must be performed before the absolute position command is executed, otherwise a fault will be reported.

For example, suppose that 3 absolute position commands are executed, the size of the first position command is set to 1000, the size of the second position command is set to 2000, and the size of the third position command is set to 0. The zero return operation is performed first, and then the multi-stage position is triggered. The motor first moves forward 1000, then forward 1000, and then reversely moves 2000, and returns to the zero point.

As another example, assuming that three relative position commands are taken, the first position command is set to 1000, the second position command is set to 2000, and the third position command is set to -1000. After triggering the multi-segment position, the motor first moves forward 1000, then forwards 2000, and then reverses 1000.

If you want to use the multi-segment position command, in addition to setting P03.01 and P13.01 first, you also need to configure the DIx function control register and set it to INFn.27 (triggering the multi-segment position function number). Then control the effective level of DIx to trigger the execution of multi-segment position commands at the rising edge, and stop the execution of multi-segment position commands at the falling edge (when P13.92=0). Selecting the segment number is similar, configure the DIx function control register, set the corresponding level, and then trigger.

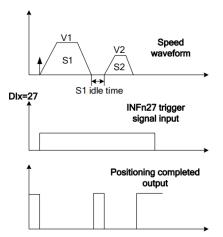
The relevant input function bits are as follows.

Function bits	Bit description
INFn.27	Trigger multi-segment position command
	The rising edge triggers the execution of the multi-segment position command, and the falling edge
	stops the execution of the multi-segment position command

	Or only the rising edge triggers the execution of multi-segment position commands, and the falling
	edge does not act. Specific reference P13.92
INFn.28	Multi-segment position command segment number selection 0
INFn.29	Multi-segment position command segment number selection 1
INFn.30	Multi-segment position command segment number selection 2
INFn.31	Multi-segment position command segment number selection 3
INFn.32	Multi-segment position direction selection, when valid, the position command set for multi-segment
	position is reversed

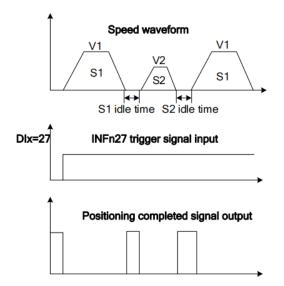
According to the status of INFn28~31.

Multi-segment running segment number

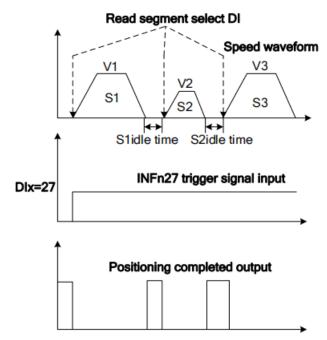

= INFn.31*8 + INFn.30*4 + INFn.29*2 + INFn.28*1 +1

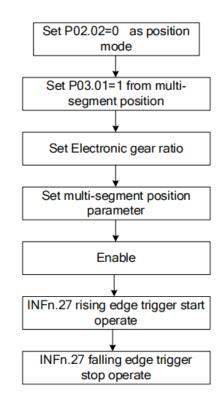
See the table below for details.

INFn.31	INFn.30	INFn.29	INFn.28	run segment number
0	0	0	0	1
0	0	0	1	2
0	0	1	0	3
0	0	1	1	4
0	1	0	0	5
0	1	0	1	6
0	1	1	0	7
0	1	1	1	8
1	0	0	0	9
1	0	0	1	10
1	0	1	0	11
1	0	1	1	12
1	1	0	0	13
1	1	0	1	14
1	1	1	0	15
1	1	1	1	16


5.2.3.1 Stop after a single run

In this mode, the motor runs n positions of position commands, the idle time of each position command can be set independently, and INFn.27 starts/stops running multi-stage position mode (Note: when P13.92=0, the rising edge of INFn.27 starts multi-stage position mode Position running, the falling edge of INFn.27 stops the running of multi-segment positions; when P13.92=1, the rising edge of INFn.27 starts the running of multi-segment positions, and the falling edge does not act). Its running speed curve is as follows. The total number of segments is assumed to be 2.


5.2.3.2 Cycle run


In this mode, the motor automatically jumps to the first position command after running the n-stage position command. The idle time of each position command can be set independently. INFn.27 starts/stops the multi-stage position mode (Note: when P13 When .92=0, the rising edge of INFn.27 starts the operation of the multi-segment position, and the falling edge of INFn.27 stops the operation of the multi-segment position; when P13.92=1, the rising edge of INFn.27 sets the operation of the multi-segment position, and the falling edge no action). Its running speed curve is as follows. The total number of segments is assumed to be 2.

5.2.3.3 DI switch

In this mode, once the multi-segment position is triggered, the driver reads the valid status of INFn.31, INFn.30, INFn.29, and INFn.28 to select a certain position command. , and read the valid state of INFn.31, INFn.30, INFn.29, INFn.28 again to select another position command, if the valid state changes, select another position command to run. This is repeated until it is triggered to stop the operation of the multi-segment position, and then the operation is stopped.

5.2.3.4 The position command comes from the setting steps of the multi-segment position

5.2.4 Electronic gear ratio

(The meaning of the electronic gear ratio is the coefficient of converting the user position command unit into the motor encoder unit. namely)

User position command $\times \frac{\text{Electronic gear ratio numerator}}{\text{Electronic gear ratio denominator}} = \text{Location of motor encoder}$

For example, assuming that the pulse tracking mode is used, the user PLC sends XY pulses to the servo driver, which stipulates that a pulse motor must travel 1 micron, but the actual motor needs to rotate 100 pulses to travel 1 micron, then the electronic gear ratio (numerator ratio denominator) is 100.

If the numerator of the electronic gear ratio is set to 0, then how many pulses the motor needs to make one revolution depends on the denominator.

For example, the encoder resolution of the motor is 10000, and the denominator of P03.10 electronic gear ratio 1 is set to 5000. When the motor receives 10000 pulses, the motor rotates twice.

If the numerator of the electronic gear ratio is not 0, the motor encoder position is calculated according to the above formula.

The system has two sets of electronic gear ratios to choose from, and Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set metho d	Effective way	Defaults	read and write method
P03.08	Electronic gear	1~214748	-	Set the	anytime	Immediate	0	RW
	ratio 1 numerator	3647		numerator of		ly		
				the first				
				group				
				electronic				
				gear ratio for				
				the division/				
				multiplicatio				
				n frequency				
				of the				
				position				
				command.				
P03.10	Electronic gear	1~214748	-	Set the	anytime	Immediate	1000	RW
	ratio 1 denominator	3647		denominator		ly		
				of the first				
				group of				

P03.12 Electronic gear ratios for the division/ multiplier ratio 2 numerator 1214748 - Set the numerator of the first group electronic gear ratio for the division/ nultiplicatio ratio 2 numerator 0 RW P03.12 Electronic gear ratio 2 numerator 1-214748 - Set the numerator of the first group electronic gear ratio for the division/ multiplicatio ratio 2 numerator 0 RW P03.14 Electronic gear ratio 2 numerator 3647 - Set the numerator of the division/ multiplicatio ratio for the division/ multiplicatio ratio 2 numerator 0 RW P03.14 Electronic gear ratio 2 numerator 1214748 - Set the numerator anytime Inmediate 0 RW P03.14 Electronic gear ratio 2 denominator 1214748 - Set the numerator anytime Inmediate 1000 RW P03.14 Electronic gear ratio 2 denominator 1214748 - Set the numerator anytime Inmediate 1000 RW Image: ratio 2 denominator 1000 RW 1000 RW 1000 RW Image: ratio 2 denominator 1000 RW 1000 RW 1000 1000 1000 1000 1000 1000		l	[1		1	[r	
P03.12 Electronic gear naio 2 numerator 1~214748 - Set the osition command. Immediate 0 RW P03.12 Electronic gear naio 2 numerator 1~214748 - Set the solitor command. Immediate 0 RW P03.14 Electronic gear naio 2 numerator 3647 - Set the solitor command. Immediate 0 RW P03.14 Electronic gear naio 2 numerator 3647 - Set the solitor command. Immediate 0 RW P03.14 Electronic gear naio 2 numerator 1~214748 - Set the solitor command. Immediate 0 RW P03.14 Electronic gear naio 2 denominator 1~214748 - Set the solitor command. Immediate 1000 RW P03.14 Electronic gear naio 2 denominator 3647 - Set the solitor command. Immediate 1000 RW P03.14 Electronic gear naio 2 denominator 3647 - Set the solitor command. Immediate 1000 RW P03.14 Electronic gear naio 2 denominator 3647 - Set the solitor command. Immediate Im									
P03.12 Electronic gear ratio 2 numerator 1~214748 3647 - Set the numerator of the position command. anytime set in the first group electronic gear ratio for the division/ multiplicatio n frequency of the position command. Immediate 1y 0 RW P03.12 Electronic gear ratio 2 numerator 1~214748 3647 - Set the numerator of the first group anytime lectronic gear ratio for the division/ multiplicatio n frequency of the position command. Immediate lub 0 RW P03.14 Electronic gear ratio 2 denominator 1~214748 3647 - Set the position command. anytime lub Immediate lub 1000 RW P03.14 Electronic gear ratio 2 denominator 1~214748 3647 - Set the position command. anytime lub Immediate lub 1000 RW P03.14 Electronic gear ratio 2 denominator 3647 - Set the lub anytime lub Immediate lub 1000 RW P03.14 Electronic gear ratio 2 denominator 3647 - Set the lub anytime lub Immediate lub 1000 RW P03.14 Electronic gear ratio 2 denominator 3647 - Set the lub anytime lub Immediate lub Immediate lub <td></td> <td></td> <td></td> <td></td> <td>gear ratios</td> <td></td> <td></td> <td></td> <td></td>					gear ratios				
P03.12 Electronic gear ratio 2 numerator 1~214748 - Set the anytime information command. Immediate 0 RW P03.12 Electronic gear ratio 2 numerator 3647 - Set the numerator of the first group electronic gear ratio for the division/ multiplication in frequency of the opsition command. Immediate 0 RW P03.14 Electronic gear ratio 2 numerator 1~214748 - Set the inst group electronic gear ratio for the division/ multiplicatio in frequency of the position command. Immediate 100 RW P03.14 Electronic gear ratio 2 denominator 1~214748 - Set the anytime intervent of the group of the position command. Immediate 100 RW P03.14 Electronic gear ratio 2 denominator ratio 2 denominator 3647 - Set the anytime intervent of the second group of electronic gear ratios for the division/mult iplice if requency of the second group of electronic gear ratios Immediate intervent of the second group of electronic gear ratios Immediate intervent of the second group of electronic gear ratios Immediate intervent of the second group of electronic gear ratios Immediate intervent of the second group of electronic gear ratios Immediate intervent of the second group of electronic gear ratios Immediate intervent of the position Immediate interve					for the				
P03.12Electronic ratio 2 numerator1214748 3647- A A A A A B A B A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A C A B C A A 					division/				
P03.12Electronic ratio 2 numerator1214748 3647- - AG47Set the numerator of the first group electronic gear ratio for the division/ multiplicatio n frequency of the position command.Immediate I N0RWP03.14Electronic gear and the position and the position the division/ multiplicatio n frequency of the group of the division/ multiplicatio n frequency of the group of the division/ multiplicatio n frequency of the group of the division/ multiplicatio n frequency of the group of the denominator1000RWP03.14Electronic gear atio 2 denominator1214748 3647-Set the denominatoranytime anytime of the second group of electronic gear ratios1000RW					multiplier				
P03.12Electronic ratio 2 numeratorgear 36471214748 3647Set the numerator of the first group electronic gear ratio for the division/ multiplicatioImmediate ly0RWP03.12Electronic gear (1 - 214748)-Set the numerator of the first group electronic gear ratio for the division/ multiplicatioImmediate ly0RWP03.14Electronic gear ratio 2 denominator1214748 3647-Set the anytimeanytime infequency of the position command.Immediate infequency of the position1000RWP03.14Electronic gear ratio 2 denominator1214748 3647-Set the infequency of the group of electronic gear ratiosanytime infequency of the second group of electronic gear ratiosImmediate infequency of the infequency of the second infervenceImmediate infequency infervenceImmediate infervenceImmediate infervenceP03.14Electronic infervenceImmediate infervence <td></td> <td></td> <td></td> <td></td> <td>frequency of</td> <td></td> <td></td> <td></td> <td></td>					frequency of				
P03.12Electronic ratio 2 numerator1~214748 3647- - 13647Set the numerator of the first group electronic gear ratio for the division/ multiplicatio of the position command.Immediate ly0 RWP03.14Electronic gear ratio 2 denominator1~214748 A- ASet the numerator of the first group electronic gear ratio for the division/ multiplicatio n frequency of the position command.Immediate ly0RWP03.14Electronic gear ratio 2 denominator1~214748 3647- ASet the denominatoranytime lyImmediate ly1000RWP03.14Electronic gear ratio 2 denominator1~214748 3647- ASet the denominatoranytime lyImmediate ly1000RW					the position				
P03.14Electronic gear ratio 2 denominator1~214748- a a bSet the a appropriate appropriate appropriate appropriate appropriate bImmediate a appropriate appropriate appropriate b1000RWP03.14Electronic gear appropriate appropriate appropriate b1~214748- appropriate appropriate appropriate appropriate appropriate appropriate appropriate1000RW					command.				
P03.14Electronic gear tatio 2 denominator1~214748- A A A A A A B- A BSet the A B A A Banytime A BImmediate A B1000RWP03.14Electronic gear A B- A BSet the A Banytime B B C BImmediate B B1000RWP03.14Electronic gear A B- A B B B B C BSet the B B B B C B C B C Banytime B 	P03.12	Electronic gear	1~214748	-	Set the	anytime	Immediate	0	RW
P03.14Electronic gear ratio 2 denominator1~214748- A A A A A A BSet the A A Banytime A BImmediate A B1000RWP03.14Electronic gear ratio 2 denominator1~214748 3647- A A BSet the A Banytime A BImmediate B1000RWP03.14Electronic gear ratio 2 denominator1~214748 3647- A BSet the Banytime BImmediate B1000RWP03.14Electronic gear ratio 2 denominator3647- A BSet the Banytime BImmediate B1000RWP03.14Electronic gear Frequency of the positionImmediate B1000RW		ratio 2 numerator	3647		numerator of		ly		
P03.14Electronic gear ntio 2 denominator1~214748 3647-Set the denominator of the second group of electronic gear ratios n frequency of the position command.Immediate l1000RWP03.14Electronic ratio 2 denominator1~214748 3647-Set the denominator of the second group of electronic gear ratios for the division/mult iplier frequency of the positionImmediate l1000RW					the first				
P03.14Electronic gear ratio 2 denominator1~214748 3647-Set the denominatoranytime of the second group of electronic gear ratiosImmediate for the for the for the division/mult iplier frequency of the division/ n frequency of the position command.Immediate for the ly1000RW					group				
P03.14Electronic ratio 2 denominator1~214748 3647-Set the anytimeanytimeImmediate1000RWgear gear ratios1~214748 (become)-Set the (become)anytimeImmediate1000RWP03.14Electronic ratio 2 denominator3647-Set the (become)anytimeImmediate1000RWP03.14Electronic (become)3647-Set the (become)anytimeImmediate1000RWP03.14Electronic (become)3647-Set the (become)anytimeImmediate1000RWP03.14Electronic (become)gear ratios (bot the (become)FImmediate1000RWP03.14Immediate (become)Immedi					electronic				
P03.14Electronic gear ratio 2 denominator1~214748 3647- Set the of the position command.Immediate I y1000RWP03.14Electronic gear ratio 2 denominator1~214748 3647- Get the of the second group of electronic gear ratios for the division/mult iplier frequency of the positionImmediate I y1000RW					gear ratio for				
P03.14Electronic ratio 2 denominator1~214748 3647-Set the denominatoranytime of the second group of electronic gear ratiosImmediate 10001000RWP03.14Electronic ratio 2 denominator3647-Set the denominatoranytime of the second group of electronic gear ratios for the division/mult iplier frequency of the positionImmediate loc1000RW					the division/				
P03.14Electronic ratio 2 denominator1~214748 3647- C A A A BSet the denominatoranytime A BImmediate I I I I1000RWP03.14Electronic ratio 2 denominator3647- A A BSet the A B B A Banytime A BImmediate I I I I1000RWP03.14Electronic B B C T B A BImmediate B I <td></td> <td></td> <td></td> <td></td> <td>multiplicatio</td> <td></td> <td></td> <td></td> <td></td>					multiplicatio				
P03.14Electronic gear ratio 2 denominator1~214748 3647- Command.Set the 					n frequency				
P03.14Electronic gear ratio 2 denominator1~214748 3647-Set the denominatoranytimeImmediate1000RWP03.14Electronic gear ratio 2 denominator3647-Set the denominatoranytimeIp1000RWP03.14Immediate gear ratio 2 denominator3647Immediate denominatorIpIpIpIpP03.14Immediate gear gear ratio 2 denominator3647Immediate denominatorIpIpIpIpImmediate group of gear ratiosImmediate gear ratiosImmediate gear ratiosIpIpIpIpIpImmediate gear ratioImmediate gear ratiosImmediate gear ratiosIpIpIpIpIpIpImmediate gear ratiosImmediate gear ratiosImmediate gear ratiosIp <td< td=""><td></td><td></td><td></td><td></td><td>of the</td><td></td><td></td><td></td><td></td></td<>					of the				
P03.14 Electronic gear ratio 2 denominator 1~214748 - Set the denominator anytime Immediate 1000 RW ratio 2 denominator 3647 - Set the denominator anytime Immediate 1000 RW group of electronic gear ratios intervalue					position				
ratio 2 denominator 3647 denominator ly of the second group of electronic gear ratios for the i i division/mult iplier i i i the position the position i i i					command.				
of the second group of electronic gear ratiosIfor the division/mult iplierIfrequency of the positionI	P03.14	Electronic gear	1~214748	-	Set the	anytime	Immediate	1000	RW
group ofelectronicgear ratiosfor theiplierfrequency ofthe position		ratio 2 denominator	3647		denominator		ly		
electronic gear ratios gear ratios for the division/mult iplier frequency of the position					of the second				
gear ratiosfor thedivision/multiplierfrequency ofthe position					group of				
interview for the interview interview interview interview interview interview					electronic				
division/mult iplier frequency of the position					gear ratios				
iplier frequency of the position					for the				
frequency of the position					division/mult				
the position					iplier				
					frequency of				
command.					the position				
					command.				

The system defaults to electronic gear ratio 1. Multiple electronic gear ratios can also be switched through INFn.24 and INFn.56. The switching relationship is as follows.

INFn.56	INFn.24	Actual electronic gear ratio
invalid	invalid	Electronic gear ratio 1 numerator Electronic gear ratio 1 denominator
invalid	valid	Electronic gear ratio 2 numerator Electronic gear ratio 2 denominator

valid	invalid	Electronic gear ratio 1 numerator Electronic gear ratio 2 denominator
valid	valid	Electronic gear ratio 2 numerator Electronic gear ratio 1 denominator

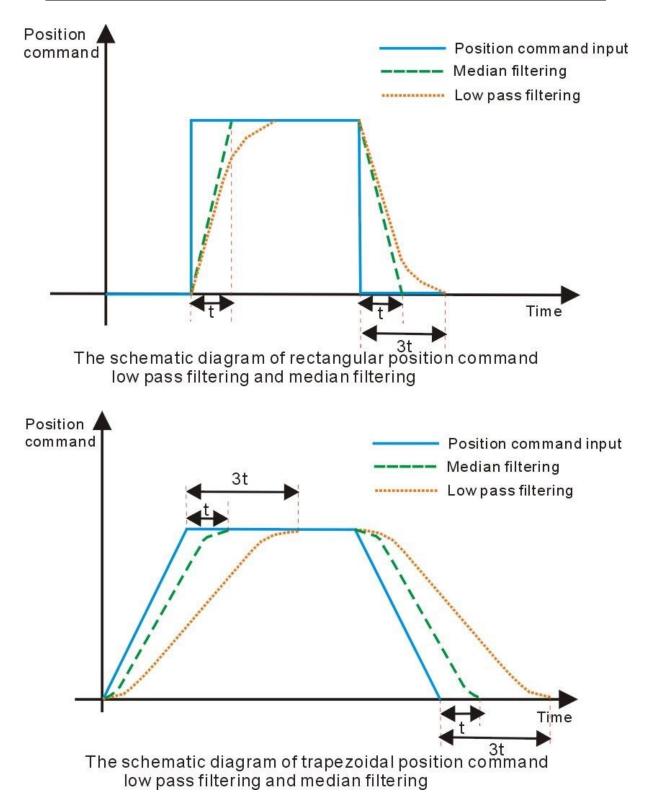
5.2.5 Electronic gear ratio smooth switching function

When the electronic gear ratio changes greatly, it is easy to cause sudden changes in the motor speed. The internal electronic gear ratio can be switched smoothly through the P03.16 electronic gear ratio switching filter time constant.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P03.16	Electronic gear ratio	0~32767	ms	Set the	anytime	Immediatel	0	RW
	switching time			electronic		У		
	constant			gear ratio				
				switching				
				time to				
				make the				
				internal				
				electronic				
				gear				
				ratio				
				smoothly				
				switch				

5.2.6 Position command filter function

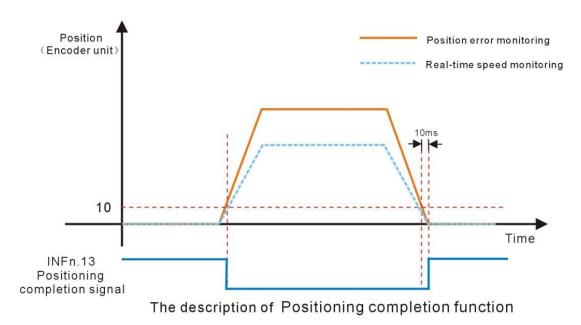
The position command filtering is to filter the position command (encoder unit) after frequency or multiplication of the electronic gear ratio.


In the following situations, consider adding position command filtering:

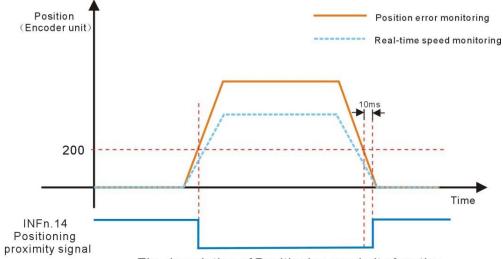
- > The position command output by the host controller is not accelerated or decelerated.
- > The pulse command frequency is low;
- > When the electronic gear ratio is 10 times or more.

There are two filtering methods to choose from, one is a low-pass filter and the other is a median filter. $_{\circ}$

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P03.06	Position command	0~128	ms	Set the	set when	Immediate	0	RW
	given median filter			median filter	stop	ly		
	time constant			time constant				
				for the				
				position				
				command				
				(encoder				
				unit).				
P03.07	Position command	0~32767	ms	Set the	set when	Immediate	20	RW
	given low-pass filter			low-pass	stop	ly		
	time constant			filter time				
				constant of				
				the position				
				command				
				(encoder				
				unit).				


The larger the filter time constant is set, the more severe the position command lags and the greater the position error during operation. The waveform is as follows.

5.2.7 Positioning complete/proximity function


The positioning completion function means that the absolute value of the position error P03.17 satisfies the user-set condition P03.45 and maintains the time threshold (ms) set by P03.49, and it can be considered that the positioning is completed in the position control mode. At this time, the servo drive can output a positioning completion signal, and the host computer can confirm that the positioning of the servo drive is completed when the signal is received. For the output signal of positioning completion/positioning approaching, you can directly configure the DOx function control register, and the signal is monitored through the DO terminal valid state (P06.49).

As shown in the figure below, when the positioning completion threshold is set to 10 units (10*0.0001 cycles), and the hold time is set to 10ms, the DO outputs the positioning completion signal.

The positioning close function means that the absolute value of the position error P03.17 satisfies the condition P03.47 set by the user, and the time threshold (ms) set by P03.49 is maintained, and the positioning is considered to be close in the position control mode. At this time, the servo driver can output a positioning close signal, and the host constroller receives the signal to confirm that the servo driver is positioned close.

As shown in the figure below, the positioning close threshold is set to 200 pulses, and when the hold time is set to 10 ms, the DO output the positioning signal.

The description of Positioning proximity function

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Default s	read and write method	
	Positioning completion signal output condition	0~4	-	anytime	Immediatel y	0	RW	
P03.45	In the position control mode, when the servo is running, the absolute value of the position error P03.17 is within the set value of P03.46 (positioning completion threshold), and after P03.49 (positioning completion/proximity time threshold) is maintained, the servo will be Output positioning completion signal; The output condition of the positioning completion signal can be set by P03.45. 0- Output when the position error is less than the positioning completion threshold, otherwise clear the output; 1- Output when The position error is smaller than the positioning completion threshold and the speed command in position mode P03.95 is zero, otherwise the output is cleared; 2- Output when The position error is less than the positioning completion threshold and the filtered speed command in position mode P03.96 is zero, otherwise the output is cleared; 3- Output when the position error is less than the positioning completion threshold and the speed command in position mode P03.96 is zero, otherwise the output is cleared; 4- The sending of multi-segment position commands is completed, and the position error is less than the position in position mode P03.95 is not zero							
D02.46	positioning completion threshold	0~32767	0.0001 round	anytime	Immediatel y	10	RW	
P03.46	Set the positioning completion position control mode and is in	-		npletion signal	is valid only w	hen the serv	o driver is in	
	Positioning close signal output condition	0~3	-	anytime	Immediatel y	0	RW	
P03.47	In the position control mode, v set value of P03.48 (position threshold) is maintained, the proximity signal can be set thre 0- Output when the position en	ing proximity th servo can outpu ough P03.47.	hreshold), and ut Positioning	when P03.49 (proximity signa	(positioning co al; the output o	ompletion/pr	oximity time f positioning	

	1- Output when The position error is smaller than the positioning close threshold and the speed command in position									
	mode P03.95 is zero, otherwise the output is cleared;									
	2- Output when The position error is less than the positioning close threshold and the filtered speed command in									
	position mode P03.96 is zero, o	otherwise the ou	tput is cleared;							
	3- Output when the position e	error is less that	n the positioni	ng close thresho	old and the spe	ed comman	nd in position			
	mode P03.95 is zero. Clear out	put when speed	command in p	osition mode P()3.95 is not zer	0				
	positioning close	0~32767	0.0001	anytime	Immediatel	100	RW			
	threshold	0,~32707	round	anytime	у	100	KW			
P03.48	Set the threshold of the absolute value of the position deviation when the servo drive outputs the positioning									
	approach signal (the positionin	g approach thre	shold generally	needs to be gre	eater than the p	ositioning c	ompletion			
	threshold).				_					
	positioning completion/	0~32767	ms	anytime	Immediatel	10	RW			
P03.49	close time threshold	0-32101	1115	anytime	у	10	RW			
105.47	When the position error is less	than the positio	ning completio	n/proximity thr	eshold, and the	time thresh	old is			
	maintained, the positioning con	npletion/proxin	nity signal is ou	itput.	<u>.</u>					
P03.17	position error	_	0.0001	_	_	_	RO			
105.17			round			_	KO			
P03.95	the speed command in	_	rom	_	_		RO			
105.95	position mode	-	rpm	-	-	-	KO			
	the filtered speed									
P03.96	command in position	-	rpm	-	-	-	RO			
	mode									

Related output function bits are as follows.

Function bits	Bit description
OUTFn.13	Positioning completion signal output, active when Positioning completion
OUTFn.14	Positioning close signal output, active when Positioning close

5.2.8 Pulse frequency division output function

Servo pulse frequency division output function is divided into two types: open-collector signal output and differential signal output.

When the output signal is the open collector signal, the servo can output the motor encoder pulse by setting P06.40. The motor pulse can be divided and output, and the maximum frequency of the motor pulse output is 3 KHz, and the output port is DO1 and DO2. When the output signal is a differential signal, the full-closed function must be turned off (setting P03.31=0), the servo can output the command pulse or the motor encoder pulse, the output pulse type is set by P03.78, and the output port is 37, 38, 39, 40 pins in CN3. For differential signals, only the motor pulse can be divided.

The division factor of the motor pulse output can be set by P03.79. The larger the division factor, the lower the output pulse frequency. For example, P03.78 sets the output motor pulse, and P03.79 is set to 2, then when the motor rotates 2 motor pulses, the terminal

outputs 1 pulse

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P03.78	Selection of servo pulse output source	0~2	-	Set the output source of the pulse output port.	anytime	reset valid	0	RW
	0-output motor pulse; 1-ou	tput command	pulse; 2-	no output, as inpu	ıt			
P03.79	Thefrequencydivisionfactorofthe output pulse	1~65535	-		anytime	reset valid		RW
	If the encoder type of the motor is incremental, this value indicates the number of pulses output by the motor encoder when the pulse output terminal outputs one pulse. If the encoder type of the motor is an absolute value, the value represents the number of pulses output by the pulse output terminal when the motor rotates once, and the Z point output port outputs a Z point pulse. This value is only valid for motor pulse frequency division, but invalid for command pulse. Incremental encoder is recommended to be 1, which means that the output pulse is equal to the encoder pulse output; absolute encoder is recommended to be set to 10000, which means that the motor rotates once and the pulse output 10000.							
P03.80	Output direction of pulse frequency division	0~1	-		anytime	reset valid	0	RW
	Set the effective level typ pulses. 0-forward output,		•	ed pulse output.	Only valid f	or motor pulse	es, invalid fo	r command
P06.40	DO1DO2 function control register	0~2	-	Set the output parameter type of DO1DO2.	anytime	Immediate ly	0	RW
	0- DO1 and DO2 are outp 1- DO1, DO2 output A and 2- DO1 outputs the Z poin	l B pulses respe	ectively					

5.2.9 Z point pulse output function

The servo can set DO1 to output the Z point pulse signal through P06.40. The Z point
pulse is an open-collector signal output, and its effective level width is 5ms.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P03.81	Z pulse polarity	0~1	-	Set the	anytime	Immediate	0	RW
	selection			output level		ly		
	0- forward output			when the				
	1- reverse output			pulse output				
				terminal Z				
				pulse is				
				valid.				

5.2.10 Homing

The servo has multiple home zeroing modes. The user can choose the appropriate origin return mode according to the site conditions and process requirements. The parameters related to zero return are as follows.

Remarks: Before using the zero return function, you need to set the enable software and hardware limit P03.73 to 0 or 2. When it is set to 1, triggering the forward and reverse limit will cause the servo motor to directly enter the fault protection state and cannot continue to complete the zero return. operate.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
P03.51	Homing method Set the origin return mode and trigger signal source.	0~99	-	Disable to set	Immediate ly	0	RW
P03.52	Homing acceleration and deceleration time	0~32767	ms	anytime	Immediate ly	500	RW
	Set the time for the motor to a when the home is running, the			•	C C	e	-
P03.53	The first segment of zero return speed	0~32767	rpm	anytime	Immediate ly	500	RW
105.55	It is also called the high-speed zero return speed. When the origin is returned to zero, the motor speed we searching for the deceleration point signal is set.						
P03.54	The second segment of	0~32767	rpm	anytime	Immediate	100	RW

	zero return speed				ly		
	Also called low-speed zero re	eturn speed, set t	he motor spo	eed when sear	ching for the o	origin signal	when the
	origin is returned to zero.						
P03.55	Offset after zero return (set the value of the absolute position of the motor after the zero return.)	-21474836 47~ 214748364 7	User units	anytime	Immediate ly	0	RW
	When BIT9 of P01.46 is set to directly sets the origin as the the origin is zero, and the more	offset position. V	When the BI	T9 of P01.46	•	C	0
P03.57	Origin range(when the position of the motor encoder is within the origin range, and the speed given P09.89=0 in the position loop mode, the time of P03.49 is maintained, and the zero return completion signal is output.)	0~32767	0.0001 Round	anytime	Immediate ly	5	RW

The associated input function bits are as follows.

Function bits	Bit description
INFn.26	Trigger Homing
INFn.34	Zero point switch input
INFn.43	positive limit switch
INFn.44	negative limit switch

The associated output function bits are as follows.

Function bits	Bit description
OUTFn.15	Homing completes output. When the encoder position of the motor is within the Zero point
	range, and the speed reference in the position mode P09.89=0, the time of P03.49 is also
	maintained, and the Homing completes output signal is output.

The vec servo has a variety of homing method to choose from, including:

(1) Method 1: Depends on the negative position limit switch and Z index pulse;

(2) Method 2: Depends on the positive position limit switch and Z index pulse;

(3) Method 3-Method 6: Depends on the zero position switch and Z index pulse;

(4) Method 7-Method 10: Depends on the zero position switch, positive position limit switch and Z index pulse;

(5) Method 11 - Method 14: Depends on the zero position switch, negative position limit switch

and Z index pulse

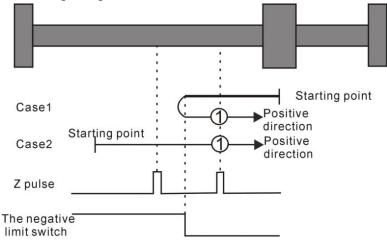
(6) Method 17: Depends on the negative position limit switch

(7) Method 18: Depends on the positive position limit switch

(8) Method 19 - Method 22: Depends on the zero position switch

(9) Method 23 - Method 26: Depends on the zero position switch, positive position limit switch

(10) Method 27 - Method 30: Depends on the zero position switch, negative position limit switch

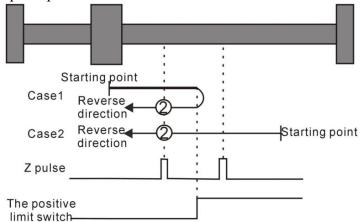

(11) Method 33 - Method 34: Depends on the Z pulse

(12) Method 35: Depends on the current position

Homing method 1: Homing on the negative limit switch and Z index pulse

Case 1: When the user triggers the execution of homing, if the negative limit switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the negative limit switch is in the high level, the moving direction changes and the starts to move at second speed; the position where the first Z index pulse is encountered when the negative

Case 2: When the user triggers the execution of homing, if the negative limit switch state is at the high level, the axis starts to move in the positive direction at the second speed, and the first Z index pulse is encountered when the negative limit switch state is at the low level. The location is the zero point position.



Homing method 1: Homing on the negative limit switch and Z index pulse

Homing method 2: Homing on the positive limit switch and Z index pulse

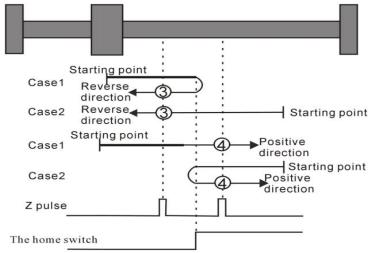
Case 1: When the user triggers the execution of homing, if the positive limit switch state is in the low level, the axis starts to move forward at the first speed, and when the positive limit switch is in the high level, the moving direction changes and moving speed changes at the second speed, the position where the first Z index pulse is encountered when the positive limit switch state is low is the zero point position.

Case 2: When the user triggers the execution of homing, if the positive limit switch state is at the high level, the axis starts the reverse motion directly at the second speed, and the first Z index pulse is encountered when the positive limit switch state is at the low level. The location is the zero point position.

Homing method 2: Homing on the positive limit switch and Z index pulse

Homing method 3 ~ 6 Homing on the home switch and the Z index pulse

Homing method 3


Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the origin switch is in the high level, the motion direction changes and starts to move at the second speed. The position where the first Z index pulse is encountered when the home switch state is in the low level is the zero point position.

Case 2: When the user triggers the execution of homing, if the home switch state is at the high level, the axis starts the reverse motion directly at the second speed, and the position where the first Z index pulse is encountered when the home switch state is at the low level is the zero point position.

Homing method 4

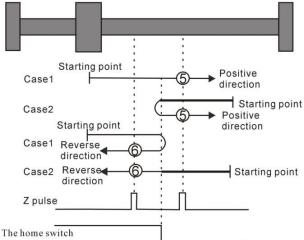
Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the high level, the second speed is reversed. The position of a Z index pulse is the zero point position.

Case 2: When the user triggers the execution of homing, if the home switch state is at the high level, the axis starts the reverse motion directly at the second speed. When the home switch is in the low level, the motion direction changes and starts to move at the first speed. When the home switch is in the high level again, it moves in the reverse direction at the second speed, and the position where the first Z index pulse is encountered is the zero point position.

Homing method $3 \sim 4$ Homing on the home switch and the Z index pulse

Homing method 5

Case 1: When the user triggers the execution of homing, if the home switch state is at the high level, the axis starts to move forward at the second speed, and the position where the first Z index pulse is encountered when the home switch state is low is the zero point position.


Case 2: When the user triggers to perform homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the high level, the motion direction changes and starts to move at the second speed. The

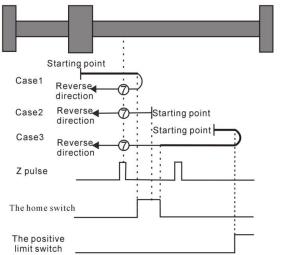
position where the first Z index pulse is encountered when the home switch state is low is the zero point position.

Homing method 6

Case 1: When the user triggers the execution of homing, if the home switch state is in the high level, the axis starts to move forward in the second speed. When the home switch is in the low level, the motion direction changes and starts to move at the first speed. When the home switch is in the high level again, it moves forward in the second speed, and the position where the first Z index pulse is encountered is the zero point position.

Case 2: When the user triggers to perform zero return, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the high level, the motion direction changes and starts to move at the second speed. The position where the first Z index pulse is encountered is the zero point position.

Homing method 5 ~ 6 Homing on the home switch and the Z index pulse

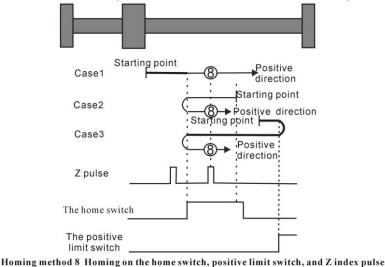

Homing method 7 \sim 10 Homing on the home switch, positive limit switch, and Z index pulse

Homing method 7

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the high level, the motion direction changes and starts to move at the second speed. The position where the first Z index pulse is encountered when the home switch state is low is the zero point position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is at a high position, the axis directly starts to move in the reverse direction at the second speed. When the origin switch state is at a low level, the position where the first Z pulse is encountered is the origin position.

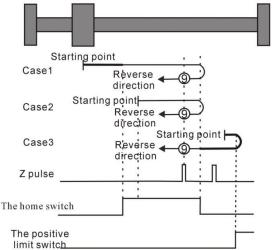
Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the low level and the positive limit switch is in the high level, the moving direction changes. The movement starts at the first speed, and when the home switch is in the high level, the movement starts at the second speed, and the position where the first Z index pulse is encountered when the home switch state is low is the zero point position.


Homing method 7 Homing on the home switch, positive limit switch, and Z index pulse

Homing method 8

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the high level, the second speed starts to move. The position of the first Z index pulse is the zero point position.

Case 2: When the user triggers the execution of homing, if the home switch state is at the high level, the axis directly starts the reverse motion at the second speed. When the home switch is in the low level, the motion direction changes and starts to move at the second speed. When the home switch is in the high level, the position where the first Z index pulse is encountered is the zero point position.

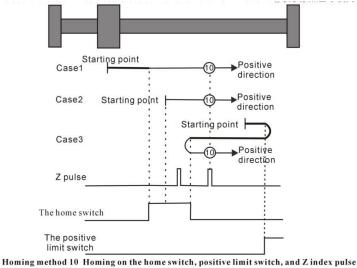

Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the low level and the positive limit switch is in the high level, the moving direction changes. When the home switch is in the high level, it still moves at the first speed. The motion direction changes when the home switch state is low, and then starts to move at the second speed. When the home switch in the high level, and the position where the first Z index pulse is encountered is the zero point position.

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move at the first speed. When the home switch is in the high level, the motion starts at the second speed. When the switch is in the low level, the direction of motion changes and continues to move at the second speed. When the home switch is in the high level, the position where the first Z index pulse is encountered is the zero point position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is at a high level, the axis starts to move forward at the second speed, until when the origin switch is at a low level, the movement direction changes and starts to move at the second speed, when the origin switch is at a high position, the position where the first Z pulse is encountered is the origin position.

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move forward at the first speed. When the origin switch is in the low position and the forward operation limit switch is in the high position, the movement direction changes and Start moving at the first speed, when the origin switch is at a high position, start moving at the second speed, and the position where the first Z pulse is encountered is the home position.

Homing method 9 Homing on the home switch, positive limit switch, and Z index pulse

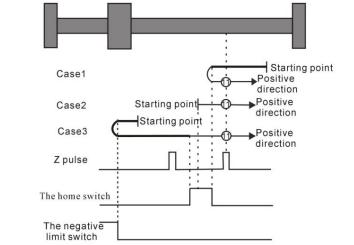

Homing method 10

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move forward at the first speed. When the origin switch is at a high level, it starts to move at the second speed. When the switch is in the low position, the position where the first Z pulse is encountered is the home position.

Case 2: When the user triggers the execution of homing, if the origin switch state is at a high position, the axis starts to move forward at the second speed. When the origin switch is at a low position, the position where the first Z pulse is encountered is the origin position .

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move forward at the first speed. When the origin switch is in the low position and the forward operation limit switch is in

the high position, the movement direction changes and Start moving at the first speed, when the origin switch is at a high position, the movement direction changes again and starts moving at the second speed. When the home switch is at a low position, the position where the first Z pulse is encountered is the home position.

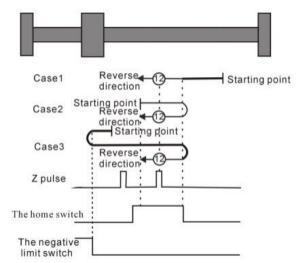

Homing method 11 \sim 14 Homing on the home switch, the negative limit switch and the Z index pulse

Homing method 11

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move in the reverse direction at the first speed. When the origin switch is at a high level, the movement direction changes and starts to move at the second speed. The position where the first Z pulse is encountered when the home switch state is low is the home position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is at a high position, the axis directly starts to move forward at the second speed, and the position where the first Z pulse is encountered when the origin switch state is at a low position is the origin position.

Case3: When the user triggers the execution of the zero return, if the origin switch state is in the low position, the axis starts to move in the reverse direction at the first speed. When the origin switch is in the low position and the reverse operation limit switch is in the high position, the movement direction changes and Start moving at the first speed, when the origin switch is at a high position, start moving at the second speed, and the position where the first Z pulse is encountered when the home switch is at a low state is the home position.

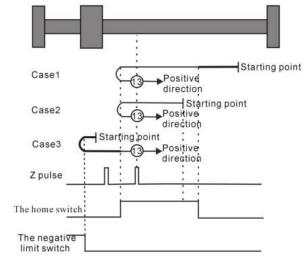


Homing method 11 Homing on the home switch, the negative limit switch and the Z index pulse

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move in the reverse direction at the first speed. When the origin switch is at a high level, it starts to move at the second speed. The position of the Z pulses is the origin position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is at a high level, the axis directly starts to move forward at the second speed. When the origin switch is at a low level, the movement direction changes and starts to move at the second speed. , when the origin switch is at a high position, the position where the first Z pulse is encountered is the origin position.

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move in the reverse direction at the first speed. When the origin switch is in the low position and the reverse operation limit switch is in the high position, the movement direction changes and It starts to move at the first speed. When the origin switch is at a high position, it still moves at the first speed. When the home switch is at a low state, the movement direction changes and starts to move at the first speed. When the first speed. When it encounters the home switch when it is in the high position, it starts to move at the first speed. When the first speed, when it encounters the home switch when it is in the high position, it starts to move at the second speed, and the position where it encounters the first Z pulse is the origin position.

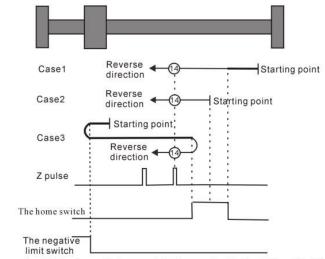


Homing method 12 Homing on the home switch, the negative limit switch and the Z index pulse

Case 1: When the user triggers the execution of the zero return, if the origin switch state is in the low position, the axis starts to move in the reverse direction at the first stage speed. When the origin switch is in the high position, it starts to move at the second stage speed. When the switch is in the low position, the movement direction changes and starts to move at the second speed. When the second speed. When the origin switch is in the low position, the movement direction changes and starts to move at the second speed. When the origin switch is in the high position, the position where the first Z pulse is encountered is the origin position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is at a high level, the axis will directly move in the reverse direction at the second speed. When the origin switch is at a high position, the position where the first Z pulse is encountered is the origin position.

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move in the reverse direction at the first speed. When the origin switch is in the low position and the reverse operation limit switch is in the high position, the movement direction changes and Start moving at the first speed, when the origin switch is at a high position, start moving at the second speed, and the position where the first Z pulse is encountered is the home position.



Homing method 13 Homing on the home switch, the negative limit switch and the Z index pulse

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move in the reverse direction at the first speed. When the origin switch is at a high level, it starts to move at the second speed. When the switch is in the low position, the position where the first Z pulse is encountered is the home position.

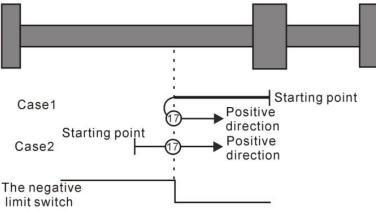
Case 2: When the user triggers the execution of homing, if the origin switch state is at a high position, the axis starts to move in the reverse direction at the second speed. When the origin switch is at a low position, the position where the first Z pulse is encountered is the origin position.

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move in the reverse direction at the first speed. When the origin switch is in the low position and the reverse operation limit switch is in the high position, the movement direction changes and Start to move at the first speed, when the origin switch is at a high position, the direction of movement changes again and starts to move at the second speed, when the home switch is at a low position, the position where the first Z pulse is encountered is the origin position.

Homing method 14 Homing on the home switch, the negative limit switch and the Z index pulse

Homing method 15 ~ Homing method 16 Reserved

• Homing method 15 and Homing method 16 are reserved as the Homing method for future development.

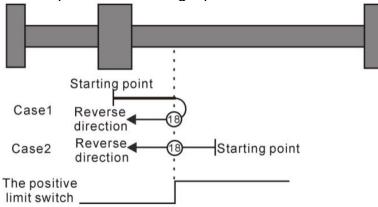

Homing method 17 ~ homing method 30 does not require Z index pulse

Mode 17 to Mode 30 are similar to Mode 1 to Mode 14 mentioned above, except that the positioning of their origin return position no longer requires Z pulses, but only according to the state change of the relevant origin switch and limit switch. Mode 17 is similar to Mode 1, Mode 18 is similar to Mode 2, Mode 19 and Mode 20 are similar to Mode 3, Mode 21 and Mode 22 are similar to Mode 5, Mode 23 and Mode 24 are similar to Mode 7, Mode 25 and Mode 26 are similar to Mode 9 above. Mode 27 and Mode 28 are similar to the previous Mode 11, and Mode 29 and Mode 30 are similar to the previous Mode 13.

Homing method 17: Origin return depending on the reverse operation limit switch

Case 1: When the user triggers the execution of homing, if the negative position limit switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the negative limit switch is in the high level, the moving direction changes and starts to move at the second speed; the position when the negative limit switch state is in the low level is the zero point position.

Case 2: When the user triggers the execution of zero return, if the state of the reverse operation limit switch is at a high position, the axis starts to move forward at the second speed, and the position when the reverse operation limit switch state is at a low position is the origin position.

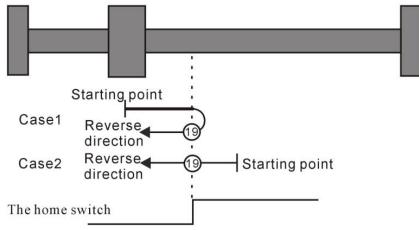

Homing method 17: Homing on the negative limit switch

Homing method 18:Homing on the positive limit switch

Case 1: When the user triggers the execution of homing, if the positive position limit switch state is in the low level, the axis starts to move forward at the first speed, and when the positive position limit switch is in the high level, the moving direction changes and starts to move at second speed, and the position at the time when the positive limit switch state is at the low level is the zero point position.

Case 2: When the user triggers the execution of the zero return, if the forward running limit switch state is at a high position, the axis will directly start reverse

movement at the second speed, and the position when the forward running limit switch state is at a low position is the origin position.

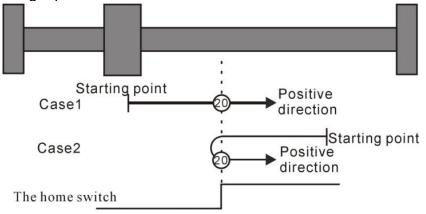

Homing method 18: Homing on the positive limit switch

Homing method 19~ Homing method 20 Depends on the origin return of the origin switch

Homing method 19

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move forward at the first speed. When the origin switch is at a high level, the movement direction changes and starts to move at the second speed. The position when the origin switch is in the low position is the origin position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is in the high position, the axis starts to move in the reverse direction at the second speed, and the position when the origin switch is in the low position is the origin position.

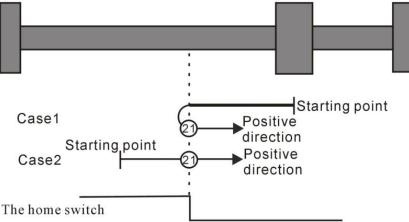

Homing method 19 Homing on the home switch

Homing method 20

Case 1: When the user triggers the execution of the zero return, if the origin switch state is in the low position, the axis starts to move forward at the first speed, and the position when the origin switch is in the high position is the origin position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is at a high level, the axis starts to move in the reverse direction at the second speed. When the origin switch is at a low level, the movement direction

changes and starts at the first speed. , the position when the origin switch is in high position is the origin position.

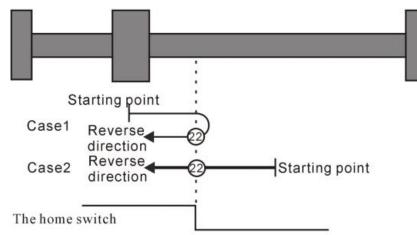


Homing method 20 Homing on the home switch

Homing method 21

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move in the reverse direction at the first speed. When the origin switch is at a high level, the movement direction changes and starts to move at the second speed. The position when the origin switch is in the low position is the origin position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is in the high position, the axis directly starts to move forward at the second speed, and the position when the origin switch is in the low position is the origin position.



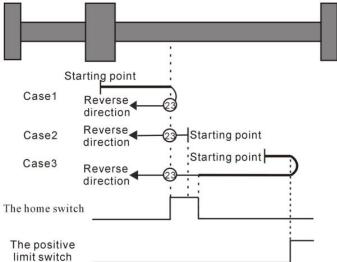
Homing method 21 Homing on the home switch

Homing method 22

Case 1: When the user triggers the execution of zero return, if the origin switch state is at a high level, the axis directly starts to move forward at the second speed. When the origin switch is at a low level, the movement direction changes and starts at the first speed. , the position when the origin switch is in high position is the origin position.

Case 2: When the user triggers the execution of homing, if the state of the origin switch is in the low position, the axis starts to move in the reverse direction at the first speed, and the position when the origin switch is in the high position is the origin position.

Homing method 22 Homing on the home switch

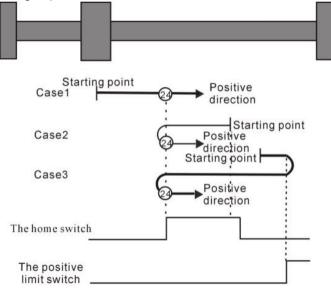

Homing method 23 ~ 26 Origin return depending on origin switch, forward run limit

Homing method 23

Situation 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move forward at the first speed. When the origin switch is at a high level, the movement direction changes and starts to move at the second speed. The position when the home switch state is low is the home position.

Scenario 2: When the user triggers the execution of the zero return, if the origin switch state is in the high position, the axis starts to move in the reverse direction at the second speed, and the position when the origin switch state is in the low position is the origin position.

Scenario 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move forward at the first speed. When the origin switch is in the low position and the forward operation limit switch is in the high position, the movement direction changes and Start the movement at the first speed, when the origin switch is in the high position, start the movement at the second speed, and the position when the origin switch is in the low position is the origin switch is in the low position.

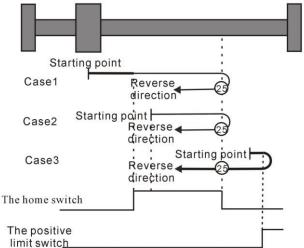

Homing method 23 Homing on the home switch, positive limit switch

Homing method 24

Case 1: When the user triggers the execution of the zero return, if the origin switch state is in the low position, the axis starts to move forward at the first speed, and the position when the origin switch is in the high position is the origin position.

Case 2: When the user triggers the execution of zero return, if the origin switch state is at a high level, the axis directly starts to move in reverse at the second speed. When the origin switch is at a low level, the movement direction changes and starts to move at the second speed. The position when the home switch is in the high position is the home position.

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move forward at the first speed. When the origin switch is in the low position and the forward operation limit switch is in the high position, the movement direction changes and It starts to move at the first speed. When the origin switch is at a high position, it still moves at the first speed. When the home switch is at a low state, the movement direction changes and starts to move at the second speed. When it encounters the home switch The position at the high position is the origin position.

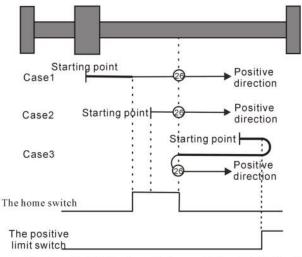

Homing method 24 Homing on the home switch, positive limit switch

Homing method 25

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move forward at the first speed. When the origin switch is at a high level, it starts to move at the second speed. When the switch is at the low position, the movement direction changes and starts to move at the second speed. When the home switch is at the high position, the position is the home position.

Case 2: When the user triggers the execution of zero return, if the origin switch state is at a high level, the axis starts to move forward at the second speed. When the origin switch is at a low level, the movement direction changes and starts to move at the second speed. The position when the origin switch is at a high position is the origin position.

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move forward at the first speed. When the origin switch is in the low position and the forward operation limit switch is in the high position, the movement direction changes and Start the movement at the first speed, and the position when the origin switch is at a high position is the origin position.


Homing method 25 Homing on the home switch, positive limit switch

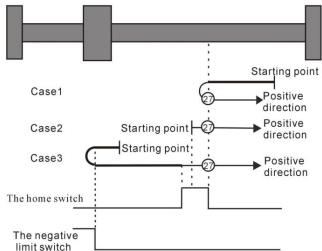
Homing method 26

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move forward at the first speed. When the origin switch is at a high level, it starts to move at the second speed. The position when the switch is in the low position is the origin position.

Case 2: When the user triggers the execution of zero return, if the state of the origin switch is in the high position, the axis starts to move forward at the second speed, and the position when the origin switch is in the low position is the origin position.

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move forward at the first speed. When the origin switch is in the low position and the forward operation limit switch is in the high position, the movement direction changes and Start moving at the first speed, when the origin switch is at a high position, the movement direction changes again and starts moving at the second speed, and the position when the home switch is at a low position.

Homing method 26 Homing on the home switch, positive limit switch

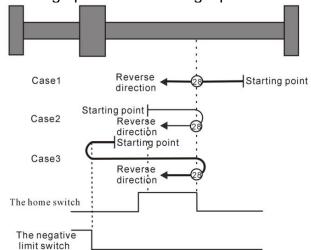

Homing method 27 ~ 30 Origin return depending on origin switch, reverse run limit

Homing method 27

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move in the reverse direction at the first speed. When the origin switch is at a high level, the movement direction changes and starts to move at the second speed. The position when the home switch state is low is the home position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is in the high position, the axis starts to move forward at the second speed, and the position when the origin switch state is in the low position is the origin position.

Case 3: When the user triggers the execution of the zero return, if the origin switch state is in the low position, the axis starts to move in the reverse direction at the first speed. When the origin switch is in the low position and the reverse operation limit switch is in the high position, the movement direction changes and Start to move at the first speed, when the origin switch is at a high position, start to move at the second speed, and the position when the home switch is at a low position is the home position.

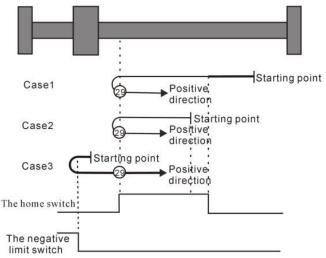

Homing method 27 Homing on the home switch, the negative limit switch

Homing method 28

Case 1: When the user triggers the execution of the zero return, if the origin switch state is in the low position, the axis starts to move in the reverse direction at the first speed, and the position when the origin switch is in the high position is the origin position.

Case 2: When the user triggers the execution of zero return, if the origin switch state is at a high level, the axis directly starts to move forward at the second speed. When the origin switch is at a low level, the movement direction changes and starts to move at the second speed. , the position when the origin switch is in high position is the origin position.

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move in the reverse direction at the first speed. When the origin switch is in the low position and the reverse operation limit switch is in the high position, the movement direction changes and It starts to move at the first speed. When the origin switch is at a high position, it still moves at the first speed. When the home switch is at a low state, the movement direction changes and starts to move at the second speed. When it encounters the home switch The position at the high position is the origin position.

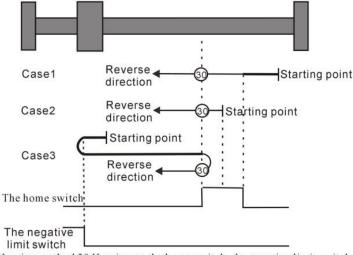

Homing method 28 Homing on the home switch, the negative limit switch

Homing method 29

Case 1: When the user triggers the execution of the zero return, if the origin switch state is in the low position, the axis starts to move in the reverse direction at the first stage speed. When the origin switch is in the high position, it starts to move at the second stage speed. When the switch is at the low position, the movement direction changes and starts to move at the second speed. When the home switch is at the high position, the position is the home position.

Case 2: When the user triggers the execution of the zero return, if the origin switch state is at a high level, the axis will directly move in the reverse direction at the second speed. The position when the origin switch is at a high position is the origin position.

Case 3: When the user triggers the execution of zero return, if the state of the origin switch is in the low position, the axis starts to move in the reverse direction at the first speed. When the origin switch is in the low position and the reverse operation limit switch is in the high position, the movement direction changes and Start the movement at the first speed, and the position when the origin switch is at a high position is the origin position.


Homing method 29 Homing on the home switch, the negative limit switch

Homing method 30

Case 1: When the user triggers the execution of the zero return, if the origin switch state is at a low level, the axis starts to move in the reverse direction at the first speed. When the origin switch is at a high level, it starts to move at the second speed. The position when the home switch is in the low position is the home position.

Case 2: When the user triggers the execution of homing, if the state of the origin switch is in the high position, the axis starts to move in the reverse direction at the second speed. When the origin switch is in the low position, the position is the origin position.

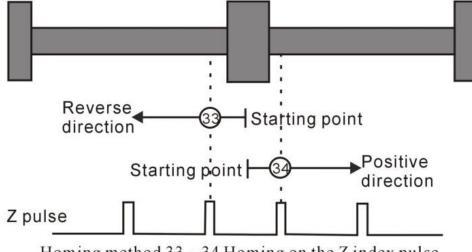
Scenario 3: When the user triggers the execution of the zero return, if the origin switch state is in the low position, the axis starts to move in the reverse direction at the first speed. When the origin switch is in the low position and the reverse operation limit switch is in the high position, the movement direction changes and Start moving at the first speed, when the origin switch is at a high position, the movement direction changes again and starts moving at the second speed, and the position when the home switch is at a low position is the home position.

Homing method 30 Homing on the home switch, the negative limit switch

Homing method 31 and 32 are reserved.

Homing method 31~32 are reserved as homing modes for later development.

Homing method 33~34 Depends on Z pulse


Homing method 33

VECTOR

In mode 33, when the user triggers the execution of homing, the axis starts to move in the reverse direction at the second speed, and the position where the first Z pulse is encountered is the origin position.

Homing method 34

In mode 34, when the user triggers the execution of homing, the axis starts to move forward at the second speed, and the position where the first Z pulse is encountered is the origin position.

Homing method 33 ~ 34 Homing on the Z index pulse

Homing method 35: depends on current location

In mode 35, when the user triggers the home return, the axis does not move, and the current position of the axis is considered to be the home position.

5.2.11 Interrupt fixed length function

The interrupted fixed-length function means that, when the motor is running, after the interrupted fixed-length is triggered, the servo will continue to move the fixed interrupted and fixed-length displacement at the set interrupted fixed-length speed according to the previous movement direction.

The interrupt fixed-length trigger signal can come from the Z point pulse, or from the external IO, depending on the setting of P03.60.

(-) , P03.60=0 does not enable the interrupt fixed length function, and the interrupt fixed length function does not work.

 (\pm) , P03.60=1 enables IO port to trigger interrupt fixed length. There are two cases for IO port to trigger interrupt fixed length. The enable detection of interrupt fixed length signal can come from IO or from the set window.

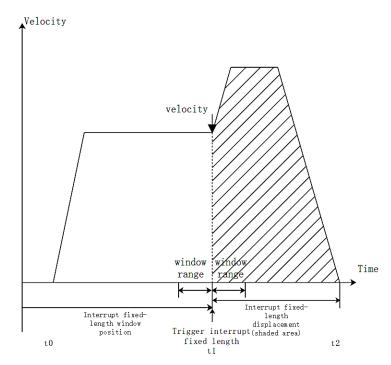
1. Interrupt fixed-length window range P03.67 is not zero, INFn.38 (enable detection interrupted fixed-length trigger signal) is not required to be valid, as long as the interrupted fixed-length trigger signal INFn.40 is in (interrupted fixed-length window position \pm interrupted If it is valid between the long window range), it will trigger the interrupt fixed length to interrupt the fixed length speed P03.61, and walk the fixed length P03.63; Within the range of long window), even if the interrupted fixed-length trigger signal INFn.40 is valid, the

interrupted fixed-length will not be triggered, and the normal cut-to-length is performed. After the interrupt fixed length is completed, the interrupt fixed length completion signal OUTFn.17 is output, and the accumulated value of the interrupt fixed length window position is cleared at the same time, so that the interrupt fixed length window position is counted again, and then the ordinary pulse position command is continued.

2. When P03.67 of the interrupted fixed-length window range is equal to zero, it is not necessary to judge the current position of the motor. It is necessary to trigger INFn.38 (enable detection interrupted fixed-length trigger signal) to be valid, and after the interrupted fixed-length trigger signal INFn.40 is valid , it will trigger the interrupt fixed length to interrupt the fixed length speed P03.61, and go to the interrupt fixed length P03.63. If you need to retrigger the next interrupt fixed length, you need to reset INFn.38, INFn.38 is valid, and After INFn.40 is valid again, go to the fixed length position.

 (\equiv) , P03.60=2 enables the Z point trigger to interrupt the fixed length. There are two cases for the Z point trigger to interrupt the fixed length. The enable detection of the interrupted fixed length signal can come from IO or from the set window.

1. The interrupted fixed-length window range P03.67 is not zero, and INFn.38 (enable detection interrupted fixed-length trigger signal) is not required to be valid, as long as the Z point signal is within (interrupted fixed-length window position \pm interrupted fixed-length window range) appears, it will trigger the interruption of the fixed length, to interrupt the fixed length of speed P03.61, and walk the fixed length of P03.63; if the position that has been traveled is not within the set (interrupted fixed length window position \pm interrupted fixed length window range) range Within, even if the Z point signal appears, it will not trigger the interrupted fixed length and go to the normal cut length. After the interrupt fixed length is completed, the interrupt fixed length completion signal OUTFn.17 is output, and the accumulated value of the interrupt fixed length window position is cleared at the same time, so that the interrupt fixed length window position is counted again, and then the ordinary pulse position command is continued.


2. When P03.67 of the interrupted fixed-length window range is equal to zero, it is not necessary to judge the current position of the motor. Triggering INFn.38 (enable detection interrupted fixed-length trigger signal) is valid. After the Z point signal appears, the interrupted determination will be triggered. long, to interrupt the fixed length speed P03.61, and walk the interrupted fixed length P03.63. If you need to re-trigger the next interrupted fixed length, you need to reset INFn.38, and re-trigger INFn.38 to be effective. After the Z point signal appears, Go to the fixed-length position.

Example to Bit description the interrupt fixed length process:

If the interrupted fixed-length trigger signal appears between (the interrupted fixed-length window position \pm the interrupted fixed-length window range), the position of the interrupted fixed-length planning is executed. As shown in the figure below, at the beginning, the drive is enabled and the accumulated value of the interrupt fixed-length window position is cleared at the same time. Start from t0, execute the ordinary position command, trigger the interrupt fixed-length signal at t1, start to execute the position of the interrupted fixed-length planning, interrupt the fixed-length completion at t2, output the interrupted fixed-length window completion signal, and clear the cumulative value of the interrupted fixed-length window

position, and then continue to follow the normal pulse position command.

If the interrupt fixed-length trigger signal is not between (the interrupted fixed-length window position \pm the interrupted fixed-length window range), the interrupted fixed-length trigger is disabled, and the normal pulse position command is continued.

Notice:

In the process of interrupting the fixed length, the servo shields all external position commands, and will not continue to execute the external position commands until the interrupted fixed length function is released.

If the position command comes from the multi-segment position inside the servo, after the interruption of the fixed length is released, the multi-segment position needs to be triggered again before the position command can be continued.

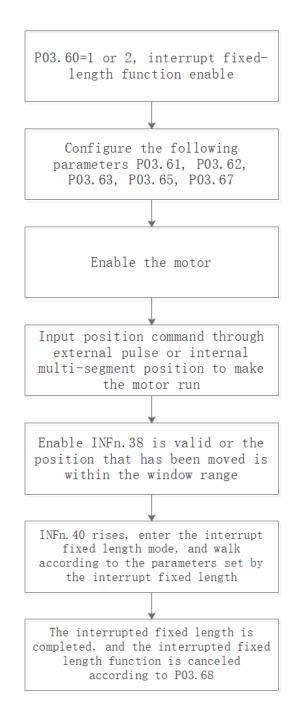
When the interrupt fixed length speed is set to 0, keep the current motor running speed and run the command set by the interrupt fixed length.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P03.60	Interrupt fixed-length function enable 0- Disable interrupt fixed-length function 1- Enable IO trigger interrupt fixed-length function 2- Enable Z point trigger interrupt fixed length	0~2		Set whether to use the interrupt fixed length function, and the way to enable the interrupt fixed length.	Stop to setting	Immediate	0	RW
P03.61	Interrupt fixed length speed	0~32767	rpm	Set the maximum speed that the motor can reach when the fixed-length operation is interrupted.	anytime	Immediate ly	3000	RW

Related parameters are as follows.

P03.62	Interrupt fixed long	0~32767	ms	Set the speed	anytime	Immediate	500	RW
1 05.02	acceleration/deceler	0 52101	1115	change time	unythic	ly	500	17.14
	ation time			when the		Ty		
				motor speed				
				is uniformly				
				changed				
				from 0 to the				
				rated speed				
				when the				
				fixed-length				
				operation is				
				interrupted,				
				or the time to				
				decelerate				
				from the				
				rated speed				
				to 0.				
				Therefore,				
				when the				
				fixed-length				
				operation is				
				interrupted,				
				the actual				
				acceleration				
				and				
				deceleration				
				time of the				
				motor t: t =				
				P03.61-moto				
				r speed				
				before the				
				fixed-length				
				operation is				
				interrupted /				
				Rated speed				
				× (P03.62)				
P03.63	Interrupt fixed	0~	User	Set the	anytime	Immediate	10000	RW
	length	21474836	units	command		ly		
		47		value of the				
				position				
				when the				
				fixed-length				
				operation is				

				interrupted.				
P03.65	Interrupt	0~214748	User	Sets the	anytime	Immediate	0	RW
	fixed-length window	3647	units	window		ly		
	position			position				
				where the				
				fixed-length				
				enable is				
				valid.				
P03.67	Interrupt	0~32767	User	Sets the	anytime	Immediate	0	RW
	fixed-length window		units	window		ly		
	range			range for				
				interrupted				
				long-running				
				. When the				
				interrupt				
				fixed-length				
				window				
				range is set				
				to 0, the				
				window				
				setting is				
				invalid.				
P03.68	Cancel interruption	0~1	-	Set the	anytime	Immediate	0	RW
	fixed-length mode			method to		ly		
	0- After the interrupt			release the				
	fixed length is			fixed-length				
	completed, directly			lock signal.				
	cancel the interrupt							
	fixed length							
	1- Release interrupt							
	fixed length through IO							


The associated input function bits are as follows.

Function bits	Bit description
INFn.38	Enable detection interrupt fixed-length trigger signal INFn.40
INFn.39	Release interrupt fixed-length signal
INFn.40	Interrupt fixed-length trigger signal

The associated output function bits are as follows.

Function	Bit description
bits	
OUTFn.17	Interrupt fixed-length completion output. When the position error of the interrupt fixed length is less than the positioning completion threshold P03.46, and the positioning completion\approaching time threshold P03.49 is maintained, and the speed reference P09.89 in the position loop mode is output under the condition of=0.

The setting procedure of the interrupt fixed length function is as follows.

5.2.12 4th power position curve function

Generally speaking, a trapezoidal velocity curve is used for position planning inside the servo. The trapezoidal speed curve has a certain impact on the machine. In order to reduce the impact of the trapezoidal speed curve on the machine, the 4th power position curve function can be enabled. After enabling, the position curve is planned with a 4th power curve, which can greatly reduce the impact on the mechanical system.

VECTOR

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P03.82	Enable 4th power	0~1	-	Set the	Stop to	Immediate	1	RW
	curve planning			method of	setting	ly		
	0- Use a trapezoidal			position				
	velocity profile			curve				
	1- Using a 4th power			planning. It				
	curve			can only be				
				modified if				
				the servo is				
				not enabled.				

5.2.13 Full closed loop function

In actual field applications, such as steel plate feeding, due to the sliding between the steel plate and the motor, the displacement of the motor and the displacement of the actual material are inconsistent. Therefore, an external second encoder is required to measure the displacement of the actual material. Servo The driver controls the motor speed according to the given position command and the position signal fed back by the second encoder. That is, closed-loop control is performed on the position of the second encoder, so that the given position command is consistent with the position fed back by the second encoder.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P03.31	Enable full closed	0~1	-	Set whether	Stop to	Immediate	0	RW
	loop			to enable the	setting	ly		
	0- Disable fully closed			full closed				
	loop			loop				
	1- Enable full-closed							
	loop (P03.78 setting is							
	invalid, servo pulse port							
	(CN3's 37, 38, 39,							
	40 pins) is used as the							
	second encoder							
	input)							

Related parameters are as follows.

r				r		r		
P03.32	Full closed loop	0~2	-	When full	anytime	Immediate	0	RW
	mode			closed loop		ly		
	0- semi-closed loop;			is enabled,				
	using electronic gear			set full				
	ratio 1			closed loop				
	1- full closed loop;			mode.				
	using electronic gear							
	ratio 1							
	2- Switch full-closed							
	and semi-closed							
	according to IO; IO is							
	invalid, servo runs in							
	semi-closed loop,							
	adopts electronic gear							
	ratio 1; IO is valid,							
	servo runs in full closed							
	loop, adopts electronic							
	gear ratio 2							
	Full closed loop							
	feedback polarity							
P03.33	Full closed loop	0~1	-	When the	anytime	Immediate	0	RW
	feedback polarity			full-closed		ly		
	0- The values of the			loop function				
	motor encoder counter			is set, the				
	and the second encoder			internal and				
	counter are incremented			external				
	or decremented			encoders				
	simultaneously			feedback the				
	1- The value of the			pulse				
	motor encoder counter			counting				
	and the second encoder			direction				
	counter are			during the				
	incremented, one			motor				
	decremented			rotation.				
P03.34	The number of	0~214748	-	Set the	anytime	Immediate	10000	RW
	pulses of the second	3647		number of		ly		
	encoder			feedback				
	corresponding to			pulses of the				
	one revolution of the			second				
	motor			encoder				
				when the				
				servo motor				

				rotates one revolution.				
P03.36	Full closed loop position error excessive threshold, unit is 0.0001 round	0~214748 3647	0.000 1 round	Set the threshold value of the absolute value of the position deviation when the full-closed loop position deviation is too large fault.	anytime	Immediate ly	10000	RW

P03.38	Fully closed loop	-	0.000	The fully	-	-	-	RO
	position error,		1	closed loop				
	0.0001 round		round	position				
				error refers				
				to (the count				
				value of the				
				motor				
				encoder - the				
				count value				
				of the second				
				encoder				
				reduced to				
				the motor				
				encoder),				
				and the				
				position				
				error				
				represents				
				the relative				
				sliding				
				displacement				
				between the				
				material and				
				the motor.				

	1			[
P03.40	Full closed loop	0~32767	-	This value is	anytime	Immediate	0	RW
	position error			valid when		ly		
	clearing cycles			in full closed				
				loop state.				
				When set to				
				0, the				
				full-closed				
				loop position				
				error will not				
				be cleared.				
				When set to				
				n, when the				
				motor rotates				
				every n				
				cycles, if the				
				full-closed				
				loop position				
				error is less				
				than P03.36,				
				the				
				full-closed				
				loop position				
				error will be				
				cleared.				
P03.41	Motor encoder	-	clk/5	Count and	-	-	-	RO
	rate in full closed		ms	display the				
	loop mode			speed of the				
				motor				
				encoder				
				under full				
				closed-loop				
				control. The				
				number of				
				pulses per				
				5ms.				
P03.42	Second encoder	-	clk/5	Statistics and	-	-	-	RO
	rate in full closed		ms	display of				
	loop mode			the second				
				encoder rate				
				under full				
				closed-loop				
				control. The				
				number of				

VECTOR

				pulses per 5ms.				
P00.32	Second encoder software filter time constant	0~32767	ms	Set the second encoder software filter time constant.	anytime	Immediate ly	5	RW

Fn013 Self-learning feedback polarity and the number of second encoder pulses in one revolution of the motor in Fn013 full-closed loop mode

In full-closed loop mode, it is necessary to set the full-closed loop feedback polarity P03.33 and P03.34. The appropriate value can be automatically calculated through this function operation. When performing this function operation, please ensure that the second encoder measuring wheel can be tightly and The material connection ensures that no slippage occurs between the measuring wheel and the material.

The operation steps are as follows:

① Press the MODE button to switch the mode to the functional operation mode, at this time the first two digits of the digital tube display Fn;

② Combine the " \blacktriangle " (increase), " \checkmark " (shift), " \blacktriangledown " (decrease) three buttons to set the display value of the digital tube to Fn013;

③ Click SET to display LFCP. (Learn Full_Close Parameter);

④ Press the "<<" (shift) key; the motor will rotate forward 3 times at a speed of 10rpm.

The relevant input function bits are as follows.

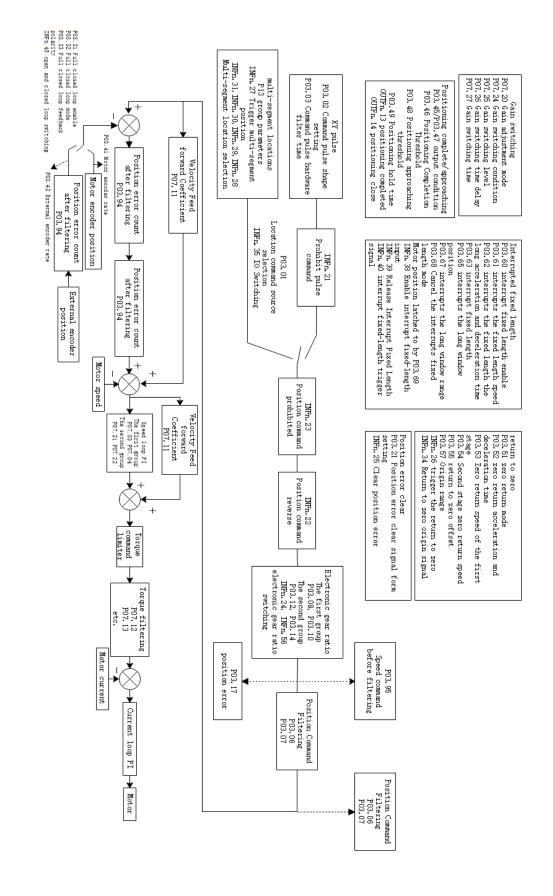
Function bits	Bit description
INFn.45	Switch between fully closed loop and semi closed loop
	When invalid, the servo is in semi-closed loop mode, using electronic gear ratio 1; when valid,
	servo is in full-closed loop mode, using electronic gear ratio 2

5.2.14 Torque limit function

Position mode torque limit and torque mode torque limit are the same. Refer to (5.4.2 Torque Limit).

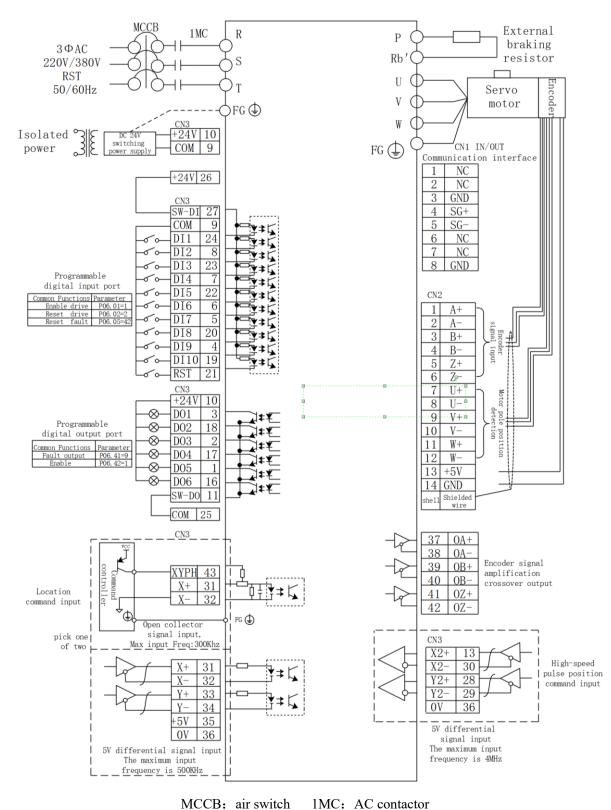
5.2.15 Travel limit function

Both the speed mode and the position mode have software and hardware limit functions. When the software limit is enabled, the encoder position value is detected to be less than the lower limit value of the software limit (P03.74) and the motor moves in the negative direction, and the software limit is reported. Bit fault (Er207). It is detected that the position value of the

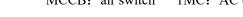

encoder is greater than the upper limit value of the software limit (P03.76), and the motor moves in the positive direction, and a software limit fault (Er207) is reported. If only the software limit needs to be turned off and only the hardware limit is used, the upper and lower limits of the software limit can be set to 0.

the servo also has hardware limit function. When the hardware limit is enabled, by setting INFn.43 and INFn.44 to a DIx, when the DIx is valid, and the speed is greater than/less than zero (refer to the description of the bits INFn.43 and INFn.44 below), the hardware will be reported to the hardware. Limit fault Er208.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P03.73	Enable hardware	0~2	-	Set whether	anytime	Immediate	0	RW
	and software limits			to use the		ly		
	0- Disable hardware and			hardware				
	software limits			and software				
	1- Directly enable			limit				
	software and hardware			function, and				
	limit after power-on			the way to				
	2- Enable software and			enable the				
	hardware limit after			software and				
	returning to zero			hardware				
				limit.				
P03.74	Software limit lower	-214748364	User	Set the lower	anytime	Immediate	-100000	RW
	limit value	7 ~	units	limit value		ly	00	
		2147483647		of the				
				software				
				limit				
P03.76	Software limit upper	-214748364	User	Set the upper	anytime	Immediate	1000000	RW
	limit value	7 ~	units	limit value		ly	0	
		2147483647		of software				
				limit				


The relevant input function bits are as follows.

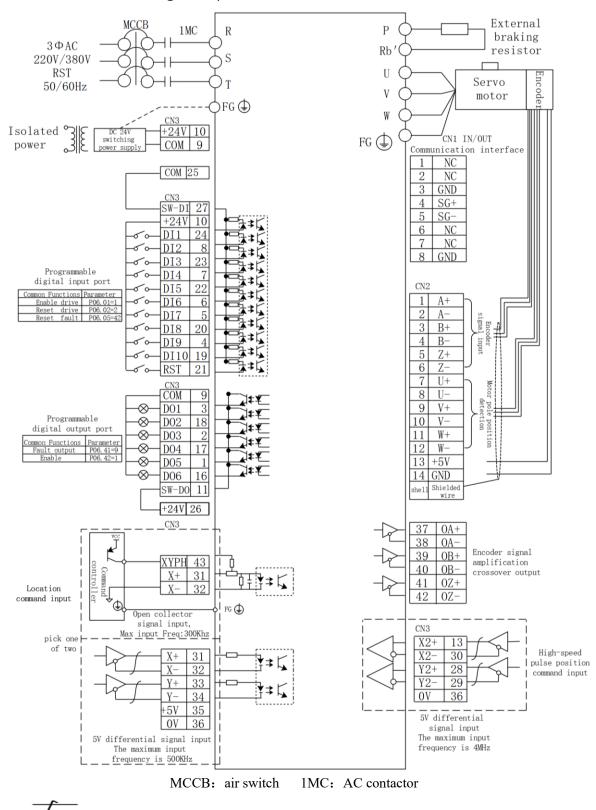
Function bits	Bit description
INFn.43	Forward hardware limit switch, when the speed is greater than zero and INFn.43 is valid, it
	will report hardware limit fault
INFn.44	Reverse hardware limit switch, when the speed is less than zero and INFn.44 is valid, the
	hardware limit fault is reported



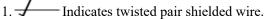
5.2.16 Internal implementation block diagram of position mode

5.2.17 Typical Wiring Diagram for Position Mode

5.2.17.1 NPN wiring for DI/DO



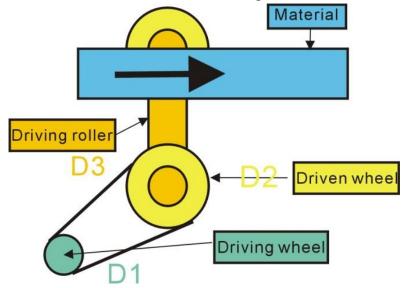
2. The DC24V power supply is prepared by the user. The DC24V switching power supply


should be powered by an isolation transformer, and its ground terminal should be directly connected to the ground terminal of the driver.

3.For the wiring of position command input, please refer to the detailed description in "3.4.3 Wiring Example of Position Command Input".

4. The position command mode is the default working mode of the drive, and the parameters in the figure have been set before leaving the factory.

5.2.17.2 PNP wiring for DI/DO


2.The DC24V power supply is prepared by the user. The DC24V switching power supply should be powered by an isolation transformer, and its ground terminal should be directly connected to the ground terminal of the driver.

3.For the wiring of position command input, please refer to the detailed description in "3.4.3 Wiring Example of Position Command Input".

4. The position command mode is the default working mode of the drive, and the parameters in the figure have been set before leaving the factory.

5.2.18 Example of position mode XY pulse (pulse + direction) moving position

The PLC sends pulses (pulse + direction) to move the position mode, which is the most commonly used servo position control mode. Its applications are very rich, and the transmission material is one of them, as shown in the figure below.

The servo motor rotates the driving wheel (diameter D1), and drives the driven wheel (diameter D2) to rotate through the belt. The transmission roller (diameter D3) and the driven wheel rotate coaxially, and at the same time drive the material to the right.

In order for the material to move accurately for a distance (displacement L), the electronic gear ratio must be set first and then the XY pulses (number N) must be sent. Assuming that the number of lines of the encoder is 2500 and the AB pulse is 4 times, the motor encoder resolution (P00.11) = 2500 * 4 = 10000. Send N XY pulses, requiring the material to be displaced by L

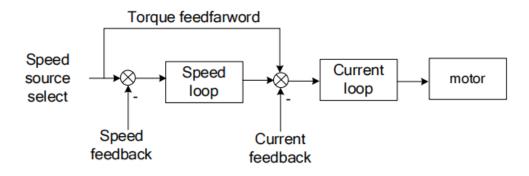
$$L = \frac{N^* \text{electronic gear ratio}}{2500^* 4} * \frac{D1}{D2} * \pi^* D3 \quad \text{(m)}$$

Then the electronic gear ratio is set to

$$\frac{\text{Electronic gear ratio 1 numerator}(P03.08)}{\text{Electronic gear ratio 1 denominator}(P03.10)} = \frac{2500*4}{N} * \frac{D2}{D1} * \frac{L}{\pi*D3}$$

For example: send 100 XY pulses, the material displacement is required to be 0.01m, D1=0.05m, D2=0.10m, D3=0.08m, then

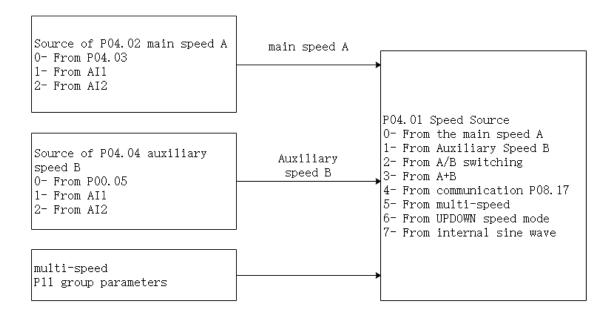
Electronic gear ratio=


$$\frac{2500*4}{100}*\frac{0.10}{0.05}*\frac{0.01}{\pi*0.08} = 7.958 = \frac{\text{Electronic gear ratio 1 numerator}(P03.08)}{\text{Electronic gear ratio 1 denominator}(P03.10)} = \frac{7958}{1000}$$

The specific parameters are set as follows:

1 1	
P02.01=0;	work in position mode
P03.01=0;	position command is from external pulse
P03.02=0;	pulse command pattern is pulse + direction
P03.08=7958	Set the electronic gear ratio Numerator
P03.10=1000	Set electronic gear ratio denominator
P06.01=1	Enable servo when terminal DI1 is valid
P06.02=42	Reset the driver when terminal DI2 is valid
P06.41=9	Servo driver failure when terminal DO1 is active
P06.42=13	Servo motor positioning completed when terminal DO2 is valid

5.3 speed mode


The speed mode is a control mode with the motor speed as the control target, which is often used for the main shaft dragging. The implementation of the speed mode is shown in the figure below.

5.3.1 Speed command source

The servo has two speeds to choose from, namely the main speed A and the auxiliary speed B. These two speeds can be superimposed on each other or can be switched to each other. Both the main speed A and the auxiliary speed B have multiple speed sources. As shown below

Note: Since AI3 is not supported on VC210 general-purpose servo hardware, the speed cannot be sourced from AI3, and the same is true for others

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P04.01	Speed command	0~7	-	Select the	anytime	Immediatel	0	RW
	source			source of the		У		
	0- main speed A 1-			speed				
	auxiliary speed B 2-			command.				
	INFn.12 switch A/B							
	3- A+B							
	4- P08.17							
	5- mulit speed							
	6-UP/DOWN speed							
	mode							
	7- sin wave							
P04.02	main speed A	0~4	-	Set the speed	anytime	Immediatel	0	RW
	source			command		У		
	0- from P04.03			source of the				
	1- from AI1 2- from AI2			main speed command A				
	3-from AI3			source.				
	(The hardware does			source.				
	not support)							
	4-from pulse							
	frequency							
P04.03	Set value of main	-32767~32	rpm	When the	anytime	Immediatel	500	RW
	speed A	767		main speed A		У		
	-			source				
				selects the				
				digital given				
				source, set				
				the speed				
				command				
				value				
				through				
				P04.03.				
P04.04	auxiliary speed B	0~4	-	Set the speed	anytime	Immediatel	0	RW
	source			command		У		
	0- from P04.05			source of				
	1- from AI1			auxiliary				
	2- from AI2			speed				

	3- from AI3			command B.				
	(The hardware does							
	not support)							
	4-from pulse							
	frequency							
P04.05	Auxiliary speed B	-32767~32	rpm	When the	anytime	Immediatel	500	RW
	set value	767		source of		у		
				auxiliary				
				speed B				
				selects the				
				digital given				
				source, set				
				the speed				
				command				
				value				
				through				
				P04.05.				
P08.17	Speed	-32767~32	rpm	In the speed	anytime	Immediatel	0	RW
	communication	767		control		У		
	given			mode, when				
				the speed				
				command				
				source is				
				communicati				
				on given, set				
				the speed				
				command				
				value.				

The relevant input function bits are as follows.

Function bits	Bit description
INFn.12	Switch the main speed A and the auxiliary speed B, and use the auxiliary speed B when it is active.

When the speed command comes from AIx, please refer to "6.3.1 Analog Input AI" for details.

5.3.2 Multi-stage speed mode

Servo supports multi-segment velocity mode. There are 3 modes of multi-stage speed, namely single-run stop, cyclic operation, and IO switching operation.

Single-run stop means that after the motor is enabled, the first stage of speed will be run, and after the operation is completed, the next stage of speed will be run until the running stage number is equal to the total number of stages, and then the machine will stop.

For example, the total number of segments is set to 2, and the single-run stop mode is used. After the motor is enabled, the motor will first run the first stage of speed, and then run the second stage of speed after running, and stop after running.

Cyclic operation is to run the first stage of speed again when a single operation is about to stop, so that the cycle does not stop.

For example, the total number of segments is set to 3, and the cycle operation mode is used. After the motor is enabled, the motor first runs the first stage of speed, then the second stage of speed, then the third stage of speed, and then the first stage of speed, and so on.

IO switching operation means that after the motor is enabled, the driver reads the value of IO to get the segment number, and then runs the speed of the segment. After the IO changes, the driver re-reads the value of IO, gets the segment number again, and then runs the segment speed.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write metho d
P11.01	Multi-speed mode	0~2	-	In speed	Stop to	Immediately	0	RW
	0- single-run stop			control,	setting			
	1-cycle run			when the				
	2- IO switch run			speed				
				command				
				source is				
				multi-speed,				
				set the				
				multi-speed				
				command				

Related parameters are as follows.

				operation				
				mode.				
P11.02	The total number of	1~16	-	Set the total	anytime	Immediately	16	RW
	segments of the			number of				
	speed			segments of				
				the speed				
				command.				
				Different				
				speeds and				
				running				
				times can be				
				set for				
				different				
				segments,				
				and there are				
				4 sets of				
				acceleration				
				times for				
				selection.				
P11.03	Running time unit	0~1	-	Multi-speed	anytime	Immediately	1	RW
	0- ms			running time				
	1- s			unit				
				selection.				
P11.04	Acceleration time 1	0~32767	ms	For each	anytime	Immediately	500	RW
				multi-speed				
				command, 4				
				sets of				
				acceleration				
				and				
				deceleration				
				time are				
				provided for				
	Deceleration time 1			selection.				
P11.05	Deceleration time 1	0~32767	ms	-	anytime	Immediately	500	RW
P11.06								
111.00	Acceleration time 2	0~32767	ms	-	anytime	Immediately	500	RW
P11.07	Deceleration time 2	0~32767	ms	-	anytime	Immediately	500	RW
P11.08	Acceleration time 3	0~32767	ms	-	anytime	Immediately	500	RW
P11.09	Deceleration time 3	0~32767	ms	-	anytime	Immediately	500	RW

P11.10	Acceleration time 4	0~32767	ms	-	anytime	Immediately	500	RW
P11.11	Deceleration time 4	0~32767	ms	-	anytime	Immediately	500	RW
P11.12	1st stage speed command size	-32767~32 767	rpm	Set the speed value of the speed command of the 1th stage.	anytime	Immediately	0	RW
P11.13	1st speed command run time This parameter unit is set by P11.03.	0~32767	ms(s)	The running time set by the speed command of the 1th stage.	anytime	Immediately	10	RW
P11.14	The 1th speed acceleration and deceleration time selection 0-Use acceleration/deceler ation time P04.17 P04.18 1- Using acceleration/ deceleration time 1 2- Using acceleration/ deceleration time 2 3- Using acceleration/deceler ation time 3 4- Using acceleration/ deceleration/	0~4	-	Acceleration/ deceleration time selected by the 1th speed command	anytime	Immediately	0	RW
P11.15	2st stage speed command size	-32767~32 767	rpm	Set the speed value of the 1th speed command.	anytime	Immediately	0	RW
P11.16	2st speed command run time	0~32767	ms(s)	-	anytime	Immediately	10	RW
P11.17	The 2th speed acceleration and deceleration time selection 0-Use acceleration/deceler	0~4	-	Select the acceleration/ deceleration time of the 2th speed	anytime	Immediately	0	RW

						<u> </u>		
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							
P11.18	3st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767		value of the				
				3th speed				
				command.				
P11.19	3st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
	run time							
P11.20	The 3th speed	0~4	-	Select the	anytime	Immediately	0	RW
	acceleration and			acceleration/				
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			3th speed				
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							
P11.21	4st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767		value of the				
				4th speed				
				command.				

VECTOR

VC210 series servo driver instruction manual

P11.22	4st speed command	0~32767	ms(s)	_	anytime	Immediately	10	RW
1 11.22	-	0 52707	mb(b)		unythic	mineutatory	10	1010
P11.23	run time The 4th speed acceleration and deceleration time selection 0-Use acceleration/deceler ation time P04.17 P04.18 1- Using acceleration/ deceleration time 1 2- Using acceleration/ deceleration time 2 3- Using acceleration/deceler ation time 3 4- Using acceleration/	0~4	-	Select the acceleration/ deceleration time of the 4th speed command	anytime	Immediately	0	RW
	deceleration time 4							
P11.24	5st stage speed command size	-32767~32 767	rpm	Set the speed value of the 5th segment speed command.	anytime	Immediately	0	RW
P11.25	5st speed command run time	0~32767	ms(s)	-	anytime	Immediately	10	RW
P11.26	The 5th speed acceleration and deceleration time selection 0-Use acceleration/deceler ation time P04.17 P04.18 1- Using acceleration/ deceleration time 1 2- Using acceleration/ deceleration/ deceleration time 2 3- Using acceleration/deceler	0~4	-	Select the acceleration/ deceleration time of the 5th speed command	anytime	Immediately	0	RW

				1				
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							
P11.27	6st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767		value of the				
				6th speed				
				command.				
P11.28	6st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
	run time							
P11.29	The 6th speed	0~4	-	Select the	anytime	Immediately	0	RW
	acceleration and			acceleration/				
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			6th speed				
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							
P11.30	7st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767	-	value of the				
				7th speed				
				command.				
P11.31	7st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
	run time							
P11.32	The 7th speed	0~4	-	Select the	anytime	Immediately	0	RW
	acceleration and			acceleration/				
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			7th speed				
	ation time			command				
	P04.17 P04.18			Communu				
	1- Using							
	1- Using							

				•		•		<u> </u>
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							
P11.33	8st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767	-	value of the				
				8th speed				
				command.				
P11.34	8st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
	run time				5	5		
P11.35	The 8th speed	0~4	_	Select the	anytime	Immediately	0	RW
11100	acceleration and			acceleration/	5	5	Ũ	
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			8th speed				
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration/							
D11.26		22767 22		S-441 1		Turan 1' (1	0	DW
P11.36	9st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767		value of the				
				9th speed				
D11.25		0.005/5		command.			10	DIV
P11.37	9st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
	run time						-	
P11.38	The 9th speed	0~4	-	Select the	anytime	Immediately	0	RW

	TOK	102	10 501		urrycr	1115 01 00 010	on manaar	
	acceleration and			acceleration/				
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			9th speed				
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							
P11.39	10st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767		value of the				
				10th speed				
				command.				
P11.40	10st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
	run time							
P11.41	The 10th speed	0~4	-	Select the	anytime	Immediately	0	RW
	acceleration and			acceleration/				
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			10th speed				
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							

VECTOR

VC210 series servo driver instruction manual

							-	
P11.42	11st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767		value of the				
				11th speed				
				command.				
P11.43	11st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
	run time							
P11.44	The 11th speed	0~4	-	Select the	anytime	Immediately	0	RW
	acceleration and			acceleration/				
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			11th speed				
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							
P11.45	12st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
1 110.00	command size	767	-1	value of the			Ū	
	•••••••••••••••••••••••••••••••••••••••	, ,		12th speed				
				command.				
P11.46	12st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
111.70	run time	0-52101	1115(3)	_	unythic	minediatory	10	17.44
P11.47	The 12th speed	0~4	_	Select the	anytime	Immediately	0	RW
1 11.4/	acceleration and	0′~+	_	acceleration/	anytime	mineutatery	U	17.46
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			12th speed				
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							

P11.48	deceleration time 2 3- Using acceleration/deceler ation time 3 4- Using acceleration/ deceleration time 13st stage speed command size	-32767~32 767 0~32767	rpm ms(s)	Set the speed value of the 13th speed command.	anytime	Immediately	0	RW
г 11 . 49	run time	0~32/0/	ms(s)	-	anyume	mineutately	10	IX VV
P11.50	The 13th speed acceleration and deceleration time selection 0-Use acceleration/deceler ation time P04.17 P04.18 1- Using acceleration/ deceleration time 1 2- Using acceleration/ deceleration time 2 3- Using acceleration/deceler ation time 3 4- Using acceleration/ deceleration/ deceleration/	0~4	-	Select the acceleration/ deceleration time of the 13th speed command	anytime	Immediately	0	RW
P11.51	14st stage speed command size	-32767~32 767	rpm	Set the speed value of the 14th speed command.	anytime	Immediately	0	RW
P11.52	14st speed command run time	0~32767	ms(s)	-	anytime	Immediately	10	RW
P11.53	The 14th speed acceleration and deceleration time selection 0-Use acceleration/deceler	0~4	-	Select the acceleration/ deceleration time of the 14th speed	anytime	Immediately	0	RW

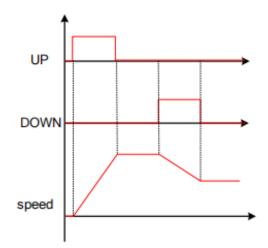
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							
P11.54	15st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767		value of the				
				15th speed				
				command.				
P11.55	15st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
	run time							
P11.56	The 15th speed	0~4	-	Select the	anytime	Immediately	0	RW
	acceleration and			acceleration/				
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			15th speed				
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							
P11.57	16st stage speed	-32767~32	rpm	Set the speed	anytime	Immediately	0	RW
	command size	767		value of the				
				16th speed				
				command.				

VECTOR

VC210 series servo driver instruction manual

P11.58	16st speed command	0~32767	ms(s)	-	anytime	Immediately	10	RW
	run time							
P11.59	The 16th speed	0~4	-	Select the	anytime	Immediately	0	RW
	acceleration and			acceleration/				
	deceleration time			deceleration				
	selection 0-Use			time of the				
	acceleration/deceler			16th speed				
	ation time			command				
	P04.17 P04.18							
	1- Using							
	acceleration/							
	deceleration time 1							
	2- Using							
	acceleration/							
	deceleration time 2							
	3- Using							
	acceleration/deceler							
	ation time 3							
	4- Using							
	acceleration/							
	deceleration time 4							

The relevant input function bits are as follows.

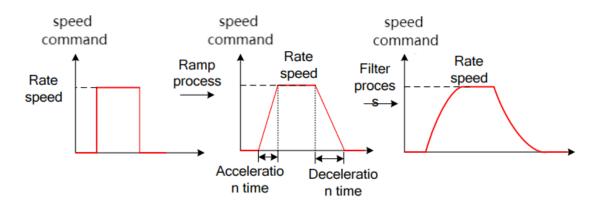

Function bits	Bit description
INFn.17	Select 0 for the speed segment number of multi-step speed
INFn.18	Select 1 for the speed segment number of multi-step speed
INFn.19	Select 2 for the speed segment number of multi-step speed
INFn.20	Select 3 for the speed segment number of multi-step speed

According to the status of INFn17~20, multi-speed speed segment number = INFn.20*8 + INFn.19*4 + INFn.18*2 + INFn.17*1 +1. See the table below for details.

INFn.20	INFn.19	INFn.18	INFn.17	Multi-speed running segment number					
0	0	0	0	1					
0	0	0	1	2					
0	0	1	0	3					
1	1	1	1	16					

5.3.3 UP/DOWN speed mode

When the UP/DOWN speed mode is selected, the speed is controlled by the input detail bits INFn.63 (UP) and INFn.64 (DOWN). When it is detected that INFn.63 is active, the speed raises; when it is detected that INFn.64 is active, the speed decreases; when both signals are deactive, the speed remains unchanged. The timing diagram is shown below.



The relevant input function bits are as follows.

Function bits	Bit description
INFn.63	UP signal
INFn.64	DOWN signal

5.3.4 Ramp control and speed command filtering

All speed sources have ramp control to prevent the impact of a given speed on the machine. The ramp control is achieved by setting the acceleration/deceleration time of the speed. The speed command after the ramp processing is then subjected to low-pass filtering to make the speed command smoother. For example, when the set speed is the rated speed, the actual running speed is processed as shown below.

It should be noted that the actual acceleration/deceleration time is related to the change

of the given speed. The set acceleration/deceleration time refers to the acceleration time required to accelerate from 0 to the rated speed.

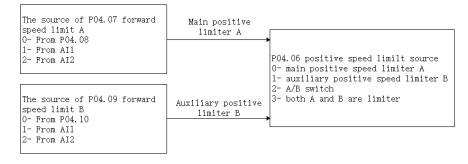
Actual acceleration and deceleration time

= Set acceleration and deceleration time $\times \frac{\text{Variation of the input speed command}}{\text{Rated speed}}$

The advantage of filtering is to make the speed output smoother, but the disadvantage is that the speed command will lag. The larger the set filter time constant, the smoother the speed output and the longer the lag time.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P04.20	Time const for speed	0~32767	ms	Set the	anytime	Immediate	20	RW
	command filter			acceleration/		ly		
				deceleration				
				ramp time				
				constant for				
				the speed				
				command.				
P04.17	Acceleration time	0~65535	ms	The time for	anytime	Immediate	500	RW
				the speed		ly		
				command to				
				accelerate				
				from 0 to the				
				rated speed.				
				The				
				calculation				
				formula of				
				the actual				
				acceleration				
				time is as				
				follows: Actual				
				acceleration				
				time t				
				1=change of				
				speed				
				command/rat				
				ed speed \times				
				speed				
				command				

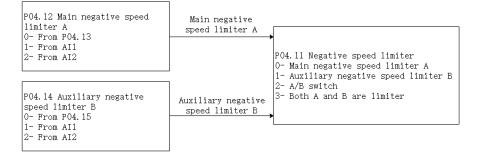
Related parameters are as follows.


				acceleration time				
P04.18	Deceleration time	0~65535	ms	The time for	anytime	Immediate	500	RW
				the speed		ly		
				command to				
				decelerate				
				from the				
				rated speed				
				to 0. Actual				
				deceleration				
				time t2=				
				Change				
				of speed				
				command/rat				
				ed speed \times				
				speed				
				command				
				deceleration				
				time				

5.3.5 speed limit

Speed limiting includes forward limiting and reverse limiting, each of which has a primary limiting A source and an auxiliary limiting B source. That is, the main positive limiter A, the auxiliary positive limiter B, the main negative limiter A, and the auxiliary negative limiter B.

5.3.5.1 Positive speed limiting


The source of the forward speed limit is shown below. There are two types of positive speed limiting, one is the main positive speed limiter A, and the other is the auxiliary positive speed limiter B. Both speed limits have different speed limit sources.

5.3.5.2 Negative speed limiter

The source of the reverse speed limit is shown below. There are two types of reverse speed limiting, one is the main negative speed limiter A, and the other is the auxiliary reverse

speed limiter B. Both speed limits have different speed limit sources.

	le speed limit related	parameters		0110 005.				
Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P04.06	source of positive	0~3	-	Set the	anytime	Immediate	0	RW
	speed limiting			source of the		ly		
	0-main positive			forward				
	speed limiter A			speed				
	1-auxiliary reverse			command				
	speed limiter B			limit.				
	2- A/B switch							
	3-both A and B are							
	limiter							
P04.07	Source of main	0~3	-	Select the	anytime	Immediate	0	RW
	positive speed			source of the		ly		
	limiter A			positive				
	0- from P04.08			speed limit				
	1- fromAI1			A.				
	2- fromAI2							
	3- fromAI3							
	(The hardware does							
	not support)						• • • •	
P04.08	Set value of positive	0~32767	rpm	When the	anytime	Immediate	3000	RW
	speed limit A			forward		ly		
				speed limit A selects the				
				digital given source, set				
				the required				
				speed limit				
				value				
				through				
				P04.08.				
P04.09	Source of auxiliary	0~3	-	Select the	anytime	Immediate	0	RW
	reverse speed limiter			source of the		ly	-	
	В			positive				
	0- FromP04.10			speed limiter				
	1- FromAI1			B.				
	2- FromAI2							
	3- FromAI3							
	(The hardware does							
	not support)							

The speed limit related parameters are as follows.

	<u> </u>				1			
P04.10	Set value of positive	0~32767	rpm	When the	anytime	Immediate	3000	RW
	speed limiter B			positive		ly		
				speed limit B				
				selects the				
				digital given				
				source, set				
				the required				
				speed limit				
				value				
				through				
				P04.10.				
P04.11	source of negative	0~3	-	Set the	anytime	Immediate	0	RW
	speed limiting			source of the		ly		
	0-main negative			reverse				
	speed limiter A			speed				
	1- auxiliary negative			command				
	speed limiter B			limiter.				
	2- A/B switch							
	3- both A and B are							
	limiter							
P04.12	Source of main	0~3	-	Select the	anytime	Immediate	0	RW
	negative speed			source of the		ly		
	limiter			reverse				
	А,			speed limiter				
	0- FromP04.13			А.				
	1- FromAI1							
	2- FromAI2							
	3- FromAI3							
	(The hardware does							
	not support)							
P04.13	Digital value of	0~32767	rpm	When the	anytime	Immediate	3000	RW
	main negative speed		1	reverse		ly		
	limiter A			speed limit A				
				selects the				
				digital given				
				source, set				
				the required				
				speed limit				
				value				
				through				
				P04.13				
P04.14	Source of auxiliary	0~3	-	Selects the	anytime	Immediate	0	RW
- • !	negative speed	~ -		source of	,	ly	Ĭ	
	inguitte speed			2000001		-3	l	l

	limiter B			reverse				
	0- FromP04.15			speed limiter				
	1- FromAI1			B.				
	2- FromAI2							
	3- FromAI3							
	(The hardware does							
	not support)							
P04.15	Digital value of	0~32767	rpm	When the	anytime	Immediate	3000	RW
	auxiliary negative			reverse		ly		
	speed limiter B			speed limit B				
				selects the				
				digital given				
				source, set				
				the required				
				speed limit				
				value				
				through				
				P0415.				

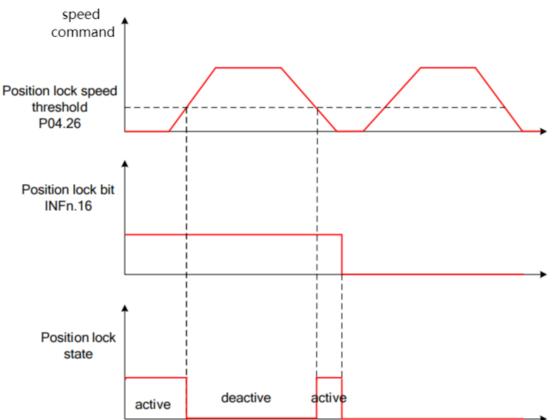
The relevant input function bits are as follows.

Function bits	Bit description
INFn.07	Switch the positive speed limit source A/B, when valid, use positive limit B
INFn.08	Switch the negative speed limit source A/B, when valid, use negative limit B

5.3.6 Torque limit

Please refer to "5.4.2 Torque Limit" in torque mode. Both are shared.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P05.10	Torque limit method	0~1	-	Set the	anytime	Immediate	0	RW
	0- Forward and			torque limit		ly		
	reverse limit are			method.				
	from							
	positive limiting							
	1- Forward and							
	reverse limit							
	separately							
P05.11	Positive torque	0~3	-	Sets the	anytime	Immediate	0	RW
	limiting source			source of the		ly		
	0- Forward Limit A			positive				


	1- Forward limiter B			torque limit.				
	2- A/B switching							
	3- A and B are							
D05.10	simultaneously limit	0.2		a1				DW
P05.12	Source of forward	0~3	-	Set the	anytime	Immediate	0	RW
	torque limit A			source of the		ly		
	0- from P05.13			positive				
	1- from AI1			torque limit				
	2- from AI2			А.				
	3- from AI3							
	(The hardware does							
	not support)							
P05.13	Set value of forward	0~300.0	%	When	anytime	Immediate	150.0	RW
	torque limiter			P05.12		ly		
	А			selects the				
				digital given				
				source, set				
				the required				
				torque				
				percentage				
				through				
				P05.13.				
P05.14	Forward Torque	0~3	-	Set the	anytime	Immediate	0	RW
	Limit B Source			source of		ly		
	0- from P05.15			positive				
	1- from AI1			torque limit				
	2- from AI2			В.				
	3- from AI3							
	(The hardware does							
	not support)							
P05.15	Set value of forward	0~300.0	%	When	anytime	Immediate	150.0	RW
	torque limiter			P05.14		ly		
	В			selects the				
				digital given				
				source, set				
				source, set				
				source, set the required				
				source, set the required torque				
				source, set the required torque percentage				
P05.16	Reverse torque	0~3	_	source, set the required torque percentage through	anytime	Immediate	0	RW
P05.16	Reverse torque limiting source	0~3	-	source, set the required torque percentage through P05.15.	anytime	Immediate	0	RW

	1- Reverse limit B			torque limit.				
	2- A/B switching			iorque minit.				
	3-A and B are							
	simultaneously							
D05.15	limit	0.2		G 1		T 1	0	DUI
P05.17	Source of reverse	0~3	-	Set the	anytime	Immediate	0	RW
	torque limit A			source of the		ly		
	0- from P05.18			reverse				
	1- from AI1			torque limit				
	2- from AI2			A.				
	3- from AI3							
	(The hardware does							
	not support)							
P05.18	Set value of reverse	0~300.0	%	When	anytime	Immediate	150.0	RW
	torque limiter			P05.17		ly		
	А			selects the				
				digital given				
				source, set				
				the required				
				torque				
				percentage				
				through				
				P05.18.				
P05.19	Reverse Torque	0~3	-	Set the	anytime	Immediate	0	RW
	Limit B Source 0-			source of		ly		
	from P05.20			reverse		-		
	1- from AI1			torque limit				
	2- from AI2			B.				
	3- from AI3							
	(The hardware does							
	not support)							
P05.20	Set value of reverse	0~300.0	%	When	anytime	Immediate	150.0	RW
100.20	torque limiter	0 300.0	/0	P05.19	unythic	ly	130.0	17.14
	B			selects the		1y		
	U			digital given				
				source, set				
				the required				
				torque				
				percentage				
				through				
				P05.20.				

5.3.7 Zero position fixation function

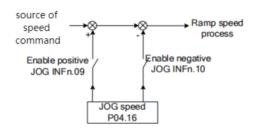
The zero-position fixing function means that in the speed control mode, when the zero-position fixing DI signal INFn.16 is valid, and the speed command amplitude is less than or equal to the set value of P04.26, the servo motor enters the zero-position locking state. At this time, a position loop is built inside the servo drive, and the speed command is invalid; the servo motor is fixed within ± 1 pulse of the effective position of the zero-position fixation. Even if it rotates due to external force, it will return to the zero-position fixation. If the amplitude of the speed command is greater than P04.26, the servo motor exits the zero-position lock state, and the servo motor continues to run according to the current input speed command.

If the zero-position fixed DI signal INFn.16 is invalid, the zero-position fixation function is invalid.

VECTOR

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P04.26	Zero-position fixed speed threshold	0~32767	rpm	In the speed control mode, when the zero-position fixed DI signal is valid, when the amplitude of the speed command is less than or equal to the value set by P04.26, the servo motor enters the zero-position locking state.	anytime	Immediate	5	RW

Related parameters are as follows.


Related input function bits.

Function bits	Bit description
INFn.16	Zero position fixed function enable

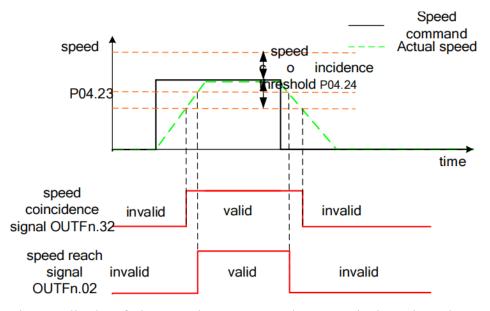
5.3.8 Other functions

5.3.8.1 Speed JOG

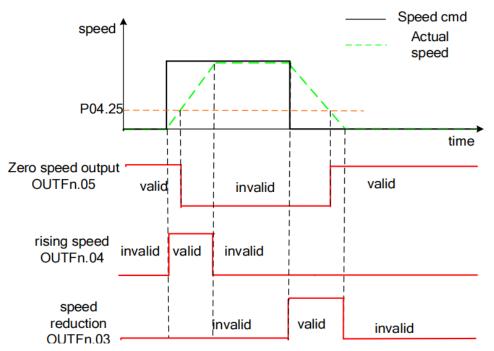
In the speed mode, there are two kinds of forward jog and reverse jog, which are controlled by INFn.09 and INFn.10 respectively. When INFn.09 or INFn.10 is valid, the speed output will superimpose a jog speed P04.16 on the basis of the current speed command. As shown below.

5.3.8.2 Speed command reverse

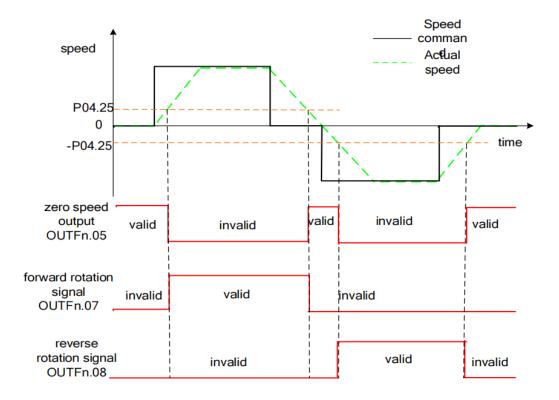
When INFn.11 is active, the speed command will be inverted.


5.3.8.3 Speed pause

When INFn.13 is valid, the speed command is set to zero directly.


5.3.8.4 Speed related signal output

When the difference between the actual output speed P04.21 and the speed given command is less than the speed consistency threshold P04.24, the speed consistency signal OUTFn.32 is valid. When the absolute value of the actual output speed P04.21 is greater than the speed reaching threshold P04.23, the speed reaching signal OUTFn.02 is valid.


The signal output is shown in the figure below.

When the amplitude of the actual output speed P04.21 is less than the zero-speed threshold P04.25, the zero-speed signal OUTFn.05 is valid. When the amplitude of acceleration is greater than the acceleration threshold P04.27, the acceleration OUTFn.04 is valid. When the amplitude of the deceleration is greater than the acceleration and deceleration threshold P04.27, the deceleration OUTFn.03 is valid. The signal output is shown in the figure below.

When the actual output speed P04.21 is greater than the zero speed threshold, the forward rotation signal OUTFn.07 is valid; when the actual output speed P04.21 is less than the negative zero speed threshold, the reverse rotation signal OUTFn.08 is valid. The signal output is shown in the figure below.

5.3.8.5 Speed feedback filtering and display filtering

Perform low-pass filtering on the speed feedback value by setting the software filtering time constant P00.10. You can also set the speed display filter time constant P04.22 to filter

the speed display value.

5.3.8.6 Related parameters

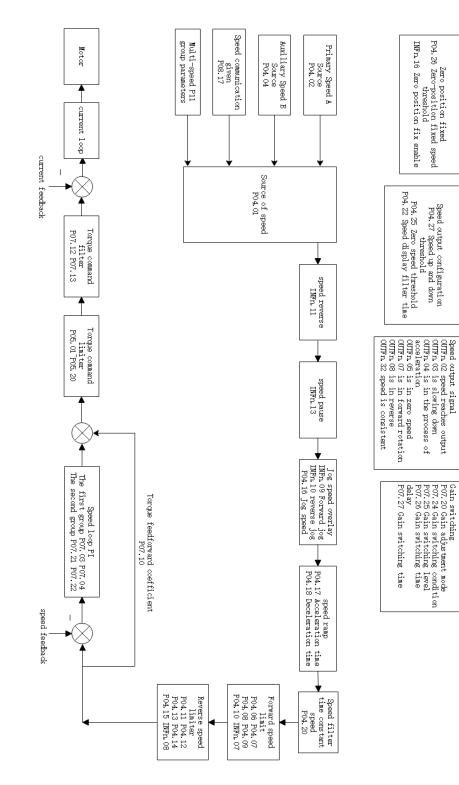
Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P04.16	JOG speed	0~32767	rpm	When using the DI jog function, set the jog running speed command value. Note: This value will be modified during keyboard jog test operation, but will not	anytime	Immediate	20	RW
P04.17	acceleration time	0~65535	ms	be saved. The time for the speed command to accelerate from 0 to the rated speed. The calculation formula of the actual acceleration time is as follows: Actual acceleration time t 1=change of	anytime	Immediate	500	RW

Related parameters are as follows.

				1				
				speed				
				command/ra				
				ted speed \times				
				speed				
				command				
				acceleration				
				time				
P04.18	deceleration time	0~65535	ms	The time for	anytime	Immediate	500	RW
				the speed		ly		
				command to				
				decelerate				
				from the				
				rated speed				
				to 0. Actual				
				deceleration				
				time t				
				2=change of				
				speed				
				command/ra				
				ted speed $ imes$				
				speed				
				command				
				deceleration				
				time				
P04.20	Speed command	0~32767	ms	Set the	anytime	Immediate	20	RW
	first-order			speed		ly		
	filtering time			command				
	constant			filter time				
				constant.				
P04.21	Filtered speed value	_	rpm	Displays the	-	_	-	RO
	-			velocity				
				value after				
				velocity				
				filtering.				
P04.22	Speed display filter	0~32767	ms	Set the filter	anytime	Immediate	300	RW
	time			time for		ly		
				speed		-		
				display.				
P04.23	Speed arrival	0~32767	rpm	When the	anytime	Immediate	1000	RW
_	threshold			absolute		ly	-	
				value of the		-		
				actual speed				
				of the servo				
				of the servo				

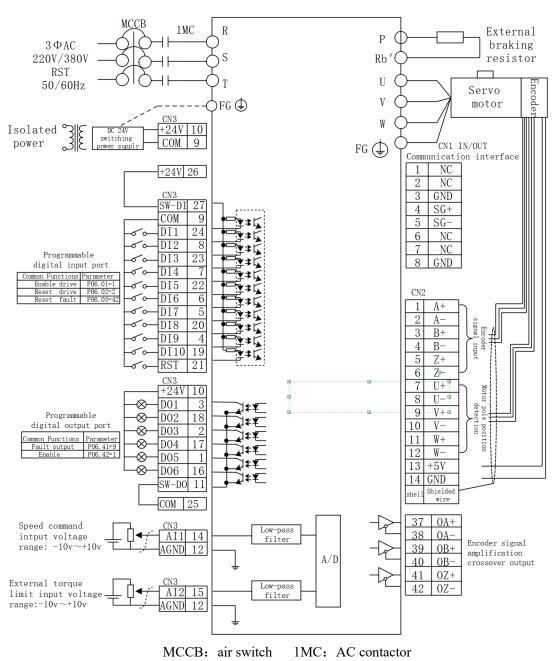
			1			[
				motor after				
				filtering				
				exceeds				
				P04.23, it is				
				considered				
				that the				
				actual speed				
				of the servo				
				motor				
				reaches the				
				expected				
				value, and				
				the servo				
				drive can				
				output the				
				speed				
				reaching				
				signal at this				
				time.				
P04.24	Speed consistent	0~32767	rpm	In the speed	anytime	Immediate	10	RW
	threshold		1	control		ly		
				mode, when				
				the absolute				
				value of the				
				deviation				
				between the				
				actual speed				
				P04.21 of				
				the filtered				
				servo motor				
				and the				
				speed				
				command is				
				less than				
				P04.24, it is				
				considered				
				that the				
				actual speed				
				of the motor				
				reaches the				
				set value of				
				the speed				
				command,				
1				command,			1	

	1		1		[1	r	
				and the				
				drive can				
				output a				
				speed				
				consistent				
				signal at this				
				time.				
P04.25	Zero speed threshold	0~32767	rpm	When the	anytime	Immediate	5	RW
				absolute		ly		
				value of the				
				actual speed				
				of the servo				
				motor after				
				filtering is				
				less than				
				P04.25, it is				
				considered				
				that the				
				actual speed				
				of the servo				
				motor is				
				close to				
				static, and				
				the servo				
				drive can				
				output a				
				zero-speed				
				signal at this				
				time.				
P04.27	Lifting speed	0~32767	rpm/s	In the speed	anytime	Immediate	375	RW
101.27	threshold	0 52101	ipiibo	control		ly	570	1000
				mode, when		- 5		
				the absolute				
				value of the				
				motor				
				acceleration				
				is greater				
				than a				
				certain				
				threshold				
				P04.27, the				
				motor is				
				considered				


				to be in the speed-up/do				
				wn-speed				
				state.				
P00.10	Motor encoder	0~32767	ms	Set the time	anytime	reset	5	RW
	software filter time			for software		takes		
				filtering.		effect		

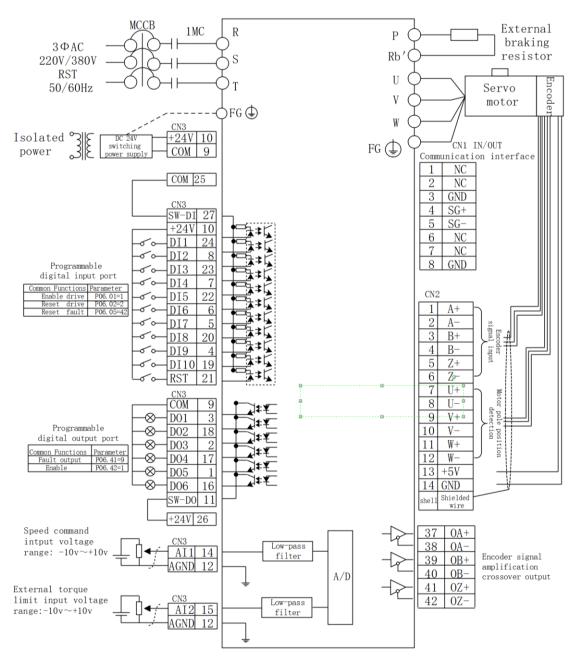
Related input function bits.

Function bits	Bit description
INFn.09	Forward speed jog
INFn.10	Reverse speed jog
INFn.11	Speed reverse
INFn.12	Main speed A/B switching
INFn.13	Speed pause


Related output function bits.

Function bits	Bit description
OUTFn.02	Speed arrives
OUTFn.03	Speed down
OUTFn.04	Speed up
OUTFn.05	Zero speed
OUTFn.06	Speed overrun
OUTFn.07	Forward rotate
OUTFn.08	Reverse rotate
OUTFn.32	Consistent speed

5.3.9 Internal operation block diagram of speed mode


5.3.10 Typical Wiring Diagram for Speed Mode

5.3.10.1 NPN wiring for DI/DO

1. Indicates twisted pair shielded wire.

2. The DC24V power supply is prepared by the user. The DC24V switching power supply should be powered by an isolation transformer, and its ground terminal should be directly connected to the ground terminal of the driver.

5.3.10.2 PNP wiring for DI/DO

MCCB: air switch 1MC: AC contactor

1. - Indicates twisted pair shielded wire.

2. The DC24V power supply is prepared by the user. The DC24V switching power supply should be powered by an isolation transformer, and its ground terminal should be directly connected to the ground terminal of the driver.

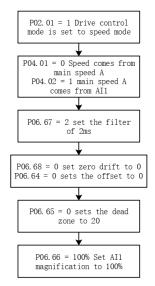
5.3.11 Servo uses analog quantity to control the speed

(1) Analog signal wiring

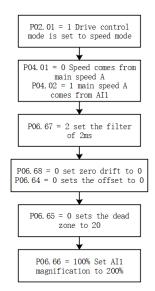
The analog signal can be input from AI1 (14-pin) or AI2 (15-pin). Here, taking AI1 as an example, the analog signal line is connected to AI1 (14-pin) of CN3, and the analog ground is connected to AGND (12-pin).

(2) Correspondence between analog voltage and actual speed command

Under the default parameters, -10V corresponds to the negative rated speed of the motor and 10V corresponds to the positive rated speed of the motor. Taking the AI1 input command voltage as an example, if you need to change the correspondence, you can modify the AI1 offset (P06.64) and AI1 magnification (P06.66). If the dead band is set to zero, the corresponding relationship between the input voltage and the speed command is:


actual speed command = rate speed × (AI1 magnification P06.66)%×

For example:

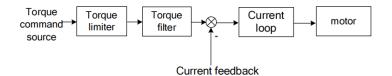

- > By default, AI1 magnification=100.0%, AI1 zero drift=0 mV; AI1 offset=0 mV; Then when ± 10000 mV is input, the actual output speed is = \pm rated speed;
- > If AI1 magnification=200.0%; AI1 zero drift=0mV; AI1 offset=0mV; Then when \pm 5000mV is input, the actual output speed is = \pm rated speed;
- > If AI1 magnification=200.0%; AI1 zero drift=0 mV; AI1 offset=5000mV; When inputting 0-10000mV, the actual output speed is = \pm rated speed;

(3) Parameter setting step

a. Input the speed command with AI1, input $\pm 10V$ corresponding to \pm rated speed as an example:

b. Take AI1 input speed command, input $\pm 5V$ corresponding to \pm rated speed as an example:

(4) Enable the motor


By default, P06.01=1, the enable signal is input from DI1. If P06.21 is set to 1, then the servo can be enabled without receiving any signal when it is powered on.

(5) Zero drift correction

When the analog input is 0mV, set P06.79=4 once to trigger zero drift correction once. Zero drift can also be corrected via DI. Refer to the VC Servo User Manual for details.

5.4 Torque mode

Torque mode is a control mode in which the output torque of the motor is the control target, such as tension control. The implementation of torque mode is shown in the figure below.

5.4.1 Torque command source

There are two kinds of torque commands for the servo to choose from, namely, the main torque command A and the auxiliary torque command B. These two torques can be superimposed or switched with each other. Both main torque A and auxiliary torque B have multiple torque sources. As shown in the picture below.

Source of P05.02 main torque A 0- From P05.03	main torque A	→
1- From AI1 2- From AI2		P05.01 Torque command source O- From main torque A 1- From auxiliary torque B
Source of P05.04 auxiliary torque B O- From P05.05 1- From All	Auxiliary torque B	2- From A/B switching 3- From A+B 4- From communication P08.16
2- From AI2		

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
P05.01	Torque command source	0~5	-	anytime	Immediate	0	RW
	0- main torque command				ly		
	Α						
	1- auxiliary torque						
	command B						
	2- INFn.03 switching						
	A/B						
	3-A+B						
	4- from P08.16						
P05.02	Source of main torque	0~3	-	anytime	Immediate	0	RW
	command A				ly		
	0- from P05.03						
	1- from AI1						
	2- from AI2						
	3- from AI3						
	(The hardware does not						
	support)						
P05.03	Digital value of main	-300.0~30	%	anytime	Immediate	0.0	RW
	torque command A(When	0.0			ly		
	the main torque A selects						
	the digital given source,						
	set the required torque						
	percentage through						
	P05.03.)						
P05.04	Source of auxiliary	0~3	-	anytime	Immediate	0	RW
	torque command B				ly		
	0- from P05.05						
	1- from AI1						
	2- from AI2						
	3- from AI3						

	(The hardware does not support)						
P05.05	Digital value of auxiliary torque command B(When the auxiliary torque B selects the digital given source, set the required torque percentage through P05.05.)	-300.0~30 0.0	%	anytime	Immediate ly	0.0	RW
P08.16	Torque communication given(In the torque control mode, when the torque command source is communication given, set the torque percentage with an accuracy of 0.1%.)	-3276.7~3 276.7	%	anytime	Immediate ly	0.0	RW

Related input function bits.

Function bits	Bit description
INFn.03	Switch the main torque command A and the auxiliary torque command B, and use the auxiliary
	torque command B when valid

When the torque command comes from AIx, please refer to "6.3.1 Analog Input AI" for details.

5.4.2 Torque limiting

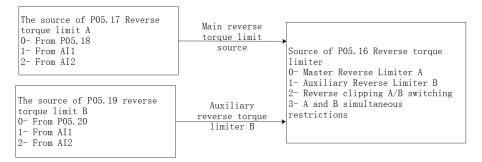
Torque limiting is achieved by limiting the output current of the driver to limit the output torque of the motor. The larger the torque limit value is, the larger the motor output torque is, and the easier the driver is to over-current. There are two kinds of limiting methods for torque limiting. One is that the forward and reverse limiters are from the positive limiter value; the other is the positive and negative limiting separately. Which one depends on P05.10. Both the positive limiting and the reverse limiting have a primary limiter A source and an auxiliary limiter B source, respectively a primary forward torque limiter A, an auxiliary forward torque limiter B.

In addition to the above torque limiter, in order to protect the motor, the torque output is limited according to the three values of the rated motor current P00.01, the rated current of the

driver P01.03, and the current peak current percentage P00.24.the value of this limit is calculate as follows:

```
Motor torque limiter =

\frac{\text{Motor rated current P00.01}}{\text{Drive rated current P01.03}} \times \text{Motor peak current percentage P00.24}
```


5.4.2.1 Positive torque limiting

The source of the positive torque limit is shown below. There are two types of positive torque limiting, one is the main positive torque limiter A, and the other is the auxiliary positive limiter B. Both torque limits have different sources of torque.

5.4.2.2 Negative torque limiting

The source of the negative torque limit is shown below. There are two types of negative torque limiting, one is the main negative torque limiter A, and the other is the auxiliary negative torque limiter B. Both torque limiters have different sources.

Related parameters	are	as fo	llows
--------------------	-----	-------	-------

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P05.10	Torque limit method0-Forwardandreverselimitarefrompositive limiting1-Forwardandreverselimit	0~1	-	Select the torque limit method.	anytime	Immediatel y	0	RW

	separately							
P05.11	Positive torque	0~3	-	Select the	anytime	Immediatel	0	RW
	limiting source			forward		у		
	0- Forward Limit A			torque limit				
	1- Forward limiter B			source.				
	2- A/B switching							
	3- A and B are							
	simultaneously limit							
P05.12	Source of forward	0~3	-	Set the	anytime	Immediatel	0	RW
	torque limit A			torque		у		
	0- from P05.13			command				
	1- from AI1			source of				
	2- from AI2			main torque				
	3- from AI3			command A.				
	(The hardware does							
	not support)							
P05.13	Set value of forward	0~300.0	%	When the	anytime	Immediatel	150.0	RW
	torque limiter			forward		У		
	А			torque limit				
				A selects the				
				digital given				
				source, set				
				the required				
				torque				
				percentage				
				through				
				P05.13.				
P05.14	Forward Torque	0~3	-	Set the	anytime	Immediatel	0	RW
	Limit B Source			torque		у		
	0- from P05.15			command				
	1- from AI1			source of				
	2- from AI2			auxiliary				
	3- from AI3			torque				
	(The hardware does			command B.				
	not support)							
P05.15	Set value of forward	0~300.0	%	When the	anytime	Immediatel	150.0	RW
	torque limiter			forward		у		
	В			torque				
				limiter B				
				selects the				
				digital given				
				source, set				
				the required				

			[
				torque				
				percentage				
				through				
20246	-			P05.15.				
P05.16	Reverse torque	0~3	-	Select the	anytime	Immediatel	0	RW
	limiting source			source of the		У		
	0- Reverse Limit A			reverse				
	1- Reverse limit B			torque				
	2- A/B switching			limiter.				
	3- A and B are							
	simultaneously							
	limit							
P05.17	Source of reverse	0~3	-	Set the	anytime	Immediatel	0	RW
	torque limit A			torque		У		
	0- from P05.18			command				
	1- from AI1			source of the				
	2- from AI2			reverse				
	3- from AI3			torque				
	(The hardware does			limiter A.				
	not support)							
P05.18	Set value of reverse	0~300.0	%	When the	anytime	Immediatel	150.0	RW
	torque limiter			reverse		у		
	А			torque limit				
				A selects the				
				digital given				
				source, set				
				the required				
				torque				
				percentage				
				through				
				P05.18.				
P05.19	Reverse Torque	0~3	-	Set the	anytime	Immediatel	0	RW
	Limit B Source			torque		у		
	0- from P05.20			command				
	1- from AI1			source of the				
	2- from AI2			reverse				
	3- from AI3			torque				
	(The hardware does			command B.				
	not support)							
P05.20	Set value of reverse	0~300.0	%	When the	anytime	Immediatel	150.0	RW
	torque limiter			reverse		у		
	В			torque				
				limiter B				

		selects the		
		digital given		
		source, set		
		the required		
		torque		
		percentage		
		through		
		P05.20.		

Related input function bits.

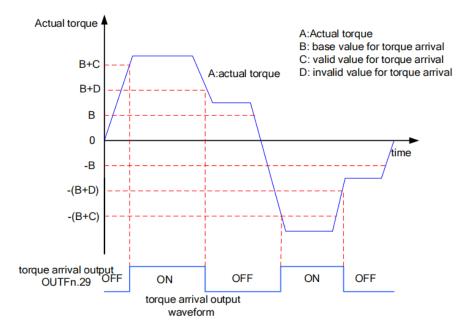
Function bits	Bit description
INFn.05	Forward torque limit source A/B switching, positive limit B is used when valid
INFn.06	Reverse torque limit source A/B switch, when valid, use reverse limit B

5.4.3 speed limit

When there is no load, given a large torque, the motor speed will increase all the time, so it is necessary to limit the speed. The source of speed limit is the same as the speed limit in speed mode. The relevant parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P04.06	source of positive speed limiting 0- main positive speed limiter A 1- auxiliary reverse speed limiter B 2- A/B switch 3-both A and B are limiter	0~3	_	Set the source of forward speed command limiter.	anytime	Immediatel y	0	RW
P04.07	Source of main positive speed limiter A 0- from P04.08	0~3	-	Select the source of the positive speed limiter	anytime	Immediatel y	0	RW

								1
	1- fromAI1			А.				
	2- fromAI2							
	3- fromAI3							
	(The hardware does							
	not support)							
P04.08	Digital value of	0~32767	rpm	When the	anytime	Immediatel	3000	RW
	positive speed			forward		У		
	limiter A			speed limit A				
				selects the				
				digital given				
				source, set				
				the required				
				speed limit				
				value				
				through				
				P04.08.				
P04.09	Source of auxiliary	0~3	_	Select the	anytime	Immediatel	0	RW
	reverse speed limiter			source of		у		
	B0- fromP04.10			positive				
	1- fromAI1			speed limiter				
	2- fromAI2			B.				
	3- fromAI3							
	(The hardware does							
	not support)							
P04.10	Digital value of	0~32767	rpm	When	anytime	Immediatel	3000	RW
10.110	positive speed	0 02/0/	-12	forward	5	у	2000	
	limiter B			speed limit B		5		
				selects				
				digital given				
				source, set				
				the required				
				speed limit				
				value				
				through P04.10.				
P04.11	course of reactive	0~3		Set the	onstings	Immediatel	0	DW/
r04.11	source of negative	0~3	-	source of the	anytime		U	RW
	speed limiting					У		
	0- main negative			reverse				
	speed limiter A			speed				
	1- auxiliary negative			command				
	speed limiter B			limiter.				
	2- A/B switch							
	3- both A and B are							


	limiter							
P04.12	Source of main	0~3	-	Select the	anytime	Immediatel	0	RW
	negative speed			source of the		у		
	limiter A			reverse				
	0- fromP04.13			speed limiter				
	1- fromAI1			A.				
	2- fromAI2							
	3- fromAI3							
	(The hardware does							
	not support)							
P04.13	Digital value of	0~32767	rpm	When the	anytime	Immediatel	3000	RW
10.010	main negative speed	0 02/0/	-1	reverse	5	у	2000	
	limiter A			speed limit A		5		
				selects the				
				digital given				
				source, set				
				the required				
				speed limit				
				value				
				through				
				P04.13.				
P04.14	Source of auxiliary	0~3	-	Selects the	anytime	Immediatel	0	RW
	negative speed			source of	2	у	-	
	limiter B			reverse				
	0- fromP04.15			speed limiter				
	1- fromAI1			B.				
	2- fromAI2							
	3- fromAI3							
	(The hardware does							
	not support)							
P04.15	Digital value of	0~32767	rpm	When the	anytime	Immediatel	3000	RW
	auxiliary negative		1	reverse		у		
	speed limiter B			speed limit B				
	1			selects the				
				digital given				
				source, set				
				the required				
				speed limit				
				value				
				through				
				P0415.				
P05.25	Time threshold for	0~32767	0.25	When the	anytime	Immediatel	10	RW
	switching torque		ms	amplitude of		у		

	mode to velocity			the speed				
	mode			exceeds the				
				speed limit				
				value plus				
				the speed				
				limit speed				
				threshold				
				(P05.26),				
				and the				
				continuous				
				torque mode				
				is switched				
				to the speed				
				mode time				
				threshold				
				(P05.25), a				
				speed loop is				
				constructed				
				to make the				
				speed				
				converge to				
				the limit				
				Inside.				
P05.26	Speed threshold for	0~32767	rpm	When the	anytime	Immediatel	30	RW
	speed torque mode			amplitude of		у		
	switching			the speed				
	_			exceeds the				
				speed limit				
				value plus				
				the speed				
				limit speed				
				threshold				
				(P05.26),				
				and the				
				continuous				
				torque mode				
				is switched				
				to the speed				
				mode time				
				threshold				
				(P05.25), a				
1								
				speed loop is				
				speed loop is constructed				

	[]						1	1
				to make the				
				speed				
				converge to				
				the limit				
				Inside.				
P05.27	Time threshold for	0~32767	0.25	When the	anytime	Immediatel	200	RW
	speed mode to		ms	servo runs in		У		
	torque mode switch			the torque				
				mode, but				
				due to the				
				speed limit,				
				after the				
				speed loop is				
				constructed,				
				the time				
				threshold for				
				switching				
				from the				
				speed mode				
				to the torque				
				mode is				
				determined				
				by P05.27				
P05.28	Speed limit	0~32767	ms	When the	anytime	Immediatel	500	RW
	low-pass filter time			speed limit is		У		
	parameter (unit: ms)			changed,		2		
	1 ()			low-pass				
				filtering is				
				performed				
				on the speed				
				limit value,				
				and the filter				
				time is				
				determined				
				by P05.28.				
				The larger				
				the filter				
				time, the				
				slower the				
				speed limit				
				value				
				changes.				

5.4.4 Torque reaches output

The torque arrival function is used to judge whether the actual torque reaches the set interval. When the actual torque reaches the torque threshold, the drive can output the corresponding DO signal (OUTFn.29: torque reached

Actual torque: A; Base value for torque arrival P05.31: B; Valid value for torque arrival P05.32: C; Invalid value for torque arrival P05.33: D;

where C and D are the biases based on B.

Therefore, when the torque arrival DO signal (OUTFn.29) changes from invalid to valid, the actual torque must satisfy:)

$$|A| \ge B+C$$

Otherwise, the torque arrival DO signal remains inactive.

Conversely, when the torque arrival DO signal changes from valid to invalid, the actual torque must meet:

|A| < B+D

Otherwise, the torque arrival DO signal remains valid.

Related parameters are as follows.

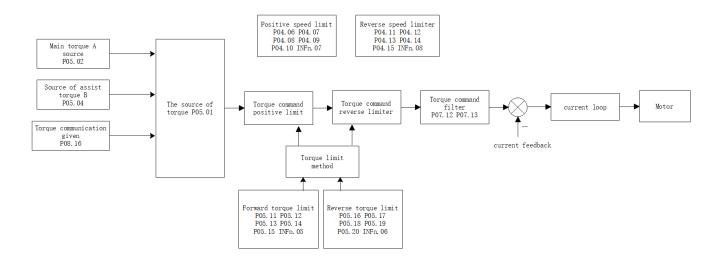
Parameter No.		arameter escriptior		Set range	units	Function	Set method	Effective way	Defa ults	read and write method
P05.31	Base	value	for	0~300.0	%	Set the	anytime	Immediate	50.0	RW
	torque	arrival				torque		ly		

					1			1
				arrival				
				command				
				reference				
				value				
				(100%				
				corresponds				
				to one time				
				of rated				
				torque)				
P05.32	Valid value for	0~300.0	%	The set	anytime	Immediate	10.0	RW
	torque arrival			torque		ly		
				reaches the				
				effective				
				offset				
				threshold				
				(100%				
				corresponds				
				to 1 time				
				rated torque)				
P05.33	Invalid value for	0~300.0	%	(The set	anytime	Immediate	0.0	RW
	torque arrival			torque		ly		
				reaches the				
				invalid offset				
				threshold				
				(100%				
				corresponds				
				to one time				
				rated				
				torque))				

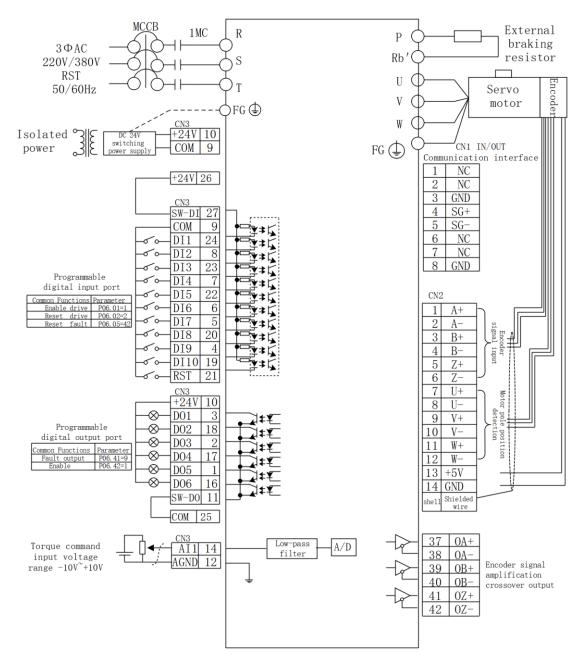
Related output function bits

Function bits	Bit description
OUTFn.29	Torque arrives; when it is valid, the absolute value of torque reaches the set value; when it is
	invalid, the absolute value of torque is less than the set value.

Note: When the torque arrival signal is valid or invalid, the actual torque setting value requirements are different, please refer to the above of this section for details.


5.4.5 Small torque jitter suppression

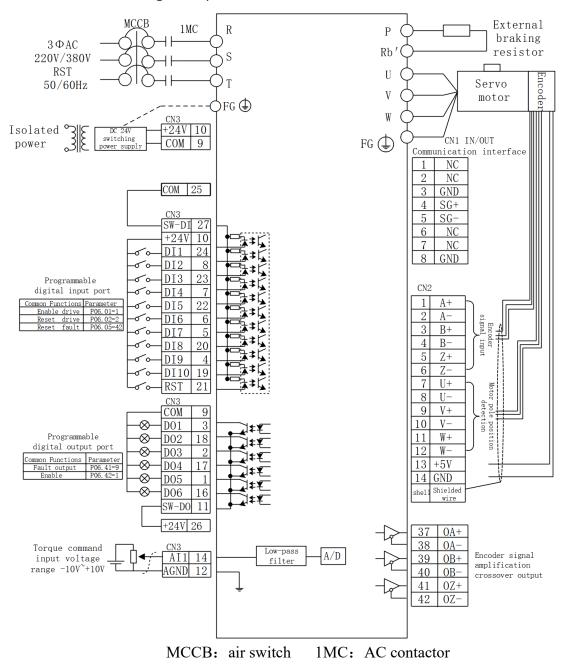
When the given torque is small, the motor will vibrate due to the uneven distribution of the magnetic poles of the motor. It can be set to make the motor output a certain reverse torque to overcome the motor jitter, so that the motor speed output is uniform. Related


Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P05.35	Maximum output limit of torque that suppresses jitter	0~10.0	%	Limit the output of the anti-shake torque	anytime	Immediate ly	0	RW
P05.36	Percentage of gain that suppresses jitter	0~300.0	%	The speed of restraining the jitter	anytime	Immediate ly	100.0	RW
P05.37	time constant for detect Jitter speed	0-32767	ms	Jitter whose period is less than this time will be suppressed	anytime	Immediate ly	500	RW
P05.38	detected Jitter speed	-	ms	Displays the detected shaking speed	anytime	Immediate	-	RO
P05.39	Torque output that suppresses jitter	-	ms	Displays the output reverse torque that suppresses chattering	anytime	Immediate ly	-	RO

parameters are as follows:

5.4.6 Internal block diagram of torque mode

5.4.7 Typical wiring diagram of torque mode



5.4.7.1 NPN wiring for DI/DO

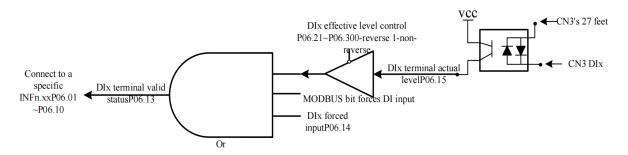
MCCB: air switch 1MC: AC contactor

1. Indicates twisted pair shielded wire.

2. The DC24V power supply is prepared by the user. The DC24V switching power supply should be powered by an isolation transformer, and its ground terminal should be directly connected to the ground terminal of the driver.

5.4.7.2 PNP wiring for DI/DO

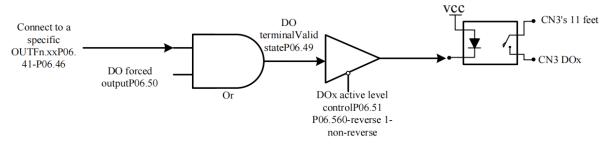
1. Indicates twisted pair shielded wire.


2. The DC24V power supply is prepared by the user. The DC24V switching power supply should be powered by an isolation transformer, and its ground terminal should be directly connected to the ground terminal of the driver.

Chapter 6 Inputs and Outputs Function

6.1 Entity DI/DO function

The servo has 10 physical DIs, which are DI1~DI10. Each entity DI can be assigned an input function bit INFn.xx. The effective level of each entity DI can be set separately (P06.21-P06.30). Each entity DI can be forced to enter a specific level via P06.14, or a DI input can be forced via the Modbus bit.


The internal logic of the general servo DI is shown in the figure below.

(Note: SW-DI: Pin 27 of CN3 is short-circuited with +24V for NPN mode; short-circuit with COM is for PNP mode. For economical servo SW-DI internally directly connected to 24V, only NPN mode can be selected)

As can be seen from the above figure, to make the DIx terminal valid, you can modify the actual level of DIx, or set the MODBUS communication bit, or set the mandatory valid register P06.14. If it is input from an external terminal, a voltage difference of 24V needs to be input between the 27 pin of the servo CN3 terminal and the corresponding DIx pin.

The servo has 6 entity DOs, DO1~DO6 respectively. Each DO can be assigned an output function bit OUTFn.xx. The effective level of each entity DO can be set individually, or a DO bit can be output through the forced register of P06.50. The effective level output of DO finally drives an optocoupler. Once the optocoupler is turned on, DOx outputs the voltage of pin 11 of CN3 port.

Remarks: SW-DO: Pin 11 of CN3 is short-circuited with COM for NPN mode; short-circuited with +24V is for PNP mode. For economical servo SW-DO is directly connected to COM, only NPN mode can be selected

Hard	as follows: ware low-speed DI description (DI1~DI8)
DI function valid logic state	notes
low level	High More than 3ms
	Low Effective
high level	High
	Low More than 3ms
rising edge	Effective High
	Low More than 3ms
falling edge	High More than 3ms
	Low Effective
rising edge and falling edge	High Effective Effective
	Low More than 3ms
	vare high-speed DI description (DI9, DI10)
DI function valid logic state	notes
Di function vand logic state	
low level	High More than 0.25ms
	High More than 0.25ms Low Effective
	High More than 0.25ms
low level	High More than 0.25ms Low Effective High Low More than 0.25ms
low level	High More than 0.25ms Low Effective High Effective
low level	High More than 0.25ms Low Effective High Low More than 0.25ms Effective High Low More than 0.25ms
low level	High More than 0.25ms Low Effective High Effective Low More than 0.25ms Effective High Effective
low level high level rising edge	High More than 0.25ms Low Effective High Effective Low More than 0.25ms Effective High Low More than 0.25ms High More than 0.25ms High Effective High Effective
low level high level rising edge	High More than 0.25ms Low Effective High Effective Low More than 0.25ms Effective High Low More than 0.25ms High More than 0.25ms

Among them, DI1~DI8 are hardware low-speed DIs, and DI9 and DI10 are hardware high-speed DIs. The details are as follows:

DO1 and DO2 are set to output the A, B, Z signals of the motor encoder through P06.40. Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P06.01	DI1 function control	0~99	-	Set the DI	anytime	Immediatel	1	RW
	register			function		У		
				correspondin				
				g to the				
				hardware				
				DI1				
				terminal. For				
				specific				
				functions,				
				see the DI				
				function				
P06.02	DI2 function control	0~99	-	table.	anytime	Immediatel	42	RW
P00.02	register	0~99	-	-	anytime		42	κw
P06.03	DI3 function control	0~99	-		anytime	y Immediatel	0	RW
1 00.05	register	0-77		_	anytine	y	Ū	ιτνν
P06.04	DI4 function control	0~99	-		anytime	Immediatel	0	RW
100.01	register	0))			unythic	y	Ū	i
P06.05	DI5 function control	0~99	-	_	anytime	Immediatel	0	RW
	register	• • • •			5	у		
P06.06	DI6 function control	0~99	-	-	anytime	Immediatel	0	RW
	register					у		
P06.07	DI7 function control	0~99	-	-	anytime	Immediatel	0	RW
	register					У		
P06.08	DI8 function control	0~99	-	-	anytime	Immediatel	0	RW
	register					у		
P06.09	DI9 function control	0~99	-	-	anytime	Immediatel	0	RW
	register					У		
P06.10	DI10 function	0~99	-	-	anytime	Immediatel	0	RW
	control register					у		
P06.13	DI terminal valid	-	-	Displayed in	anytime	-	-	RO
	state			decimal				
				format, after				
				conversion				
				to binary				
				format, it				
				contains 0-9				

r					1			
				digits, the				
				low-order to				
				high-order				
				indicates the				
				status of				
				digital output				
				terminals				
				DI1~DI10,				
				0=OFF,				
				1=ON, the				
				0th bit				
				corresponds				
				to DI1,,				
				the first Bit 9				
				corresponds				
				to DI10. See				
				"4.6 Variable				
				Monitoring"				
				for details of				
				parameter				
				valid state				
				display.				
P06.14	DI forced input	0~1023	-	When the DI	anytime	Immediatel	0	RW
				forced input		У		
				is valid, set				
				the level				
				logic of the				
				8				
				DI function				
				DI function				
				DI function through this				
				DI function through this parameter.				
				DI function through this parameter. Input in				
				DI function through this parameter. Input in decimal				
				DI function through this parameter. Input in decimal (BCD)				
				DI function through this parameter. Input in decimal (BCD) format and				
				DI function through this parameter. Input in decimal (BCD) format and convert it				
				DI function through this parameter. Input in decimal (BCD) format and convert it into binary				
				DI function through this parameter. Input in decimal (BCD) format and convert it into binary (Binary) to				
				DI function through this parameter. Input in decimal (BCD) format and convert it into binary (Binary) to be the				
				DI function through this parameter. Input in decimal (BCD) format and convert it into binary (Binary) to be the correspondin				
				DI function through this parameter. Input in decimal (BCD) format and convert it into binary (Binary) to be the correspondin g DIx input				
				DI function through this parameter. Input in decimal (BCD) format and convert it into binary (Binary) to be the correspondin g DIx input signal. For				

	1							
				CD)=000010				
				1010(Binary				
), it means				
				DI2, DI4 and				
				DI6				
				terminals are				
				ON.				
P06.15	DI terminal actual	-	-	Displayed in	anytime	-	-	RO
	level			decimal				
				format and				
				converted to				
				binary				
				format, it				
				contains 0-9				
				digits, and				
				the				
				low-order to				
				high-order				
				indicates the				
				status of				
				digital output				
				terminals				
				DI1~DI10. See "4.6				
				Variable				
				Monitoring"				
				for details of				
				parameter				
				valid state				
				display.				
P06.16	High-speed DI filter	1~32767	us	When the	anytime	Immediatel	10	RW
	configuration			high-speed		У		
				pulse input				
				terminal is in				
				the peak				
				interference,				
				you can filter				
				out the peak				
				interference				
				by setting				
				P06.16.				
				INFn.34 and				
				INFn.40 are				

	Г							
				high-speed				
				DI signals,				
				and their				
				filtering time				
				is				
				determined				
				by P06.16;				
				other input				
				signals are				
				low-speed				
				DI signals,				
				and their				
				filtering time				
				is				
				determined				
				by P06.17.				
P06.17	Low-speed DI filter	1~32767	us	When there	anytime	Immediatel	1000	RW
	configuration			is spike		У		
				interference				
				at the				
				low-speed				
				pulse input				
				terminal, the				
				spike				
				interference				
				can be				
				suppressed				
				by setting				
				P06.17 to				
				prevent the				
				interference				
				signal from				
				entering the				
				servo drive.				
P06.21	DI1 active level	0~1	-	Set the level	anytime	Immediatel	0	RW
	0-active low			logic of the		у		
	1-active high			hardware				
				DI1 terminal				
				when the DI				
				function				
				selected by				
				DI1 is valid.				
				DII 15 vullu.				

	0-active low					у		
	1-active high							
P06.23	DI3 active level	0~1	_	-	anytime	Immediatel	0	RW
	0-active low				,	у	÷	
	1-active high							
P06.24	DI4 active level	0~1	_	-	anytime	Immediatel	0	RW
	0-active low					у		
	1-active high							
P06.25	DI5 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					у		
	1-active high							
P06.26	DI6 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					у		
	1-active high							
P06.27	DI7 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low				-	у		
	1-active high							
P06.28	DI8 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					у		
	1-active high							
P06.29	DI9 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low				-	у		
	1-active high							
P06.30	DI10 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					у		
	1-active high							
P06.40	DO1 and DO2	0~2	-	Set the	anytime	Immediatel	0	RW
	function			output		у		
	configuration			function of				
	registers			output				
	0- DO1, DO2			terminals				
	function output			DO1 and				
	configured with			DO2.				
	P06.41P06.42							
	Respectively							
	1- DO1, DO2 output							
	A, B pulse							
	respectively							
	2- DO1 outputs Z							
	point signal, DO2							
	functions output							
	with P06.42							
	configuration							

r				r			-	1
P06.41	DO1 function	0~99	-	Set the DO	anytime	Immediatel	9	RW
	control register			function		У		
				correspondin				
				g to the				
				hardware				
				DO1				
				terminal. For				
				specific				
				functions,				
				please refer				
				to the DO				
				function				
				table.				
P06.42	DO2 function	0~99	-	-	anytime	Immediatel	13	RW
	control register					у		
P06.43	DO3 function	0~99	-	-	anytime	Immediatel	0	RW
	control register					У		
P06.44	DO4 function	0~99	-	-	anytime	Immediatel	0	RW
	control register					у		
P06.45	DO5 function	0~99	-	-	anytime	Immediatel	0	RW
	control register					у		
P06.46	DO6 function	0~99	-	-	anytime	Immediatel	0	RW
	control register					у		
P06.49	DO terminal valid	-	-	Displayed in	anytime	-	-	RO
	state			decimal				
				format, after				
				conversion				
				to binary				
				format, it				
				contains 0-5				
				digits, the				
				low digits to				
				high digits				
				indicate the				
				status of				
				digital output				
				terminals				
				DO1~DO6				
				in turn,				
				0=OFF,				
				1=ON, the				
				0th bit				

P06.50 DO force output 0-63 - When the instant output is valid state output 0-63 - When the anytime immediated 0 RW output is valid state output 0-63 - When the anytime immediated 0 RW output is valid state output is valid the output output is valid t				1	1				r
P06.50 DO force output 0-63 - When the interpret of the second se					corresponds				
P06.50 DO force output 0-63 - When the output is anytime output is Immediate 0 RW P06.50 DO force output 0-63 - When the output is anytime output is y N N P06.50 DO force output 0-63 - When the output is anytime output is y N N P06.50 DO force output 0-63 - When the output is anytime output is y N N P06.50 DO force output 0-63 - When the output is anytime y N N P06.50 DO force output 0-63 - When the output is anytime y N N P06.50 DO force output 0-63 - N					to DO1,,				
P06.50 DO force output 0–63 - When the anytime Immediatel 0 RW output is valid state 0 uput is valid, this parameter is v					the first Bit 5				
P06.50 D0 force output 0-63 - When the display. Numediatel 0 RW P06.51 D0 force output 0-63 - When the display. Numediatel 0 RW P06.52 D0 force output 0-63 - When the display. Numediatel 0 RW P06.51 D0 force output 0-63 - When the display. Numediatel 0 RW P06.52 D0 force output 0-63 - When the display. Numediatel 0 RW P06.54 D0 force output 0-63 - When the display. Numediatel 0 RW P06.55 E E F D0 force Numediatel 0 RW P06.50 E F F D0 force Numediatel 0 RW P06.50 E F F D0 force Numediatel 0 RW Numediatel Numediatel <td< th=""><th></th><th></th><th></th><th></th><th>corresponds</th><th></th><th></th><th></th><th></th></td<>					corresponds				
P06.50DO force output0-63.Wen the arameter valid state display.anytimeImmediatel0RWP06.51DO force output0-63.When the a updit will state output is updit will state updit will state output is updit will state updit will state updit will state parameter is used to set whether the DO function is valid.Immediatel 00RWP06.50Immediate0RW111<					to DO6. See				
P06.50 DO force output 063 - When the display. anytime Immediatel 0 RW P06.51 DO force output 063 - When the output is anytime Immediatel 0 RW P06.52 DO force output 063 - When the output is anytime Immediatel 0 RW P06.52 DO force output 063 - When the anytime Immediatel 0 RW P06.54 Immediatel Immediatel 0 RW Immediatel 0 RW P06.50 DO force output Immediatel Immediatel 0 Immediatel 0 Immediatel 0 Immediatel 0 Immediatel Immediatel 0 Immediatel Immedia					"4.6 Variable				
P06.50 DO force output 0~63 - When the DO forced anytime Mmediatel 0 RW valid, this output is valid, this parameter is used to set y Immediatel 1 Immediatel 0 RW valid, this parameter is used to set whether the No Immediatel 1 Immediatel </td <td></td> <td></td> <td></td> <td></td> <td>Monitoring"</td> <td></td> <td></td> <td></td> <td></td>					Monitoring"				
P06.50DO force output0~63-When the DO forced output is valid, this parameter is used to set whether the DO function is valid. Input in decimal (BCD) format and correspondin g DOx inputImmediatel O0RW <td></td> <td></td> <td></td> <td></td> <td>for details of</td> <td></td> <td></td> <td></td> <td></td>					for details of				
P06.50DO force output $0-63$ $-$ When the DO forcedanytimeImmediatel 0 RWP06.50DO force output $0-63$ $ DO$ forced y y y y P06.50DO force output -63 $ DO$ forced y y y y P06.50 $-$ DO force output is $ y$ $ y$ $ -$ P06.50 $ -$ P06.50 $ -$ P06.50 $ -$					parameter				
P06.50 DO force output 0-63 - When the DO forced output is valid, this parameter is used to set whether the DO function is valid. Input in decimal (BCD) format and convert it into binary (Binary) to be the correspondin g DOx input signal. For example: P06.50-42(B CD)-101010 (Binary), it DO force output 0 RW					valid state				
DO forcedyoutput isoutput isvalid, thisvalid, thisparameter isused to setused to setused to setwhether theused to setDO functionused to setis valid.used to setInput inused to setdecimalused to setis valid.used to setis valid. <td></td> <td></td> <td></td> <td></td> <td>display.</td> <td></td> <td></td> <td></td> <td></td>					display.				
output is output is valid, this parameter is used to set used to set whether the DO function DO function is valid. is valid. Input in decimal BCD) format and convert it into binary (Binary) to be the correspondin g DOx input signal. For example: P06:50-42(B CD)=101010 (Binary), it	P06.50	DO force output	0~63	-	When the	anytime	Immediatel	0	RW
valid, this parameter is used to set used to set whether the DO function is valid. input in decimal decimal (BCD) format and convert it into binary (Binary) to be the be the correspondin g DOx input signal. For signal. For example: P06.50=42(B CD)=101010 (Binary), it into linary, it					DO forced		у		
parameter is used to set used to set whether the DO function is valid. is valid. Input in decimal is valid. (BCD) is valid. format and is valid. into binary is valid. id correspondin g DOx input g DOx input signal. For example: P06.50=42(B CD)=101010 (Binary), it					output is				
used to set whether the DO function is valid. Input in decimal (BCD) format and convert it into binary (Binary) to be the correspondin g DOx input signal. For example: P06.50=42(B CD)=101010 (Binary), it					valid, this				
whether the DO function is valid.Input in decimal (BCD)Input in decimal (BCD)Input in decimal (BCD)Input in (BCD)Input in into binary (Binary) to be the correspondin g DOx input signal. For example: P06.50=42(B CD)=101010 (Binary), it					parameter is				
DO function is valid. Input in decimal (BCD) format and convert it into binary (Binary) to be the correspondin g DOx input signal. For example: P06.50=42(B CD)=101010 (Binary), it					used to set				
is valid. Input in decimal (BCD) format and convert it into binary (Binary) to be the correspondin g DOx input signal. For example: P06.50=42(B CD)=101010 (Binary), it					whether the				
Input in decimal (BCD) format and convert it into binary (Binary) to be the correspondin g DOx input signal. For example: P06.50=42(B CD)=101010 (Binary), it					DO function				
decimal (BCD) format and onvert it into binary into binary (Binary) to into binary be the into binaput g DOx input into signal. For example: P06.50=42(B CD)=101010 (Binary), it					is valid.				
(BCD)format andconvert itinto binary(Binary) tobe thecorresponding DOx inputsignal. Forexample:P06.50=42(BCD)=101010(Binary), it					Input in				
format and convert it into binary (Binary) to be the correspondin g DOx input signal. For example: P06.50=42(B CD)=101010 (Binary), it					decimal				
convert it into binary (Binary) to be the correspondin g DOx input signal. For example: P06.50=42(B CD)=101010 (Binary), it					(BCD)				
into binary (Binary) to be the correspondin g DOx input signal. For example: P06.50=42(B CD)=101010 (Binary), it					format and				
(Binary) to be the000 <tr< td=""><td></td><td></td><td></td><td></td><td>convert it</td><td></td><td></td><td></td><td></td></tr<>					convert it				
be the correspondin g DOx input signal. For example: P06.50=42(B CD)=101010 (Binary), it					into binary				
correspondin g DOx input signal. For example: P06.50=42(B CD)=101010 (Binary), it					(Binary) to				
g DOx input signal. For example: P06.50=42(B CD)=101010 (Binary), it					be the				
signal. For example: P06.50=42(B CD)=101010 (Binary), it					correspondin				
example: P06.50=42(B CD)=101010 (Binary), it					g DOx input				
P06.50=42(B CD)=101010 (Binary), it					signal. For				
CD)=101010 (Binary), it					example:				
(Binary), it					P06.50=42(B				
					CD)=101010				
					(Binary), it				
means DO2,					means DO2,				
DO4 and					DO4 and				
DO6 output					DO6 output				
ON.					ON.				
P06.51 DO1 active level 0~1 - Set the anytime Immediatel 0 RW	P06.51	DO1 active level	0~1	-	Set the	anytime	Immediatel	0	RW
0-active low output level y		0-active low			output level		У		
1- active high logic of the		1- active high			logic of the				
hardware		-	1	i i	1	1	1	1	

		r						
				DO1				
				terminal				
				when the DO				
				function				
				selected by				
				DO1 is valid.				
P06.52	DO2 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					у		
	1- active high							
P06.53	DO3 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					у		
	1- active high							
P06.54	DO4 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					У		
	1- active high							
P06.55	DO5 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					У		
	1- active high							
P06.56	DO6 active level	0~1	-	-	anytime	Immediatel	0	RW
	0-active low					У		
	1- active high							

DI specific function INFn.xx configuration is shown in the following table, and its effective status can be monitored through P06.13.

DI function number	DI function	effective rules		
0	none	-		
1	Enable	Valid when the valid state is high		
2	reset the drive	Effective state changes from low to high		
3	Torque AB selector switch	Valid when the valid state is high		
4	Torque reverse switch	Valid when the valid state is high		
5	Forward torque limit selection	Valid when the valid state is high		
6	Reverse torque limit selection	Valid when the valid state is high		
7	Positive speed limit selection	Valid when the valid state is high		
8	Reverse speed limit selection	Valid when the valid state is high		
9	forward jog	Valid when the valid state is high		
10	reverse jog	Valid when the valid state is high		
11	Reverse speed reference	Valid when the valid state is high		
12	Main speed AB selection	Valid when the valid state is high		
13	speed stop input	Valid when the valid state is high		
14	Download ARM Program Reset	Effective state changes from low to high		
15	Clear the encoder position counter	Effective state changes from low to high		

16	Zero position fixed in speed mode	Valid when the valid state is high
17	Multi-speed speed selection switch 0	Valid when the valid state is high
18	Multi-speed speed selection switch 1	Valid when the valid state is high
19	Multi-speed speed selection switch 2	Valid when the valid state is high
20	Multi-speed speed selection switch 3	Valid when the valid state is high
21	Position command prohibition	Valid when the valid state is high
22	Position command reverse	Valid when the valid state is high
23	Prohibition of pulse command	Valid when the valid state is high
24	Electronic gear ratio selector switch 1	Valid when the valid state is high
25	Position error clear	Depends on P03.21
26	Position mode origin return command	Effective state changes from low to high
		The rising edge of the valid state triggers the
25		start of the multi-segment position,
27	Multi-segment position trigger signal	Falling edge of valid state triggers stop
		multi-segment position
28	Multi-stage position position selector switch 0	Valid when the valid state is high
29	Multi-stage position position selector switch 1	Valid when the valid state is high
30	Multi-stage position position selector switch 2	Valid when the valid state is high
31	Multi-stage position position selector switch 3	Valid when the valid state is high
32	Position direction in multi-segment position mode	Valid when the valid state is high
34	Return to the origin signal input	Depends on homing mode
	XY pulse tracking and multi-segment position	Valid when the valid state is high
35	switching in position mode	
36	Control mode toggle switch 0	Valid when the valid state is high
37	Control mode toggle switch 1	Valid when the valid state is high
	Enable detection trigger interrupt fixed length signal	Valid when the valid state is high
38	INFn.40	
39	cancel the fixed length	Valid when the valid state is high
40	Trigger interrupts fixed-length input signal	Effective state changes from low to high
	The first set of the second set of gain selector	Valid when the valid state is high
41	switches	
42	reset fault	Valid when the valid state is high
43	Position Mode Positive Limit Switch	Valid when the valid state is high
44	Position Mode Reverse Limit Switch	Valid when the valid state is high
	Open and closed loop switching in full closed loop	Valid when the valid state is high
45	mode	
46	FPGA download program reset	Effective state changes from low to high
47	Tension compensation direction	Valid when the valid state is high
48	Tension Tracking Direction	Valid when the valid state is high
49	Forced to limit at maximum compensation speed	Valid when the valid state is high
50	Prohibit roll diameter calculation	Valid when the valid state is high
51	Change roll	Valid when the valid state is high

52	Initial roll diameter switch	Valid when the valid state is high
53	Clear feed length	Valid when the valid state is high
54	Force fast tightening	Valid when the valid state is high
	Tension compensation is prohibited in closed-loop	Valid when the valid state is high
55	speed mode	
56	Electronic gear ratio selector switch 2	Valid when the valid state is high
57	Motor overheating	Valid when the valid state is high
58	Emergency stop input	Valid when the valid state is high
59	Internal flip-flop reset	Effective state changes from low to high
60	Internal trigger set	Effective state changes from low to high
61	Internal counter counts pulses	Effective state changes from low to high
62	Internal counter cleared	Valid when the valid state is high
63	Speed mode UPDOWN mode UP signal	Valid when the valid state is high
64	Speed mode UPDOWN mode DOWN signal	Valid when the valid state is high
65	Speed mode UPDOWN mode hold signal	Valid when the valid state is high
	Back to the previous phase (Tension Type: Velocity	Valid when the valid state is high
66	Superposition Enabled)	
67	Correct the zero drift of all AI	Valid when the valid state is high to low
	Go to the specified phase (tension type: closed-loop	Valid when the valid state is high
68	speed/torque mode switching)	
	Positive jog fixed position (tension type: motor	Effective state changes from low to high
69	rotation direction in closed-loop speed mode)	
	Reverse jog fixed position (tension type: motor	Effective state changes from low to high
70	rotation direction in closed-loop torque mode)	
71	Rewinding and unwinding control	Valid when the valid state is high
72	Trigger correction current sensor	Effective state changes from low to high
73	Trigger learning phase	Effective state changes from low to high
74	Trigger back to absolute zero	Effective state changes from low to high
75	Activate STO	Valid when the valid state is high

The specific functions of DO OUTFn.xx are shown in the following table.

DO function	
number	DO function
0	none
1	Drive is enabled
2	Speed arrives
3	slowing down
4	speeding up
5	zero speed
6	overspeed
7	forward rotation
8	Reverse rotation

9	fault output
10	In the forward speed limit in the torque mode
11	Negative speed limit in torque mode
12	Speed limit in torque mode
13	Positioning completion output
14	Positioning close to the output
15	return home completed output
16	Position error too large output
17	Interrupt fixed length output
18	Software limit output
19	feeding output
20	feed output
21	Roll diameter calculation is valid
22	The roll diameter reaches the output
23	length arrives at output
24	Holding brake output
25	Input command is valid
26	Often OFF
27	Always ON
28	Torque limit output
29	Torque arrival
30	Internal trigger state
31	Internal counter count arrives
32	Consistent speed
33	Pulse position command is zero output
34	Roll diameter reaches 2 outputs
35	Speed command is 0 output
	The speed command is zero and the speed feedback is 0
36	output
37	Servo ready for output

6.2 Virtual DI/DO function

The servo drive has 16 general virtual DIs (VDIs), and each virtual DI has two types of level, including writing 1 is always valid and rising edge valid. The function of each virtual DI (P12.01 to P12.16) can be configured individually. Simulate the level of VDI by writing a value to the virtual DI input register (P12.20).

The servo driver has 16 general-purpose virtual DOs (VDOs), and each virtual DO has two level types, one is to output 1 when it is valid, and the other is to output 0 when it is valid. The function of each virtual DO (P12.41-P12.56) can be configured individually. The output

level of DO can be displayed in P12.60.

The servo drive also has 2 sets of dedicated input and output: VDI20 and VDO20, VDI21 and VDO21. The two VDI/VDOs are directly connected internally.

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P12.01	VDI1 function	0~99	-	Set the DI	anytime	Immediate	0	RW
	configuration			function		ly		
	register			correspondin				
				g to VDI1				
				(virtual input				
				terminal 1).				
				The specific				
				functions of				
				the VDI port				
				are the same				
				as those of				
				the physical				
				DI port.				
P12.02	VDI2 function	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.03	VDI3 function	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.04	VDI4 function	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.05	VDI5 function	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.06	VDI6 function	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.07	VDI7 function	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.08	VDI8 function	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.09	VDI9 function	0~99	-	-	anytime	Immediate	0	RW

	configuration					ly		
	register							
P12.10	VDI10 function	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.11	VDI1 function	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.12	VDI12 function	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.13	VDI13 function	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.14	VDI14 function	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.15	VDI15 function	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.16	VDI16 function	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.17	VDI20 function	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.18	VDI21 function	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.19	Monitoring values	-	-	Read the	-	-	_	RO
	of virtual DI20 and			virtual value				
	virtual DI2			of VDI20				
				and VDI21				
				terminals.				
P12.20	Virtual DI1-Virtual	0~65535	-	Set the input	anytime	Immediate	0	RW
	DI16 input value			value of		ly		
	setting register			VDI1-16.				
P12.21	VDI1 level type	0~1	_	The setting	anytime	Immediate	0	RW
	0-Write 1 is always			makes the DI		ly		
	valid			function				
	1- rising edge is			selected by				
	valid			VDI1 valid,				

				L			1
			_				
			level logic of				
			the VDI1				
			terminal.				
VDI2 level type	0~1	-	-	anytime	Immediate	0	RW
0-Write 1 is always					ly		
valid							
1- rising edge is							
valid							
VDI3 level type	0~1	-	-	anytime	Immediate	0	RW
0- Write 1 is always					ly		
valid							
1- Rising edge valid							
VDI4 level type	0~1	-	-	anytime	Immediate	0	RW
0- Write 1 is always					ly		
valid							
1- Rising edge valid							
VDI5 level type	0~1	-	-	anytime	Immediate	0	RW
					ly		
valid					-		
1- Rising edge valid							
	0~1	-	-	anytime	Immediate	0	RW
					ly		
valid					-		
1- Rising edge valid							
	0~1	-	-	anytime	Immediate	0	RW
					ly		
valid							
1- Rising edge valid							
000	0~1	-	-	anytime	Immediate	0	RW
				-	ly		
-					2		
	0~1	_	-	anytime	Immediate	0	RW
• •				5	ly		
-					2		
	0~1	-	-	anytime	Immediate	0	RW
				5		-	
-					-		
·0 · · · · · · · · · · · · · · · · ·							ł
VDI11 level type	0~1	-	-	anytime	Immediate	0	RW
	0-Write 1 is always valid 1- rising edge is valid VDI3 level type 0- Write 1 is always valid 1- Rising edge valid VDI4 level type 0- Write 1 is always valid 1- Rising edge valid VDI5 level type 0- Write 1 is always valid 1- Rising edge valid VDI6 level type 0- Write 1 is always valid 1- Rising edge valid VDI6 level type 0- Write 1 is always valid 1- Rising edge valid VDI7 level type 0- Write 1 is always	0-Write 1 is always valid 1- rising edge is valid VDI3 level type 0-Write 1 is always valid 0-Write 1 is always valid 1- Rising edge valid VDI4 level type 0-Write 1 is always valid 1- Rising edge valid 1- Rising edge valid 1- Rising edge valid VDI5 level type 0-Write 1 is always valid 1- Rising edge valid VDI6 level type 0-Write 1 is always valid 1- Rising edge valid VDI7 level type 0-Write 1 is always valid 1- Rising edge valid VDI7 level type 0-Write 1 is always valid 1- Rising edge valid VD19 level type	0-Write 1 is always valid 1 0 -Write 1 is always valid -1 1 - rising edge is valid -1 0 -Write 1 is always valid -1 0 -Write 1 is always valid -1 1 - Rising edge valid <td>VDI2 level type0~1-terminal.VDI2 level type0~10-Write 1 is alwaysvalid1- rising edge is0~1valid0- Write 1 is always0~10- Write 1 is always0~1valid1- Rising edge valid1- Rising edge validVD17 level type0~1-0- Write 1 is alwaysvalid1- Rising edge valid1- Rising edge validVD18 level type0~1-0- Write 1 is alwaysvalid1- Rising edge validVD19 level type0~1-0- Write 1 is alwaysvalid1</td> <td>Image: series of the series</td> <td>VDI2 level type 0-Vrite 1 is always valid01-ierwinal.anytime the VDI1 terminal.Immediate ly0-Write 1 is always valid01anytimeImmediate ly1- rising edge is validanytimeImmediate ly1- rising edge is validanytimeImmediate ly0-Write 1 is always valid01anytimeImmediate ly0-Write 1 is always valid01anytimeImmediate ly0-Write 1 is always valid01anytimeImmediate ly0-Write 1 is always validanytimeImmediate ly0-Write 1 is always validanytimeImmediate ly0-Write 1 is always valid0-Write 1 is always valid</td> <td>VD12 level type 0-Write 1 is always valid 1 - rising edge is valid0-1anytime type 1 - 0Immediate 1 - 001 - rising edge is valid0anytime 1 - 0Immediate 1 - 001 - rising edge is valid0anytime 1 - 0Immediate 1 - 000-Write 1 is always valid0anytime 1 - 0Immediate 1 - 000-Write 1 is always valid00-Write 1 is always<br <="" td=""/></td>	VDI2 level type0~1-terminal.VDI2 level type0~10-Write 1 is alwaysvalid1- rising edge is0~1valid0- Write 1 is always0~10- Write 1 is always0~1valid1- Rising edge valid1- Rising edge validVD17 level type0~1-0- Write 1 is alwaysvalid1- Rising edge valid1- Rising edge validVD18 level type0~1-0- Write 1 is alwaysvalid1- Rising edge validVD19 level type0~1-0- Write 1 is alwaysvalid1	Image: series of the series	VDI2 level type 0-Vrite 1 is always valid01-ierwinal.anytime the VDI1 terminal.Immediate ly0-Write 1 is always valid01anytimeImmediate ly1- rising edge is validanytimeImmediate ly1- rising edge is validanytimeImmediate ly0-Write 1 is always valid01anytimeImmediate ly0-Write 1 is always valid01anytimeImmediate ly0-Write 1 is always valid01anytimeImmediate ly0-Write 1 is always validanytimeImmediate ly0-Write 1 is always validanytimeImmediate ly0-Write 1 is always valid0-Write 1 is always valid	VD12 level type 0-Write 1 is always valid 1 - rising edge is valid0-1anytime type 1 - 0Immediate 1 - 001 - rising edge is valid0anytime 1 - 0Immediate 1 - 001 - rising edge is valid0anytime 1 - 0Immediate 1 - 000-Write 1 is always valid0anytime 1 - 0Immediate 1 - 000-Write 1 is always valid00-Write 1 is always

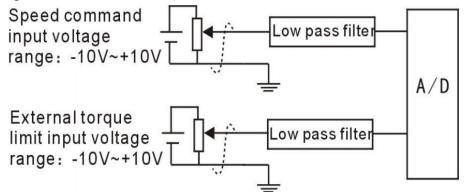
	valid							
	1- Rising edge valid							
P12.32	VDI12 level type 0- Write 1 is always valid	0~1	-	-	anytime	Immediate ly	0	RW
	1- Rising edge valid							
P12.33	VDI13 level type	0~1	_	-	anytime	Immediate	0	RW
112.00	0- Write 1 is always	0 1			5	ly	0	
	valid							
	1- Rising edge valid							
P12.34	VDI14 level type	0~1	-	-	anytime	Immediate	0	RW
	0- Write 1 is always					ly		
	valid							
	1- Rising edge valid							
P12.35	level type	0~1	-	-	anytime	Immediate	0	RW
	0- Write 1 is always					ly		
	valid							
D10.00	1- Rising edge valid	0.1				T T	0	DU
P12.36	VDI16 level type	0~1	-	-	anytime	Immediate	0	RW
	0- Write 1 is always valid					ly		
	1- Rising edge valid							
P12.37	VDI20 level type	0~1	-	-	anytime	Immediate	0	RW
	0- Write 1 is always					ly		
	valid							
	1- Rising edge valid							
P12.38	VDI21 level type	0~1	-	-	anytime	Immediate	0	RW
	0- Write 1 is always					ly		
	valid							
	1- Rising edge valid							
P12.41	VDO1 configuration	0~99	-	Set the DO	anytime	Immediate	0	RW
	register			function		ly		
				correspondin				
				g to VDO1. The specific				
				functions of				
				VDO are the				
				same as the				
				functions of				
				entity DO.				
P12.42	VDO2 configuration	0~99	-	-	anytime	Immediate	0	RW
	register					ly		
P12.43	VDO3 configuration	0~99	-	-	anytime	Immediate	0	RW

	register					ly		
P12.44	VDO4 configuration	0~99	-	-	anytime	Immediate	0	RW
	register					ly		
P12.45	VDO5 configuration	0~99	-	-	anytime	Immediate	0	RW
	register					ly		
P12.46	VDO6 configuration	0~99	-	-	anytime	Immediate	0	RW
	register					ly		
P12.47	VDO7 configuration	0~99	-	-	anytime	Immediate	0	RW
	register					ly		
P12.48	VDO8 configuration	0~99	-	-	anytime	Immediate	0	RW
	register					ly		
P12.49	VDO9 configuration	0~99	-	-	anytime	Immediate	0	RW
	register					ly		
P12.50	VDO10	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.51	VDO11	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.52	VDO12	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.53	VDO13	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.54	VDO14	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.55	VDO15	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.56	VDO16	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.57	VDO20	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.58	VDO21	0~99	-	-	anytime	Immediate	0	RW
	configuration					ly		
	register							
P12.59	Output level of	_	-	Read the	-	-	-	RO
	virtual			virtual level				

	DO20 D021			of the				
	DO20 D021			VDO20 and				
				VDO20 and VDO21				
				terminals.				
P12.60	Wata DOI DOI(DO
P12.60	Virtual DO1-DO16	-	-	Read the	-	-	-	RO
	output level			virtual level				
				of the VDO1				
				- VDO16				
D / A / /				terminals.				
P12.61	Active level of	0~1	-	When the	anytime	Immediate	0	RW
	virtual			DO function		ly		
	DO1			selected by				
	0-Output 1 when			VDO1 is				
	valid			valid, the				
	1-Output 0 when			output level				
	valid			logic of the				
				VDO1				
				terminal is				
				set.				
P12.62	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly		
	DO2							
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.63	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly		
	DO3							
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.64	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly	-	
	DO4					-		
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.65	Active level of	0~1	_	-	anytime	Immediate	0	RW
1 12.05	virtual	U I			anythic	ly	U U	17.17
	DO5					17		
L	D03							

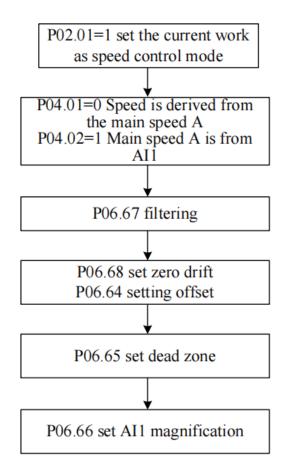
		1						
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.66	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly		
	DO6							
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.67	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly		
	DO7							
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.68	Active level of	0~1	-	-	anytime	Immediate	0	
	virtual					ly		
	DO8							
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.69	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly		
	DO9							
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.70	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly		
	DO10							
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.71	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly		
	DO11							
	0-Output 1 when							
					1	l	1	

	valid							
	1-Output 0 when							
	valid							
P12.72	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual				5	ly		
	DO12					5		
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.73	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual	-			2	ly	-	
	DO13					5		
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.74	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly		
	DO14							
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.75	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly		
	DO15							
	0-Output 1 when							
	valid							
	1-Output 0 when							
	valid							
P12.76	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly		
	DO16							
	0-Output 1 when							
	valid							
	1-Output 0 when							
D10 55	valid	<u> </u>				.		
P12.77	Active level of	0~1	-	-	anytime	Immediate	0	RW
	virtual					ly		
	DO20							
	0-Output 1 when							
	valid							


VECTOR

	1-Output 0 when valid							
P12.78	Active level of virtual DO21 0-Output 1 when valid 1-Output 0 when valid	0~1	-	-	anytime	Immediate ly	0	RW
P12.79	Whether the virtual DI1-DI16 input value register P12.20 is cleared when powered on 0 - no zero 1- clear	0~1	-	Set whether the VDI1-VDI1 6 input value register P12.20 is cleared after power-on.	anytime	Immediate ly	1	RW

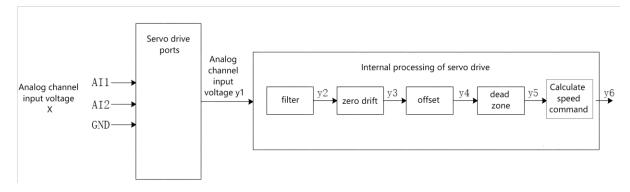
6.3 Analog input and analog output AI/AO function

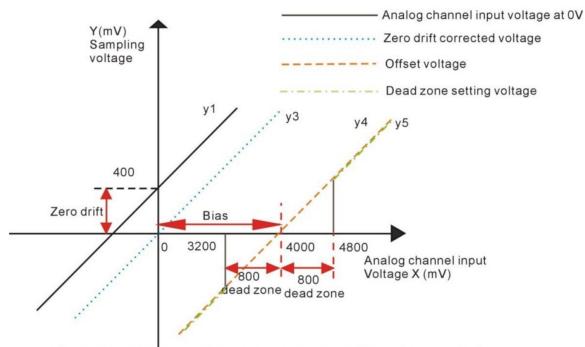

6.3.1 Analog input AI

The servo drive has 2 AI terminals, and the input range of AI1-AI2 is $\pm 10V$ input. Analog input circuit:

Operation method and steps:

Take AI1 as an example to explain the analog voltage setting speed command method.


Noun explanation:


Zero drift: refers to the value of the servo drive sampled voltage value relative to GND when the analog channel input voltage is zero.

Offset: Refers to the input voltage value of the analog channel when the sampling voltage is zero after zero drift correction.

Dead zone: refers to the input voltage range of the analog channel when the sampling voltage is zero.

The unprocessed analog channel output voltage is shown in Figure y1. After being processed internally by the servo driver, the speed command y6 is finally obtained.

Servo driver AI processing corresponding sampling voltage example

• Filtering:

The servo driver provides analog channel filtering. By setting the filter time constants P06.67, P06.72, and P06.77, it can prevent the motor command fluctuation caused by the unstable analog input voltage, and can also reduce the motor fault caused by the interference signal. The filtering function has no elimination or suppression of zero drift and dead zone.

• Zero drift correction

When the actual input voltage is corrected to 0V, the voltage P06.61 collected by the analog channel AI1 deviates from the value of 0V.

In the figure, the output voltage of the analog channel without the internal processing of the driver is shown as y1. Taking the filtering time constant P06.67= 0.00ms as an example, the sampling voltage y2 after filtering is consistent with y1.

It can be seen that when the actual input voltage x=0, the collected voltage P06.61=y1=400mV, this 400mV is called zero drift.

After zero drift correction, the sampling voltage is shown as y3. y3=y1-400.0

• Offset Correction:

When the sampling voltage is set to 0, the corresponding actual input voltage value.

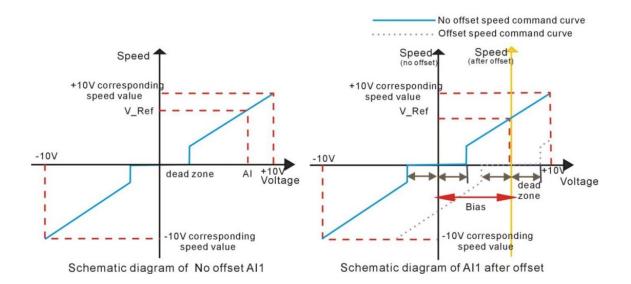
As shown in the figure, when the preset sampling voltage y4=0, the corresponding actual input voltage x=4000mV, this 4000mV is called offset. Set P06.64=4000.

• Dead zone settings:

Limits the valid input voltage range when the sampling voltage of the driver is not 0.

After the offset setting is completed, when the input voltage x is within 3200mV and 4800mV, the sampling voltage value is 0, and this 800mV is called the dead zone. Set P06.65=800.0, after setting the dead zone, the sampling voltage is shown as y5.

$$y_5 = \begin{cases} 0,3200 \le x \le 4800 \\ y_4,4800 \le x \le 10000 \text{ cm} - 10000 \le x \le 3200 \end{cases}$$


• Calculate the percentage of analog commands

After the zero drift, offset and dead zone settings are completed, divide by 10000mV, and then multiply by the magnification percentage to obtain the final analog command percentage.

$$y_6 = \frac{y_5}{10000} \times (P06.66)\%$$

• Calculate speed command y6 or torque command

For example, when there is no offset, it is shown on the left of the following figure, and with an offset, it is shown on the right of the following figure. After completing the correct settings, you can view the AI1 sampling voltage value and the speed command value corresponding to the analog input in real time through the oscilloscope channel.

The relationship between the final speed command value percentage y6 and the input voltage x:

$$y6 = \begin{cases} 0, B - C \le X \le B + C \\ \frac{(x - B)}{10000} \times (P06.66 \text{ or } P06.67 \text{ or } P06.77)\%, B + C \le X \le 10000, or -10000 \le x \le B - C \end{cases}$$

Among them: B: bias; C: dead zone.

<u>To sum up, assuming that the AI1 filter time constant is 0, the AI1 analog command</u> <u>calculation process is as follows:</u>

(1) Eliminate zero drift and offset

b1 = (AI1 input voltage value P06.61) - (AI1 zero drift P06.68) - (AI1 bias P06.64)

(2) join dead zone

 $b2 = \begin{cases} 0, & |b1| < \text{dead zone P06.65} \\ b1, & |b1| > \text{dead zone P06.65} \end{cases}$

(3) Calculate the percentage of analog instructions

AI1 analog command percentage P06.91

$$=\frac{b2}{10000}\times(AI1 \text{ magnification P06.66})\%$$

(4) Calculate the speed command or torque command

(5)

Speed command (rpm) = AI1 analog command percentage P06.91× Rated speed P00.02 Torque command% = AI1 analog command percentage P06.91

The AI correction method is as follows: write 1 to P06.79 to trigger the correction of AI1 zero drift; write 2 to P06.79 to trigger AI2 zero drift correction; write 3 to P06.79 to trigger AI3 zero drift correction; to P06.79 Write 4 to trigger correction of AI1, AI2, AI3 zero drift. Or trigger INFn67 through DI, and perform zero drift correction on AI1, AI2, AI3 at the same time. (Note: AI3 is not supported on VC210 hardware)

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P06.61	AI1 input voltage	-	mV	Display AI1	-	-	-	RO
				input voltage				
P06.62	AI2 input voltage	-	mV		-	-	-	RO
P06.64	AI1 bias	-10000~10	mV	Set the actual	anytime	Immediately	0	RW
		000		input voltage				
				of AI1 when				
				the driver				
				sampling				
				voltage value				
				after zero				
				drift				
				correction is				
				0.				
P06.65	AI1 dead zone	0~5000	mV	Set the AI1	anytime	Immediately	0	RW
				input voltage				
				range when				
				the sampling				
				voltage value				
				of the driver				
				is 0.				
P06.66	AI1 magnification	0~1000.0	%	Set the AI1	anytime	Immediately	100.0	RW
				magnification				

AI related parameters are as follows

			1	1		1	r	
P06.67	AI1 low pass filter	0~32767	ms	Set the filter	anytime	Immediately	2	RW
	time constant			time constant				
				of the				
				software for				
				AI1 input				
				voltage				
				signal.				
P06.68	AI1 zero drift	-32767~32	mV	Zero drift:	anytime	Immediately	0	RW
		767		When the				
				input voltage				
				of the analog				
				channel is 0,				
				the sampling				
				voltage value				
				of the servo				
				driver is				
				relative to the				
				value of				
				GND.				
P06.69	AI2 bias	-10000~10	mV	-	anytime	Immediately	0	RW
		000						
P06.70	AI2 dead zone	0~5000	mV	-	anytime	Immediately	0	RW
P06.71	AI2 magnification	0~1000.0	%	-	anytime	Immediately	100.0	RW
P06.72	AI2 low pass filter	0~32767	ms	-	anytime	Immediately	2	RW
	time constant							
P06.73	AI2 zero drift	-10000~10 000	mV	-	anytime	Immediately	0	RW
P06.79	Automatic zero	0-7		-	anytime	Immediately	0	RW
	drift correction				5	5	-	
	Write 1 trigger to							
	correct AI1 zero							
	drift;							
	Write 2 trigger							
	correction AI2							
	zero drift;							
	Write 3 trigger							
	correction AI3							
	zero drift;							
	Write 4 trigger							
	correction AI1-AI3							
	zero drift;							

	Write 5 trigger correction current sensor; Write 6 to clear the current sensor zero drift value;							
P06.91	AI1 analog command	-3276.7~3	%	display	-	-	-	RO
	percentage	276.7						
P06.92	AI2 analog command	-3276.7~3	%	display	-	-	-	RO
	percentage	276.7						

Related input function bits.

Function bits	Bit description
INFn.67	Valid to invalid transition, trigger correction of AI1, AI2 zero drift

6.3.2 Analog output AO

The VC210 servo driver has an AO output with an output range of ± 10 V. By configuring P06.84 and P06.85, AO can output a specific value.

Actual port output voltage = The corresponding variable is converted to the value of the voltage \times AOx magnification - AOx Bias

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P06.80	AO1 offset	-10000~10 000	mV	When the theoretical output voltage is set to 0V, after biasing, the actual output voltage of AO1.	anytime	Immediately	0	RW
P06.81	AO1 magnification	-1000.0~1 000.0	%	Set the theoretical output voltage to 1V, after amplification, the actual output voltage of AO1.	anytime	Immediately	100	RW
P06.84	AO1 configuration register value 0-Actual speed, 1mv corresponds to 1rpm 1- Speed loop speed command, 1mv corresponds to 1rpm 2-Torque command, 1mv corresponds to 0.1% rated torque 3-Position error before filtering, 1mv corresponds to 1 motor encoder pulse 4- Filtered position error, 1mv corresponds to 1 motor encoder pulse 5-Feed forward speed, 1mv	-10000~10 000	_	Set the output signal type of analog output terminal 1 (AO1). 10000 corresponds to output 10V; -10000 corresponds to output -10V.	anytime	Immediately	0	RW

corresponds to				
0.1% rated speed				
6-Position command				
speed, 1mv				
corresponds				
to 1rpm				
7-Filtered position				
command speed,1mv				
corresponds to 1rpm				
8-A phase current				
instantaneous value,				
1mV corresponds to				
0.1A				
9-B phase current				
instantaneous value,				
1mV corresponds to				
0.1A				
10-torque feedback,				
1mv corresponds to				
0.1% rated torque				
11-Current rms value				
10V corresponds to				
the rated current of				
the driver				
12-RMS current,				
10V corresponds to				
the rated current of				
the motor				
13-The absolute				
value of the motor				
display speed, 10V				
corresponds to the				
rated speed				
14-The absolute				
value of the real-time				
speed of the motor,				
1mV corresponds to				
1rpm				

Chapter 7 Auxiliary Functions

7.1 Fault protection

7.1.1 Fault Downtime

The failure of the servo drive is divided into three categories.

Class I is a serious fault. Once such a fault is reported, the motor power must be cut off immediately and the motor is free to stop. The fault code range for class I is Er.100-Er.199.

Class II is a general fault. When reporting such a fault, customize can report the running action of the motor after the fault according to parameter P02.10. The fault code range for a Type II fault is Er.200-Er.599.

Class III is not a serious fault. When reporting such a fault, customize can report the running action of the motor after the fault according to parameter P02.11. The fault code range for Class III faults is Er.600-Er.999.

When the hardware/software travel limit occurs, the servo over travel fault stop mode can be set separately by P02.12.

There are five types of downtime. The first type is free stop; the second type is rapid deceleration stop, the drive is disconnected after stop, the motor is powered off; the third is slow deceleration stop, disconnected after parking is enabled, the motor is powered off; the fourth is Quickly decelerate to stop, keep enabling after parking, users need to disconnect the enable signal to disable; the fifth is slow deceleration stop, keep enabled after parking, users need to disconnect the enable signal to disable; the fifth is slow deceleration stop, keep enabled after parking, users need to disconnect the enable signal to disable. Free parking means that the drive is broken and the motor is free to stop by frictional resistance. Deceleration stop means that the servo drive drives the motor to decelerate. In this process, the motor is kept energized. The deceleration time for rapid deceleration stop is set by P02.16. The deceleration time for slow deceleration stop is set by P02.17. The deceleration time refers to the time from the rated speed to the zero speed. The actual deceleration time is determined by the speed at the time of the fault and the set deceleration time.

Actual deceleration time = set deceleration time>	failure speed
Actuardeceleraton time – set deceleraton time /	Rated speed

A 11

	rameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
Р	02.10	Servo type 2 failure	0~5	-	Set the	anytime	Immediately	0	RW
		stop mode selection			deceleration				
		0-break enable free			method of the				
		parking			servo motor				
		1-Fast deceleration			from rotation				

Related parameters are as follows.

<u></u>								
	and stop after the			to stop and				
	parking is enabled			the motor				
	2-Slow deceleration			state after				
	stop and enable			stop when the				
	3-Fast deceleration			servo class II				
	stop and keep enabled			fault occurs.				
	4-Slow deceleration							
	stop and keep enabled							
	5-Braking according							
	to the current set by							
	P02.18							
P02.11	Servo three types of	0~5	-	Set the	anytime	Immediately	0	RW
	failure mode selection			deceleration				
	0- break enable free			method of the				
	parking			servo motor				
	1- Fast deceleration			from rotation				
	and stop after the			to stop and				
	parking is enabled			the motor				
	2- Slow deceleration			state after the				
	stop and enable			stop when the				
	3-Fast deceleration			servo has a				
	stop and keep enabled			type III fault.				
	4-Slow deceleration							
	stop and keep enabled							
	5-Braking according							
	to the current set by							
	P02.18							
P02.12	Over travel stop mode	0~5	-	Set the	anytime	Immediately	0	RW
	selection			deceleration				
	0- break enable free			method of the				
	parking			servo motor				
	1- Fast deceleration			from rotation				
	and stop after the			to stop and				
	parking is enabled			the motor				
	2- Slow deceleration			state after				
	stop and enable			stop when				
	3- Fast deceleration			over travel				
	stop and keep enabled			occurs during				
	4- Slow deceleration			the servo				
	stop and keep enabled			motor				
	5-Braking according			running.				
l I	to the current set by							
	P02.18							

P02.16	Fast stop time	0~65535	ms	Set the	anytime	Immediately	500	RW
				deceleration				
				time when the				
				servo is				
				stopped				
				quickly.				
P02.17	Slow parking time	0~65535	ms	Set the	anytime	Immediately	1000	RW
				deceleration				
				time when the				
				servo slowly				
				stops.				

7.1.2 All faults

Servo supports the following failures.

fault code	Fault description
Er.100	Software overcurrent, when the current percentage P09.31 detected by the software is greater
	than the value set by P10.01, a software overcurrent fault will be reported, and the fault can be
	shielded by BIT1 of P10.33.
Er.101	hardware overcurrent
Er.102	Overvoltage,
	For 220V driver, when the bus voltage P01.08 is greater than 420V, it will report overvoltage.
	For 380V driver, when the bus voltage P01.08 is greater than 750V, it will report overvoltage.
Er.103	Undervoltage, when the bus voltage P01.08 is less than the rated voltage P01.07*1.414*0.7, it
	will report undervoltage.
Er.104 or Er.004	The current sensor is faulty. When the power is turned on for the first time, before the relay is
	closed, the detected current is not 0, and this fault is reported.
Er.105 or Er.005	If the encoder fails and the encoder is not connected, the fault is reported.
Er.106 or Er.006	The EEPROM verify fault, and the fault is reported when the value written to the EEPROM
	and the value of the read EEPROM are inconsistent.
Er.107	Phase sampling fault, when the phase obtained through the HALL switch and the phase
	obtained through the encoder are too different, this fault is reported.
Er.108 or Er.008	When the FPGA and ARM communication are faulty, the fault is reported when the values
	written and read by the ARM are inconsistent.
Er.109	If the current changes greatly, the fault will be reported when the difference between the two
	sampled currents is 50%.
Er.110	Magnetic encoder failure
Er.111	Current phase sequence learning failure
Er.112	The output is out of phase.
Er.113	Did not scan to Z point during self-learning
Er.114	Z point offset not found

Er.115	Hall code value learning error
Er.116	Great change in rotational speed
Er.117	The drive is overheated, when it is detected that the drive temperature P01.10 is greater than
	the drive overheating threshold P10.06, the drive over temperature fault will be reported.
Er.118	When powered on, the wire-saving encoder does not feedback hall value
Er.119	Motor encoder type does not match
Er.120	Software is not authorized
Er.121	Phase loss at RST input
Er.122 or Er.022	Use timeout
Er.130	STO (INFn75) alarm input signal is valid
Er.131	There is speed when the provincial encoder starts
Er.132	ARM does not match FPGA
Er.133 or Er.033	The Profinet protocol chip cannot communicate with the ARM motor control chip
Er.200	When returns to home, the home signal INFn.34 is not assigned.
Er.201	INFn.xx repeated allocation, one input function bit is assigned to two or more DI
Er.202	Overspeed, when the speed percentage (actual speed/rated speed) exceeds P10.05, it will report
	overspeed.
Er.203	The position error is too large. When the position error P03.17 is greater than P03.19 and
	P03.19 is not equal to 0, the fault is reported. Note that it is easy to report this fault if the
	position is set to a large filter time.
Er.204	Unassigned interrupt fixed length trigger signal INFn.40
Er.205	No return to home before absolute point motion
Er.206	Motor overload
Er.207	Software limit, after enabling the software limit P03.73, when the encoder position value is less
	than the lower limit of the software limit or greater than the upper limit of the software limit,
	this fault will be reported.
Er.208	hardware limit
Er.209	Curve planning failed
Er.210	Excessive tension
Er.211	Breakage failure
Er.212	XY pulse type selection error in tension control mode
Er.213	Fully closed loop position error is too large
Er.214	Prohibit positive (reverse) turn
Er.216	Z point signal is unstable
Er.217	RPDO receive timeout
Er.218	Reserved
Er.219	Motor stall
Er.220	
11.220	Braking resistor overload
Er.220 Er.221	The forward stroke switch input function bit INFn.43 is not assigned to the entity DI
Er.221	The forward stroke switch input function bit INFn.43 is not assigned to the entity DI

	non-Operation state
Er.225	Unsupported CANopen control mode
Er.226	Absolute value mode lap overflow
Er.227	The battery of the absolute encoder is faulty. (After the battery is powered off, the fault will be
	reported when the power is turned on for the first time, prompting the customer that the
	encoder has been powered off. Connect the battery, and the fault will be automatically
	eliminated after reset.)
Er.228	Inertia learning failed, need to reset P07.03 and P07.04
Er.229	When learning fully closed loop parameters, the position value detected by the second encoder
	is too small
Er.230	reserve
Er.231	Bus error
Er.232	Second encoder battery failure
Er.234	continuous vibration
Er.237	car breakdown
Er.238	Linear motor phase finding failed
Er.239	Linear motor phase finding failed, stuck in forward direction
Er.240	Linear motor phase finding failed, stuck in reverse direction
Er.241	Over-travel error during self-learning
Er.242	Encoder learning error, encoder interference or wrong magnetic pole setting
Er.243	Linear motor phase finding failure (disconnection)
Er.244	Linear motor phase finding failure (large position error)
Er.245	Linear motor phase finding failure (current pulse width is too small)
Er.600	Motor overheating
Er.601	DI function code is not assigned
Er.602	AI zero drift is too large, when AIx zero drift P06.68/P06.73/P06.78 is greater than the
	threshold value P10.10, it will report zero drift too large fault.
Er.603	The zero return time out, when the zero return time is greater than P10.08, this fault will be
	reported.
Er.604	When the absolute encoder is self-learning, the rotation direction of the motor is wrong, and the
	UVW wiring needs to be replaced
Er.605	The battery voltage of the absolute encoder is too low, you need to replace the new battery
	when the drive is powered on
Er.606	The battery voltage of the second encoder is too low, and it needs to be replaced with a new
	battery when the driver is powered on.
Er.607	Inertia learning failed, need to increase P07.33 and then learn
Er.608	U disk read and write failed
Er.609	Drive parameters not found during factory reset
Er.610	Motor parameters not found when restoring to factory defaults
Er.611	EEPROM verification error when restoring to factory defaults
Er.612	Self-learning current loop error
Er.613	Phase finding not yet completed

Er.701	EtherCAT bus error
Er.702	EtherCAT bus dropped
Er.703	After the back clearance compensation is increased, two steps are required before returning to
	zero to eliminate the back clearance

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set metho d	Effective way	Defaults	read and write method
P09.31	Torque current feedback	-	%	Displays the torque current feedback value.	-	-	-	RO
P10.01	Software Overcurrent Threshold	0~800	%	When the detected current percentage P09.31 is greater than this value, a software overcurrent fault will be reported.	anytime	Reset takes effect	400.0	RW
P10.02	Overload value	0~3276.7	%	Set the overload protection point, generally set as motor rated current/drive rated current*100%	anytime	Immediately	100.0	RW
P10.03	Lock-rotor protection current threshold	0~300.0	%	When set to 0, no stall protection is performed; when the motor is at zero speed, the driver current P09.31 is greater than	anytime	Immediately	100.0 %	RW

			10 001					_
				the stall				
				protection				
				current				
				threshold, and				
				when the				
				duration				
				exceeds the				
				stall protection				
				time threshold				
				P10.04, a stall				
				fault is				
				reported.				
P10.04	Lock-rotor protection	0~65535	ms	-	anytime	Immediately	800	RW
	time threshold							ICO
P10.05	Over speed	0~3276.7	%	When the	anytime	Immediately	150.0	RW
	percentage			percentage of				
				the actual				
				speed/rated				
				speed is				
				greater than				
				the overspeed				
				percentage, an				
				overspeed				
				fault will be				
				reported.				
P10.06	Drive Overheat	0~3276.7	°C	When the	anytime	Immediately	80.0	RW
	Threshold			drive				
				temperature				
				P01.10 is				
				greater than				
				this value, the				
				drive				
				overheating				
				fault will be				
				reported.				
P10.08	Timeout time for	0~32767	S	When the zero	anytime	Immediately	0	RW
	returning to zero			return time				
	position			exceeds this				
				value, a zero				
				timeout fault is				
				reported.				
				reperiod				
				When set to 0,				

				1	1	[
				timeout				
				protection is				
				not performed.				
P10.09	Power-off motor	0~1	-	Set whether to	anytime	Immediately	0	RW
	encoder position			memorize the				
	memory function			motor encoder				
	0-Power off does not			position after				
	remember motor			power off.				
	encoder position							
	1-Power-off memory							
	motor encoder							
	position							
P10.10	AI zero drift threshold	0~32767	mV	When the zero	anytime	Immediately	500	RW
				drift of AIx is				
				greater than				
				this value, it				
				will report the				
				excessive zero				
				drift fault.				
P10.11	Motor overload curve	0~5	-	Select the	anytime	Immediately	0	RW
	selection			motor				
				overload				
				curve. When 5				
				is selected, it				
				is a custom				
				overload curve				
P10.12	Zero speed command	0~3276.7	%	Torque limit	anytime	Immediately	0	RW
	automatically reduces			value that is				
	torque limit value			automatically				
				reduced when				
				zero-speed				
				command is				
				received				
P10.13	Custom 1.1 times	0~3276.7	S	Custom 1.1		Immediately	0	RW
	overload curve time			times overload				
				curve time				
P10.14	Custom 1.5 times	0~3276.7	s	Custom 1.5	anytime	Immediately	0	RW
	overload curve time			times overload				
				curve time				
P10.15	Custom 2.0 times	0~3276.7	s	Custom 2.0	anytime	Immediately	0	RW
	overload curve time			times overload				
				curve time				
P10.16	Custom 2.5 times	0~3276.7	S	Custom 2.5	anytime	Immediately	0	RW

VECTOR

VC210 series servo driver instruction manual

	overload curve time			times overload				
				curve time				
P10.17	Custom 3.0 times	0~3276.7	s	Custom 3.0	anytime	Immediately	0	RW
	overload curve time			times overload		-		
				curve time				
P10.18	Speed detection	0~32767	-	When set to	anytime	Immediately	0	RW
	threshold			non-zero, the				
				speeding				
				protection is				
				enabled. The				
				smaller the				
				value, the				
				more sensitive				
P10.20	Current fault code	-	-	Display fault	-	-	-	RO
				code				
P10.21	Selected last x	1~5	-	Used to	anytime	Immediately	1	RW
	failures			choose to				
				check the last				
				5 faults of the				
				servo drive,				
				this function				
				code is used to				
				set the number				
				of faults to be				
				checked:				
P10.22	Fault code for	-	-	Display	-	-	-	RO
	selected x faults							
P10.23	The fault code of the	-	min	Display	-	-	-	RO
	selected x faults							
P10.24	Motor speed of the	-	rpm	Display	-	-	-	RO
	selected x faults							
P10.25	The rms value of the	-	А	Display	-	-	-	RO
	motor current for the							
	selected x faults							
P10.26	Instantaneous value of	-	А	Display	-	-	-	RO
	V-phase motor current							
	for selected x faults							
P10.27	Instantaneous value of	-	А	Display	-	-	-	RO
	W-phase motor							
	current for selected x							
	faults							
P10.28	bus voltage of	-	V	Display	-	-	-	RO

VECTOR

	selected x faults							
P10.29	Drive temperature for	-	°C	Display	-	-	-	RO
	selected x faults							
P10.30	Entity DI state of	-	-	Display	-	-	-	RO
	selected x failures							
P10.31	Entity DO status for	-	-		-	-	-	RO
	selected x failures							
P10.32	Hardware fault	-	-	Display	-	-	-	RO
	cumulative count							
	value							
P10.33	Fault shielding	0~65535	-	BIT0 Shield	anytime	Immediately	12	RW
				Overload				
				BIT1 Shield				
				Software				
				Overcurrent				
				BIT2				
				Shield Phase				
				Fault				
				BIT3 Shield				
				Current				
				Change Large				
				BIT4 Shield				
				Hardware				
				Overcurrent				
				BIT5 Shield				
				Speed Change				
				Large BIT6				
				Shield Z Point				
				Unstable BIT7				
				Shield SYNC				
				Loss				
				BIT8 Shield				
				Current Sensor				
				Fault BIT9				
				Shield				
				Under voltage				
				BIT10 Shield				
				Encoder				
				malfunction				
P10.34	Hardware failure time	0~65535	20ns	Set the	anytime	Immediately	150	RW
	threshold			threshold for				

the number of	
hardware	
failures. When	
the duration of	
a single	
hardware	
failure exceeds	
this value,	
Er.101 will be	
reported.	
P10.35 Fault minimum 0~32767 s When anytime Immediately 60	RW
duration before reporting	
responding to reset software	
fault overcurrent,	
hardware	
overcurrent,	
drive	
overheating,	
motor	
overload,	
locked rotor,	
and braking	
resistor	
overload, you	
must wait for	
P10.35	
seconds to	
reset the fault	D O
P10.44 Speed loop reference - % Display	RO
at last valid fault	DO
P10.45 Velocity loop - % Display	RO
feedback at the last	
valid fault	
P10.46 Torque reference at - % Display	RO
the last valid fault	
P10.47 Torque feedback at - % Display	RO
the last valid fault	
P10.48 Filtered position error Display	RO
at the last valid fault	
P10.49 current record index Display	RO
P10.50 The fault code of the Display	RO
fault with index 0	

VECTOR

	with index 0							
P10.52	Rotation speed of fault with index 0	-	rpm	Display	-	-	-	RO
P10.53	The rms value of the current for the fault with index 0	-	А	Display	-	-	-	RO
P10.54	Instantaneous value of the V-phase current for the fault with index 0	-	A	Display	-	-	-	RO
P10.55	Instantaneous value of the W-phase current for the fault with index 0	-	A	Display	-	-	-	RO
P10.56	Capacitor voltage for the fault with index 0	-	V	Display	-	-	-	RO
P10.57	The temperature of the fault with index 0	-	° C	Display	-	-	-	RO
P10.58	The DI status of the fault with index 0	-	-	Display	-	-	-	RO
P10.59	The DO status of the fault with index 0	-	-	Display	-	-	-	RO
P10.60	The fault code of the fault with index 1	-	-	Display	-	-	-	RO
P10.61	failure time for failure with index 1	-	S	Display	-	-	-	RO
P10.62	The speed of the fault with index 1	-	rpm	Display	-	-	-	RO
P10.63	The rms value of the current for the fault with index 1	-	А	Display	-	-	-	RO
P10.64	Instantaneous value of the V-phase current for the fault with index 1	-	A	Display	-	-	-	RO
P10.65	Instantaneous value of the W-phase current for the fault with index 1	-	A	Display	-	-	-	RO

P10.66	Capacitor voltage for the fault with index 1	-	V	Display	-	-	-	RO
P10.67	The temperature of the fault with index 1	-	°C	Display	-	-	-	RO
P10.68	The DI status of the fault with index 1	-	-	Display	-	-	-	RO
P10.69	DO status of fault with index 1	-	-	Display	-	-	-	RO
P10.70	The fault code of the fault with index 2	-	-	Display	-	-	-	RO
P10.71	Failure time of failure with index 2	-	s	Display	-	-	-	RO
P10.72	Rotation speed of the fault with index 2	-	rpm	Display	-	-	-	RO
P10.73	The rms value of the current for the fault with index 2	-	А	Display	-	-	-	RO
P10.74	Instantaneous value of the V-phase current for the fault with index 2	-	A	Display	-	-	-	RO
P10.75	Instantaneous value of W-phase current for fault with index 2	-	А	Display	-	-	-	RO
P10.76	Capacitor voltage of the fault with index 2	-	V	Display	-	-	-	RO
P10.77	The temperature of the fault with index 2	-	° C	Display	-	-	-	RO
P10.78	DI state of the fault with index 2	-	-	Display	-	-	-	RO
P10.79	The DO status of the fault with index 2	-	-	Display	-	-	-	RO
P10.80	The fault code for fault with index 3	-	-	Display	-	-	-	RO
P10.81	Failure time for failure with index 3	-	S	Display	-	-	-	RO
P10.82	Rotational speed of the fault with index 3	-	rpm	Display	-	-	-	RO

P10.83	The rms value of the	-	Α	Display	-	-	-	RO
	current of the fault with index 3							
P10.84	Instantaneous value of	-	А	Display	_	-	-	RO
	the V-phase current			1 5				
	for the fault with							
	index 3							
P10.85	Instantaneous value of	-	А	Display	-	-	-	RO
	W-phase current for							
	fault with index 3							
P10.86	Capacitor voltage of	-	V	Display	-	-	-	RO
	the fault with index 3							
P10.87	The temperature of	-	°C	Display	-	-	-	RO
	the fault with index 3							
P10.88	DI status of the fault	-	-	Display	-	-	-	RO
	with index 3							
P10.89	The DO status of the	-	-	Display	-	-	-	RO
	fault with index 3							
P10.90	The fault code for the	-	-	Display	-	-	-	RO
	fault with index 4							
P10.91	Failure time for	-	s	Display	-	-	-	RO
	failure with index 4							
P10.92	Rotational speed of	-	rpm	Display	-	-	-	RO
	the fault with index 4							
P10.93	The rms value of the	-	Α	Display	-	-	-	RO
	current of the fault							
	with index 4							
P10.94	Instantaneous value of	-	Α	Display	-	-	-	RO
	V-phase current for							
	fault index 4							
P10.95	Instantaneous value of	-	Α	Display	-	-	-	RO
	W-phase current for							
	fault with index 4							
P10.96	Capacitor voltage for	-	V	Display	-	-	-	RO
	fault with index 4							
P10.97	The temperature of	-	°C	Display	-	-	-	RO
	the fault with index 4				ļ			
P10.98	DI state of the fault	-	-	Display	-	-	-	RO
	with index 4							
P10.99	The DO status of the	-	-	Display	-	-	-	RO
	fault with index 4							

7.1.3 Troubleshooting

(1) Er.100 software overcurrent

Fault occurrence conditions:

If the current percentage P09.31 detected by the software is greater than the overcurrent threshold of P10.01, a software overcurrent fault will be reported, which can be shielded by BIT1 of P10.33.

Fault reason		Fault confirmation	Troubleshooting
1.Motor UVW phase sequence reversed or missing phase	A	Confirm the UVW phase sequence and whether the phase is missing	Adjust the UVW phase sequence or replace the motor
2.P10.01 setting is too small		Check whether the value of parameter P10.01 is too small	Increase P10.01
3.Gain setting is too large	A	Check P07.01 current loop ratio, P07.02 current loop integral gain,P07.03 speed loop proportional gain, P07.10 torque feedforward coefficient, whether these parameters are set too large	Reduce gain related parameters
4. The motor peak current percentage setting is too large	A	Check whether P00.24 motor peak current percentage is inconsistent with the actual peak current of the motor	Reduce the percentage of P00.24 motor peak current
5. Motor power is too small	A	Confirm according to the actual load	Replace the motor with a higher power
6. The motor output current is greater than the motor peak current	A	Check whether the torque limit value of the drive (the default limit source P05.13) is greater than the motor peak current	Decrease the torque limit value

(2) Er.101 hardware overcurrent

Fault occurrence conditions:

The hardware detects that the driver output current reaches the peak threshold.

Fault reason	Fault confirmation	Troubleshooting
	 Check UVW Phase 	
1. The initial phase of the magnetic pole is incorrect	 Sequence Whether the servo motor is a non-standard motor 	Operate Fn005, re-learn the encoder
2. Abnormal connection of motor UVW power cable	 Check whether the driver end and motor end of the UVW cable are in poor contact and the ports are aged. Unplug the UVW motor cable and check if the wire is short-circuited. 	Replace or correctly connect the motor wire
3. Motor power is too small	 Determined according to actual load conditions 	Replace the motor with a higher power
4. Motor damage	 Unplug the motor wire and measure the resistance between the UVW and the motor with a multi meter 	Unbalanced replacement motor
5. The braking resistance is too small or short-circuited	Measure whether the resistance across the driver P, Rb' is positive	Replace the braking resistor
6. Drive failure	 Unplug the motor cable, then enable the servo drive, but still report this fault 	Replace the drive
7. The gain setting is unreasonable	During the rotation of the motor, if the motor vibrates violently or makes a sharp sound, you can also observe the curve of the current loop through VECObserve	Adjust gain
8. The acceleration/ deceleration time is too short	 VECObserve observes whether the control 	Modify the acceleration given by the control command,
		- j and control community,

		command is given too	increase the filter time of the
		violently	control command, increase the
	\triangleright	Check whether the	acceleration and deceleration
		parameter setting of	time
		acceleration and	
		deceleration time is too	
		small	
	\checkmark	Check if the motor	
0 Connect the motor UWW		cable is too long	Shorten the motor cable,
9. Connect the motor UVW	≻	Check whether the	exclude the UVW terminal and
line to the capacities load		motor UVW is	connect the capacitor
		connected to a capacitor	
10.Excessive mechanical	≻	Check if the mechanical	Reduce mechanical clearance
clearance		clearance is too large	Reduce mechanical clearance

(3) Er.102 over pressure

Fault occurrence conditions:

When the busbar voltage detection value P01.08 is greater than the overvoltage threshold, it will report overvoltage

For drives whose rated voltage P01.07 is less than 300V, the overvoltage threshold is 420V, and for drives whose rated voltage P01.07 is greater than 300V, the overvoltage threshold is 750V.

Fault reason		Fault confirmation	Troubleshooting
1. The rated voltage of the driver is incorrectly set	A	Check whether the parameter setting of P01.07 is correct	Modify the drive rated voltage P01.07
2. The bus voltage calibration coefficient is set incorrectly	A	Check whether the parameter setting of P01.09 is correct	Modify bus voltage calibration coefficient P01.09 (adjustment range 90%~110%)
3. The power supply of the drive RST is unstable	À	Oscilloscope to check RST power	Adjust the power supply or add a power supply noise filter
4. The DC bus voltage is too high	A	Use a multi-meter to measure whether the voltages at both ends of the driver P and N are normal	Adjust the bus voltage calibration coefficient P01.09 (the adjustment range is 90%~110%) or adjust the power supply
5. The braking resistor is not working properly	A	Check the braking resistor for poor contact, short circuit or open circuit Use a multi-meter to measure whether the resistances at both ends of the driver P and Rb'	Correct wiring or replace braking resistor

		are normal		
		Check whether the		
		parameters of P02.20	P02.20 can be selected by users	
6. The parameter setting of		for enabling dynamic	according to their needs,	
		braking, the resistance	P02.21 should be set correctly,	
the braking resistor is		value of braking resistor	and P02.22 can be set up to 5	
unreasonable		P02.21, and the power	times the power of the braking	
		of braking resistor	resistor	
		P02.22 are set correctly		
7. The system is a large	\checkmark	View the actual	Properly adjust the deceleration	
inertia load, and the		deceleration time	time	
deceleration time is too short			ume	
8. The gain setting is	\checkmark	Check to see if the	A direct the gain	
unreasonable		motor oscillates	Adjust the gain	

(4) Er.103 undervoltage

Fault occurrence conditions:

When the busbar voltage detection value P01.08 is less than the undervoltage threshold, it will report undervoltage.

Undervoltage threshold = drive rated voltage P01.07*1.414*0.7

Fault reason		Fault confirmation	Troubleshooting
1. The RST power supply of	A	Check whether the	
the driver does not match the		parameter setting of	Modify the drive rated voltage
rated voltage P01.07 of the		P01.07 is correct	P01.07
driver.			
2. The acceleration time is	\blacktriangleright	View the actual	Decrease acceleration time
too short		acceleration time	Decrease acceleration time
	\blacktriangleright	Measuring grid voltage	Adjust the drive rated voltage
3. The grid voltage is too low			P01.07 to be consistent with
			the grid voltage
		The drive reports this	
4.Other overloaded devices		fault as soon as other	Adjust the RST power supply
start		heavy-duty devices are	rujust the RST power suppry
		started	
	\triangleright	This fault is reported as	Replace the drive
5.Charging circuit failure		soon as the drive is	Replace the unive
		enabled	
	\triangleright	Check whether the P	
		and Rb' terminals of the	
6. Braking resistors P, Rb' are		driver are	Prevent short circuit of braking
short-circuited to ground		short-circuited with the	resistor P, Rb' to ground
		ground	
	\triangleright	Or remove the braking	

		resistor, whether to	
		report this fault, if not,	
		it means that the	
		braking resistor P and	
		Rb' are short-circuited	
		to ground	
	\checkmark	When using a	
7 5 1 1		single-phase power	Use three-phase power or
7. Excessive load		supply, the actual load	derating
		is too large	
9 The three where examples of	\checkmark	Measure the three-phase	
8. The three-phase current of		current of the main	Unbalanced, adjust the RST
the main power supply RST is unbalanced		power supply RST,	three-phase power supply
is unbalanced		UVW	
9. The cross-sectional area of		Check if the RST wire	Replacing the RST power cord
		meets the driver current	with a larger cross-sectional
the RST wire is too small			area

(5) Er.104 Current sensor failure

Fault occurrence conditions:

Current sensor failure

Fault reason	Fault confirmation	Troubleshooting
1. Current sensor failure	▶ -	Replace the drive

(6) Er.105 Encoder failure

Fault occurrence conditions:

The encoder has no signal or the signal is unstable

Fault reason	Fault confirmation	Troubleshooting
1. The encoder wire is in poor contact	Check the encoder line	Correct wiring
2. The encoder wire is disconnected	 The multi-meter detects the signal line 	Replace the encoder wire
3.Subject to electromagnetic interference	 Exclude and turn off other equipment that may cause interference 	eliminate interference

(7) Er.106 EEPROM failure

Fault occurrence conditions:

EEPROM read data error

Fault reason	Fault confirmation	Troubleshooting
1. EEPROM read data error	A -	Replace the drive

(8) Er.107 Phase sampling fault

Fault occurrence conditions:

Phase sampling fault, when the phase obtained through the HALL switch and the phase

obtained through the encoder are too different, this fault is reported.

	· · · · · · · · · · · · · · · · · · ·	1
Fault reason	Fault confirmation	Troubleshooting
1. Phase sampling failure	> -	Set BIT2 of fault shielding parameter P10.33 to 1 to shield this fault

(9) Er.108 FPGA and ARM communication failure

Fault occurrence conditions:

This fault is reported when the values written by the ARM and read to the FPGA are inconsistent.

Fault reason	Fault confirmation	Troubleshooting
1. When the value written by	→ -	
ARM and read to FPGA is		Replace the drive
inconsistent		

(10) Er.109 Large current change fault

Fault occurrence conditions:

When the two sampled currents differ by 50%, a fault is reported.

Fault reason	Fault confirmation	Troubleshooting
1. When the two sampled currents differ by 50%	<u></u>	Set BIT3 of fault shielding parameter P10.33 to 1 to shield this fault

(11) Er.111 Abnormal motor winding

Fault occurrence conditions:

When self-learning the winding direction of the motor, the current changes in the wrong direction

Fault reason	Fault confirmation	Troubleshooting
1. The motor winding is	Check motor UVW	Connect the UVW motor cable
abnormal	wiring	correctly

(12) Er.113 Encoder Z point not detected

Fault occurrence conditions:

When the encoder is self-learning, the Z point signal cannot be detected

Fault reason		Fault confirmation	Troubleshooting
1. The encoder wire is in	A	Check encoder wire	Correctly connect the encoder
poor contact			wire
2. The encoder signal is	٨	Connect the encoder	Replace the motor
abnormal		cable correctly, after	
		self-learning three	
		times, it still reports this	
		fault	

(13) Er.114 Z point offset error

Fault occurrence conditions:

When the encoder is self-learning, it is detected that the Z point signal is larger than the

encoder resolution

Fault reason		Fault confirmation	Troubleshooting
	٨	Connect the encoder	
1. The encoder signal is abnormal		cable correctly, after	
		self-learning three	Replace the motor
		times, it still reports this	
		fault	

(14) Er.115 HALL encoded value error

Fault occurrence conditions:

When self-learning encoder, the HALL code value is both 0 or 1 at the same time

Fault reason	Fault confirmation	Troubleshooting
1. The encoder signal is	➢ After three times of	
abnormal	self-learning, this fault	Replace the motor
aonormai	is still reported	

(15) Er.117 overheating

Fault occurrence conditions:

When the drive temperature P01.10 is greater than the overheating threshold P10.06, an overheating fault will be reported.

Fault reason		Fault confirmation	Troubleshooting
1. The temperature of the	٨	Measuring drive surface	Increase the drive cooling
drive is overheated		temperature	Increase the drive cooling
2. The cooling fan does not	٨	Check the fan operation	Replace the cooling fan
work normally			Replace the cooling fair
3.The ambient temperature is	٨	Thermometer measures	
1		the temperature of the	reduce ambient temperature
too high		site	
4. The motor runs at low	٨	Monitor the actual load	
frequency and high current			Increase drive power
for a long time			

(16) Er.118 The HALL encoder value of the wire-saving encoder is wrong when the power is turned on

Fault occurrence conditions:

The HALL code value returned by the wire-saving encoder is wrong when powered on

Fault reason		Fault confirmation	Troubleshooting
1. The signal of the	\triangleright	The drive is powered on	
line-saving encoder is		again three times, but	Replace the motor
abnormal		still reports this fault	

(17) Er.119 Encoder type mismatch

Fault occurrence conditions:

The encoder type recognized by the FPGA is inconsistent with the encoder type set by the driver.

Fault reason	F	ault confirmation	Troubleshooting
	➤ C	heck whether P00.08	
1. Parameter setting error	ar	nd the actual encoder	Modify P00.08
	ty	pe are consistent.	
	➤ C	heck whether the	
	er	ncoder type identified	
2. The motor type is wrong	in	the FPGA version	Change motor type or change
2. The motor type is wrong	(P	P01.02) is consistent	FPGA program
	W	ith the actual	
	cc	onnected encoder type.	

(18) Er.200 The home switch for return to zero is not assigned

Fault occurrence conditions:

The homing mode needs to be connected to the origin switch, and there is no origin switch assigned in the DI configuration.

Fault reason		Fault confirmation	Troubleshooting
1. The DI is not configured	A	Check if the DI is	
with the origin switch input		configured with the	DI configuration origin switch
signal INFn.34.		origin switch input	input signal INFn.34
signal Intri.34.		signal INFn.34	

(19) Er.201 DI repeat assignment

Fault occurrence conditions:

The same INFn function is assigned to two different DI or VDI terminals.

Fault reason		Fault confirmation	Tr	oublesh	ooting	
1. The same INFn function is	≻	View DI or VDI	Modify	DI	or	VDI
assigned to two different DI		configuration	configurat			. 51
or VDI terminals.			comguiu	.1011		

(20) Er.202 overspeed

Fault occurrence conditions:

When the speed percentage (actual speed/rated speed) is greater than the overspeed percentage P10.05, it will report an overspeed fault.

Fault reason	Fault confirmation	Troubleshooting
1. The setting of overspeed percentage P10.05 is too small	Check out P10.05	Increase P10.05 or decrease the speed percentage
2. The gain is too large	 Check the parameter settings of P07.03, P07.04 and P07.05 	Decrease the gain
3. HALL switch detection error	A -	Re-learning the encoder
4. Z point offset P00.71 error	A -	For our company's motors, this value is set to 0, and P02.35=8421 should be set before setting this value

(21) Er.203 Position error is too large

Fault occurrence conditions:

When the difference between the position command and the actual position is greater than the excessive position error threshold P03.19, it will report that the position error is too large.

Fault reason	Fault confirmation	Troubleshooting
1. Position command filter	➢ Check P03.06 and	
parameters P03.06 and	P03.07	Decrease P03.06 and P03.07
P03.07 are too large		
	Check whether the	
2. Gain is too small	parameter settings of	A direct the sain
2. Gain is too sman	P07.03, P07.04 and	Adjust the gain
	P07.05 are reasonable	
3. Position command speed is	View position command	Decrease position command
too large	speed	speed
4. The position error is too	Check the excessive	Increase the experience position
large and the threshold	position error threshold	Increase the excessive position error threshold P03.19
P03.19 is too small	P03.19	error uneshold P05.19
	Check whether the	
5. Mechanical stuck motor	mechanical	Dealing with Mechanical Stuck
5. WICCHAINCAI SLUCK IIIOLOI	transmission part is	Issues
	stuck	

(22) Er.204 No interrupt fixed-length trigger signal assigned

Fault occurrence conditions:

The interrupt fixed length function is enabled, but the DI terminal of the interrupt fixed length trigger function number INFn.40 is not allocated.

Fault reason	Fault confirmation	Troubleshooting
1.DI unassigned interrupt	 View DI configuration 	Configure a DI as interrupt
fixed-length trigger function		fixed-length trigger function
number INFn.40		number INFn.40

(23) Er.205 There is no zero return before triggering to go to absolute multi-segment position

Fault occurrence conditions:

There is no homing performed before triggering the absolute multi-segment position.

Fault reason	Fault confirmation	Troubleshooting
1. The zero return is not performed before triggering the absolute multi-segment position.	> -	A zero return is required before triggering an absolute multi-segment position.

(24) Er.206 overload

Fault occurrence conditions:

When the motor current works continuously for a certain period of time at a value greater than the rated current, an overload is reported.

Fault reason		Fault confirmation	Troubleshooting
	A	Check out P10.02	Please set P10.02 as the
1. Improper parameter setting			percentage of motor rated
			current and drive rated current.
2. The motor power is not	٨	Confirm according to	Please replace the servo system
enough		the actual load	with a higher power level

(25) Er.207 software limit

Fault occurrence conditions:

After enabling the software limit through P03.73, when the actual user position is less than the lower limit of the position and the speed is negative, the software limit will be reported. When the actual user position is greater than the upper limit of the position and the speed is positive, the software limit will be reported.

Fault reason	Fault confirmation	tion Troubleshooting
1. Improper parameter setting	 Check P03.73 	Modify P03.73
2. Improper setting of software limit value	➢ Check P03.74, [™]	P03.76 Modify P03.74, P03.76

(26) Er.208 hardware limit

Fault occurrence conditions:

After enabling the hardware limit through P03.73, when the reverse position limit switch is valid and the speed is negative, the hardware limit is reported. When the positive position limit switch is valid and the speed is positive, the hardware limit is reported.

Fault reason		Fault confirmation	Troubleshooting
1. Improper parameter setting	\mathbf{A}	Check P03.73	Modify P03.73
	\checkmark	Check whether the	
2. Whether the installation position of the position limit switch is appropriate.		position limit switch is installed in the proper position.	Adjust the position limit switch installation position

(27) Er.209 4th power position curve planning failed

Fault occurrence conditions:

4th power position curve planning failed

Fault reason	Fault confirmation	Troubleshooting
	> -	The 4th power position curve
1. The 4th power position		planning failed, reset the
curve planning failed		reasonable speed/position
		planning value

(28) Er.213 Fully closed loop position error is too large

Fault occurrence conditions:

In a fully closed loop, the detected position of the second encoder is too different from the motor encoder converted to the second encoder value.

Fault reason Fault confirmation Troubleshooting

1, the material slips	Observe the movement of the material	Press the material tightly to prevent the material from slipping seriously.
2. The full-closed loop position error is too large and the threshold P03.36 is set too small	 Check full closed loop position error too large threshold P03.36 	Increase the full-closed loop position error too large threshold P03.36
3. The full closed loop position error clearing cycle number P03.40 is not set	 Check the full closed loop position error clearing cycle number P03.40 	Set a reasonable full-closed loop position error clearing cycle number P03.40
4. Encoder polarity setting error in full closed loop mode	Check whether the parameters set by encoder polarity P03.33 in full-closed loop mode match the actual situation	Modify P03.33

(29) Er.214 Forward and reverse rotation is prohibited

Fault occurrence conditions:

The forward/reverse rotation is prohibited through P02.03, but the forward/reverse rotation command is actually input

Fault reason	Fault confirmation	Troubleshooting
1. The forward/reverse	Check whether the	
rotation is prohibited by	entered command is	
setting P02.03, but the	normal	Modify the command direction
forward/reverse rotation		
command is actually input		

(30) Er.216 The signal at point Z is unstable

Fault occurrence conditions:

The difference between the encoder position detected twice at Z point and the actual encoder resolution is too different

Fault reason	Fault confirmation	Troubleshooting
1. The encoder wire is in poor contact	 Check encoder wire 	Correct wiring
2. The encoder signal is abnormal	 After three times of self-learning encoder, this fault is still reported 	Replace the motor

(31) Er.217 SYNC signal timeout

Fault occurrence conditions:

The received SYNC signal exceeds the actual sync period

Fault reason		Fault confirmation	Troubleshooting
1. The received SYNC signal	A	Check whether the	Correct wiring

exceeds	the	actual	CANopen/EtherCAT
synchroniza	synchronization period		communication line is
			connected normally

(32) Er.219 locked rotor

Fault occurrence conditions:

When the drive current percentage P09.31 is greater than P10.03, and the speed is close to zero, and lasts for the time of P10.04, it will report stalled rotor.

Fault reason		Fault confirmation	Troubleshooting
	A	Check P10.03, P10.04.	
		Generally, P10.03 and	
1. Improper setting of		P10.04 use the shortcut	
1 1 8		button in VECObserve	Modify P10.03, P10.04
parameters		software \rightarrow the default	
		settings after a complete	
		set of matching.	
2. The machine jams the	٨	View Mechanical	Dealing with mechanical
motor		Structure	structural problems
2 Matan navyan is ta a small		Judging by the actual	Increase motor neuron
3. Motor power is too small		load	Increase motor power

(33) Er.220 Braking resistor overload

Fault occurrence conditions:

When the braking resistor is in the braking state continuously and the braking of the braking resistor is greater than the heat dissipation of the braking resistor, the braking resistor is overloaded.

Fault reason	I	Troubleshooting	
1. Improper setting of parameters	resistance value P02.21, braking resistor power P02.22, braking resistor heat dissipation		Set P02.21 according to the resistance value of the braking resistor; set the braking resistor power P02.22; P02.23 is generally set to 50
	➤ T	he braking is frequent,	
2. The power of the braking	a	nd the heat dissipation	Choose a braking resistor with
resistor is too small	0	f the braking resistor is	higher power
	to	oo small	

(34) Er.221 Forward travel limit switch not assigned

Fault occurrence conditions:

The return-to-zero mode needs to be connected to the forward travel limit switch, and the forward travel limit switch INFn.43 is not allocated in the DI configuration.

Fault reason			T	roublesh	nooting		
1. Unassigned forward travel	≻	Check the DI function	DI	fu	nction	assi	gnment
limit switch INFn.43		configuration	Forwa	ard	travel	limit	switch

parameters	INFn.43
------------	---------

(35) Er222 Reverse travel limit switch not assigned

Fault occurrence conditions:

The back-to-zero mode needs to be connected to the reverse stroke limit switch, and the reverse stroke limit switch INFn.44 is not allocated in the DI configuration.

Fault reason		Fault confirmation	Troubleshooting			
1. Unassigned reverse travel	V	Check the DI function	DI	function	assignment	
		configuration	Reve	erse stroke	limit switch	
limit switch INFn.44		parameters	INFn	.44		

(36) Er223 Failed to find origin

Fault occurrence conditions:

During the zero return process, the origin switch was not found

Fault reason		Fault confirmation	Tro	oublesh	ooting	
	٧	Check whether the				
1. Not connected to the origin		origin switch is	Correctly	wire	the	origin
switch		correctly connected to	switch			
		the DI				

(37) Er224 CAN bus state switch failed

Fault occurrence conditions:

During the enable process, the CAN bus state machine is switched to the pre-operational mode

Fault reason	Fault confirmation	Troubleshooting		
1. During the enabling	Check the enable	It is not possible to switch the		
process, the CAN bus state	process	CAN bus state machine to the		
machine is switched to the		pre-operational mode during the		
pre-operation mode		enabling process		

(38) Er.225 Unsupported CANopen bus operating mode

Fault occurrence conditions:

Unsupported CANopen bus operating mode

Fault reason	Fault confirmation	Troubleshooting				
1. Unsupported CANopen	A -	Unsupported CANopen bus				
bus operating modes		operating mode				

(39) Er.226 Absolute encoder in absolute mode, the number of turns overflows Fault occurrence conditions:

Absolute encoder in absolute mode, the number of turns overflows

Fault reason	Fault confirmation	Troubleshooting
1. The number of turns	▶ -	
overflows when the absolute		
encoder is in the absolute		-
value mode.		

(40) Er.227 Absolute encoder battery failure in absolute mode Fault occurrence conditions: After the battery is powered off, when the power is turned on for the first time, this fault will be reported, prompting the user that the absolute encoder battery is powered off and the multi-turn position information is lost. After connecting the battery, the fault will be automatically eliminated after reset.

Fault reason		Fault confirmation	Troubleshooting
1. The battery is out of power	A	Measuring encoder	Replace the battery and power
1. The ballery is out of power		battery voltage	on again

(41) Er.228 Inertia learning failed

Fault occurrence conditions:

When the self-learning habit is used, the frictional resistance is too large, and the self-learning current limit P02.36 is too small.

Fault reason	Fault confirmation	Troubleshooting
1. When the self-learning	Check P02.36	
habit is used, the frictional		
resistance is too large, and		Increase P02.36
the self-learning current limit		
P02.36 is too small.		
2. The inertia of the system is	 Check P07.33 	
too large, and the		
acceleration and deceleration		Increasing P07.33
time P07.33 of the learning		
habit is too small		
3. The gain setting is not	If the motor shakes	Increase P07.03, decrease
appropriate		P07.04

(42) Er.229 Full closed-loop parameter learning failed

Fault occurrence conditions:

During the full-closed-loop parameter learning process, the change of the position value of the second encoder is too small

Fault reason	Fault confirmation	Troubleshooting				
1. During the	Check the full	Ensure that during the full				
full-closed-loop parameter	closed-loop learning	closed-loop learning process,				
learning process, the change	process to see if the	the motor can drag the second				
of the position value of the	second encoder is	encoder to move, and there is				
second encoder is too small	moving normally	no slippage				

(43) Er.600 Motor overheating

Fault occurrence conditions:

Motor temperature is too high

Fault reason		Fault confirmation	Troubleshooting				
1. The load is too large, and	\checkmark	Measure motor	Need	to	а	larger	
the motor heats too seriously	temperature capacity motor						
2. The ambient temperature is	A	Detect the ambient	Reduc	e	ambient		
too high	temperature on site temperature						

(44) Er.601 DI function code is not assigned

Fault occurrence conditions:

DI function code is not assigned

Fault reason		Fault confirmation	Troubleshooting
1. The speed or torque source	А	Check if the DI	
AB switching is enabled but		configuration is	Configure DI compositiv
the AB switching function bit		correctly configured	Configure DI correctly
is not assigned.			

(45) Er.602 AI zero drift is too large

Fault occurrence conditions:

All zero drift setting P06.68 or Al2 zero drift setting P06.73 or Al3 zero drift setting P06.78 is greater than Al zero drift threshold P10.10

Fault reason	Fault confirmation	Troubleshooting
	Check whether the	Malza gura the analog input is
1. AI zero drift is too large	input analog quantity is	Make sure the analog input is
	normal	normal

(46) Er.603 Back to zero timeout

Fault occurrence conditions:

The zero return process exceeds the zero return timeout time P10.08

Fault reason		Fault confirmation	Troubleshooting			
1. The origin signal is not	\checkmark	Check whether the	Normal access to the zero			
properly connected	origin signal is normal return origin signal					

(47) Er.604 Motor rotation direction is wrong during self-learning

Fault occurrence conditions:

Motor rotation direction is wrong during self-learning

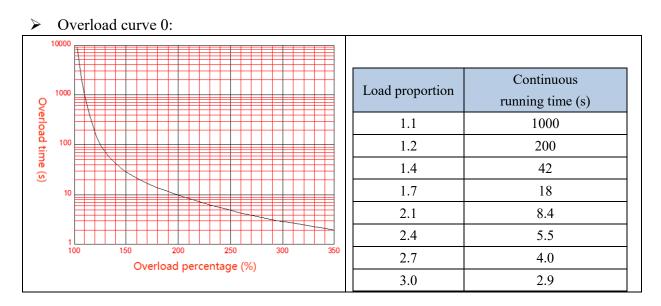
Fault reason		Fault confirmation	Troubleshooting			
1. The motor rotation	A	During self-learning,	Check whether the motor and			
direction is wrong during		check the rotation	encoder are normal			
self-learning		direction of the motor	cheoder are normal			
2. The UVW phase sequence	A	Confirm UVW Phase				
of the motor is connected		Sequence	Confirm UVW Phase Sequence			
incorrectly						

(48) Er.605 Absolute encoder battery alarm

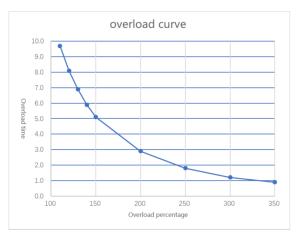
Fault occurrence conditions:

Fault reason	Fault confirmation	Troubleshooting
1. The absolute encoder works in absolute value mode, and the battery voltage is too low	 Check the battery voltage 	The absolute encoder works in absolute value mode, and the battery voltage is too low. If the battery is not needed, change the value of

					P00.4	1 to 3 to	o shield	d the fa	ult.


The absolute encoder works in absolute value mode, and the battery voltage is too low

7.1.4 Motor overload protection


The motor load ratio is defined as (torque output percentage Un013)/(overload value P10.02). The load ratio of the motor output and the time it can run continuously have the following relationship. That is, the larger the motor load ratio, the shorter the continuous running time. Once the continuous running time is exceeded, the motor overload fault will be reported.

Motor load proportion = $\frac{\text{Torque output percentage Un013}}{\text{Overload value P10.02}}$ Torque output percentage = $\frac{\text{actual current}}{\text{Drive rated current}} \times 100\%$

Different overload curves can be selected by parameter overload curve selection P10.11. This function is only valid when the ARM firmware version is 0.104 and above.

> Overload curve 1:

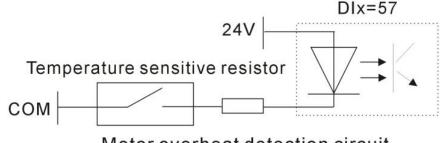
Load proportion	Continuous running time (s)
1.1	9.7
1.2	8.1
1.4	5.9
1.5	5.1
2.0	2.9
2.5	1.8
3.0	1.2
3.5	0.9

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P10.02	Overload value	0~3276.7	%	Set overload protection point	anytime	Immediately	100	RW

7.1.5 Braking resistor overload protection

According to the actual set resistance value and resistance power, Brake according to the power set in P02.22. For 220V drives, when the DC bus voltage is greater than 380VDC, the dynamic braking circuit can be started by setting parameters. For 380V drives, when the DC bus voltage is greater than 680VDC, the dynamic braking circuit can be activated by setting parameters. It can brake continuously for 33s under the condition of rated power and zero heat dissipation coefficient. If the braking time is exceeded, an overload fault of the braking resistor will be reported. When the braking resistor does not work, if the heat dissipation coefficient. If the heat according to the set heat dissipation coefficient. If the heat dissipate heat according to the set heat dissipation coefficient. If the heat dissipation coefficient is set to 100%, the heat can be dissipated from the maximum heat to 0 in 10s. In general, please refer to the table below for the selection of braking resistors. The actual resistance used needs to be calculated according to the field conditions.


	Naiza filtar	Noise filter Rated		Recommended Brake Resistor					
input power			Resistance	Resistor Power	Minimum automatic				
	(A)	current (A)	value (Ω)	(W)	resistance (Ω)				
Three phase	5	3	350	150	25				
Three-phase 220V	5	6	150	300	25				
220 V	10	12	80	600	45				
	10	7	250	600	75				
	20	12	150	1000	75				
	20	16	100	1500	30				
	20	20	80	2000	20				
	30	27	60	2500	20				
Three phase	30	32	40	3000	15				
Three-phase	40	38	32	5500	14				
380V	50	45	27	6500	14				
	70	60	20	9000	14				
	80	75	16	12000	10				
	100	90	13	13000	10				
	120	110	10	18000	7.5				
	120	150	8.2	23000	7.5				

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P02.21	Braking resistor resistance	0~3276.7	Ω	It is used to set the resistance value of the braking resistor of the driver.	anytime	Immediately	0	RW
P02.22	Rated power of braking resistor	0~3276.7	KW	Power used to set the braking resistor of the drive	anytime	Immediately	0	RW
P02.23	Braking resistor heat dissipation coefficient	0~100	%	Set the heat dissipation coefficient of the resistor when using a braking resistor. If set to 100%. Then 10s can drop from the maximum heat to 0.	anytime	Immediately	50	RW

Related parameters are as follows.

7.1.6 Motor overheat protection

Set the DI function bit to INFn.57, and connect an external motor overheat detection circuit. The motor overheat detection circuit adopts PTC protection. The schematic diagram is as follows. When the output of the external motor overheat detection circuit pulls this DI to be valid, the driver reports the motor overheat fault Er.600.

Motor overheat detection circuit

7.1.7 Motor phase loss protection

The servo drive has input phase loss and output phase loss protection functions, and it is determined by P10.07 whether to enable or not. Input phase loss means that the input voltage R, S, T of the servo is connected to one less phase. Output phase loss means that the motor lines U, V and W are connected to one less phase. Parameter P10.07 has 16 bits, from the 0th to the 15th respectively. When the 0th bit is 1, the output phase loss protection is enabled, and when the 1st bit is 1, the input phase loss protection is enabled. That is, when P10.07=0, no phase loss protection is enabled; when P10.07=1, output phase loss protection is enabled; when P10.07=2, input phase loss protection is enabled; when P10.07=3, the input and output phase loss is enabled at the same time.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P10.07	Phase loss protection settings	0~32767	_	When the 0th bit is 1, the output phase loss protection is enabled; when the 1st bit is 1, the input phase loss protection is enabled.	anytime	Immediately	3	RW

7.2 Holding brake output function

The holding brake is a mechanism that prevents the servo motor shaft from moving and keeps the motor locked in position when the servo drive is in a non-operational state, so that the moving part of the machine will not move due to its own weight or external force.

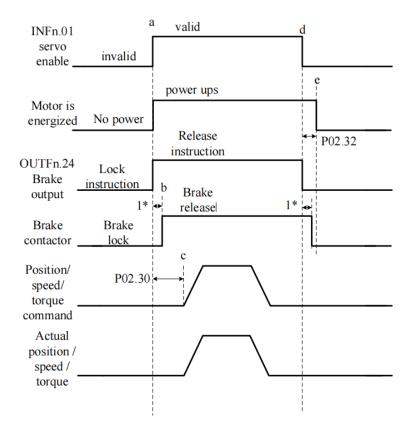
For a servo motor with a brake, if the brake output OUTFn.24 is assigned to a terminal, the brake function will be automatically enabled. It should be noted that the effective level of the brake function terminal can only be set to a low level, otherwise the brake will be released during the power-on process.

The related output function numbers are as follows.

 Function
 Bit description

bits	Bit description				
OUTFn.24	Holding brake output.				
	When it is invalid, the power supply of the brake is disconnected, the brake acts, and the motor				
	is in a position lock state;				
	When it is valid, the brake power is turned on, the brake is released, and the motor can rotate.				

7.2.1 Braking process


The brake is divided into two situations, the first is the static braking process, and the second is the dynamic braking process.

The braking sequence in static state refers to the braking process when the motor speed is lower than 20rpm at the moment when the off-enable command is input (that is, INFn.01 switches from ON to OFF).

The braking sequence under dynamic conditions refers to the braking process when the motor speed is higher than 20rpm at the moment when the disable enable command is input (that is, INFn.01 switches from ON to OFF).

Static brake process

The moment when INFn.01 switches from ON to OFF, the brake process when the motor speed is lower than 20rpm is as follows.

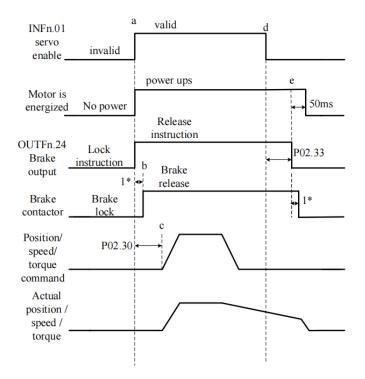
Initially, the holding brake is locked. At time a, the PLC gives the servo enable signal (INFn.01), the servo immediately energizes the motor after receiving the enable signal, the motor locks, and issues the brake release command (OUTFn.24) at the same time, waiting for 1* this period of time Then, at time b, the brake contactor action is completed and the brake is released. The servo driver starts to receive the enable signal, and after P02.30 ms to time c, it starts to receive the position/speed/torque command, and the motor starts to rotate. After the motor rotates and reaches time d, the PLC sends out the enable signal. When the servo detects that the motor speed is lower than 20rpm, it executes the static brake process and immediately sends the brake lock signal. After a delay of 1* time, the brake contactor acts. After completion, the brake is locked, and then at time e, the motor is powered off.

Note: 1* is the time from the servo sending the brake signal to the actual brake contactor action.

P02.32 is the power-on time of the driver after the brake is locked to prevent the mechanical moving part from moving due to its own weight or external force after the servo is powered off.

P02.30 is the delay time from when the drive is enabled to when the input position/speed/torque command is valid.

<u>Note: After the drive is enabled, it is forbidden to input any torque or speed</u> <u>command within the time range of P02.30. Likewise, the position/speed/torque</u> <u>commands must brake the motor when the motor is disabled.</u>


Brake process under dynamic conditions

When the servo enable is turned from ON to OFF, if the current motor speed is greater than 20rpm, the drive will execute the dynamic brake process. After the servo enable is turned off, the servo always detects the following two conditions, and if any one of the conditions is satisfied, it outputs the brake lock signal.

a. The filtered motor speed (P04.21) is lower than the brake zero speed threshold (P02.31);

b. Start timing when the servo enable turns from ON to OFF, and the time exceeds the effective maximum waiting time of the holding brake (P02.33).

After outputting the brake lock signal, the servo will continue to be powered for 50ms.

VECTOR

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P02.30	After the brake	0~32767	ms	The servo	anytime	Immediately	250	RW
	release command is			drive starts to				
	output, the command			receive the				
	input is delayed			enable signal,				
				and after the				
				time of				
				P02.30, it				
				starts to				
				receive the				
				position/spee				
				d/torque				
				command,				
				and the motor				
				starts to				
				rotate.				
P02.31	Brake zero speed	0~32767	rpm	When the	anytime	Immediately	30	RW
	threshold			motor speed				
				is lower than				
				P02.31, the				
				brake lock				
				signal is				
				output			1.70	
P02.32	Power-on hold time	0~32767	ms	After	anytime		150	RW
				outputting the				
				brake lock				
				signal, the				
				servo will				
				continue to				
				maintain the				
				power-on				
				time P02.32.				
				This				
				parameter is				
				only used				
				when the				
				brake output				
				function is				
				valid.				

VECTOR

P02.33	The	maximum	0~32767	ms	When the	anytime	Immediately	500	RW
	waiting	time of the			servo enable				
	brake sig	gnal output			is turned from				
					ON to OFF,				
					the timing				
					starts. If the				
					time exceeds				
					P02.33, the				
					brake lock				
					signal is				
					output.				

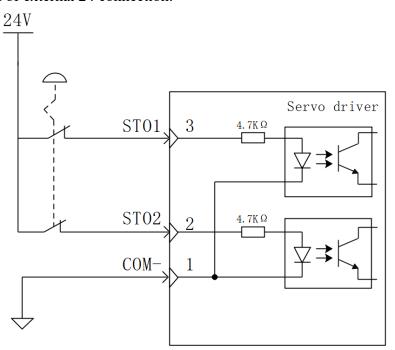
7.3 Description of dynamic braking function

The servo driver of VEC E1 and E2 structure types (see 2.1.1 Driver Appearance) has the function of dynamic braking inside. After the driver is powered on, the servo driver will detect the DC bus voltage in real time. When the DC bus voltage reaches a specific value, the servo driver will short-circuit the U and V phases in the motor phase sequence through the pull in and turn off of the relay.

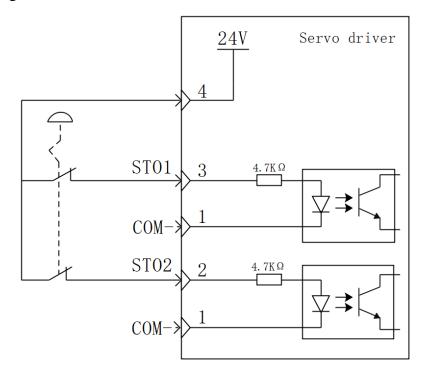
When the servo driver detects that the DC bus voltage is more than 70% of the rated voltage, the relay will be disconnected. At this time, the U and V phases are open circuited. When it detects that 65%~70% of the rated voltage, the relay will remain in the previous working state. If the relay was pulled in before, it will also remain in the pulled in state. If the previous state is disconnected, it will also remain in the disconnected state. When it detects that the DC bus voltage is less than 65% of the rated voltage, The driver will short-circuit the U and V phases of the motor phase sequence through the relay pickup, thus greatly reducing the braking time.

7.4 Introduction of STO safety terminal

Note: The driver with STO function needs to be ordered, and this function is non-standard, but the general servo driver does not have this function.


Pin number	dafult	describe						
1	COM	STO reference ground						
2	STO2	Control input of STO2						
3	STO1	Control input of STO1						
4	24V	24V internal power supply						

Pin description of servo STO safety terminal


Two independent inputs are configured as two-channel inputs of STO function: STO1/STO2.

In order to be more humanized in the debugging process, pins with power supply voltage (+24V) are added.

The STO function of CN4 port is turned on by default. If a safety circuit is installed, but STO function is not needed, it is necessary to connect STO1/STO2 to 24V. Example diagram of external 24 connection:

Example diagram of internal 24V connection:

7.5 Instructions for the use of absolute value encoder

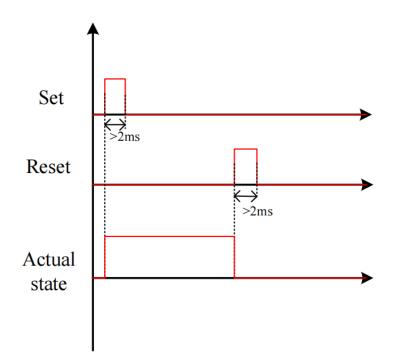
The absolute value encoder not only detects the position of the motor within one rotation, but also counts the number of rotations of the motor. It can memorize 16-bit multi-turn data, and the single-turn resolution has two types: 17-bit and 24-bit. A single revolution with 17-bit resolution produces 131,072 encoded values, and a single revolution with 24-bit resolution produces 16,777,216 encoded values. The absolute value system has incremental use mode and absolute value use mode, which can be modified by P00.18. Incremental use mode uses the absolute encoder as an incremental encoder, without battery, without memorizing the number of turns, and it needs to return to zero every time. In the absolute value mode, the battery needs to be added, and the number of turns will also be memorized. It only needs to perform the zero return once, but the motor stroke is limited. Specifically, after the encoder is connected to the battery for the first time, the motor will be based on this. , the maximum can only be rotated forward 32767 circles, and the maximum can only be reversed 32767 circles, otherwise the encoder overflow fault will be reported.

For the absolute value use mode of the absolute value system, when the battery is powered on for the first time, the drive will report Er.227 (battery power failure fault). Record the mechanical zero offset (that is, the distance between the mechanical zero position and the encoder zero position). At this time, the mechanical position and the encoder position have the following relationship:

Mechanical position = Encoder position - Mechanical zero point offset

It should be noted that when using an incremental encoder, the encoder position will automatically return to zero after returning to zero, that is, the mechanical position and the encoder position are the same after returning to zero. However, using an absolute encoder, after returning to zero, the encoder position does not return to zero. At this time, the mechanical position and the encoder position are different from the mechanical zero offset. The command value in the multi-segment position command mode refers to the mechanical position, and the unit is the user position unit.

When the battery voltage is too low, the driver will report Er.605 (battery voltage is too low fault). At this time, the battery needs to be replaced when the driver is powered on.


Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P00.08	Encoder type	0~12	ms		Stop to	Reset takes	0	RW
	0:Incremental encoder				setting	effect		
	ABZ with UVW;							
	1:17-bit absolute							
	value of Tamagawa							
	multi-turn;							
	2:24-bit Nikon							
	multi-turn absolute							

			1	1	1		1	
	value;							
	3:reserve							
	4:Rotary encoder to							
	incremental;							
	5:Line-saving							
	encoder;							
	6:23-bit absolute							
	value of Tamagawa							
	multi-turn;							
	7:23-bit absolute							
	value of Tamagawa							
	lap;							
	8:17-bit Tamagawa							
	single lap, absolute							
	value;							
	9:Incremental encoder							
	ABZ without UVW;							
	10:12-bit SPI							
	resolver;							
	11:14-bit resolver;							
	12:BISS-C							
P00.18	Absolute value	0~1	-		anytime	Immediately	0	RW
	system usage patterns	-			2		-	
	0:Incremental mode							
	1:Absolute value							
	mode							
P00.37	Mechanical zero	0~	_		/	/	/	RO
1 00.57	offset low 32 bits	42949672					,	Ro
	011300 10W 52 0113	96						
P00.39	Mechanical zero	90 0~	_		/	/	/	RO
1 00.37	offset high 32 bits	0∼ 42949672			/	/	,	KU
	onset nigh 52 ons	42949072 96						
P00.41	Absolute encoder	90 0~ 3			/	/	/	RO
r00.41		0~ 3	-		/	/	/	ĸu
	battery failure alarm shield							
	BIT0: Shield battery							
	alarm							
	BIT1: Shield battery							
D 02.00	failure	01474004			,	,		D O
P03.90	actual mechanical	-21474836	user		/	/	0	RO
	position	48~	positi					
		21474836	on					
		48	unit					

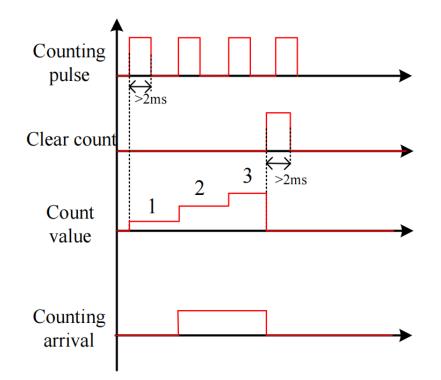
7.6 Other auxiliary functions

7.6.1 Internal flip-flop function

There is a software trigger inside the servo. The software trigger is realized by MCU software scanning. The trigger has a reset (clear) input function bit INFn.59, a set input function bit INFn.60, and a status output function bit. OUTFn.30. The timing of the three is shown in the figure below. It should be noted that the internal trigger is implemented by software scanning, therefore, the pulse width of all trigger signals must be greater than 2ms.

Related	input	function	bits.
---------	-------	----------	-------

Function bits	Bit description
INFn.59	The rising edge resets the output OUTFn.30 of the internal flip-flop
INFn.60	The rising edge sets the output OUTFn.30 of the internal flip-flop


Related output function bits.

Function bits	Bit description
OUTFn.30	The output of the internal flip-flop

7.6.2 Software counter function

A software counter is implemented inside the servo. The software counter is realized by MCU software scanning. The counter has a count pulse input bit INFn.61, a count clear input

function bit INFn.62, and a status output function bit OUTFn.31. The timing of the three is shown in the figure below, where the count arrival register P02.39 is set to 2. The count value P02.37 counts the pulse signal. When the count value P02.37 reaches the count reach value P02.39, the count reach signal OUTFn.31 is valid. The count value clear pulse INFn.62 clears the count value. It should be noted that the internal counter is implemented by software scanning, therefore, the pulse width of all trigger signals must be greater than 2ms.

Related input function bits.

Function bits	Bit description
INFn.61	Count pulse input of internal software counter
INFn.62	Rising edge clears the count value of the internal software counter

Related output function bits.

Function bits	Bit description
OUTFn.31	Internal counter counts up to output

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P02.37	Internal software	0~214748	-	This value is	-	-	-	RO
	counter count value	3647		read-only.				
				Double-byte				
				parameter,				

VECTOR

			power-down retention				
nternal software counter reached value	0~214748 3647	_	retention Double-byte parameter. When the count value P02.37 reaches the count reach value P02.39, the count reach signal OUTFn.31 is valid.	anytime	Immediately	0	RW

7.6.3 U disk update/save parameter function

The servo can save all the parameters inside the servo to the U disk through the USB interface, or update the parameters in the U disk to the servo through the USB interface.

The operation steps for saving parameters to the U disk are:

(1) Set the startup option P02.09=1.xx (save the servo parameters to the U disk before startup, the file name is xx, xx can be any number)

2 Insert U disk

③ After restarting the servo again, the parameters will be saved to the U disk, and the file name is fixed as PARAxx.CSV. If there is a PARAxx.CSV file in the U disk, it will be automatically replaced. The servo will enter the rdy state only after the file is saved.

The operation steps for updating parameters from the U disk are:

① First set the startup option P02.09=2.xx (update the parameters in the U disk to the servo before startup, the file name is xx, and xx is the number in the parameter file name).

2 Insert U disk

③ After restarting the servo again, the parameters in the PARAxx.CSV file in the U disk will be updated to the servo, and the servo will enter the rdy state after completion.

Note: U disk must be formatted as FAT32 file system to operate

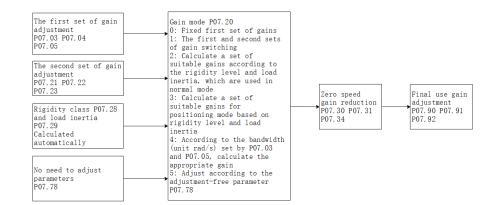
Chapter 8 Adjustment

8.1 Control loop gain adjustment

Control loop gains include velocity loop proportional gain, velocity loop integral gain, and position loop proportional gain. There are six types of control loop gain adjustment modes. The gain can be adjusted by selecting one of the modes. The first type, the first set of gains is fixed. The second type, the first set of gain and the second set of gain are switched. The third is to automatically calculate a suitable set of gains for normal mode according to the set stiffness level. Fourth, according to the set rigidity level, a set of suitable gains for positioning mode is automatically calculated. The fifth type is to automatically calculate the gain by setting the speed loop and position loop bandwidth. The sixth type, adjust according to the adjustment-free parameter P07.78.

The first type, the first set of gains is fixed: in this mode, the user can manually modify the three values of P07.03, P07.04, and P07.05 to optimize the control performance.

The second type, switching between the first set and the second set of gains: switch between the first set of gains and the second set of gains according to the switching condition P07.24 and other switching related parameters.


The third and fourth modes automatically calculate a set of suitable gains according to the set rigidity level and the self-learned load inertia. The difference between the two is that the gain calculated by the third mode is mainly used for ordinary mode, the gain calculated in the 4th mode is mainly used in the positioning mode.

The fifth type is to automatically calculate the gain by setting the speed loop and position loop bandwidth.

The sixth type, the adjustment-free function. Adjust the gain according to the adjustment-free parameter P07.78.

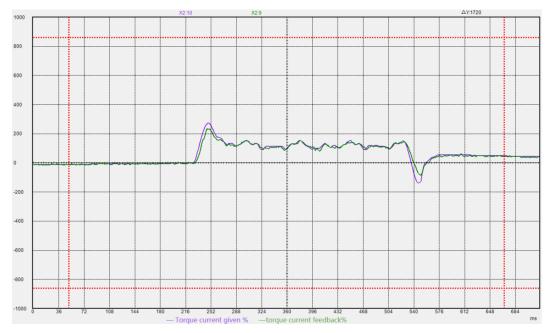
When using the 3rd/4th/5th/6th gain adjustment method, you must set the motor rated current P00.01, the motor rated torque P00.25, the motor rotor inertia P00.27, the load inertia ratio 07.29, and the drive rated current P01. 03.

In addition, the servo driver has a zero-speed gain attenuation/amplification function, that is, when the motor speed is less than the zero-speed attenuation threshold P07.32, the speed loop proportional gain/integral gain, position loop proportional gain, and current loop proportional/integral gain can be reduced or increased. up to a certain percentage. The zero-speed gain attenuation can effectively avoid the high-frequency vibration of the motor at zero speed. The zero-speed gain amplification can effectively speed up the positioning time at low speed.

Gain switching example: when the gain switching condition P07.24=2, the gain switching level P07.25=2000, and the gain switching time lag P07.26=100, the gain switching conditions are: take the speed command as the basic switching condition, the speed command When rising, when the speed command is greater than 2100 (P07.25+P07.26), switch to the second set of gains; when the speed command decreases, when the speed command is less than 1900 (P07.25-P07.26), switch back to the first set of gains gain.

Remarks: The units of parameters P07.25 and P07.26 change according to the selection of P07.24 (gain switching condition).

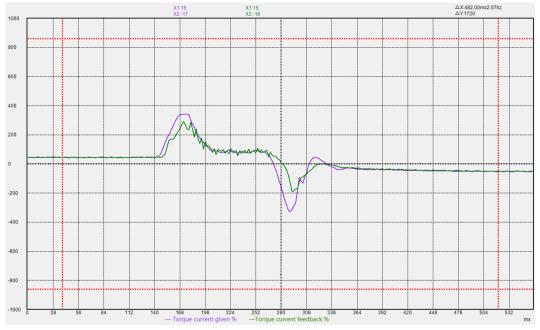
Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method		
	Current loop proportional	-767	-	anytime	Immediately	100	RW		
P07.01	gain								
P07.02	Current loop integral gain	0~32767	-	anytime	Immediately	20	RW		
P07.02									
	Speed loop proportional	0~32767	-	anytime	Immediately	600	RW		
	gain								
P07.03	Set the proportional gain of the speed loop. This parameter determines the response of the speed								
107.05	loop. The larger the value, the faster the response of the speed loop. However, if it is set too large,								
	it may cause vibration, so attention should be paid to it. In position mode, if you want to increase								
	the position loop gain, you	need to increa	se the speed	l loop gain	at the same t	ime.			
P07.04	Speed loop integral gain	0~32767	-	anytime	Immediately	50	RW		
P07.40	Speed loop differential	0~32767	-	anytime	Immediately	0	RW		
107.40	gain								
	Position loop	0~32767	-	anytime	Immediately	200	RW		
	proportional gain								
P07.05	Sets the proportional gain	of the position	n loop. This	paramete	r determines	the responsi	veness of		
	the position loop. Setting	a larger posit	ion loop ga	in can sh	orten the pos	itioning time	e. But be		
	careful: setting too large ma	ay cause vibra	tion.						


	Demonstrange of monition	0 100 00/			I	1000/	DW		
	Percentage of position	0~100.0%	-	anytime	Immediately	100%	RW		
P07.06	loop maximum output								
	speed	 _	: 4: 1		4				
	Sets the maximum speed pe	-	ne position			0	DUV		
P07.07	Output voltage filter time	0~32767	-	anytime	Immediately	0	RW		
	Set the filter time of the vol		the motor				1		
	Torque feedforward filter	0-63		anytime	Immediately	10	RW		
P07.08	time constant								
	Set the torque feedforward		stant, the gr		-				
	Speed feedforward filter	0-63		anytime	Immediately	10	RW		
P07.09	time constant								
107.09									
	Set the speed feedforward f	ilter time cons	stant. The la	rger the in	ertia, the large	er the value.			
	Torque feedforward	0~32767	-	anytime	Immediately	0	RW		
D07 10	coefficient								
P07.10	In non-torque control mode, the torque feedforward signal is multiplied by P07.10, and the result								
	is called torque feedforward	d, which is use	ed as a part o	of the torq	ue command.				
P07.11	Speed feed forward	0~300.0	-	anytime	Immediately	50.0	RW		
	coefficient								
	In position control mode an	d full closed l	oop function	n, multiply	the speed fee	edforward si	gnal by		
	P07.11, and the result obtai	ned is called s	peed feedfo	rward, wh	ich is a part of	f the speed c	ommand.		
	Torque filter type	0~4	-	anytime	Immediately	0	RW		
	0-low pass filtering								
	1-notch filter								
D07 10	2-No filtering								
P07.12	3-Low pass and notch								
	cascade								
	4-Automatic calculation								
	of filter parameters								
	Gain adjustment mode	0~5	_	anytime	Immediately	0	RW		
	0-Fixed first set of gains: P	07.03 to P07.0)5						
	1-First and second set gain	switching							
P07.20	2-Determined according to	rigidity level]	P07.28 and 1	load inerti	a P07.29, used	d in normal i	mode		
	3-Determined according to	e .							
	4-Gain is automatically cale					-	0		
	5-No adjustment required,								
	The second set of speed	0~32767	-	anytime	Immediately	800	RW		
P07.21	loop proportional gain	0 02101		<i>J</i>		000			
	The second set of speed	0~32767		anytime	Immediately	10	RW		
P07.22	loop integral gain	0-52101	-	unythic	minediatery	10	17.44		
	The second set of	0~32767		anytime	Immediately	200	RW		
P07.23		0~32707	-	anytime	minediatery	200	IX VV		
	position loop								

	proportional gain										
	Gain switching condition	0~7	-	anytime	Immediately	0	RW				
	0-IO switching; INFn.41 sv	vitching, use t	he second se	et of gains	when valid	L					
	1-When the torque commar	1-When the torque command is large, switch to the second set of gains; when the torque command									
	is greater than (gain switching level P07.25 + gain switching delay P07.26), switch to the second										
	set of gains; torque comman	nd is less than	(P07.25- P0	07.26), swi	itch back to th	e first set of	f gains.				
	2-Switch to the second set of	set of gains; torque command is less than (P07.25- P07.26), switch back to the first set of gains. 2-Switch to the second set of gains when the speed command is large; switch to the second set of									
	gains when the speed comm	gains when the speed command is greater than (P07.25+P07.26); switch back to the first set of									
	gains when the speed comm	nand is less th	an (P07.25-]	P07.26) ga	uin.						
	3-Switch to the second set of	of gains when	the accelera	tion comn	nand is large;	switch to the	e second				
	set of gains when the accele	eration comma	and is greate	er than (P0	7.25+P07.26)	; switch bac	k to the				
P07.24	first set of gains when the a	cceleration co	mmand is le	ess than (P	07.25-P07.26).					
P07.24	4-Switch to the second set of	of gains when	the speed en	ror is larg	e; switch to th	e second set	t of gains				
	when the speed error is grea	ater than (P07	.25+P07.26)	; switch b	ack to the firs	t set of gains	s when				
	the speed error is less than	(P07.25-P07.2	26)								
	5-Switch to the second set of	5-Switch to the second set of gains when the position error after filtering is large; switch to the									
	second set of gains when the position error after filtering is greater than (P07.25+P07.26); Switch										
	back to the first set of gains										
	6-If positioning is completed, switch to the second set of gains, and switch to the first set of gains										
	if no positioning is completed.										
	7-Motor phase switching gain; when the motor phase is in the range of (gain switching level \pm										
	gain switching time lag), switch to the second set of gains, and other phases switch to the first set										
	of gains; the motor phase can be viewed through P09.39										
					other phases s		e first set				
					Immediately	0	RW				
	of gains; the motor phase ca	an be viewed 1 0~32767	hrough P09 -	.39 anytime	Γ		1				
P07.25	of gains; the motor phase ca Gain switching level	an be viewed t 0~32767 ne gain switch	through P09 - ing conditio	.39 anytime n.	Immediately	0	RW				
P07.25	of gains; the motor phase caGain switching levelSet the level that satisfies thThe actual switching action	an be viewed 0~32767 ne gain switch is affected by	through P09 - ing conditio the two con	.39 anytime n. nditions of	Immediately	0 e delay. Acc	RW cording to				
P07.25	of gains; the motor phase caGain switching levelSet the level that satisfies the	an be viewed 0~32767 ne gain switch is affected by	through P09 - ing conditio the two con	.39 anytime n. nditions of	Immediately	0 e delay. Acc	RW cording to				
P07.25	of gains; the motor phase ca Gain switching level Set the level that satisfies th The actual switching action the different gain switching	an be viewed to 0~32767 ne gain switch is affected by conditions, th	through P09 - ing conditio the two con	.39 anytime n. nditions of vitching lev	Immediately Elevel and tim vel will chang	0 e delay. Acc e according	RW cording to ly.				
P07.25	of gains; the motor phase caGain switching levelSet the level that satisfies theThe actual switching actionthe different gain switchingGain switching time	an be viewed to 0~32767 ne gain switch is affected by conditions, th	through P09 - ing conditio the two con	.39 anytime n. nditions of vitching lev	Immediately Elevel and tim vel will chang	0 e delay. Acc e according	RW cording to ly.				
P07.25	of gains; the motor phase caGain switching levelSet the level that satisfies theThe actual switching actionthe different gain switchingGain switching time	an be viewed to $0 \sim 32767$ the gain switch is affected by conditions, the $0 \sim 32767$	through P09 - ing conditio the two con the unit of sw -	.39 anytime n. nditions of vitching lev anytime	Immediately Elevel and tim vel will chang	0 e delay. Acc e according	RW cording to ly.				
	of gains; the motor phase caGain switching levelSet the level that satisfies theThe actual switching actionthe different gain switchingGain switching timedelay	an be viewed to $0 \sim 32767$ ne gain switch is affected by conditions, the $0 \sim 32767$ fies the gain s	through P09 - ing conditio the two con ne unit of sw - witching co	.39 anytime n. nditions of vitching lev anytime ndition.	Immediately Flevel and tim vel will chang Immediately	0 e delay. Acc e according 0	RW cording to ly. RW				
	of gains; the motor phase caGain switching levelSet the level that satisfies theThe actual switching actionthe different gain switchingGain switching timedelaySet the time delay that satisfies	an be viewed to 0~32767 the gain switch a is affected by conditions, th 0~32767 fies the gain s l switching ac	through P09 - ing conditio the two con the unit of sw - witching co tion is jointl	.39 anytime n. nditions of ritching lev anytime ndition. y affected	Immediately Flevel and tim vel will chang Immediately	0 e delay. Acc e according 0 onditions of	RW cording to ly. RW level and				
	of gains; the motor phase caGain switching levelSet the level that satisfies the The actual switching action the different gain switchingGain switching time delaySet the time delay that satis The generation of the actual	an be viewed to $0 \sim 32767$ the gain switch a is affected by conditions, th $0 \sim 32767$ fies the gain s l switching ac e different gai	through P09 - ing conditio the two con the unit of sw - witching co tion is jointl	.39 anytime n. nditions of ritching lev anytime ndition. y affected	Immediately Flevel and tim vel will chang Immediately	0 e delay. Acc e according 0 onditions of	RW cording to ly. RW level and				
	of gains; the motor phase caGain switching levelSet the level that satisfies theThe actual switching actionthe different gain switchingGain switching timedelaySet the time delay that satisThe generation of the actuatime delay. According to the	an be viewed to $0 \sim 32767$ the gain switch a is affected by conditions, th $0 \sim 32767$ fies the gain s l switching ac e different gai	through P09 - ing conditio the two con the unit of sw - witching co tion is jointl	.39 anytime n. nditions of ritching lev anytime ndition. y affected	Immediately Flevel and tim vel will chang Immediately	0 e delay. Acc e according 0 onditions of	RW cording to ly. RW level and				
	of gains; the motor phase caGain switching levelSet the level that satisfies thThe actual switching actionthe different gain switchingGain switching timedelaySet the time delay that satisThe generation of the actuatime delay. According to thedelay will change according	an be viewed to $0 \sim 32767$ The gain switch a is affected by a conditions, th $0 \sim 32767$ fies the gain s l switching ac e different gain gly.	through P09 - ing conditio the two con the unit of sw - witching co tion is jointl n switching	.39 anytime n. nditions of vitching lev anytime ndition. y affected conditions	Immediately Flevel and tim vel will chang Immediately by the two cos, the unit of th	0 e delay. Acc e according 0 onditions of he switching	RW cording to ly. RW level and g time				
	of gains; the motor phase caGain switching levelSet the level that satisfies the The actual switching action the different gain switchingGain switching time delaySet the time delay that satis The generation of the actual time delay will change accordingGain switching time	an be viewed to $0 \sim 32767$ and gain switch a is affected by conditions, the $0 \sim 32767$ fies the gain so l switching act e different gain gly. $0 \sim 32767$	through P09 - ing conditio the two con the unit of sw - witching co tion is jointl n switching ms	.39 anytime n. nditions of vitching lev anytime ndition. y affected conditions anytime	Immediately Flevel and tim vel will chang Immediately by the two co s, the unit of the Immediately	0 e delay. Acc e according 0 onditions of he switching 10	RW cording to ly. RW level and g time RW				
P07.26	of gains; the motor phase caGain switching levelSet the level that satisfies thThe actual switching actionthe different gain switchingGain switching timedelaySet the time delay that satisThe generation of the actuatime delay. According to thedelay will change accordingGain switching timeconstant	an be viewed to $0 \sim 32767$ The gain switch a is affected by a conditions, the $0 \sim 32767$ fies the gain so a switching acc the different gain gly. $0 \sim 32767$ TP07.23 (second	through P09 - ing conditio 7 the two con the unit of sw - witching co tion is jointl n switching ms md position	.39 anytime n. nditions of vitching lev anytime ndition. y affected conditions anytime	Immediately Flevel and tim vel will chang Immediately by the two co s, the unit of the Immediately is much large	0 e delay. Acc e according 0 onditions of he switching 10 r than P07.0	RW cording to ly. RW level and g time RW 05 (first				
P07.26	of gains; the motor phase caGain switching levelSet the level that satisfies the The actual switching action the different gain switchingGain switching time delaySet the time delay that satis The generation of the actual time delay. According to the delay will change accordingGain switching time constantIn position control mode, if	an be viewed to $0 \sim 32767$ The gain switch a is affected by a conditions, the $0 \sim 32767$ fies the gain so a switching acc the different gain gly. $0 \sim 32767$ TP07.23 (second	through P09 - ing conditio 7 the two con the unit of sw - witching co tion is jointl n switching ms md position	.39 anytime n. nditions of vitching lev anytime ndition. y affected conditions anytime	Immediately Flevel and tim vel will chang Immediately by the two co s, the unit of the Immediately is much large	0 e delay. Acc e according 0 onditions of he switching 10 r than P07.0	RW cording to ly. RW level and g time RW 05 (first				
P07.26	of gains; the motor phase caGain switching levelSet the level that satisfies the The actual switching action the different gain switchingGain switching time delaySet the time delay that satis The generation of the actual time delay. According to the delay will change according Gain switching time constantIn position control mode, if position loop gain), set the	an be viewed to $0 \sim 32767$ The gain switch a is affected by a conditions, the $0 \sim 32767$ fies the gain so a switching acc the different gain gly. $0 \sim 32767$ TP07.23 (second	through P09 - ing conditio 7 the two con the unit of sw - witching co tion is jointl n switching ms md position	.39 anytime n. nditions of vitching lev anytime ndition. y affected conditions anytime	Immediately Flevel and tim vel will chang Immediately by the two co s, the unit of the Immediately is much large	0 e delay. Acc e according 0 onditions of he switching 10 r than P07.0	RW cording to ly. RW level and g time RW 05 (first				
P07.26	of gains; the motor phase caGain switching levelSet the level that satisfies the The actual switching action the different gain switchingGain switching time delaySet the time delay that satis The generation of the actual time delay. According to the delay will change accordingGain switching time constantIn position control mode, if position loop gain), set the generated.	an be viewed to $0 \sim 32767$ The gain switch a is affected by a conditions, the $0 \sim 32767$ fies the gain so a switching acc the different gain gly. $0 \sim 32767$ TP07.23 (second time for switch	through P09 - ing conditio 7 the two con the unit of sw - witching co tion is jointl n switching ms md position	.39 anytime n. nditions of vitching lev anytime ndition. y affected conditions anytime loop gain) 07.05 to P	Immediately Flevel and tim vel will chang Immediately by the two co s, the unit of the Immediately is much large 07.23 after the	0 e delay. Acc e according 0 onditions of he switching 10 r than P07.0 e switching	RW cording to ly. RW level and g time RW 05 (first action is				
P07.26	of gains; the motor phase carGain switching levelSet the level that satisfies the The actual switching action the different gain switchingGain switching time delaySet the time delay that satis The generation of the actual time delay. According to the delay will change according Gain switching time constantIn position control mode, if position loop gain), set the generated.Rigidity level	an be viewed to $0 \sim 32767$ The gain switch a is affected by a conditions, the $0 \sim 32767$ fies the gain so a switching acc the different gain gly. $0 \sim 32767$ TP07.23 (second time for switch	through P09 - ing condition the two cont the two cont the unit of sw - witching cont tion is jointly ms ms nd position 1	.39 anytime n. nditions of vitching lev anytime ndition. y affected conditions anytime loop gain) 07.05 to P anytime	Immediately Flevel and tim vel will chang Immediately by the two co s, the unit of the Immediately is much large 07.23 after the Immediately	0 e delay. Acc e according 0 onditions of the switching 10 r than P07.0 e switching 10	RW cording to ly. RW level and g time RW 05 (first action is RW				

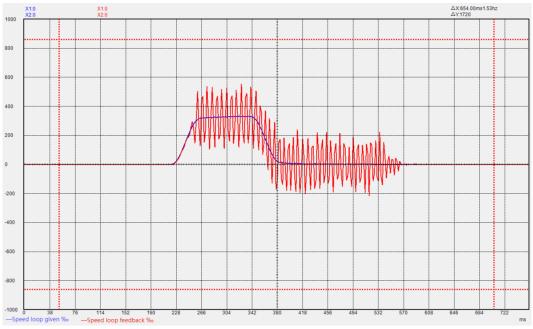
		[1			
P07.30	Zero speed speed gain reduction/amplification	0~3276.7	%	anytime	Immediately	50.0	RW
P07.31	Zero-speed position gain	0~3276.7	%	anytime	Immediately	100.0	RW
	reduction/amplification						
P07.34	Zero-speed current gain reduction/amplification	0~3276.7	%	anytime	Immediately	100.0	RW
	Zero speed decay threshold	0~32767	rpm	anytime	Immediately	10	RW
P07.32	When the rotation speed i	s less than th	is value th	e actual a	ctive speed lo	on proporti	onal gai
107.52	integral gain, position loop				-		-
	attenuated/amplified accord			-		gam mogra	i gaili a
	Inertia self-learning	0~32767	ms	anytime	Immediately	500	RW
P07.33	acceleration and	0~32707	1115	anytime	minediatery	500	IX VV
107.33							
	deceleration time	0.1				0	D117
	Inertia learning option	0~1	-	anytime	Immediately	0	RW
	0-After the inertia						
	learning is completed, the						
	speed and position loop						
	gains are not						
P07.35	automatically matched						
	1-After the inertia						
	learning is completed,						
	match a set of gains						
	according to the rigidity						
	level P07.28						
D07 29	Vibration Monitoring	0~32767	%	anytime	Immediately	100	RW
P07.38	Threshold Percentage						
P07.39	Vibration monitor value	-	-	-	-	-	RO
	No need to adjust	0.0-3276.7	-	anytime	Immediately	4.1	RW
	parameters						
	A. B format						
P07.78	A represents the stiffness, the	he setting rang	e is 0-7. Th	e larger th	e value, the gr	eater the sti	ffness,
	generally set below 4.	6 6	, ,	e	ý č		,
	B represents the size of the	load inertia, tl	ne setting ra	nge is 0-7	. The larger th	e load inerti	a. the
	larger the value that needs t		0	8	0		,
	Actual speed loop	-	_	_	_	-	RO
P07.90	proportional gain						
	Actual speed loop						RO
P07.91		-	-	-	-	-	KU
	integral gain						
P07.92	Actual position loop	-	-	-	-	-	RO
	proportional gain						

8.1.1 Current loop PI gain adjustment

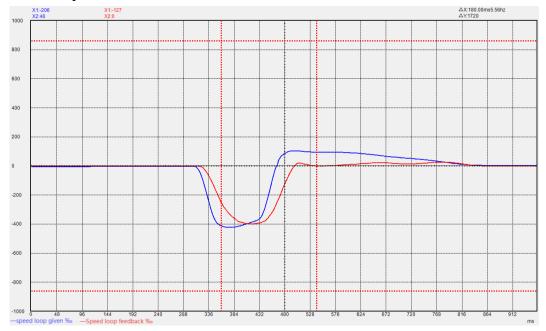

When the proportional gain of the current loop is too large, the motor will make a rattling sound, and the torque current feedback has high frequency oscillation, which often reports overcurrent. As shown in the picture below. (The more obvious is the current sound)

If the current loop proportional gain is too small, the motor current response is slow, and the output is not enough in the process of rapid acceleration and deceleration.

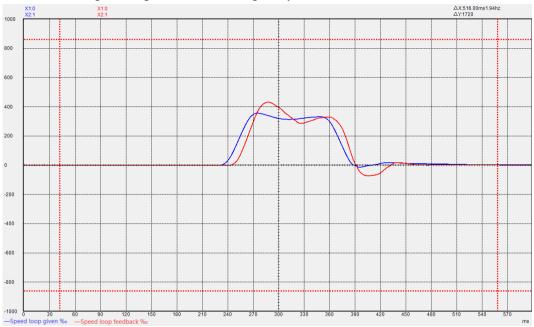
When the current loop integral gain is too large, the torque current is prone to low frequency oscillation, and overcurrent is likely to be reported during acceleration and deceleration.

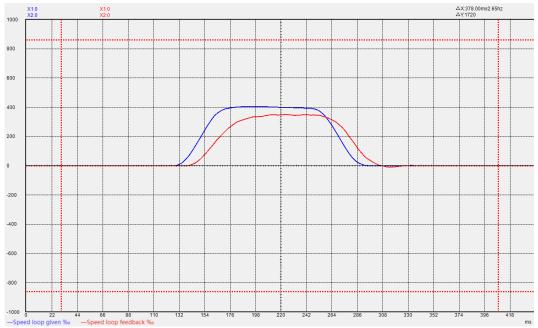


If the current loop integral gain is too small, the motor current response is slow, and the output is not enough in the process of rapid acceleration and deceleration.

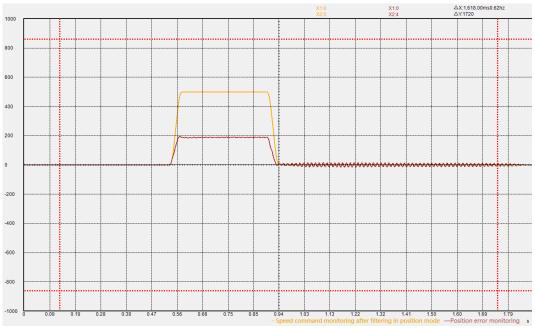


8.1.2 Speed loop PI gain adjustment

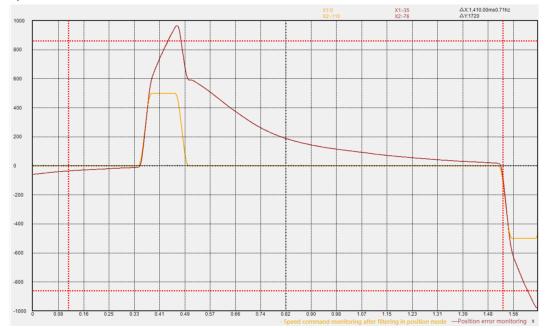

When the proportional gain of the speed loop is too large, the motor is prone to whistling, and the feedback of the speed loop has high frequency oscillation.


If the proportional gain of the speed loop is too small, the rigidity of the motor is very weak and the speed cannot follow.

When the integral gain of the speed loop is too large, the rigidity of the motor is enhanced, and the speed is prone to low-frequency fluctuations.



If the integral gain of the speed loop is too small, the rigidity of the motor is very weak and the speed cannot follow.



8.1.3 Position loop P gain adjustment

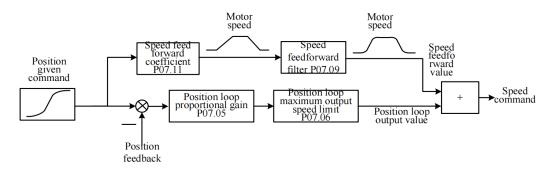
When the proportional gain of the position loop is too large, the motor speed is unstable and it is easy to shake.

When the proportional gain of the position loop is too small, the position arrives very slowly.

Gain adjustment	
mode	Adjustable speed loop/position loop parameters
P07.20=0	P07.03 (Speed loop proportional gain) P07.04 (Speed loop integral gain)
	P07.05 (Position loop proportional gain)
	P07.08 P07.10 (Torque feedforward)
	P07.09 P07.11 (speed feedforward)
P07.20=1	P07.03 P07.04 P07.05P07.08 P07.09 P07.10 P07.11 (First set of gains)
	P07.21 P07.22 P07.23 P07.24 P07.25 P07.26 P07.27 (Second set of gains)
P07.20=2/3	P07.28 (Rigidity level)
	P07.29 (ratio of load inertia)
	P07.08 P07.10 P07.41 (Torque feedforward)
	P07.09 P07.11 (speed feedforward)
P07.20=4	P07.29 (ratio of load inertia)
	P07.03 (speed loop bandwidth) P07.04 (Speed loop integral gain)
	P07.05 (position loop bandwidth)
	P07.08 P07.10 P07.41 (Torque feedforward)
	P07.09 P07.11 (speed feedforward)
P07.20=5	P07.78 (No need to adjust parameters)
	P07.11 P07.09 (speed feedforward)

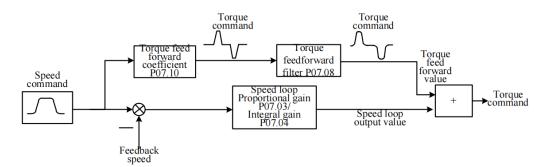
P07.20=0 or P07.20=4, these two modes have the highest adjustability, and the performance that can be adjusted is also the best, which requires a higher degree of user expertise. P07.20=5 This mode has the lowest adjustability and can only meet the general application requirements, and has low requirements for the user's professional level. P07.20=2 is used for Fn006 single parameter self-adjustment.

P07.11 sets the speed feedforward coefficient. If the system requires the follow-up error to be 0, that is, the position error needs to converge to 0 at constant speed, then the value needs to be set to 100.0%. Under normal circumstances, it is sufficient to set it to 50.0%.


After self-learning the rigidity level through Fn006, if further fine-tuning is required, the bandwidth parameter corresponding to the rigidity level at this time can be set to P07.03, P07.04, P07.05, and P07.20 is set to 4, and then further Adjust P07.03-P07.05 for fine adjustment. When the rigidity level is converted into the corresponding speed loop bandwidth, integral gain, position loop when P07.20=4

Rigidity level P07.28	Speed loop bandwidth (rad/s) P07.03	Speed loop integral gain P07.04	Position Loop Bandwidth (rad/s) P07.05	Rigidity level P07.28	Speed loop bandwidth (rad/s) P07.03	Speed loop integral gain P07.04	Position Loop Bandwidth (rad/s) P07.05
0	9	1	2	16	314	31	62
1	12	1	2	17	376	38	75
2	15	2	3	18	471	47	94
3	18	2	4	19	562	56	112
4	22	2	4	20	722	72	144
5	28	3	6	21	879	88	176
6	38	4	8	22	1067	106	213
7	47	5	9	23	1318	131	263
8	57	6	11	24	1570	157	314
9	69	7	14	25	1758	175	351
10	88	8	17	26	1964	196	392
11	113	11	23	27	2135	213	427
12	157	16	31	28	2323	232	464
13	188	19	38	29	2512	251	502
14	219	22	44	30	2826	282	565
15	251	25	50	31	3140	314	628

Bandwidth is shown in the table below.


8.2 Feedforward gain adjustment

8.2.1 speed feedforward

Speed feedforward refers to the mathematical operation of the given position command to obtain the speed required by the motor, which is directly given to the speed loop. As shown in the figure above, the position command is input into the servo, and it is directly converted into the speed required by the motor. After filtering, it is superimposed on the speed command. Generally speaking, the speed feedforward coefficient is directly set to 50%, and the speed feedforward filter value is set according to the inertia, generally set to 0-20ms. The maximum output speed limit of the position loop means that the output of the position loop is limited within plus or minus percent P07.06. When the speed feedforward is set to 100%, the position error can converge to 0 when the speed is constant. When it is less than 100%, the position error will occur when the motor is moving.

8.2.2 Torque feedforward

Torque feedforward refers to the mathematical operation of the given speed command, combined with the load inertia, to obtain the torque that the motor needs to output, and directly superimpose it into the torque command. As shown in the figure above, the speed command is input into the servo, and is directly converted into the torque required by the motor according to the torque feedforward coefficient. After filtering, it is superimposed on the torque command. Generally speaking, the torque feedforward coefficient is determined by the load inertia. The larger the load inertia is, the larger the value will be. This value can be obtained through Fn007 to learn the habit. The torque feedforward filter is also determined by the load inertia, which is generally set to 5-20ms.

When P07.20=0 or 1, the torque feedforward coefficient is equal to the value set by P07.10. When P07.20=2 or 3 or 4, the torque feedforward coefficient adopts the value set by P07.10*P07.41/100. When P07.20=5, the torque feedforward is invalid.

8.3 Filter time adjustment

There are three filter times related to loop control, one is the torque filter time. Under normal circumstances, the torque filter is set to a low-pass filter (P07.12=0). At this time, the larger the torque filter time constant P07.13, the smoother the torque command, which can reduce the high-frequency noise of the motor and bring about The side effect is easy to produce low frequency vibration. This value needs to be increased when the inertia is large.

The second is the speed feedforward filter time. When in position mode, if the position command pulse frequency is low, and the position command filter parameters P03.06 and P03.07 are both 0, the speed feedforward filter needs to be added. It can reduce the speed pulsation of the position command and reduce the noise of the motor. The speed feedforward filter time P07.09 is generally set at about 0-20.

The third one is the torque feedforward filter time P07.08. When there are too many high-frequency components of the torque command, this value needs to be increased, generally set at around 5-20.

8.4 Load torque compensation function

VC210 servo provides 3 kinds of load torque compensation modes, and 3 kinds of compensation modes are set by P07.50. When P07.50 is set to 0, the load torque compensation is derived from the fixed value of P07.53. When P07.50 is set to 1, the servo automatically observes the load torque value according to the relevant variables (focusing on stability). When P07.50 is set to 2, the servo automatically observes the load torque value according to the relevant variables (focusing on stability). When P07.50 is set to 2, the servo automatically observes the load torque value according to the relevant variables (focusing on the response), and then to compensate.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
P07.50	Torque Compensation Mode	0~2	-	anytime	Immediately	0	RW
	0-Torque compensation is	derived from th	e fixed valu	e P07 53			Ĺ
	1-Automatic compensation				07.54. P07.51	. P07.52)	
	2-Automatic compensation					,)	
P07.43	Torque compensation	10~1000	-	anytime	Immediately	100	RW
	gain 1						
P07.89	Torque compensation	10~1000	-	anytime	Immediately	100	RW
	gain 2						
P07.51	Torque Compensation	-1000.0~10	%	anytime	Immediately	0	RW
	Frequency Compensation	00.0					
P07.52	Torque Compensation	1~1000		anytime	Immediately	100	RW
107.02	Inertia Compensation	1 1000				100	100
P07.53	Fixed torque	-3276.7~32	%	anytime	Immediately	0	RW
	compensation value	76.7					
P07.54	Torque Compensation	0~100	%	anytime	Immediately	100%	RW
	Percentage						
P07.93	Final calculated torque	-	%	-	-	0	RO
	compensation value						

8.5 Mechanical resonance suppression function

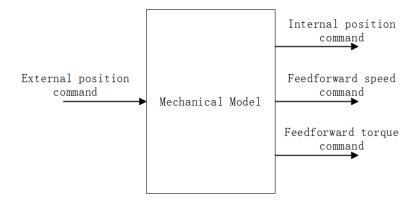
If the mechanical characteristics of the equipment have a resonance point at a certain frequency, when the gain is increased, it may cause the motor to resonate, and the resonance frequency is generally above 200Hz. In this case, the servo notch filter + torque low-pass filter can be used to solve the problem. The servo provides 4 sets of notch filters (acting on the position loop) and a set of torque low-pass filters to suppress the resonance signal. When P07.12 is set to 0, a low-pass filter is used alone to suppress resonance. When P07.12 is set to 3, a low-pass filter and a notch filter are used for resonance suppression. When P07.12 is set to 4, once the servo detects oscillation greater than 200Hz, it will automatically turn on a low-pass filter and a notch filter to suppress the resonance. The vibration detection threshold is set by P07.38. The smaller the value is, the more sensitive it is to vibration and the easier it is to detect vibration. When high-frequency mechanical resonance occurs, it is preferred to use the method of automatically inputting the notch filter (P07.12 is set to 4). If it cannot be solved, P07.13-P07.19 and P07.44-P07.49 can be manually set.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
P07.12	Torque filter type 0-low pass filtering 1-notch filter 2-No filtering 3-Low pass and notch cascade 4-Automatic calculation of filter parameters	0~4	-	anytime	Immediately	0	RW
P07.13	Torque low-pass filter time constant	0~327.67	ms	anytime	Immediately	0.80	RW
P07.14	The frequency of notch filter 1, when it is 0, the notch filter is invalid	0~32767	Hz	anytime	Immediately	0	RW
P07.15	notch filter 1 depth	0~100.0	%	anytime	Immediately	10.0	RW
P07.16	notch filter 1 width	0~1000.0	%	anytime	Immediately	50.0	RW
P07.17	The frequency of notch filter 2, when it is 0, the notch filter is invalid	0~32767	Hz	anytime	Immediately	0	RW
P07.18	notch filter 2 depth	0~100.0	%	anytime	Immediately	10.0	RW
P07.19	notch filter 2 width	0~1000.0	%	anytime	Immediately	50.0	RW
P07.44	The frequency of notch	0~32767	HZ	anytime	Immediately	0	RW

	filter 3, when it is 0, the						
	notch filter is invalid						
P07.45	notch filter 3 depth	0~100.0	%	anytime	Immediately	10.0	RW
P07.46	notch filter 3 width	0~1000.0	%	anytime	Immediately	50.0	RW
P07.47	The frequency of notch filter 4, when it is 0, the notch filter is invalid	0~32767	HZ	anytime	Immediately	0	RW
P07.48	notch filter 4 depth	0~100.0	%	anytime	Immediately	10.0	RW
P07.49	notch filter 4 width	0~1000.0	%	anytime	Immediately	50.0	RW

8.6 Low frequency vibration suppression

When the motor drives a large inertia flexible load for high-speed positioning, if there is continuous low-frequency vibration below 50Hz. It can be processed by the low frequency vibration suppression function of the servo and the position command filter function. The servo provides 1 set of low frequency suppression notch filter (acting on the speed loop), 1 set of position command notch filter and 1 set of position command low pass filter to deal with the relevant low frequency vibration. The frequency of the low frequency resonance can be analyzed by VECObserver.

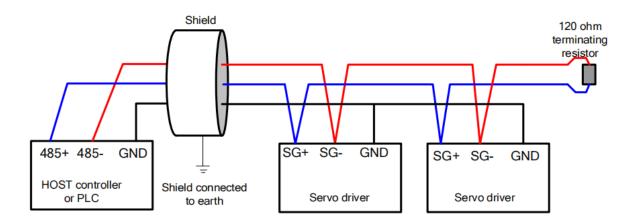

It should be noted that if the filter of the position command is increased, the motor motion will lag, thereby increasing the position error during tracking, and it may report that the position error is too large Er203. At this time, the position error threshold needs to be appropriately increased.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
P07.55	The frequency of the notch filter for low frequency suppression. When it is 0, the notch filter is invalid.	0~100.0	-	anytime	Immediatel y	0	RW
P07.56	Low Frequency Rejection Notch Width	0~1000.0	-	anytime	Immediatel y	50.0	RW
P07.57	Low Frequency Rejection Notch Depth	0~100.0	-	anytime	Immediatel y	10.0	RW
P07.58	Position command notch filter frequency, when it is 0, the notch filter is	0~100.0	-	anytime	Immediatel y	0	RW

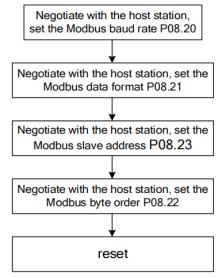
	invalid						
P07.59	Position command notch	0~1000.0		anytime	Immediatel	0.0	RW
	filter width	0~1000.0	-		У	0.0	κw
P07.60	Position command notch	0~100.0		anytime	Immediatel	0.0	RW
F07.00	filter depth	0~100.0	-		У	0.0	IX VV
P03.07	Position given low pass	0~100.0		anytime	Immediatel	10	RW
P03.07	filter time constant	0~100.0			У	10	KW
	Excessive position error			anytime	Immediatel		
P03.19	value, when set to 0,	0~2147483			У	10	RW
103.19	there is no excessive	648				10	IXVV
	position error protection						

8.7 Model Predictive Control Capability

Model predictive control means that the system directly calculates the new position command, speed command, and torque command feed forward to the position loop, speed loop, and torque loop according to the external position command, combined with the built-in mechanical model.


Under position mode control, the servo presets 4 model predictive control methods, namely single inertia model predictive control, dual inertia model predictive control, single inertia model predictive control (no model predictive position command filtering), dual inertia model predictive control (model-free predicted position command filtering). Single inertia system refers to the rigid connection between the motor and the load, such as screw connection. The dual inertia system refers to the connection. The dual inertia system refers to the connection. The dual inertia system refers to the connection. The 4 model control modes are selected by the first bit of P07.61. The factory default does not use model predictive control, but uses ordinary feedforward control. When the model predictive control is enabled, the ordinary speed feedforward P07.10 and torque feedforward P07.11 are invalid. The relevant parameters of model predictive control are as follows.

Parameter No.	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method
	Advanced control	0.0~3276.7	-	anytime	Immediately	0	RW
	function selection						
	AAA.B format						
	When AAA=0, the common	n feedforward	control is a	dopted, an	d the feedforv	vard is contr	olled by
	P07.10, P07.11, etc.						
/		When AAA=1, single-inertia model predictive control is used.					
P07.61	When AAA=2, dual inertia	-		•			
	When AAA=3, single-inert	ia model predi	ctive contro	ol (no mod	el predictive p	position com	mand
	filtering) is used.						
	When AAA=4, the dual-ine		dictive cont	trol (witho	ut model pred	lictive positi	on
	command filtering) is used.						
	When B=0, there is no cont						
	When B=1, the continuous		pression fun				
P07.62	Model prediction gain	1.0~2000.0	-	anytime	Immediately	50.0	RW
P07.63	Model Prediction Compensation	50.0~200.0	-	anytime	Immediately	100.0	RW
P07.64	Model predicts positive gain	0~1000.0	-	anytime	Immediately	100.0	RW
	Model predicts inverse			anytime	Immediately		
P07.65	gain	0~1000.0		unythile	minediatery	100.0	RW
	Model predicts			anytime	Immediately		
P07.66	suppression frequency 1	1.0~250.0	-	unythic	mineutery	50.0	RW
10,100		1.0 20010				2010	
	Model predicts	1.0~250.0		anytime	Immediately		
P07.67	suppression frequency 2					70.0	RW
D 05 (0)	Model predicts			anytime	Immediately	100.0	
P07.68	feedforward velocity	0~1000.0			-	100.0	RW
P07.69	Model predicts 2 gain	1.0~2000.0	-	anytime	Immediately	50.0	RW
P07.70	Model Prediction 2 Compensation	50.0~200.0	-	anytime	Immediately	100.0	RW


Chapter 9 Modbus Communication

9.1 Modbus wiring requirement

See the diagram below for wiring.

9.2 Modbus parameter setting steps

Related parameters are as follows.

Parameter No.	Parameter Description	Set range	units	Function	Set method	Effective way	Defaults	read and write method
P08.20	Modbus Baud Rate Register 0- 4800 1- 9600 2- 19200 3- 38400 4- 57600 5- 115200	0~5	bps	Set the communicati on rate between the driver and the host computer. The communicati on rate of the servo drive must be consistent with the communicati on rate of the host computer, otherwise the communicati on cannot be performed.	anytime	Immediately	1	RW
P08.21	Modbus data format registers 0-No parity, 2 stop bits 1-No parity, 1 stop bit 2-Even parity, 1 stop bit 3-Odd parity, 1 stop bit	0~3	-	Set the data verification method when the drive communicate s with the upper computer.	anytime	Immediately	1	RW
P08.22	 32-bit address access high and low byte order 0-When accessing a 32-bit address, the high-order 16 bits are first 1-When accessing a 	0~1	-	Sets the transmission format for 32-bit data when using MODBUS communicati on.	anytime	Immediately	1	RW

	32-bit address, the							
	lower 16 bits are in							
	front							
				Set Modbus		Immediately		
P08.23	Modbus Slave Address	1~255	-	slave address.	anytime	5	1	RW
				An error code				
				is displayed				
D 00 0 (when a				
P08.24	Modbus fault register	-	-	communicati	-	-	-	RO
				on failure				
				occurs.				
				Displays the				
	The number of bytes			number of				
P08.25	in the transmit FIFO	-	-	bytes in the	-	-	-	RO
	buffer			transmit FIFO				
				buffer.				
				Set the delay				
				from the				
				response to				
				the host				
	MODBUS response			computer				
P08.27	delay character period	0~32767	-	after the slave	anytime	Immediately	0	RW
	delay enaracter period			machine				
				receives the				
				command				
				from the host				
				computer.				
				Sets the				
				lengthening				
P08.28	MODBUS sampling	0~32767 5	500u	time of the	anytime	Immediately	0	RW
	period lengthened		S	MODBUS		iouiutor,	~	
				sampling				
				period.				

9.3 Function codes supported by Modbus

The servo drive only supports communication in Modbus RTU format. The function codes of the internally implemented Modbus protocol stack are shown in the table below.

Function code	
(decimal)	Function Description

1	Read bits	
2	Read bits	
3	Read registers	
4	Read registers	
5	Write Bit	
6	Write 16-bit registers	
16	write 32-bit registers	

9.3.1 Function code 1 or function code 2 (read bit)

The servo provides the following address for the upper computer to read. It should be noted that the bit address of most of the host computers needs to be set to "servo internal bit address + 1"; if it is a macro-defined communication method, generally directly set "servo internal bit address". The meanings of the bit addresses in each servo are as follows.

Servo internal	Meaning of readout status
address	
12	Valid state of DO1
13	Valid state of DO2
14	Valid state of DO3
15	Valid state of DO4
16	Valid state of DO5
17	Valid state of DO6
141	OUTFn.1 Drive is enabled
142	OUTFn.2 Speed arrives
143	OUTFn.3 slowing down
144	OUTFn.4 speeding up
145	OUTFn.5 zero speed
146	OUTFn.6 overspeed
147	OUTFn.7 forward rotation
148	OUTFn.8 Reverse rotation
149	OUTFn.9 fault output
150	OUTFn.10 In the forward speed limit in the torque mode
151	OUTFn.11 Negative speed limit in torque mode
152	OUTFn.12 Speed limit in torque mode
153	OUTFn.13 Positioning completion output
154	OUTFn.14 Positioning close to the output
155	OUTFn.15 return home completed output
156	OUTFn.16 Position error too large output
157	OUTFn.17 Interrupt fixed length completion output
158	OUTFn.18 Software limit output
159	OUTFn.19 feeding output
160	OUTFn.20 feed output

161	OUTFn.21 Roll diameter is being calculated
162	OUTFn.22 The roll diameter reaches the output
163	OUTFn.23 length arrives at output
164	OUTFn.24 Holding brake output
165	OUTFn.25 Input command is valid
166	OUTFn.26 Often OFF
167	OUTFn.27 Always ON
168	OUTFn.28 Torque limit output
169	OUTFn.29 Torque arrival
170	OUTFn.30 Internal trigger state
171	OUTFn.31 Internal counter count arrives
172	OUTFn.32 Consistent speed
173	OUTFn.33 Pulse position command is zero output
174	OUTFn.34 Roll diameter reaches 2 outputs

The above bits can be realized through the read bit function in MODBUS, that is, setting the function code of the MODBUS data frame to 1 or 2. The query information sent by the Modbus master to read the bit is as follows. The query information specifies the slave address, bit address and number of bits to be read. For example, the master station queries the slave station address as 0x01, 0x06 bits starting from its internal address 0x01.

Query information contains the domain	Example (hex)
Slave address	0x01
function code	0x01
Need to query the upper 8 bits of the address	0x00
Need to query the lower 8 bits of the address	0x01
The number of bits queried is the upper 8 bits	0x00
The number of bits to be queried is the lower 8 bits	0x06
CRC16 check result lower 8 bits	0xED
CRC16 check result high 8 bits	0xC8

The data field in the response information of the Modbus slave station contains the status of the bit corresponding to the query address. The data of the low address is placed in the low position, 1 means valid, 0 means invalid.

If the number of coils returned is not a multiple of 8, the remaining bits in the last data byte to the highest bit of the byte are filled with zeros, and the byte number field indicates the number of bytes of all data. The result of replying to the master read bit is as follows.

Fields included in the response message	Example (hex)
Slave address	0x01
function code	0x01
number of bytes	0x01
data (bits 5-0)	0x00
CRC16 check result lower 8 bits	0x51
CRC16 check result high 8 bits	0x88

9.3.2 Function code 3 or function code 4 (read register)

All Pxx.yy parameters of the servo drive can be read, and the corresponding parameter register address is xx*100+yy. The parameter address of most host computers needs to be set to "parameter register address + 1"; if it is a macro-defined communication method, generally directly set "parameter register address". The query information sent by the Modbus master to read the register is as follows. The query information specifies the slave address, register address and number of registers to be read. For example, the master station queries the slave station address 0x01, 0x02 registers starting from its internal parameter address 0x01.

Fields included in the response message	Example (hex)
Slave address	0x01
function code	0x03
Need to query the upper 8 bits of the address	0x00
Need to query the lower 8 bits of the address	0x01
The number of high-order 8-bit registers to be	0x00
queried	
The lower 8 bits of the number of registers	0x02
queried	
The lower 8 bits of the CRC16 check result	0x95
CRC16 check result high 8 bits	0xCB

The servo drive responds to the master station and reads the register information as follows.

Fields included in the response message	Example (hex)
Slave address	0x01
Function code	0x03
Number of bytes	0x04
Data (high 8 bits of register 1)	0x00
Data (lower 8 bits of register 1)	0x1C
Data (higher 8 bits of register 2)	0x0B
Data (lower 8 bits of register 2)	0xB8
The lower 8 bits of the CRC16 check result	0x3C
The upper 8 bits of the CRC16 check result	0xB7

9.3.3 Function code 5 (write bit)

The following address in the servo can be written by the host computer. Their corresponding meanings are as follows.

Addresses	MODBUS Bit	Function	Valid rules
	Addresses		varia ruics

	1	
0	Writing 1 is forcibly valid for DI1	1 valid
1	Writing 1 is forcibly valid for DI2	1 valid
2	Writing 1 is forcibly valid for DI3	1 valid
3	Writing 1 is forcibly valid for DI4	1 valid
4	Writing 1 is forcibly valid for DI5	1 valid
5	Writing 1 is forcibly valid for DI6	1 valid
6	Writing 1 is forcibly valid for DI7	1 valid
7	Writing 1 is forcibly valid for DI8	1 valid
8	Writing 1 is forcibly valid for DI9	1 valid
9	Writing 1 is forcibly valid for DI10	1 valid
41	INFn.1 Enable the servo	1 valid
42	INFn.2 Resets the servo	0->1 effective
43	INFn.03 Torque AB selector switch	1 valid
44	INFn.04 Torque reverse switch	1 valid
45	INFn.05 Forward torque limit selection	1 valid
46	INFn.06 Reverse torque limit selection	1 valid
47	INFn.07 Forward speed limit selection	1 valid
48	INFn.08 Reverse speed limit selection	1 valid
49	INFn.09 Forward jog	1 valid
50	INFn.10 reverse jog	1 valid
51	INFn.11 Speed given reverse	1 valid
52	INFn.12 main speed AB selection	1 valid
53	INFn.13 Speed stop input	1 valid
54	INFn.14 Download ARM program	0->1 effective
55	INFn.15 clear encoder position counter	0->1 effective
56	INFn.16 Zero fixed in speed mode	1 valid
57	INFn.17 Multi-stage speed speed selection switch 0	1 valid
58	INFn.18 Multi-stage speed speed selection switch 1	1 valid
59	INFn.19 Multi-stage speed speed selection switch 2	1 valid
60	INFn.20 Multi-stage speed selection switch 3	1 valid
61	INFn.21 Position command prohibited	1 valid
62	INFn.22 Position command reverse	1 valid
63	INFn.23 Pulse command prohibited	1 valid
64	INFn.24 Electronic gear ratio changeover switch 1	1 valid
65	INFn.25 Position error clear	Dependent on P03.21
66	INFn.26 Position mode origin return command	0->1 effective
67	INFn.27 Multi-segment position trigger start and stop signal	0->1 trigger to start multi-segment position,
		1->0 trigger stop multi-segmen position
68	INFn.28 Multi-segment position position selector switch 0	1 valid

69	INFn.29 Multi-segment position position selector switch 1	1 valid
70	INFn.30 Multi-segment position position selector switch 2	1 valid
71	INFn.31 Multi-segment position position selector switch 3	1 valid
72	INFn.32 Position direction in multi-segment position mode	1 valid
73	INFn.33 Reserved	-
74	INFn.34 zero return origin signal input	Depends on homing mode
75	XY pulse tracking and multi-segment position switching in	1 valid
75	INFn.35 position mode	
76	INFn.36 control mode switching switch 0	1 valid
77	INFn.37 control mode switching switch 1	1 valid
78	INFn.38 Enable interrupt fixed-length function	1 valid
79	INFn.39 Release Interrupt Fixed Length	1 valid
80	INFn.40 trigger interrupt fixed-length input signal	0->1 effective
81	INFn.41 The first set of the second set of gain selection	1 valid
	switches	
82	INFn.42 reset fault	1 valid
83	INFn.43 positive limit switch	1 valid
84	INFn.44 reverse limit switch	1 valid
	INFn.45 open and closed loop switching in full closed loop	1 valid
85	mode	
86	INFn.46 FPGA Down loader	0->1 effective
87	INFn.47 Tension compensation direction	1 valid
88	INFn.48 Tension tracking direction	1 valid
89	INFn.49 Mandatory, limit at the maximum compensation	1 valid
90	speed INFn.50 prohibits the calculation of roll diameter	1 valid
91	INFn.51 Replace roll INFn.52 initial roll diameter switch	1 valid
92		1 valid
93	INFn.53 clears the feed length	1 valid
94	INFn.54 Force fast tightening	1 valid
95	INFn.55 Tension compensation is prohibited in closed-loop	1 valid
	speed mode	
96	INFn.56 electronic gear ratio switch 2	1 valid
97	INFn.57 Motor overheating	1 valid
98	INFn.58 Emergency stop input	1 valid
99	INFn.59 internal flip-flop reset	0->1 effective
100	INFn.60 sets internal flip-flop	0->1 effective
101	INFn.61 internal counter count pulse	0->1 effective
101	INFn.61 internal counter count pulse INFn.62 clears the internal counter	0->1 effective

104	INFn.64 Speed mode UPDOWN mode DOWN signal	1 valid
106	INFn.66 enables speed stacking	1 valid
107	INFn.67 Correct the zero drift of all AI	1->0 effective
108	INFn.68 Tension control closed-loop speed/torque mode DI switching	1 valid

The ON/OFF state of the requested bit is specified by a constant in the query data area, the FF00H value request bit is in the ON state, the 0000H value request bit is in the OFF state, and other values are invalid for the bit and have no effect.

The information sent by the master station to write the bit includes the address written to the servo drive, the bit address and the written data. For example, the master station writes the slave station address as 0x01, and the bit starting from its internal address 0x01 is set to 1.

The area included in the information sent by the master station	Example (hex)
Slave address	0x01
function code	0x05
upper 8 bits of bit address	0x00
lower 8 bits of bit address	0x01
Write the upper 8 bits of the data	0xFF
Write the lower 8 bits of the data	0x00
The lower 8 bits of the CRC16 check result	0xDD
The upper 8 bits of the CRC16 check result	0xFA

The reply information of the servo driver is as follows.

The area included in the servo reply message	Example (hex)
Slave address	0x01
function code	0x05
upper 8 bits of bit address	0x00
lower 8 bits of bit address	0x01
Write the upper 8 bits of the data	0xFF
Write the lower 8 bits of the data	0x00
The lower 8 bits of the CRC16 check result	0xDD
The upper 8 bits of the CRC16 check result	0xFA

9.3.4 Function code 6 (write single word register)

All the readable and writable parameters of Pxx.yy of the servo drive can be written through Modbus, and the corresponding parameter register address is xx*100+yy. The parameter address of most host computers needs to be set to "parameter register address + 1";

if it is a macro-defined communication method, generally directly set "parameter register address". The information sent by the Modbus master to write to the single-word register is as follows. The message specifies the slave address, register address and register data to be written. For example, the master station writes the register whose slave address is 0x01 and the internal address is 0x02, and the write value is 3000.

The area included in the information sent by the master station	Example (hex)
Slave address	0x01
function code	0x06
Need to write to the upper 8 bits of the address	0x00
Need to write the lower 8 bits of the address	0x02
Need to write the upper 8 bits of the data	0x0B
Need to write the lower 8 bits of data	0xB8
The lower 8 bits of the CRC16 check result	0x2F
The upper 8 bits of the CRC16 check result	0x48

The servo drive responds to the master station to write a single register information as follows.

The area that the response message contains	Example (hex)
Slave address	0x01
function code	0x06
Need to write to the upper 8 bits of the address	0x00
Need to write the lower 8 bits of the address	0x02
Need to write the upper 8 bits of the data	0x0B
Need to write the lower 8 bits of data	0xB8
The lower 8 bits of the CRC16 check result	0x2F
The upper 8 bits of the CRC16 check result	0x48

9.3.5 Function code 16 (write double word register)

All readable and writable double-word parameters of Pxx.yy of the servo drive can be written through Modbus, and the corresponding parameter register address is xx*100+yy. The parameter address of most host computers needs to be set to "parameter register address + 1"; if it is a macro-defined communication method, generally directly set "parameter register address". The information sent by the Modbus master to write to the double word register is as follows. The message specifies the slave address, register address, number of registers and number of bytes of data to be written. For example, the master station writes the register whose slave station address is 0x01 and the internal address is 0x0B, and the write value is 10000.

The area included in the information sent by the master station	Example (hex)
Slave address	0x01
function code	0x10
Need to write to the upper 8 bits of the address	0x00
Need to write the lower 8 bits of the address	0x0B
The upper 8 bits of the number of registers that	0x00
need to be written	
The lower 8 bits of the number of registers that	0x02
need to be written	
number of bytes of data	0x04
The upper 8 bits of the data (high/low word)	0x00
need to be written	
The lower 8 bits of the data (high/low word)	0x00
need to be written	
The upper 8 bits of the data (low/high word) to	0x27
be written	
The lower 8 bits of the data (low/high word) to	0x10
be written	
The lower 8 bits of the CRC16 check result	0xA8
The upper 8 bits of the CRC16 check result	0x20

The servo drive responds to the information written by the master station to the double word register as follows.

The area that the response message	Example (hex)
contains	
Slave address	0x01
function code	0x10
Need to write to the upper 8 bits of the address	0x00
Need to write the lower 8 bits of the address	0x0B
The upper 8 bits of the number of registers that	0x00
need to be written	
The lower 8 bits of the number of registers that	0x02
need to be written	
The lower 8 bits of the CRC16 check result	0x30
The upper 8 bits of the CRC16 check result	0x0A

Note: When writing a double-word register, the data in the data field of the information sent by the master station can be high-order first or low-order first, depending on the setting of P08.22.

function code group	Summary of parameter groups
Group P00	Motor and Encoder Parameters
Group P01	Drive hardware parameters
Group P02	Basic control parameters
Group P03	position mode parameter
Group P04	Parameters related to the speed mode
Group P05	Related parameters of torque mode
Group P06	DIDO AIAO's related parameters
Group P07	loop control parameters
Group P08	Communication parameters
Group P09	Advanced debugging parameters
Group P10	Fail safe parameters
Group P11	Multi-speed parameters
Group P12	Virtual DI DO parameters
Group P13	Multi-segment position parameters

Chapter 10 Parameter List

• Explanation of parameter setting method and effective method:

Zero speed setting: This parameter can only be modified when the motor is in zero speed state.

Stop to setting: Indicates that this parameter is read-only when enabled, and can only be modified when disabled.

anytime: Indicates that this parameter can be set at any time after power-on.

Immediately : Indicates that the parameter can be modified when the machine is running, that is, such parameters can be modified in any state, and will take effect immediately after the modification is completed.

Reset effective: Indicates that after the parameter is modified, the drive needs to be reset to take effect.

10.1 P00 group parameters - motor and encoder parameters

P00.01	Name	Rated current of motor		Set Moment	Stop to set	Access	RW	
P00.01	Range	0~3276.7	Unit	А	active moment	Immediately	default	6.0
This para	ameter is pass	sword protect	ted.					

P00.02	Name	Rated speed of the motor	Set method	Stop to set	Access	RW	
--------	------	--------------------------	---------------	-------------	--------	----	--

VC210 series servo driver instruction manual

	Range	1~32767	Unit	rpm	active moment	Immediately	default	3000
--	-------	---------	------	-----	------------------	-------------	---------	------

P00.03	Name	Maximum speed of the motor			Set method	Stop to set	Access	RW
	Range	1~32767	Unit	rpm	active moment	Immediately	default	3000

P00.04	Name	The direction of motor rotation			Set method	Stop to set	Access	RW
P00.04	Range	0~1	Unit	-	active moment	Immediately	default	1

Setting	Direction of rotation								
0	The positive speed of the motor is defined as the clockwise								
	rotation direction of the motor (looking at the motor shaft)								
1	The positive speed of the motor is defined as the								
	counterclockwise rotation direction of the motor (looking at the								
	motor shaft)								

After setting this parameter, the encoder must be re-learned before it can run. Please connect the UVW power cable of the motor according to the manufacturer's standard, otherwise the rotation direction of the motor may be reversed.

P00.05	Name	Number of pole pairs of the motor			Set method	Stop to set	Access	RW
P00.05	Range	1~32767	Unit	-	active moment	Immediately	default	4

P00.06	Name	Motor ID		Set method	Stop to set	Access	RW	
P00.00	Range	1~32767	Unit	-	active moment	Immediately	default	0

P00.08]	Name	Type of r	notor enc	oder	Set method	Stop to set	Ac	cess	RW
P00.08]	Range 0~12		Unit	-	active moment	Immediately	def	àult	0
		Se	etting	Type of motor encoder						
			0	In	cremen	tal encoder A	BZ with UVW			
			1	17-bit	17-bit absolute value of Tamagawa multi-turn					
			2	24-bit Nikon multi-turn absolute value						
			3			reserve				
			4	Rotary encoder to incremental						
			5	Line-saving encoder						
			6	23-bit	absolut	te value of Ta	magawa multi-1	turn		
			7	23	-bit abs	olute value of	f Tamagawa lap	1		
			8	17-bi	t Tama	gawa single l	ap, absolute val	ue		
			9	Incr	ementa	l encoder AB	Z without UVV	V		
			10			12-bit SPI res	solver			
			11	14-bit resolver						
			12			BISSC				

P00.09	Name	Motor end filte	oder har r settings		Set method	Stop to set	Access	RW
P00.09	Range	1~32767	Unit	20ns	active moment	Immediately	default	20

P00.10	Name		Motor encoder software filter time		Set method	Stop to set	Access	RW
	Range	0~32767	Unit	ms	active moment	Immediately	default	5

P00.11	Name	Motor encod	er resolu	ition	Set method	Stop to set	Access	RW
P00.11	Range	100~ 2147483647	Unit	-	active moment	Immediately	default	100 00

D00 12	Name Motor encoder position (encoder unit)			Set method	-	Access	RO	
P00.13	Range	-	Unit	-	active moment	-	default	-

D00 15	Name	The detected encoder resolution			Set method	-	Access	RO
P00.15	Range	0~32767	Unit	-	active moment	-	default	-

	Name	Motor encoder Hall code			Set	_	Access	RO
P00.17			alue		method		1100000	
P00.17	Range	-	Unit	-	active	-	default	-
					moment			

	Name Absolute value system mode		1	Set method	Stop to set	Access	RW	
P00.18	Range	0-Increment 1-absolute value	Unit	-	active moment	Take effect after power on	default	0

	Name	Motor en sampli	coder sp ng perio		Set method	Stop to set	Access	RW		
	Range	default	0							
					moment	after power				
						on				
	0- incremen	tal 250us , Ta	ıl 250us , Tamagawa 300us , Nikon 200us;							
P00.19	1- incremental 500us, Tamagawa 360us, Nikon 240us;									
	2- incremen	tal 750us , Ta	amagawa	a 420us	, Nikon 280	us;				
	3- incremen	tal 1000us , 7	Famagav	va 480u	s , Nikon 320	0us;				
	4- incremen	tal 50us , Tar	nagawa	60us , 1	Vikon 40us;					
	5- incremen	tal 100us , Ta	amagawa	a 120us	, Nikon 80us	s;				
	6- incremental 150us, Tamagawa 180us, Nikon 120us;									
	7- incremen	emental 200us , Tamagawa 240us , Nikon 160us								

	Name Stator resistance				Set method	Stop to set	Access	RW
P00.20	Range	0~327.67	Unit	Ω	active moment	Take effect after power on	default	-

	Name	D- axis	inductan	ice	Set method	Stop to set	Access	RW
P00.21	Range	0~327.67	Unit	mH	active moment	Take effect after power on	default	-

	Name	Q- axi	s inducta	ance	Set method	Stop to set	Access	RW
P00.22	Range	0~327.67	Unit	mH	active moment	Take effect after power on	default	-

	Name	Line back electromotive force			Set method	Stop to set	Access	RW
P00.23	Range	0~3276.7	Uni t	V/ krpm	active moment	Take effect after power on	default	-

P00.24	Name	Motor p	eak curr entage	ent	Set method	Stop to set	Access	RW		
	Range	0~3276.7	Unit	%	active moment	Take effect after power on	default	-		
This para	This parameter is password protected.									

	Name	Motor rated torque			Set method	Stop to set	Access	RW
P00.25	Range	0~21474 836.47	Unit	NM	active moment	Take effect after power on	default	-

	Name	Motor	rotor in	ertia	Set method	Stop to set	Access	RW
P00.27	Range	0~21474 836.47	Unit	Kgcm ²	active moment	Take effect after power on	default	-

	Name Type of mo		of moto	r	Set method	Stop to set	Access	RW	
P00.29	Range	•	0~2	Unit	-	active moment	Take effect after power on	default	0
			Setting			Motor encode	er type		
			0		1	Synchronous	motor		
		1			A	synchronous	s motor		
			2			Linear mo	tor		

D00 20	Name	;	Second encoder type			Set method	Stop to set	Access	RW
P00.30	P00.30 Range		0~2	Unit	-	active moment	Immediately	default	0
			Setting		S	Second encod			
			0		Ι	ncremental e	ncoder		
			1		Sing	le-turn absolu			
			2			ti-turn absolu	te encoder		

	Name	Second en	coder ha	er hardware Se		Stop to set	Access	RW
P00.31	filte				method			
P00.51	Range 1~3276		Unit	20ns	active	Immediately	default	20
	8				moment	5		_

	Name	Second en filter ti	coder so me cons		Set method	Stop to set	Access	RW
P00.32	Range	0~32767	Unit	ms	active moment	Immediately	default	5

D00 22	Name	Second encoder resolution			Set method	Stop to set	Access	RW
P00.33	Range	100~ 2147483647	Unit	-	active moment	Immediately	default	1000 0

P00.35	Name	Second encoder position (Encoder Units)			Set method	-	Access	RO
P00.55	Range	-	Unit	-	active moment	-	default	-

D00 27	Name	Mechanical origin offset lower 32 bits			Set method	-	Access	RO
P00.37	Range	-	Unit	-	active moment	-	default	-

P00.39 Name	Name	Mechanical zero point offset high 32 bits			Set method	-	Access	RO
P00.39	Range	-	Unit	-	active moment	-	default	-

P00.41	Name	Absolute value system fault shielding 0~3 Unit		Set method	Stop to set	Access	RW
	Range			active	Immediately	default	0

					moment		
The 0th	bit shields the	battery aları	n; the 1s	t bit shi	ields the batte	ery failure	

P00.42	Name	Motor instantaneous current percentage			Set method	-	Access	RO
P00.42	Range	-	Unit	%	active moment	-	default	0

D00 42	Name	Motor instantaneous power percentage			Set method	-	Access	RO
P00.43	Range	-	Unit	%	active moment	-	default	0

P00.44	Name	Average load rate			Set method	-	Access	RO
100.44	Range	-	Unit	%	active moment	-	default	0

D00 45	Name	e Maximum motor current percentage in 1s		Set method	-	Access	RO	
P00.45	Range	-	Unit	%	active moment	-	default	0

D00.46	Name		Maximum motor power percentage in 1s			-	Access	RO
P00.46	Range	-	Unit	%	active moment	-	default	0

	Name	Induction motor stator resistance			Set method	-	Access	RW
P00.47	Range	0-327.67	Unit	ohm	active moment	Take effect after power on	default	0

	Name Induction motor rotor resistance			Set method	-	Access	RW	
P00.48	Range	0-327.67	Unit	ohm	active moment	Take effect after power	default	0

VC210 series servo driver instruction manual

on on

Name	Total leaka induc	ge induc tion mot		Set method	-	Access	RW	
P00.49	Range	0-3276.7	Unit	mH	active moment	Take effect after power on	default	0

	Name	Induction motor magnetizing inductance			Set method	-	Access	RW
P00.50	Range	0-3276.7	Unit	mH	active moment	Take effect after power on	default	0

	Name	Inductio fre	n motor equency	rated	Set method	-	Access	RW
P00.51	Range	0-3276.7	Unit	Hz	active moment	Take effect after power on	default	0

D00 52	Name	Induction motor output torque			Set method	-	Access	RO
P00.52	Range	0-3276.7	Unit	NM	active moment	-	default	0

D00 52	Name	Induction motor output power			Set method	-	Access	RO
P00.53	Range	0-327.67	Unit	Kw	active moment	-	default	0

P00.54	Name	Induction motor percentage of magnetizing current, unit is the percentage of motor rated current		Set method	-	Access	RW	
	Range	0-3276.7	Unit	%	active moment	Take effect	default	0

			after	
			power	
			on	

P00.55 Name Induction motor out torque 2		output	Set method	-	Access	RO		
P00.33	Range	0-3276.7	Unit	NM	active moment	-	default	0

	Name		encoder : celeratio		Set method	Stop to set	Access	RW
P00.57	Range	0-3276.7	Unit	rpm/ms	active moment	Take effect after power on	default	0

	Name	Name Speed Watch Gain		Set method	Stop to set	Access	RW	
P00.58	Range	0-32767	Unit	-	active moment	Take effect after power on	default	0

P00.59	Name	Observation method of flux linkage of induction motor			Set method	Stop to set	Access	RW
P00.39	Range	0~1	Unit	-	active moment	Take effect after power on	default	1
		U			ervation methage of induct			
		0		Cor	npatible with	n the flux		
				obsei	vation algori	ithm of the		
				C	old VC servo	driver		
		1 New		New	flux linkage o	observation		
		1 100			algorithr	n		

	Name	Enable absolute encoder Z offset			Set method	Stop to set	Access	RW
P00.60	Range	0~1	Unit	-	active moment	Take effect after power on	default	0

Setting	Enable absolute encoder Z offset
0	The absolute value encoder Z point offset
	P00.71 is invalid, and the encoder phase
	will be reset when the encoder is
	self-learning.
1	Absolute encoder Z-point offset P00.71
	is valid, and the encoder phase will not
	be reset when the encoder is self-learning

	Name	Perma synchron weakeni		or field	Set method	Stop to set	Access	RW
P00.61	Range	0-50	Unit	%	active moment	Take effect after power on	default	0

	Name	Linear m	otor pole	e pitch	Set method	Stop to set	Access	RW
P00.62	Range	0-3276.7	Unit	0.1mm	active moment	Take effect after power on	default	0

	Name Linear motor grating scale resolution, that is, the distance corresponding to one pulse one pulse				Set method	Stop to set	Access	RW
P00.64	Range	0-3276.7	Unit	0.1um	active moment	Take effect after power on	default	0

	Name	Current L Amplitud	•	•	Set method	Stop to set	Access	RW
P00.66	Range	0~32767	Unit	-	active moment	Take effect after power on	default	0
A total of 5 bits, ABCDE, when the highest bit A is set to 1, the voltage limit amplitude is not							t	

enabled, and when it is set to 0, the voltage limit amplitude is enabled. The B bit is the field weakening regulator KP, the C bit is the field weakening regulator KI, the D bit is to set the limit amplitude of ud, set it to 0-9, representing 10% to 100%, and the E bit sets the multiple of the high-speed phase compensation.

P00.70	Name		JVW ph juence	ase	Set method	Stop to set	Access	RW
P00.70	Range	0~1 Unit		-	active moment	Immediately	default	1
		Setting		motor UVW phase		e sequence		
		0			positive sequ	lence		
		1			reverse sequ	ience		

This parameter is password protected and can be obtained by self-learning.

P00.71	Name	Z point offset (encoder unit)			Set method	Stop to set	Access	RW
P00.71	Range	0~32767	Unit	-	active moment	Immediately	default	0
The offset of the Z point relative to the magnetic pole. This parameter is password protected.								

P00.72	Name	-	AB phase sequence of the encoder			Stop to set	Access	RW
100.72	Range	Range 0~1 U		-	active moment	Immediately	default	0
		Setting		AB pha	se sequence o	of the encoder		
		0	0		positive sequence			
		1	1			ience		

This parameter is password protected and can be obtained by self-learning.

P00.73	Name	When the H is 1, the c electri		nding	Set method	Stop to set	Access	RW
	Range	0~1023	Unit	-	active	Immediately	default	425
					moment			
This parameter is password protected and can be obtained by self-learning.								

P00.74	Name	When the H is 2 , the c electri		ding	Set method	Stop to set	Access	RW
	Range	0~1023 Unit -		active	Immediately	default	85	

					moment		
This para	ameter is pass	sword protect	ted and c	can be c	btained by se	elf-learning.	

P00.75	Name When the Hall code value is 3, the corresponding electrical angle		Set method	Stop to set	Access	RW			
	Range	0~1023	Unit	-	active	Immediately	default	255	
					moment				
This parameter is password protected and can be obtained by self-learning.									

P00.76	0.76 When the Hall code value is 4 , the corresponding electrical angle		Set method	Stop to set	Access	RW		
	Range	0~1023	Unit	-	active moment	Immediately	default	765
This parameter is password protected and can be obtained by self-learning.								

P00.77	Name	When the H is 5, the c electri		nding	Set method	Stop to set	Access	RW	
	Range	0~1023	Unit	-	active	Immediately	default	595	
					moment				
This parameter is password protected and can be obtained by self-learning.									

P00.78	Name When the Hall code value is 6, the corresponding electrical angle		Set method	Stop to set	Access	RW			
	Range	0~1023	Unit	-	active	Immediately	default	935	
					moment				
This parameter is password protected and can be obtained by self-learning.									

D00 70	Name Z point window er			nable	Set method	Stop to set	Access	RW
P00.79	Range	0~255	Unit	-	active moment	Immediately	default	22
This para	This parameter is password protected.							

10.2 P01 group parameters - driver hardware parameters

D01.01	Name	ARM soft	ARM software version		Set method	-	Access	RO
P01.01	Range	0~65.535	Unit	-	active moment	-	default	-

P01.02	Name	FPGA software version	Set method	-	Access	RO		
P01.02	Range	0~65535	Unit	-	active moment	-	default	-

D01.02	Name	Driver	Driver rated current		Set method	Stop to set	Access	RW	
P01.03	Range	0~3276.7	Unit	А	active moment	Immediately	default	6.0	
This para	This parameter is password protected.								

D01.04	Name Driver rated current	Set method	-	Access	RO			
P01.04	Range	0~3276.7	Unit	А	active moment	-	default	-

	Name	U phase cu instantaneou			Set method	-	Access	RO
P01.05	Range	-3276.7~3276.7	Unit	А	active moment	-	default	-

D01.06	Name	V phase current instantaneous value			Set method	-	Access	RO
P01.06	Range	-3276.7~3276.7	Unit	A	active moment	-	default	-

D01.07	Name	Rated voltage of the drive		Set method	anytime	Access	RW	
P01.07	Range	100~32767	Unit	V	active moment	Immediately	default	220

P01.08	P01.08 Name Bus voltage mo value			oring	Set method	-	Access	RO
	Range	0~32767 Unit V			active	-	default	-

VC210 series servo driver instruction manual

moment	

P01.09	Name	Bus voltag coet	ge calibra fficient	ation	Set method	anytime	Access	RW
101.09	Range	0~3276.7	Unit	%	active moment	Immediately	default	100.0

P01.10	Name	Drive temperature			Set method	-	Access	RO
P01.10	Range	0~3000	Unit	0.1℃	active moment	-	default	-

	Name	PWM frequency setting register		Set method	Stop to set	Access	RW	
P01.11	Range	0~4	Unit	-	active moment	Take effect after power on	default	3
			g		Frequency			
		0			1.5K			
		1			2K			
		2			4K			
	3		8K					
	4		10K					
This magi	star is passw	and mnotootod	1					

This register is password protected.

P01.12	Name	IGBT	dead tim	e	Set method	Stop to set	Access	RW			
	Range	3~10	Unit	us	active moment	Take effect after power on	default	3			
This regi	This register is password protected.										

P01.13	Name	Driver type			Set method	-	Access	RO					
	Range	-	Unit	-	active moment	-	default	0					
The first two digits represent the drive communication type, and the last three digits represent the													
drive fun	ction type.												
The com	nunication typ	pe is 5, repres	enting ge	eneral-p	urpose servo,	RS485-Modbus	communicatio	on;					
The communication type is 6, which represents CANopen bus servo with CiA402 protocol;													
The com	nunication typ	pe is 7, which	represer	The communication type is 7, which represents EtherCAT bus servo with CiA402 protocol;									

The communication type is 9, which means PROFINET bus servo;

The function type is 1, which represents a general-purpose servo with tension control function;

The function type is 2, which represents a general-purpose servo with the function of round pressing;

The function type is 3, which represents a general-purpose servo with wheel cutting function;

The function type is 5, which represents a general-purpose servo with flying shear function;

The function type is 7, which represents a general-purpose servo with a fully closed-loop pressure function;

D01 15	Name	Driver level number			Set method	-	Access	RW
P01.15	Range	0~32767	Unit	-	active moment	-	default	0

When restoring the factory defaults, the parameters related to the drive level will be restored. The numbers and corresponding levels are as follows:

E-structur	re servo driver class nu	mber
Drive class	Current (A)	Voltage (V)
1	3A	220V
2	6A	220V
3	12A	220V
4	7A	380V
5	12A	380V
6	16A	380V
7	20A	380V
8	27A	380V
10	12A	440V
16	27A	220V
40	15A	220V
41	20A	220V
42	32A	380V
142	60A	380V
143	460A	380V

P01.16	Nam	ie	The multiple loop executi and the PW	on frequ	ency	Set method	anytime	Access	RW
P01.10	Rang	ge	0~3	Unit	-	active moment	Take effect after power on	default	0
			Setting 0		The multiple of the speed loop execution frequency and the PWM frequency 2 x				
	1					1 x			

2	2 x
3	4 x

Only Nikon 24-bit encoders allow setting bits 4 times, and the switching frequency must be less than or equal to 8k

P01.17	Name	Resistance value of sampling current			Set method	Stop to set	Access	RW				
	Range	0~65.535	Unit	-	active moment	Take effect after power on	default	0				
This regi	This register is password protected.											

P01.18	Na	me	The cur execution fr multiple o frequ	requency	is a	Set method	anytime	А	.ccess	RW
	Rai	nge	0~4	Unit	-	active moment	Take effect after power on	d	efault	0
			Setting			loop executi le of the PWI	on frequency is M frequency	a		
			0			2 x				
			1 2		<u>1 x</u>					
			3	2 x 4 x						
			4	8 x						

	Name		nt sampling nation rate	-	Set method	anytime	Access	RW
P01.19	Range	0~4	Unit	-	active moment	Take effect after power on	default	0
	Se	tting 0 1 2	Decima Decim	tion ra	tte is 32 and a rate is 32 to a	cimation rate avoids PWM sp avoid PWM spil ot avoid PWM s	kes	

3	Decimation rate is 128, do not avoid PWM spikes
4	Decimation rate is 256, do not avoid PWM spikes

	Name		Allow PWI immed	M to up diately	date	Set method	anytime	Access	RW
P01.21	Range	;	0~1 Unit		-	active moment	Take effect after power on	default	0
			Setting 0	(sampling de M up and dov			
			1		PWM	is updated in	nmediately		

	Name	Deadband C Perce	ompensa entage	ation	Set method	Allow setting	Access	RW
P01.22	Range	0~100	Unit	%	active moment	Take effect after power on	default	0

	P01.30 Range	C-phase current sampling			Set		A 22255	RO
DO1 20	Ivallie	offset value			method	-	Access	ĸo
P01.30	Range	0~32767	Unit	AD	active moment	-	default	0
This para	parameter is password-protected and automa				ically calcula	ited when pow	er is turned o	n.

This parameter i	pubbiloru	protected and ad	contactourly outou	acea when pewer	is turned on.

	Name	B-phase cu	rrent san	npling	Set		1 00000	RO
D01 21	Ivanie			set value		-	Access	ĸo
P01.31	Range	0~32767	Unit	AD	active moment	-	default	0
This para	arameter is password protected.							

	Name	C-phase			Set	_	Access	RO
P01.32		sampl	ing value	e	method			
P01.52	Range	0~32767	Unit	AD	active moment	-	default	-

	Name	B-phase			Set method	-	Access	RO
P01.33		sampling value		method				
101.55	Range	0~32767	Unit	AD	active	_	default	_
	Runge	0 52101	Om		moment		default	

P01.34	Name	Capacitor voltage AD	Set	_	Access	PO
101.34	Ivallic	sampling value	method	-	Access	KO

VC210 series servo driver instruction manual

Range	0~32767	Unit	AD	active	-	default	-
0				moment			

	Name	Motor ten samp	nperature le value		Set method	-	Access	RO
P01.36	Range	0~32767	Unit	AD	active moment	-	default	-

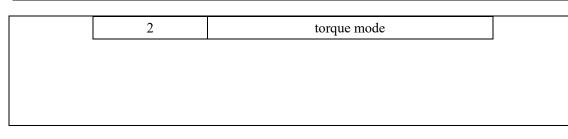
D01.27	Name continuous run time from last restore factory value		Set method	-	Access	RO		
P01.37	Range	-	Unit	Ms	active moment	-	default	-

P01.39	Name Driver ID	Set method	-	Access	RO			
P01.39	Range	-	Unit	-	active moment	-	default	0

D01 44	Name Driver ID2	Set method	-	Access	RO			
P01.44	Range	-	Unit	-	active moment	-	default	0

D01.46	Name	Multi-functi	on paran 1	neter	Set method	anytime	Access	RW	
P01.46	Range	0~65535	0~65535 Unit -			Immediately	default	220	
Multi-function setting BIT0 enables AI automatic correction, BIT1 does not enable DO output protection, when BIT11=1, the voltage is low (less than 0.65*1.1414 of the rated voltage), the									
-		,	C			disconnected w	0 //		

relay is disconnected, and when BIT11=0, the relay will not be disconnected when it is closed. When the BIT9 universal servo is set to 1, the offset will not be performed when returning to zero, and the origin will be directly set as the offset position.


	Name	Multi-functi	on paran 2	neter	Set method	anytime	Access	RW	
P01.51	Range	0~65535	Unit	-	active moment	Immediately	default	2	
When Bl	T0=0, use th	e torque feedf	orward to	o calcu	ulate the torq	ue feedforward	according to	the	
position	command. W	Then BIT0=1,	use the o	ld tore	que feedforwa	ard to calculate	the torque		
feedforw	ard according	g to the veloci	ty comm	and.					
When BIT1=0, enable, torque feedforward when P07.20=0/1. When BIT1=1, disabled. Torque									
feedforw	feedforward when P07.20=0/1.								

When BIT2=1, power-on triggers the phase finding of the linear motor incremental encoder
When BIT3=1, Fn004 does not learn the motor encoder parameters, only VVVF speed regulation
When BIT4=1, the resolver FREQ SEL1
When BIT5=1, resolver AMCD
When BIT6=1, the resolver automatically resets the fault
When BIT7=1, select the high-speed pulse command as the pulse position command. BIT7=0,
select the low-speed pulse command as the pulse position command.

10.3 P02 group parameters - basic control parameters

D02 0	Name	Drive C	ontrol M	ode	Set method	anytime	Access	RW			
P02.0	Range	0~7	Unit	-	active moment	Immediately	default	0			
	Setting		Control mode								
	0				Position mod	le					
	1				Speed mode	e					
	2		Torque mode								
	3	Position	Position/torque mode IO switching, select Torque mode when								
			INFn.36 is active								
	4	Position/sp	eed mod	e IO sw	vitching, seled	et speed mode w	hen INFn.3	6			
					is active						
	5	Torque/spe	ed mode	e IO swi	itching, select	t torque mode w	hen INFn.3	6			
					is active						
	6	Position/to	rque/spe	ed mode	e IO switchin	g, through INFn	.36, INFn.3	7			
					switching						
			INFn.3	7	INFn.36	working mo	ode				
			invali	ł	invalid	Speed mod	le				
			invali	ł	valid	Torque mo	de				
			valid		XX	Position mo	ode				
	7			Ded	icated control	mode					

D02.02	N	Jame		t Mode o on displa		Set method	-	Access	5	RO
P02.02	Range 0~2		Unit	-	active moment	-	default	t	-	
		S	etting 0	control mo						
			1			speed mo	de			

P02.03	N	ame		d and rev is prohi		Set method	anytime	Access	RW
P02.05	R	ange	0~2	Unit	-	active	Immediately	default	0
						moment			
		S	etting		Forward/reverse setting				
			0	Ν	lo forward	l and reverse			
			1	l Forward			rohibited		
			2				ited		

P02.04	Name	Driv	Drive status		Set method	-	Access	RO
P02.04	Range	0~32767	Unit	-	active moment	-	default	-
		Settin	g		Drive stat	us]	
		1	1		Self-check (n			
		8			ready (rd	y)		
		16			running(ru			
		32		e	mergency sto	op(run)		
		64	64		onding to fai	lures (run)		
		128			Fault (Er.x	xx)		

	Name	LED display content in running or rdy state			Set method	anytime	Access	RW
P02.05	Range	0~10	Unit	-	active moment	Immediately	default	0

Setting	Display content
0	Display state
1	Display speed
2	Display capacitor voltage
3	Display temperature
4	Display current
5	Display DI level value
6	Display DO level value
7	AI1 voltage value
8	AI2 voltage value
10	Torque percentage

P02.07	N	Name	Parameter	write pr	otection	Set method	anytime	Access	RW
F02.07	R	lange	0~1 Unit -			active moment	Immediately	default	1
		S	Setting			neter write s vrite prohibite	<u> </u>		
			0	0 v			ed		
			1	1					

D02.09	Name	Paramete	er save se	election	Set method	anytime	Access	RW
P02.08	Range	0~1	Unit	-	active moment	Immediately	default	0
	S	letting		Param				
		0	The parameters are saved in EEPROM and					
			saved when power off					
		1	Parame	ters are sav	ved to RAM,	lost when powe	er	
					off			
		2	The pa	arameters v	vritten by con	nmunication are	;	
			saved	to RAM, a	and lost when	n power off, the		
			parameters written by the panel are saved to					
			EI	EPROM, a	nd saved whe	en power off		

	Name	Start	up optio	ns	Set method	anytime	Access	RW
P02.09	Range	0.00~5.00	Unit	-	active moment	Take effect after	default	0

a.bb format. When a=0, it starts normally. When a=1, all parameters are read to the U disk at startup, and the name in the U disk is <PARA + 'bb'.csv>. For example, if P02.09=1.05 is set, all parameters will be saved to the U disk when the system is started next time, and the file name is 'PARA05.csv'. When a=2, all parameters with the parameter name <PARA + 'bb'.csv> in the U disk will be updated to the servo at startup. For example, when P02.09=2.99, all parameters with the parameter name 'PARA99.csv' in the U disk will be updated to the servo at startup. For example, when P02.09=2.99, all parameters with the parameter name 'PARA99.csv' in the U disk will be updated to the servo at startup. When a=3, all non-motor drive parameters with the parameter name <PARA + 'bb'.csv> in the U disk will be updated to the servo at startup. 13. All parameters except P10.01, P1003, P10.04, and P10.06; when a=4, update all control parameters refer to all parameters except P00, P01 group, P05.13, P10.01, P1003, P10.04, P10.06, P07 group; when a=5, record the curve in real time to U plate.

D02.10	Name		on of Servo t Shutdown	• 1	Set method	anytime	Acc	ess	RW
P02.10	Range	0~5	Unit	-	active moment	Immediately	defa	ult	0
	Setti	ng	Selectio	Selection of Servo Type II Fault Shutdown Mode					
	0		free to rotate						
	1		rapid deceleration stop and disable driver						
	2		slov	v decelerati	on stop and d	lisable driver			
	3		rapid o	deceleration	stop and kee	ep enable driver			
	4		slow deceleration stop and keep enable driver						
	5		Brakin	g according	g to the current	nt set by P02.18			

D02.11		N	ame		pe 3 stop election	mode	Set method	anytime	Access	RW
P02.11	Range		ange	0~5	Unit	-	active moment	Immediately	default	0
			Setting		fault type 3 stop mode selection					
			0		free to rotate					
				1	rapid deceleration stop and disable driver					
				2	slov					
				3	rapid o	leceleration	stop and kee	ep enable driver		
				4		slow deceleration stop and keep enable driver				
				5	Brakin	g according	to the current	nt set by P02.18		

P02.12	Name	Over travel stop mode selection			Set method	anytime	Access	RW
	Range	ange 0~5 Unit		-	active	Immediately	default	0

	moment	
Setting	Over travel stop mode selection	
0	free to rotate	
1	rapid deceleration stop and disable driver	
2	slow deceleration stop and disable driver	
3	rapid deceleration stop and keep enable driver	
4	slow deceleration stop and keep enable driver	
5	Braking according to the current set by P02.18	

P02.13	N	ame	Disable o	lriver sto election	•	Set method	anytime	Access	RW
P02.13	R	Range 0~2		Unit	-	active moment	Immediately	default	0
		S	etting	Disable driver stop mode selection			selection		
			0	free to rotate					
			1	rapi	d decelerati	on stop and c	lisable driver		
			2	slow deceleration stop and disable driver					

D02.14		Na	ame	Emerg stop se	ency election		Set method	anytime	Access	RW
P02.14	Range		ange	0~4	Unit	-	active moment	Immediately	default	0
		Γ	Setting							
		ſ	0							
				1	rapi	d decelerati	on stop and c	lisable driver		
				2		slow deceleration stop and disable driver				
			3		rapid deceleration stop and keep enable driver					
				4	slow deceleration stop and keep enable driver					

P02.16	Name	rapid	l stop tin	ne	Set method	anytime	Access	RW
P02.10	Range	0~65535	Unit	ms	active moment	Immediately	default	500

D02.17	Name	slow	stop tin	ne	Set method	anytime	Access	RW
P02.17	Range	0~65535	Unit	ms	active moment	Immediately	default	1000

P02.18 Name Drive dynamic brak	ing Set	anytime	Access	RW
--------------------------------	---------	---------	--------	----

VC210 series servo driver instruction manual

	С	urrent		method			
Range	0~3276.7	Unit	%	active moment	Immediately	default	50

	Name	Enable ha	rdware d oraking	ynamic	Set method	anytime	Access	RW
P02.19	Range	0~32767	Unit	ms	active moment	Reset takes effect	default	0

P02.20		Name	Servo	brakin	g optior	1	Set method	anytime	Ac	cess	RW
P02.20		Range	0~3		Unit	-	active moment	Immediately	def	àult	2
	Setting				Braking method						
Г	Ī	(0		Never start the brake						1 7
For]	l	E	Braking i	is pos	ssible only w	hen decelerating		220	v en the
drives, DC bus		12	2		1	eady	to brake at a	ny time		volt	
is greater	-		3	Braki	ng is onl	ly pos	ssible when t	he energy is fed l	back	thar	C
U		ne dynamie	c braking	circuit i	s activat	ted;				inai	1

For 380V drives, when the DC bus voltage is greater than 680VDC, the dynamic braking circuit is activated.

D02 21	Name Braking resistor value P02.21	value	Set method	anytime	Access	RW		
P02.21	Range	0~3276.7	Unit	Ω	active moment	Immediately	default	0

P02.22	Name	Maximum _J	power of esistor	fbraking	Set method	anytime	Access	RW
102.22	Range	0~3276.7	Unit	KW	active moment	Immediately	default	0

	Name	Heat dissip	ation co	efficient	Set	our times	A	DW		
P02.23		of braking resistor			method	anytime	Access	RW		
P02.23	Range	0~100	Unit	%	active moment	Immediately	default	50		
If it is set to 100%, it means that it takes 10s to drop from the maximum heat to 0.										

P02.30	Name	After the brake release command is output, the	Set method	anytime	Access	RW
--------	------	--	---------------	---------	--------	----

	command	input is	delayed				
Range	0~32767	Unit	ms	active moment	Immediately	default	250

P02.31 Name Brake zero sp	speed th	beed threshold S		anytime	Access	RW		
P02.51	Range	0~32767	Unit	rpm	active moment	Immediately	default	30

P02.32	Name	Power	Power up hold time		Set method	anytime	Access	RW
F02.32	Range	0~32767	Unit	ms	active moment	Immediately	default	150

Name		Max brake disa	e hold tir ble drive		Set method	anytime	Access	RW	
P02.33	Range	Range 0~32767 Unit ms				Immediately	default	500	
After the enable is turned off, when the motor is rotating, the maximum waiting time for the brake to be effective.									

P02.35	Name	Driver password			Set method	anytime	Access	RW
P02.55	Range	0~32767	Unit	-	active moment	Immediately	default	0

	Name	Self-lear	e		Set method	anytime	Access	RW			
P02.36		current limit			method						
P02.30	Range	0~100	Unit	-	active	Immediately	default	30			
	Tunge	0 100	0.111		moment			20			
Setting 30 is 30% of the rated current of the motor											

P02.37	Name	Internal software counter count value			Set method	-	Access	RO				
P02.37	Range	0~214748 3647	Unit	-	active moment	-	default	-				
This para	This parameter is a double-byte parameter; the value is retained after power failure.											

P02.39 -	Name	Internal software counter arrival value			Set method	anytime	Access	RW
P02.39	Range	0~214748 3647	Unit	-	active moment	Immediately	default	0

P02.41	Name	VVVF maximum voltage output			Set method	anytime	Access	RW
P02.41	Range	0~1000	Unit	V	active moment	Immediately	default	30

	Name Linear motor parameter				Set method	anytime	Access	RW
P02.42	Range	0~32767	Unit	-	active moment	Reset takes effect	default	0

The linear motor parameter defaults to 0, a total of 5 digits, the lower two digits set the linear motor phase self-learning gain, generally set to 5-30, when it is set to 0, the gain is automatically set, and the second digit encoder self-learns the most laps. Number, that is to say, the number of encoder pulses that the self-learning takes the most = the second bit * resolution, the third bit is the speed level of the encoder self-learning encoder, the high bit is set to 1, the encoder does not have a hall, set to 0, the encoder has hall.

P02.50	Name	Instruc	tion reve	ersal	Set method	anytime	Access	RW			
102.30	Range	0-7	Unit	-	active moment	Immediately	default	0			
When the	e 0th bit is va	lid, the posit	ion com	nand is re	versed;						
When the	n the first bit is valid, the speed command is reversed;										
When the	When the second bit is valid, reverse the torque command										

10.4 P03 Group parameter - position mode parameter

D 02.01	Name	S	ource o	f positio	n cmd	Set method	anytime	Access	RW
P03.01	Range	Range 0~		Unit	-	active moment	Immediately	default	0
	Setting			position command source					
	0		Sourced from external XY pulse commands						
	1		From internal multi-segment location planning						
	2		S	Switch between external pulse command and internal					
				position planning command through INFn.35					
	3		The o	The command pulse superimposes the second encoder pulse					
					as the	position con	nmand		

4	Command pulse superimposed internal position planning as
	position command
5	Round pressure round sleeve label
6	sine wave

D02.02	Name		ame	puls	e pattern	l	Set method	Stop to set	А	ccess	RW
P03.02		Range 0~4		0~4	Unit	-	active	Immediately	d	efault	2
						moment					
		[Setting			Command pulse count mode					
				0	Pulse plus direction &positive logic						
				1	Pulse plus direction & negative logic						
				2		AB pulse					
			3		CW+CCW positive logic						
				4	CW+CCW negative logic						

P03.03	Name	Command p	ulse har ering	dware	Set method	Stop to set	Access	RW
P05.05	Range	0~32767	Unit	20ns	active moment	Immediately	default	50

	Name	Command pu value		int	Set method	-	Access	RO
P03.04	Range	-2147483647~ 2147483647	Uni t	-	active moment	-	default	-

	Name	Position com median filter t	e		Set method	set when stop	Access	RW
P03.06	Range	0~128	Unit	ms	active moment	Immediately	default	0

	Name	Position com	mand giv	/en	Set	set when	Access	RW
P03.07	INAILIC	low-pass filter	time con	stant	method	stop	Access	Κw
P03.07	Range	0~32767	Unit	ms	active moment	Immediately	default	20

	Name	e	Electronic gear ratio 1 numerator			anytime	Access	RW
P03.08		numerat	or		method			
	Range	1~2147483647	Unit	-	active	Immediately	default	0
	i tanige	1 21.1 100017	Univ		moment		actual	3

	Name	Electronic gea	r ratio 1		Set	anytime	Access	RW
P03.10	Ivanic	denomina	ator		method	anytime	Access	ιτw
105.10	Range	1~2147483647	Unit	-	active moment	Immediately	default	1000

	Name	Electronic gea numerat		2	Set method	anytime	Access	RW
P03.12	Range	1~2147483647	Unit	-	active moment	Immediately	default	0

	Name	Electronic gea	r ratio 2	2	Set	anutina	1 00000	RW
P03.14	Ivanie	denomina	ator		method	anytime	Access	ΚW
P05.14	Range	1~2147483647	Unit	_	active	Immediat	default	1000
	Range	1~2147483047	Om	-	moment	ely	uclault	1000

D02.16	Name	Electronic switching tir	C		Set method	anytime	Access	RW
P03.16	Range	0~32767	Unit	ms	active moment	Immediately	default	0

D02.17	Name		Position		Set method	-	Access	RO
P03.17	Range	-	Unit	0.0001 round	active moment	-	default	-

	Name	Maximum posi			Set	anytime	Access	RW
P03.19		threshold (0.00	01round	1)	method			
P03.19	Range	0~2147483647	Unit	-	active moment	Immediately	default	30000
Excessiv	e position err	or threshold, whe	n it is se	t to (), no excessiv	e position error	protection	will be
performe	ed.							

P03.21	Name	Form setti deviatior IN	• •		Set method	anytime	Access	RW
	Range	0~3	Unit	-	active moment	Immediately	default	0

Setting	Position deviation clear signal form setting
0	Clear deviation when INFn.25 is valid
1	Clear the deviation when INFn.25 changes from invalid to valid
2	INFn.25 Invalid clear deviation
3	Clear the deviation when INFn.25 is changed from valid to invalid

P03.22	N	lame		n deviati ng optior		Set method	anytime	А	ccess	RW
P05.22	R	lange	0~6 Unit - active momen		active moment	Immediately	de	efault	0	
		Setting Position deviation clearing option					aring options			
			0	Cl						
			1			reserve				
			2	reserve						
			3	reserve						
			4	Clear the position error, and at the same time,						
				the sp	eed drop	os to zero in a	straight line, an	nd		
					the falli	ing time is set	t by P02.16			
			5			reserve				
			6	Clear the position error, at the same time the						
				speed drops to zero with a quadratic curve, the						
					drop	time is set by	y P02.16			

P03.23	Name	Position co is 0, outpu		-	Set method	anytime	Access	RW	
	Range	0~32767	Unit	ms	active moment	Immediately	default	0	
This parameter is used in conjunction with OUTFn.33.									

P03.25			gh-speed nmands	l pulse	Set method	Stop to set	А	ccess	RW	
P03.23			Unit	-	active moment	Immediately d		efault	0	
		S	etting		Comm					
			0	Р						
			1	Negative logic of pulse plus direction						
			2			AB pulse				
			3		CW+CCW positive logic					
			4		CW+CCW negative logic					

VC210 series servo driver instruction manual

	Name	Count value of	high-sp	peed	Set		1 00000	RO
D02.26	Ivallie	pulse com	mand		method	-	Access	ко
P03.26	Danga	-2147483647~	Uni		active		default	
	Range	2147483647	t	-	moment	-	uerault	-

D02 21	Name Enable fu			ll closed	loop	Set method	Stop to set	Ac	cess	RW
P05.51	R	ange	0~1	Unit	-	active moment	Immediately	def	fault	0
		S	etting	tting Full			option			
			0				sed loop			
			1	1 Er			ed loop			

P03.32	N	Jame	Fully clos	ed loop o back mo		Set method	anytime	А	ccess	RW	
P03.32	Range 0~2		Unit	-	active moment	Immediately c		efault	0		
		S	etting	Full closed loop mode							
		0		half closed loop							
When			1	fully closed loop						32 = 2,	
electroni	0		2	Swi	tch betwee	en full closed	loop and semi			52 – 2, ratio 1	
is used for			2		closed	loop accordii	ng to IO		gear		
	semi-closed loop, and electronic gear ratio 2 is used for full-closed loop.										

Fully closed loop feedback Set Name anytime RW Access method polarity P03.33 active Immediately default 0 Range 0~1 Unit _ moment Setting Fully closed loop feedback polarity The values of the motor encoder counter and 0 the second encoder counter are incremented or decremented simultaneously 1 The values of the motor encoder counter and the second encoder counter are incremented and decremented

P03.34	Name	The number of pu second encoder corr one revolution of	respondin	g to	Set method	anytime	Access	RW
	Range	1~2147483647	Unit	-	active	Immediat	default	10000

VC210 series servo driver instruction manual

ely

moment

P03.36	Name	Full closed loo error is too larg (unit is 0.000	e thresh	old	Set method	anytime	Access	RW			
	Range	0~2147483647	Unit	-	active moment	Immediately	default	10000			
The fully	closed loop	position error refe	ers to (th	e cou	nt value of th	ne motor encode	er - the cou	nt			
value of	the second er	ncoder reduced to	the moto	or end	coder), and th	e position error	represents	how			
much the	e relative slid	ing between the m	aterial a	nd th	e motor is.						
When the	much the relative sliding between the material and the motor is. When this parameter is set to 0, the full-closed loop position error excessive protection will not be										
performe	ed.										

P03.38	Name	Fu	ll closed le err	oop position or	Set method	-	Access	RO
P03.38	Range	-	Unit	0.0001 round	active moment	-	default	-

P03.40	Name	Full closed loo error clearing			Set method	anytime	Access	RW
P03.40	Range	0~32767	Unit	-	active moment	Immediately	default	20
		en in full closed lo hen set to n, when	-		,			

the full-closed loop position error is less than P03.36, the full-closed loop position error will be cleared.

P03.41	Name		Fully closed loop motor encoder rate			-	Access	RO
P05.41	Range	-	Unit	clk/5ms	active moment	-	default	-

D02.42	Name	Fully clo en	sed loop coder rat		Set method	-	Access	RO
P03.42	Range	-	Unit	clk/5ms	active moment	-	default	-

D02.45	Name	Positioning complete output condition			Set method	anytime	Access	RW
P03.45	Range	0~4	Unit	-	active moment	Immediately	default	0

Setting	Positioning complete output condition
	When the position error is less than the positioning completion
0	threshold, it will be output directly, otherwise, the output will be
	cleared.
	When the position error is less than the positioning completion
1	threshold, and the speed command P03.95 in the position mode is zero,
	the output is output, otherwise the output is cleared.
	When the position error is less than the positioning completion
2	threshold, and the filtered speed command P03.96 in the position mode
	is zero, the output is output, otherwise the output is cleared.
	When the position error is less than the positioning completion
3	threshold, and the speed command P03.95 in the position mode is zero,
3	the output is output. When the speed command P03.95 in the position
	mode is not zero, the output is cleared.
1	The multi-segment position command is sent and the position error is
4	less than the positioning completion threshold

P03.46	Name	thres	positioning completion threshold (unit is 0.0001 round)	Set method	anytime	Access	RW	
	Range	0~32767	Unit	-	active moment	Immediately	default	10

D 02	17	Name	Positioning	g close to nditions	•	Set method	anytime	Access	RW	
P03.	.4/	Range	0~3	Unit	-	active moment	Immediately	default	0	
	9	Setting		Positioning close to output conditions						
		0	Output whe	Output when the position error is less than the positioning proximity threshold, otherwise clear the output;						
		1	-	it is whe shold and	n the posit d the speed	ion error is l	ess than the posi P03.95 in the pos	U	;	
		2	-	n the po d the filt	sition erro ered speed	r is less than	the positioning 03.96 in positio	••		
	3 The output is when the position error is less than the positioning approach threshold and the speed command P03.95 in the position mode is zero, and the output is cleared when the speed command P03.95 in the position mode is not zero							;		

D02.49	Name	positioning cl			Set method	anytime	Access	RW
P03.48	Range	0~32767	Unit	-	active moment	Immediately	default	100

P03.49	Name	position completion thres	close tin	ne	Set method	anytime	Access	RW		
	Range	0~32767	Unit	ms	active moment	Immediately	default	10		
When the	e position err	or is less than th	is less than the positioning co		ompletion/pr	oximity thresho	ld, and the	time		
threshold	threshold is maintained, the positioning completion/proximity signal is output.									

D02 51	P03.51 Name Homing me	ing meth	od	Set method	Stop to set	Access	RW	
P05.51	Range	0~99	Unit	-	active moment	Immediately	default	1

	Name	Homing acceleration and			Set	onstimo	Access	RW
P03.52		deceleration time			method	anytime	Access	K W
P05.52	Range	0~65535	Unit	ms	active	Immediately	default	500
					moment			

P03.53	Name	First homi	ing speed	d	Set method	anytime	Access	RW
P05.55	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

P03.54	Name	Second hor	ning spe	ed	Set method	anytime	Access	RW
P05.34	Range	0~32767	Unit	rpm	active moment	Immediately	default	100

P03.55	Name	Homing offset			Set method	anytime	Access	RW
r05.55	Range	-2147483647~ 2147483647	Unit	User units	active moment	Immediately	default	0

P03.57	Name	Zero	point r	ange	Set method	anytime	Access	RW
P05.57	Range	0~32767	Uni t	0.0001 round	active moment	Immediately	default	5

D02 (0	Name	-	nction enable method		Set method	Stop to set	Access	RW
P03.60	Range	0~2	Unit	-	active moment	Immediately	default	0
	Set	ting Interrupt fixe			ed-length fu	nction settings		
		0	Di	sable inte	errupt fixed-l	ength function		
		1	Enable IO trigge			ked-length funct	tion	
		2				rupt fixed lengt	h	
		•						

P03.61	Name	Interrupt fixed length speed			Set method	anytime	Access	RW
P05.01	Range	0~32767	Unit	rpm	active moment	Immediately	default	3000

P03.62	Name	Interrupt fixed long acceleration/deceleration time		Set method	anytime	Access	RW	
	Range	0~32767	Unit	ms	active moment	Immediately	default	500

	Name Interrupt fixed length				Set	onutimo	A 22255	RW
D02 62	Ivallie	(user ur	nit)		method	anytime	Access	Κw
P03.63	Range	0~2147483647	Unit	-	active moment	Immediately	default	10000

P03.65	Name	Interrupt fixed-length window position (User units)		Set method	anytime	Access	RW	
	Range	0~2147483647	0~2147483647 Unit		active moment	Immediately	default	0

P03.67	Name	Interrupt fiz window (User	range	th	Set method	anytime	Access	RW								
	Range	0~65535	Unit	-	active moment	Immediately	default	0								
Interrupt	Interrupt fixed-length window range (user unit), when it is 0, no window will be added, and the															
interrupt	fixed-length	trigger enable si	ignal is d	lerived	from INFn.3	interrupt fixed-length trigger enable signal is derived from INFn.38.										

P03.68 Name Cancel the fixed length	Set	anytime	Access	RW
---	-----	---------	--------	----

			mode		method			
R	ange	0~1	Unit	-	active moment	Immediately	default	0
	S	etting						
		0	After	,				
			dire					
		1	Rele	ease interr	upt fixed len	gth through IO		

	Name	Interrupt the long latched motor position			Set method	-	Access	RO
P03.69	Range	-2147483647 ~ 2147483647	Unit	-	active moment	-	default	-

D02 72	P03.73		ble hardwar oftware limi		Set method	anytime	Access	RW
P03.73	Range	0~2	Unit	-	active moment	Immediately	default	0
	Settin	ng	g Software and har			function selection	on	
	0		D	isable sof	ftware and hardware limit			
	1		E	nable hard	lware and so	ftware limits		
	2		Enable sof	tware and	hardware lin	nit after origin r	eturn	

	Name	Software lim val		limit	Set method	anytime	Access	RW
P03.74	Range	-2147483647 ~ 2147483647	Unit	-	active moment	Immediately	default	-10000000

	Name Software limit upper limit value		limit	Set method	anytime	Access	RW	
P03.76	Range	-2147483647 ~ 2147483647	Unit	-	active moment	Immediately	default	10000000

D02 70	Name	Selection outp	of servo ut source		Set method	anytime	Access	RW
P03.78	Range	0~2	Unit	-	active moment	Immediately	default	0

Setting	Type of output pulse
0	output motor pulse
1	Output command pulse
2	No output, do input

P03.79	Name	Motor puls divisio	e frequ n factor	•	Set method	anytime	Access	RW	
	Range	1~65535	Unit	-	active	Reset takes	default	_	
					moment	effect		-	
	If	the motor type	is an in	crement	al encoder, tl	he default is 1,			
The r	number of pu	lses output by t	the puls	e output	port = the nu	umber of motor	pulses/P03.7	9;	
If the motor type is an absolute encoder, the default value is 10000,									
Indicate	es that the mo	otor rotates onc	e, and t	he numb	er of pulses of	output by the pu	ilse output po	ort is	

|--|

P03.80	Ν	Name		division pulse t direction		Set method	anytime	Access	RW
		lange	0~1	Unit	-	active moment	Reset takes effect	default	0
		S				vision pulse o positive outp	output direction		
	1			reverse output					

P03.81	Name		Z pulse polarity selection		Set method	anytime	Access	RW	
P05.81	R	lange	0~1	Unit	-	active moment	Immediately	default	0
	Setting Z p			•	se polarity se positive outp				
		1				reverse outp			

D02 82	Name		Enable 4th power curve			Set method	Stop to set	А	ccess	RW
P03.82	Range 0~1			Unit	-	active moment	Immediately	de	efault	1
				ve planning s pezoidal velo	e e					
						g a 4th powe	. 1			

P03.83NamePosition curve planningSet-AccessRO

	error			method			
Range	-32767~32767	Unit	-	active moment	-	default	-

P03.84 Name Range	Nome	Position command			Set	anytime	Access	RW
	sampling interval			method	allytime	Access	Γw	
	Dongo	Range 0~32768	Unit		active	Re-enable to	default	1
	Kange		Unit	-	moment	take effect	uciault	

	Name	Mechanical position			Set		Access	RO
Ivallie	(user position unit)			method	-	Access	кU	
P03.90	P03.90 Range	-2147483647						
		~	Unit	-	active moment	-	default	-
		2147483647						

	Name		Mechanical position (encoder unit)			-	Access	RO
P03.92	Range	-2147483647 ~	Unit	-	active moment	-	default	-
		2147483647			moment			

P03.94	Name	Filtered posi	tion erro	or	Set method	-	Access	RO
P03.94	Range	-32767~32767	Unit	clk	active moment	-	default	-

	Name	Speed comman in positio	C	Set method	-	Access	RO			
P03.95		in positio	-	method						
P03.93	Range		Unit	rpm	active	_	default	_		
		- 011		Ipin	moment	-	uclault	-		
Speed command monitoring in position mode.										

P03.96	Name	Velocity c monitoring aft position	er filteri	Set method	-	Access	RO			
	Range	-	Unit	rpm	active moment	-	default	-		
The filtered velocity command monitoring in position mode.										

10.5 P04 group parameter - speed mode related parameters

D04.01	Ν	Jame	Spee	ed source		Set method	anytime	А	ccess	RW
P04.01	R	lange	0~7	Unit	-	active moment	Immediately	de	efault	0
		S	etting		Speed source					
			0							
			1	Auxiliary speed B						
			2	A	A/B switc	hing through	IO-INFn.12			
			3			A+B				
			4		Com	munication (l	P08.17)			
			5			Multi-speed	d			
			6	UP/DOWN pattern						
			7	Internal sine wave						

D04.02	Name Source of			f main speed A Set method			anytime	А	ccess	RW	
P04.02		Ra	ange 0~4		Unit	-	active	Immediately	d	efault	0
							moment				
		[S	etting	Source of main speed A						
				0	Sourced from P04.03						
				1			from AI1				
				2			from AI2				
				3	Sourced from AI3 (not supported on hardware)						
				4	from pulse rate						

D04.02	Name	Value of ma	in speed	lΑ	Set method	anytime	Access	RW
P04.03	Range	-32767~327 67	Unit	rpm	active moment	Immediately	default	500

D04.04	Name	Auxiliary	Speed B	Source	Set method	anytime	Access	RW
P04.04	Range	0~4	Unit	-	active moment	Immediately	default	0

Setting	Auxiliary Speed B Source
0	From P04.05
1	from AI1
2	from AI2
3	Sourced from AI3 (not supported on hardware)
4	from pulse rate

	Nama	The value of the auxiliary			Set	antina	A	DW	
Name Name		spee	d B		method	anytime	Access	RW	
P04.05	Range	-32767~327	Unit	rpm	active	Immediately	default	500	
	Range	67	Om	ipin	moment	minediatery	uciault	300	

D04.06	P04.06 Range		Source of	speed po	ositive	Set method	anytime	А	ccess	RW
P04.00			0~3	Unit	-	active moment	Immediately	de	efault	0
		Setting								
			0	Forward Limit A						
			1		I	Positive Limi	t B			
			2	A/B switching						
			3		A and B are restricted at the same time					

Nar P04.07		Jame		f speed positive imit A		Set method	anytime	Acce	SS	RW
P04.07	Range		0~3	Unit	-	active moment			ılt	0
		S	etting		Source of positive speed limit A					
			0			from P04.0	8			
			1			from AI1				
			2			from AI2				
			3	f	from AI3 (hardware not supported)					

	Name	The value of	of speed	positive	Set	anytime	Access	RW
P04.08	li	mit A		method	unytime	1100055	K.	
P04.08	Range	0~32767	Unit	rpm	active	Immediately	default	3000
					moment			

N	Name	Source of v	velocity p	positive	Set	anvtime	Access	RW
P04.09	Inallic	li	mit B		method	anytime		IXW
	Range	0~3	Unit	-	active	Immediately	default	0

	moment	
Setting	Source of positive speed limit B	
0	from P04.10	
1	from AI1	
2	from AI2	
3	from AI3 (hardware not supported)	

D04.10	Name	Value of speed positive limit B		Set method	anytime	Access	RW	
P04.10	Range	0~32767	Unit	rpm	active moment	Immediately	default	3000

P04.11	Ν	Name	Source of	velocity imiter	reverse	Set method	anytime	А	ccess	RW
P04.11	R	lange	0~3	Unit	-	active moment	Immediately	de	efault	0
		S	etting		Source of reverse velocity limiter					
			0	Reverse limiter A						
			1		Reverse limiter B					
			2			A/B switch	1			
			3		Both A	A and B are r	estricted			

P04.12	N	Jame	Source of lin	velocity : niter A	reverse	Set method	anytime	Acces	s RW
P04.12	R	lange	0~3	Unit	-	active moment	Immediately	defaul	t O
		S	etting	S	ource of	reverse veloc	ity limiter A		
			0	from P04.13					
			1	from AI1					
			2	from AI2					
			3	f	From AI3	(hardware no	t supported)		

P04.13	Name	Name Velocity reverse limiter A	Set method	anytime	Access	RW		
P04.15	Range	0~32767	Unit	rpm	active moment	Immediately	default	3000

	Nama		Source of velocity reverse			onutimo	1 00000	RW
D04.14	Name	lir	niter B		method	anytime	Access	ĸw
P04.14	Range	0~3	Unit	_	active	Immediately	default	0
	Range	0,45	Om	-	moment	minediatery	uciault	U

Setting	Source of reverse velocity limiter B
0	from P04.15
1	from AI1
2	from AI2
3	from AI3(hardware not supported)

D04 15	Name	Velocity re	Velocity reverse limiter B			anytime	Access	RW
P04.15	Range	0~32767	Unit	rpm	active moment	Immediately	default	3000

D04 16	Name	Jog s	speed		Set method	anytime	Access	RW	
P04.16	Range	0~32767	Unit	rpm	active moment	Reset takes effect	default	20	
Note that this value is modified but not saved during keyboard tap trials.									

P04.17	Name	Acceler	Accelerate time		Set method	anytime	Access	RW
P04.17	Range	0~32767	Unit	ms	active moment	Immediately	default	500

P04.18	Name	Decelera	Deceleration time		Set method	anytime	Access	RW
P04.18	Range	0~32767	Unit	ms	active moment	Immediately	default	500

P04.20	Name	Speed instruction first order filtering time constant		Set method	anytime	Access	RW	
	Range	0~32767	Unit	ms	active moment	Immediately	default	20

D04 21	Name	Display sp val	eed filte ues	red	Set method	-	Access	RO
P04.21	Range	0~32767	Unit	rpm	active moment	-	default	-

P04.22	Name	Speed display	filtering	g time	Set method	anytime	Access	RW
F04.22	Range	0~32767	Unit	ms	active moment	Immediately	default	300

, , , , , , , , , , , , , , , , , , ,	Name	Speed rea	aches th	e	Set	anutima	1 22255	RW
	Name	threshold method	ΚW					
P04.23	Range	0~32767	Unit	rpm	active moment	Immediately	default	1000

	Name	Speed co	nsistenc	сy	Set	anytime	A 22255	RW
D04 24	Ivallie	thres	shold		method	anytime	Access	ι w
P04.24	Range	0~32767	Unit	rpm	active	Immediately	default	10
	Ũ			1	moment	,		

Name Zero speed three			d thresh	old	Set method	anytime	Access	RW
P04.23	Range	0~32767	Unit	rpm	active moment	Immediately	default	5

	Name	Zero speed t	hreshol	d for	Set	anytime	Access	RW
P04.26	I vuine	positic	on lock		method	unytime	Access	IX.
P04.20	Range	0~32767	Unit	rpm	active moment	Immediately	default	5

P04.27 -	Name	Lifting sp	eed thre	eshold	Set method	anytime	Access	RW			
P04.27	Range	0~32767	Unit	rpm/s	methodanytimeAccessRVactive momentImmediatelydefault37n the threshold, the acceleration/deceleration	375					
When th	When the acceleration/deceleration is greater than the threshold, the acceleration/deceleration										
signal wi	signal will be output, and the unit is rpm per second.										

10.6 P05 group parameter - torque mode related parameters

P05.01	Name source			e of torq	ue	Set method	anytime	А	ccess	RW
P03.01	Ra	inge	0~5	Unit	-	active moment	Immediately	de	efault	0
		S	etting	source of torque						
			0	main torque A						
			1	Auxiliary torque B						
			2	Р	erform A	B switchove	r through I/O			
			3			A+B				
			4	Communications (P08.16)						
			5	Internal sine wave						

D05.02	P05.02 Name Range		The sourt	ce of the rque A	main	Set method	anytime	Ac	cess	RW
P03.02			0~3	Unit	-	active Immediately		de	fault	0
		S	etting							
			0							
			1	From AI1						
			2		From AI2					
			3	From AI3(hardware not supported)						

	Name	The value of	the mai	n	Set	onutimo	1 00000	RW
P05.03	Inallie	torque	А		method	anytime	Access	κw
P05.05	Range	-300.0~300.0	Unit	%	active moment	Immediately	default	0.0

P05.04		lame	The source	of assist B	t torque	Set method	anytime	Ac	ccess	RW
P05.04	R	ange	0~3	Unit	-	active moment	Immediately	de	fault	0
		S	Setting Sou			ce of assist to				
			0		From P05.05					
			1		From AI1					
			2		From AI2					
			3	F	From AI3(hardware not supported)					

	Name	The value of	the assis	st	Set	anytime	1 22255	RW	
P05.05	Ivallie	torque	В		method	allytille	Access	κw	
P05.05	Range	-300.0~300.0	Unit	%	active moment	Immediately	default	0.0	

P05.10	Ň	lame	Torque	limit me	thod	Set method	anytime	A	ccess	RW
105.10	R	Range 0~1		Unit	-	active moment	Immediately d		efault	0
		S	etting	ing Tor		rque limit me	ethod			
			0	Both	positive a	and negative	limits come from	n		
					1	oositive limit	ing			
			1	Positive and		gative restrict	tions are restrict	ed		
						separately				

P05.11	١	Name	Source of li	torque p miting	ositive	Set method	anytime	A	ccess	RW
P05.11	R	Range 0~3		Unit	-	active moment	Immediately	de	fault	0
		S	etting	ing		f forward tore	que limiting			
			0		F	orward limite	er A			
			1		F	orward limite	er B			
			2			A/B switch	1			
			3		Both A and B are restricted					

D05 12	N	lame	Source of lin	torque fo niting A	orward	Set method	anytime	Acc	cess	RW
P05.12	Range 0~3		Unit	-	active moment	Immediately	default		0	
		S	etting	The	source o	of the positive	e torque limit A			
			0			From P05.1	3			
			1			From AI1				
			2			From AI2				
			3	From		(hardware no	t supported)			

P05.13	Name	The value o positive li	-		Set method	anytime	Access	RW
P05.13	Range	0~300.0	Unit	%	active moment	Immediately	default	150.0

P05.14	N	lame	Source of lin	torque fo niting B	orward	Set method	anytime	Access	RW	
P03.14	R			Unit	-	active moment	Immediately	default	0	
		S	etting	S	ource of	forward torqu	ie limiting B			
			0		From P05.15					
			1			From AI1				
			2			From AI2				
			3	F	From AI3	(hardware no	t supported)			

P05.15	Name	Torque positive limiting B value			Set method	anytime	Access	RW
r05.15	Range	0~300.0	Unit	%	active moment	Immediately	default	150.0

P05.16	N	lame	Source of li	torque r miting	everse	Set method	anytime	Acces	S S	RW
P05.10	R	Range 0~3		Unit	-	active moment	Immediately	defau	lt	0
		S	etting	tting Source		f reverse torg	ue limiting			
			0		Reverse limiter A					
			1		R	everse limite	er B			
			2			A/B switch	1			
			3	3		n A and B are restricted				

P05.17	Ν	Name	Source of lin	`torque r niter A	everse	Set method	anytime	А	ccess	RW
P03.17	Range 0~3		Unit	-	active moment	Immediately	de	efault	0	
		S	etting	S	Source of	reverse torqu	e limiting A			
			0			From P05.1	8			
			1			From AI1				
			2			From AI2				
			3	From AI3			t supported)			

P05.18 -	Name	Source of torque reverse limiter A			Set method	anytime	Access	RW
P05.18	Range	0~300.0			active moment	Immediately	default	150.0

P05.19	N	lame	Source of lin	`torque r niter B	everse	Set method	anytime	Ac	ccess	RW
103.19	R	Range 0~3		Unit	-	active moment	Immediately	de	fault	0
		S	etting	S	ource of	reverse torqu	e limiting B			
			0		From P05.20					
			1			From AI1				
			2			From AI2				
			3	F	From AI3	(hardware no	t supported)			

D05 00	Name	The value of torque reverse limiting B			Set method	anytime	Access	RW
P05.20	Range	0~300.0	Unit	%	active moment	Immediately	default	150.0

P05.25	Name	switchir	threshold for ng from torque o speed mode Unit 0.25ms d exceeds the speed	Set method	anytime	Access	RW	
	Range	0~32767	57 Unit 0.25ms		active moment	Immediately	default	10
When th	e amplitude	of the spee	d excee	ds the spe	ed limit plus	s the speed limi	t speed thr	eshold
(P05.26)	, and the time	e threshold	of conti	nuous torq	ue mode swi	tching to speed	mode (P05	.25), a
speed rin	ig is construc	ted to make	the spee	ed converg	ence within t	he limit.		

	Nama	Speed three	eshold f	or speed	Set			DW
D05 26	05.26 Name torque mode switchover		method	anytime	Access	RW		
P05.26	Range	0~32767	Unit	rpm	active moment	Immediately	default	30
When th	When the amplitude of the speed exceeds the sp				ed limit plus	s the speed limi	t speed thr	eshold

When the amplitude of the speed exceeds the speed limit plus the speed limit speed threshold (P05.26), and the time threshold of continuous torque mode switching to speed mode (P05.25), a speed ring is constructed to make the speed convergence within the limit.

P05.27	Name Time threshold for speed mode to switch to torque mode Range 0~32767 Unit 0.25ms	Set method	anytime	Access	RW			
	Range	0~32767	0~32767 Unit 0.25ms		active moment	Immediately	default	200
When th	ne servo is r	unning in t	orque r	node but	the speed lo	oop is construct	ted due to	speed
limitation	n, the time th	hreshold for	eshold for switching from			to torque mode	is determin	ned by
P05.27								

	Nama	Speed lim	it low p	ass filter	Set		A	RW
P05.28	Name	time	time parameter		method	anytime	Access	K VV
P03.28	Danca	0~32767	Unit	111	active	Reset takes	default	500
	Range	0~32707	Unit	ms	moment	effect	default	300
When th	e speed limit	changes, lo	w-pass	filtering is	s performed	on the speed l	imit value, a	nd the
filtering	time is deter	mined by P0	5.28. T	he longer 1	the filtering t	ime is, the slov	wer the spee	d limit
value cha	anges							

P05.31	Name	Torque reac reference			Set method	anytime	Access	RW
P05.31	Range	0~300.0	Unit	%	active moment	Immediately	default	50.0

P05.32	Name	The torque re effective		n	Set method	anytime	Access	RW
	Range	0~300.0	Unit	%	active	Immediately	default	10.0

VC210 series servo driver instruction manual

moment

P05.33	Name	Torque reache value		id	Set method	anytime	Access	RW
105.55	Range	0~300.0	Unit	%	active moment	Immediately	default	0.0

D05.24	Name	Torque samplin	ng inter	val	Set method	anytime	Access	RW
P05.34	Range	0~300	Unit	-	active moment	Reset takes effect	default	0

DO5 25	Name	Maximum outp shaking suppres			Set method	anytime	Access	RW
P05.35	Range	0~10.0	Unit	%	active moment	Immediately	default	0.0

	Name	Percentage of	•	Set	anytime	Access	RW	
P05.36	Name	suppressio	n gain		method	anytime	1100033	KW.
103.30	Range	0~10.0	Unit	%	active moment	Immediately	default	0.0

	Name	Jitter speed det	ection ti	me	Set	antima	A 22255	RW
	Inallie	consta	nt		method	anytime	Access	Κw
P05.37	Range	0~10.0	Unit	%	active	Immediately	default	0.0
	Kange	0,-10.0	Oint	70	moment	minediatery	uclaun	0.0
		The jitter is suppressed only wh			en the period i	s shorter than this t	ime	

P05.38	Name	Jitter speed	l detectio	on value	Set method	anytime	Access	RO
P05.58	Range	-	Unit	Rpm	active moment	Immediately	default	-

D 0 50 0	Name	Flutter suppression torque output value			Set method	anytime	Access	RO
P05.39	Range	-	Unit	%	active moment	Immediately	default	-

10.7 P06 group parameter -Inputs and Outputs Function

P06.01NameDI1 Function controlSetanytimeAccessRW
--

	r	egister		method				
Range	0~99	Unit	-	active moment	Immediately	default	1	
Setti	ng		DI	Function Sele	ection			
0				None				
1			E	Enable the dri	iver			
2				Reset the dri	ve			
3			S	witch AB sw	ritch			
4			Tor	que reverse s	switch			
5								
6		N	egative to	orque limit se	elector switch			
7			Forwar	d speed limit	selection			
8								
9				forward jog	g			
10				reverse jog	5			
11			Spee	ed reference 1	reverse			
12			Main	speed AB sw	vitching			
13								
14		Reset d	lrive befo	ore download	ing ARM progr	am		
15			Clear e	encoder posit	ion count			
16		Zero position fixed in speed mode						
17		Multi-speed speed selection 0						
18		Multi-speed speed selection 1						
19		Multi-speed speed selection 2						
20			Multi-s	peed speed s	election 3			
21			Position	n command p	orohibition			
22			Positi	on command	l reverse			
23			Prohibi	tion of pulse	command			
24			Electron	ic gear ratio s	switching 1			
25			cl	ear position e	error			
26			Tr	igger back to	zero			
27			Trigger	nulti-segmer	nt positions			
28		Ν	Multi-seg	ment position	n selection 0			
29		Ν	Multi-seg	ment position	n selection 1			
30		Ν	Multi-seg	ment position	n selection 2			
31		Ν	Multi-seg	ment position	n selection 3			
32		Directi	on select	ion for multi-	-segment location	ons		
33				reserve				
34			Н	ome switch i	nput			
35		Comm	and pulse		position planni	ng		
				switching				

36	Control mode switch 0
37	Control mode switch 1
38	Enable interrupt fixed-length input
39	release interrupt fixed length
40	Trigger interrupt fixed length
41	The first set of the second set of gain switch
42	reset fault
43	Positive limit switch in position mode
44	Reverse limit switch in position mode
45	Switching between open and closed loop in full closed
	loop mode
46	Reset before FPGA program update
47	Tension compensation direction
48	tracking direction
49	Force maximum JOG compensation
50	Roll diameter calculation is prohibited
51	change roll
52	Initial roll diameter switch
53	Clear the length of feed
54	Force fast tightening
55	Closed loop speed mode disables tension
	compensation
56	Electronic gear ratio switch 2
57	Motor overheating
58	Emergency stop input
59	Internal flip-flop reset
60	Internal trigger set
61	Internal counter counts pulses
62	Clear the internal counter
63	Speed mode UPDOWN mode UP signal
64	Speed mode UPDOWN mode DOWN signal
65	Speed mode UPDOWN mode hold signal
	Return to previous Phase
66	(Tension special: Enable Speed Overlay)
67	AI zero drift automatic correction
~ .	Go to the specified phase
	(Tension special type: closed-loop speed/torque mode
68	switch)
	Jog a fixed position in the positive direction
69	(Tension type: motor rotation direction in closed-loop
	speed mode)
70	Reverse jog fixed position
 , ,	J-0

	(Tension special type: motor rotation direction in
	closed-loop torque mode)
71	reserve
72	Trigger correction current sensor
73	Trigger learning phase
74	return to zero
75	STO activation

P06.02	Name	DI2 Fun	ction co			anytime	Access	RW
	1.0000	register			method			
	Range	0~99	Unit	-	active moment	Immediately	default	42
For the s	pecific functi	ons of the D	l port, se	e P06.01				

	Name	DI3 Function control			Set	aurtima	A	RW						
P06.03	Inallie	register			method	anytime	Access	КW						
	Range	0~99	Unit	-	active moment	Immediately	default	0						
For the s	pecific functi	ons of the D	For the specific functions of the DI port, see P06.01.											

P06.04 -	Name					anytime	Access	RW
		register			method	hod		
	Range	0~99	Unit	-	active moment	Immediately	default	0
For the s	pecific functi	ons of the D	l port, se	e P06.01				

P06.05	Name	DI5 Function control			Set	anytime	Access	RW
	Name	register			method	anytime		17.14
	Range	0~99	Unit	-	active moment	Immediately	default	0
For the s	pecific functi	ons of the D	l port, se	e P06.01	•			

P06.06	DI6 Fur		ction control		Set	anytime	Access	RW
	Tunne	register			method			IX W
	Range	0~99	Unit	-	active moment	Immediately	default	0
For the s	pecific functi	ons of the D	l port, se	e P06.01				

D0(07	Name DI7 Function control register		Set method	anytime	Access	RW		
P06.07	Range	0~99	Unit	-	active moment	Immediately	default	0

For the specific functions of the DI port, see P06.01.

P06.08	Name	DI8 Function control register			Set method	anytime	Access	RW	
	Range	0~99	Unit	-	active moment	Immediately	default	0	
For the s	For the specific functions of the DI port, see P06.01.								

	Name	DI9 Fun	ction co	ntrol	Set	anytime	Access	RW
D06.00	1.0000	register			method		1100000	
P06.09	Range	0~99 Unit -		-	active moment	Immediately	default	0
For the specific functions of the DI port, see P06.01. This DI is a high-speed DI.								

	Name	DI10 Fur	nction co	ontrol	Set	anytime	Access	RW		
P06.10	Name	register			method	anytime	Access	КW		
	Range	0~99	Unit	-	active moment	Immediately	default	0		
For the s	For the specific functions of the DI port, see P06.01. This DI is a high-speed DI.									

P06.13	Name	DI termin	nal valid	state	Set method	-	Access	RO		
P00.13	Range	0~1023 Unit		-	active moment	-	default	-		
Displaye	Displayed in decimal format, after conversion to binary format, it contains 0-9 digits, the									
low-orde	low-order to high-order indicates the status of digital output terminals DI1~DI10, 0=OFF, 1=ON,									
the 0th b	the 0th bit corresponds to DI1,, the first Bit 9 corresponds to DI10.									

P06.14	Name	DI fo	rced inp	ut	Set method	anytime	Access	RW		
P00.14	Range	0~1023	Unit	-	active moment	Immediately	default	0		
Input in o	decimal (BCI	D) format and	l conver	t it into b	inary (Binary	y), which is the o	correspondin	g		
DIx inpu	DIx input signal. For example: P06.14=42(BCD)=0000101010(Binary), it means DI2, DI4 and									
DI6 term	DI6 terminals are ON.									

P06.15	Name	DI termin	al actua	llevel	Set method	-	Access	RO
	Range	0~1023	Unit	-	active moment	-	default	-
Displaye	d in decimal	format, after	convers	ion to bir	ary format, i	t contains 0-9 d	igits, the	
low-orde	r to high-ord	er indicates th	he status	of digita	l output term	inals DI1~DI1(), 0=OFF, 1=	ON,

the 0th bit corresponds to DI1, ..., the first Bit 9 corresponds to DI10.

	N	High-spee	ed DI fil	tering	Set	<i>.</i>		DW		
P06.16	Name	conf	iguration	1	method	anytime	Access	RW		
P00.10	Range	1~32767	Unit	us	active	Immediately	default	10		
	Range	1,32707	Om	us	moment Immediately defa		uciault	10		
When th	e high-speed	pulse input	termina	l is in sp	oike interfere	nce, you can f	ilter out the	spike		
interferen	nce by setting	g P06.16. INI	Fn.34 an	d INFn.4	0 are high-sp	eed DI signals,	and their fil	tering		
time is d	time is determined by P06.16; other input signals are low-speed DI signals, and their filtering time									
is determ	nined by P06.	17.								

P06.17	Name	Low-speed DI filter			Set	anytime	Access	RW
		configuration			method			
100.17	Range	1~32767	Unit	us	active moment	Immediately	default	1000

P06.21	N	lame	DI1 v	valid leve	el	Set method	anytime	Access	RW
P00.21	Range 0~1		0~1	Unit	-	active moment	Immediately	default	0
		S	etting			Type of leve ive when low			
			0 1		Act				

P06.22	N	lame	DI2 v	alid lev	el	Set method	anytime	Access	RW
P00.22	Range 0~1		Unit	-	active moment	Immediately	default	0	
		S	Setting			Type of level			
			0						
			1 Acti			ive when hig	h level		

P06.23	Ν	Jame	DI3 v	alid lev	el	Set method	anytime	Ac	cess	RW
F 00.23	Range 0~1		Unit	-	active moment	Immediately	def	fault	0	
		S	etting							
			0		Active when low level					
			1	1 Acti			ive when high level			

P06.24	N	lame	DI4 v	alid leve	el	Set method	anytime	Access	RW
P00.24	Range 0~1		Unit	-	active moment	Immediately	default	0	
		S	Setting			Type of leve	el		
			0						
			1 Act			ive when higl	n level		

P06.25				valid leve	el	Set method	anytime	А	ccess	RW
P00.23	R	ange	0~1	Unit	-	active moment	Immediately	default		0
		S	etting	tting			el			
			0	0 Ac			ctive when low level			
			1		Act	ive when higl	h level			

P06.26	N	lame	DI6 v	valid level		Set method	anytime	Acce	SS	RW
P00.20	R	ange	0~1	Unit	-	active moment	Immediately	defau	ılt	0
		S	etting	etting			el			
			0 Ac			tive when low level				
			1	1 Act			h level			

P06.27	N	lame	DI7 v	alid lev	el	Set method	anytime	Ac	cess	RW
P00.27	R	ange	0~1	Unit	-	active moment	Immediately	de	fault	0
		S	etting	etting			el			
			0	0 Ac			Active when low level			
			1	1 Act			h level			

P06.28	N	ame	DI8 v	valid leve	el	Set method	anytime	Access	RW
P00.28	R	ange	0~1	Unit	-	active moment	Immediately	default	0
		S	etting 0	0			el / level		
			1				h level		

P06.29	Ň	lame	DI9 v	alid leve	el	Set method	anytime	Access	RW
P00.29	R	ange	0~1	Unit	-	active moment	Immediately	default	0
		S	etting	etting			el		
			0	0 Ac			Active when low level		
			1 Ac			ve when high	n level		

P06.30	N	Name DI10			rel	Set method	anytime	А	ccess	RW
P00.30	R	ange	0~1	Unit	-	active moment	Immediately	de	efault	0
		S	etting	tting			el			
			0	0 Ac			Active when low level			
			1	1 Ac			n level			

DOC 40	Name	DO1/DO2	function register	n control	Set method	anytime	Access	RW		
P06.40	Range	0~2	Unit	-	active moment	Immediately	default	0		
	Setting		Type of function							
	0	DO	DO1 and DO2 are output with the functions configured by P06.41 and P06.42 respectively							
	1		DO1, DO2 output A and B pulses respectively							
	ſ	DO	DO1 outputs the Z point signal, DO2 outputs the function							
	2		configured by P06.42							

D0(41	Name	DO1 fur	nction co egister	ntrol	Set method	anytime	Ac	ccess	RW
P06.41	Range	0~99	Unit	-	active moment	Immediately	de	fault	9
	<u>s</u>	Setting			DO functio	n			
		0			None				
		1							
		2		The spee	ed reaches a g	given value			
		3			Slow dowr	1			
		4			Rising spee	d			
		5			at zero spee	d			
		6		overspeed					
		7	Forward rotation						
		8	Reverse rotation						
		9	fault output Forward speed limit in torque mode						
		10							
		11	Negative speed limit in torque mode						
		12		-	l limit in torq oning comple				
		13							
		14	positioning proximity output Origin zero return complete output						
		15 16	(-					
		16	Inte		error is too l	npletion output			
		17	IIItt	-	ftware limit c				
		24				•			
		24		Holding brake output The input command is valid					
		26		Always OFF					
		27		Always ON					
		Torque limit output							

29	Torque arrives
30	Internal trigger state
31	Internal counter counts arrival
32	Speed is consistent
33	The pulse position command is zero output
34	Roll diameter reaches 2 output
35	The speed command is 0 output.
36	The speed command is 0 and the speed
30	feedback is 0 output
37	Servo is ready to output

	Name	DO2 fur		ntrol	Set	anytime	Access	RW		
P06.42		register			method					
P00.42	Range	0~99	Unit		active	Immediately	default	13		
	Runge	0))	Om		moment	minediatery	default	15		
Please re	Please refer to P06.41 for the specific functions of the DO port.									

	Name	DO3 fun	iction co	ntrol	Set	anytime	Access	RW	
D06 42	1 vuine	register			method	unytime	1100055	1	
P06.43	Range	0~99	Unit	-	active moment	Immediately	default	0	
Please re	Please refer to P06.41 for the specific functions of the DO port.								

Name		DO4 fur	ction co	ntrol	Set	antimo	1 00000	RW			
		register			method	anytime	Access	ĸw			
P06.44	Range	0~99	Unit	-	active	Immediately	default	0			
	Tung	•	0.111		moment			•			
Please re	Please refer to P06.41 for the specific functions of the DO port.										

	Name	DO5 fun		ntrol	Set	anytime	Access	RW	
DOC 15		re	egister		method				
P06.45	Range	0~99	Unit	-	active moment	Immediately	default	0	
Please re	Please refer to P06.41 for the specific functions of the DO port.								

	Name	DO6 fur	iction co	ntrol	Set	anytime	Access	RW		
DOC 16		register			method	,				
P06.46	Range	0~99	Unit	-	active moment	Immediately	default	0		
					moment					
Please re	Please refer to P06.41 for the specific functions of the DO port.									

P06.49	Name	DO terminal valid state			Set method	-	Access	RO			
P00.49	Range	- Unit		-	active moment	-	default	-			
Displayed in decimal format, after conversion to binary format, it contains 0-5 digits, the low											
digits to	digits to high digits indicate the status of digital output terminals DO1~DO6 in turn, 0=OFF,										
1=ON, th	1=ON, the 0th bit corresponds to DO1,, the first Bit 5 corresponds to DO6.										

D06 50	Name	DO force output			Set method	anytime	Access	RW
P06.50	Range	0~63	Unit	-	active moment	Immediately	default	0
Displaye	d in decimal	format, after	converti	ng to bin	ary format, it	contains 0-5 di	gits, the	
low-orde	r to high-ord	er indicates t	he state of	output termin	nals DO1~DOI	6, 0=OFF, 1=	ON,	

the 0th bit corresponds to DO1, ..., the first Bit 5 corresponds to DO6.

P06.51	N	Name DO1		valid lev	rel	Set method	anytime	Acc	ess	RW
P00.31	R	ange	0~1	Unit	-	active moment	Immediately	defa	ault	0
		S	etting	ting		Level validity				
			0	0 A		Active low le	vel			
			1	1 A		Active high le	evel			

P06.52	١	Name DO2		valid lev	rel	Set method	anytime	Access	RW
100.32	R	lange	0~1	Unit	-	active moment	Immediately	default	0
		S	etting	ting L		Level validi	Level validity		
			0)		Active low le	vel		
			1	1		Active high level			

P06.53	Name DO3			valid lev	rel	Set method	anytime	Access	RW
P00.33	R	ange	0~1	Unit	-	active moment	Immediately	default	0
		S	etting	<u> </u>		Level validi	•		
			0 1			Active low le Active high le			

P06.54	Ň	lame	DO4	valid lev	rel	Set method	anytime	Access	RW
P00.34	R	ange	0~1	Unit	-	active moment	Immediately	default	0
		S	etting	ting		Level validi			
			0)		Active low le	vel		
			1	1 A			evel		

P06.55	Ν	Jame	DO5	valid lev	rel	Set method	anytime	Acc	ess	RW
100.55	R	lange	0~1	Unit	-	active moment	Immediately	defa	ult	0
		S	etting	tting		Level validi	ty			
			0) A		Active low le	vel			
			1	1 A			evel			

Range 0~1 Unit - active Immediately defa	P00.30	P06.56	Name	valid lev	vel	Set method	anytime	Access	RW	
moment		P00.30	Range	0~1	0~1 Unit		active moment	Immediately	default	0
Setting Level validity			S		5			-		
0 Active low level 1 Active high level				0						

	Name	AI1 input voltage			Set method	-	Access	RO
P06.61	Range	0~10000	Unit	mV	active moment	-	default	-

	Name	AI2 input voltage			Set method	-	Access	RO
P06.62	Range	0~10000	Unit	mV	active moment	-	default	-

	Name	AI3 input	voltage		Set method	-	Access	RO
P06.63	Range	0~10000	Unit	mV	active moment	-	default	-

	Name	AI1 offset		Set method	anytime	Access	RW	
P06.64	Range	-10000~10000	Unit	mV	active	Immediately	default	0
	Ũ				moment	,		

Name	AI1 Dea	dband		Set method	anytime	Access	RW	
P06.65	Range	-5000~5000	Unit	mV	active moment	Immediately	default	0

P06.66	Name AI1 magnification	Set method	anytime	Access	RW			
P00.00	Range	-3276.7~3276 .7	Unit	%	active moment	Immediately	default	100.0

P06.67	Name	AI1 low-pass const		me	Set method	anytime	Access	RW
P00.07	Range	0~32767	Unit	ms	active moment	Immediately	default	2

P06.68	Name	AI1 Zero) Drift		Set method	anytime	Access	RW
P00.08	Range	-10000~10000	Unit	mV	active moment	Immediately	default	0

P06.69	Name	AI2 offset			Set method	anytime	Access	RW
P00.09	Range	-10000~10000	Unit	mV	active moment	Immediately	default	0

P06.70	Name	AI2 Dea	dband		Set method	anytime	Access	RW
P00.70	Range	0~5000	Unit	mV	active moment	Immediately	default	0

D06 71	Name AI2 magnification	Set method	anytime	Access	RW			
P00.71	Range	-3276.7~3276 .7	Unit	%	active moment	Immediately	default	100.0

P06.72	Name	AI2 low pass const		me	Set method	anytime	Access	RW
P00.72	Range	0~32767	Unit	ms	active moment	Immediately	default	2

P06.73	Name	AI2 zero	o drift		Set method	anytime	Access	RW
P00.75	Range	-10000~10000	Unit	mV	active moment	Immediately	default	0

DOC	Name	Automatic correction	zero drif	Ì	Set method	anytime	Access	RW	
P06.7	Range	0~6	0~6 Unit -		active moment	Immediately	default	0	
	Setting		AI automatic correction of zero drift						
	0		reserve						
	1	In	Immediately automatically correct AI1 zero drift once						
	2	In	nmediate	ely autom	atically corre	ect AI2 zero drif	t once		
	3	Immed	iately au	tomatical	ly correct AI	3 zero drift onc	e (hardware		
				i	s not support	ed)			
	4	Imme	diately a	utomatica	ally correct A	I1 AI2 AI3 zero	drift once		
	5	Imme	Immediately automatically correct the zero drift of the current						
			sensor once						
	6		Immed	iately cle	ar the calibra	tion current sen	sor		

P06.80	Name AO1 offset	Set method	anytime	Access	RW			
P00.80	Range	-10000~10000	Unit	mV	active moment	Immediate ly	default	0

P06.81	Name	AO1 multip	lying ra	te	Set method	anytime	Access	RW
P00.81	Range	-1000.0~1000. 0	Unit	%	active moment	Immediat ely	default	100

	Name	The value of	the AO1		Set	antimo	1 00000	RW
D06.84	Name	configuration	n register	r	method	anytime	Access	ĸw
P06.84	Range	-10000~10000	Unit	-	active moment	Immediately	default	0

Setting	type of output parameter
0	Actual speed, 1mv corresponds to 1rpm
1	Speed loop speed command, 1mv corresponds to 1rpm
2	Torque command, 1mv corresponds to 0.1% rated torque
2	Position error before filtering, 1mv corresponds to 1 motor
3	encoder pulse
4	Position error after filtering, 1mv corresponds to 1 motor
4	encoder pulse
5	Feed forward speed, 1mv corresponds to 0.1% rated speed
6	Position command speed, 1mv corresponds to 1rpm
7	Filtered position command speed, 1mv corresponds to
/	1rpm
0	Instantaneous value of phase A current, 1mV corresponds
8	to 0.1A
9	Instantaneous value of B-phase current, 1mV corresponds
9	to 0.1A
10	Torque feedback, 1mv corresponds to 0.1% rated torque
11	Current rms value, 10V corresponds to the rated current of
11	the driver
12	Current rms value, 10V corresponds to the rated current of
12	the motor
13	The absolute value of the motor display speed, 10V
15	corresponds to the rated speed
14	The absolute value of the real-time speed of the motor,
14	1mV corresponds to 1rpm

P06.86	Name	Internal amplifier tension input AD minimum		Set method	anytime	Access	RW	
P00.80	Range	0~4095	Unit	-	active moment	Immediately	default	0

	Nama	Internal amplif	ier tensi	ion	Set		A	RW
D06.97	Name	input AD ma	aximum		method	anytime	Access	ĸw
P06.87	Range	0~4095	Unit	-	active moment	Immediately	default	4095

D06.99	Name Internal amplifier tension input filtering time		Set method	anytime	Access	RW		
P06.88	Range	0~32767	Unit	ms	active moment	Immediately	default	20

D O(90	Name	Internal amplifier tension input AD value		Set method	-	Access	RO	
P06.89	Range	0~4095	Unit	-	active moment	-	default	-

Decet	Name	Percentage of final AI1 input value		Set method	-	Access	RO	
P06.91	Range	-3276.7~3276.7	Unit	%	active moment	-	default	-

D O(02	Name		Percentage of final AI2 input value		Set method	-	Access	RO
P06.92	Range	-3276.7~3276.7	Unit	%	active moment	-	default	-

10.8 P07 group parameters - loop control parameters

D07.01	Name	Current loop proportional gain		Set method	anytime	Access	RW	
P07.01	Range	0~32767	Unit	-	active moment	Immediately	default	100

D07.02	Name	Current loop integral gain		Set method	anytime	Access	RW	
P07.02	Range	0~32767	Unit	-	active moment	Immediately	default	20

Name		1	Speed loop proportional gain			anytime	Access	RW
P07.03	Range	0~32767	Unit	-	active moment	Immediately	default	600

P07.04	Name	Speed loo	p integra	al gain	Set method	anytime	Access	RW
P07.04	Range	0~32767	Unit	-	active moment	Immediately	default	50

D07.40	Name	Speed lo	op differ gain	ential	Set method	anytime	Access	RW
P07.40	Range	0~32767	Unit	-	active moment	Immediately	default	50

D07.41	Name		l torque l percent		Set method	anytime	Access	RW
P07.41	Range	0~100	Unit	%	active moment	Immediately	default	0

P07.81	Name	Reverse torque feedforward percentage			Set method	anytime	Access	RW
P07.81	Range	0~100	Unit	%	active moment	Immediately	default	0

D07 42	Name	Speed loo gain p	p propoi percentag		Set method	anytime	Access	RW
P07.42	Range	0~100	Unit	%	active moment	Immediately	default	0

D07.05	Name	Position lo	op propo gain	ortional	Set method	anytime	Access	RW
P07.05	Range	0~32767	Unit	-	active moment	Immediately	default	200

	Name	Percentage of position loop maximum output speed			Set method	anytime	Access	RW
P07.06	Range	0~300.0	Unit	%	active moment	Immediately	default	100.0

P07.07	Name	Output vo	oltage fil	tering	Set method	anytime	Access	RW
P07.07	Range	0~300.0	Unit	ms	active moment	Immediately	default	0

D07.00	Name	Torque fee	dforwar constan		Set method	anytime	ime Access			
P07.08	P07.08	time	constan	ι	method					
107.00	Danaa	0.62	T India		active	Turuna diatalar	default	10		
	Range	0~63	53 Unit	ms	moment	Immediately	default	10		
This value is the angular acceleration filter time during torque feedforward.										

P07.00	Name	Speed feedforward filter time constant			Set method	anytime	Access	RW
P07.09	Range	0~63	Unit	-	active moment	Immediately	default	10

D07 10	Name	-	feedforw efficient	vard	Set method	anytime	Access	RW
P07.10	Range	0~32767	Unit	-	active moment	Immediately	default	0

	Name	Speed feed forward coefficient			Set method	anytime	Access	RW
P07.11 -	Range	0~300.0			active	Immediately	default	50.0

P07.12]	Name Torque		e filter type		Set method	anytime	А	ccess	RW
P07.12	Range 0~4		Unit	-	active moment	Immediately d		efault	0	
		S	etting]				
			0							
			1							
			2	No filtering						
			3	Combined low-pass filtering and notch filter						
			4		Automatic calculation of filter parameters					

P07.13	Name	Torque low	Forque low-pass filter time			anytime	Access	RW
		constant			method			
	Range	0~327.67	Unit	ms	active	Immediately	default	0.80
	Runge	0 527.07	Olin	1115	moment	minediatery	default	0.00

P07.14	Nama	Notch Filter 1			Set	anytime	1 22255	RW
	Name	Notch Frequency			method		Access	ĸw
P07.14	Range	0~1000	Unit	Hz	active moment	Immediately	default	0

D07.15	Name		h filter 1 ch depth		Set method	anytime	Access	RW
P07.15	Range	0~100.0	Unit	%	active moment	Immediately	default	10.0

	Name		ch filter 1 ch width	-	Set method	anytime	Access	RW
P07.16	Range	0~100.0	Unit	%	active moment	Immediately	default	50.0

P07.17	Name	notch filter 2 notch frequency			Set method	anytime	Access	RW
		noten nequency			methou			
		Range 0~1000	Unit	ms	active	Immediately	default	0
	itunge	0 1000	Omt	1115	moment	miniculatory	derduit	0

P07.18	Name		h filter 2 ch depth		Set method	anytime	Access	RW
P07.18	Range	0~100.0	Unit	%	active moment	Immediately	default	50.0

P07.19	Nama	notch filter 2			Set	ontimo	A 22255	RW
	Ivanie	note			method	anytime	Access	ĸw
P07.19	Range	0~100.0	Unit	%	active moment	Immediately	default	50.0

P07.44	Name	Notch filter 3			Set	anytime	Access	RW
	Indiffe	Notch frequencies			method	anythic	Access	
	Range	0~1000	Unit	Hz	active	Immediately	default	0
	Itunge	0 1000	Olin	112	moment	minediatery	defudit	Ū

D07.45	Name		h Filter (ch Depth		Set method	anytime	Access	RW
P07.45	Range	0~100.0	Unit	%	active moment	Immediately	default	10.0

D07.4(Name		ch filter 3 ch width		Set method	anytime	Access	RW
P07.46	Range	0~100.0	Unit	%	active moment	Immediately	default	50.0

D07.47	Name		h Filter Frequen	-	Set method	anytime	Access	RW
P07.47	Range	0~1000	Unit	Hz	active moment	Immediately	default	0

D07 49	Name		h Filter ch Depth	-	Set method	anytime	Access	RW
P07.48	Range	0~100.0	Unit	%	active moment	Immediately	default	10.0

P07.49	Name	Notch filter 4 notch width			Set method	anytime	Access	RW
P07.49	Range	0~100.0	Unit	%	active moment	Immediately	default	50.0

P07.20	Name	Gain adj	Gain adjustment mode 0~5 Unit -			anytime	Access	RW	
P07.20	Range	0~5				Immediately	default	0	
	Setting		Gain adjustment mode						
	0		fixed first set of gain: P07.03 to P07.05						
	1		First or second set of gain switching						
	2	Automa	tically c	alculate a	set of gains	based on rigidit	ty level		
			a	nd load in	nertia (norma	l mode)			
	3	Automa	tically ca	alculates	a set of gains	based on rigidi	ty level		
			and	load ine	rtia (positioni	ing mode)			
	4	The fire	The first set of gains is fixed and the proportional gain is in						
			units of bandwidth times 6.28						
	5	No adjus	tment re	quired, co	ontrol accord	ing to parameter	r P07.78		

P07.21	Name	The secor	nd set of	speed	Set	anytime	Access	RW
	Ivanic	loop proportional gain			method	anytime	Access	KW
107.21	Range	0~32767	Unit	-	active moment	Immediately	default	800

P07.22	Name	The second set of speed loop integral gain			Set method	anytime	Access	RW
P07.22	Range	0~32767	Unit	-	active moment	Immediately	default	10

D07 22	Name	The second set of position loop proportional gain			Set method	anytime	Access	RW
P07.23	Range	0~32767	Unit	-	active moment	Immediately	default	200

D07.04	Nam	e	Gain swite	hing co	ndition	Set method	anytime	Access	RW
P07.24	Rang	ge	0~6	Unit	-	active moment	Immediately	default	0
	Setting				Gain swi	tching condit	ion		1
	0	ΙΟ	switching; IN			-	nd set of gains	when valid.	
	1	Wh gain tore	Switch to the second set of gains when the torque command is large; When the torque command is greater than (gain switching level P07.25 + gain switching delay P07.26), switch to the second set of gains; when the torque command is less than (gain switching level - gain switching delay), switch back to the first set of gains gain.						
	2	Switch to the second set of gains when the speed given command is large; When the speed command is greater than (gain switching level (rpm) + gain switching delay (rpm)), switch to the second set of gains; if the speed command is less than (gain switching level - gain switching delay time), switch back to the first set of gains.							
	3	larg Wh leve acc	ge; len the accelo el + gain swi eleration con	eration c tching d nmand (ommand elay), sw rpm/s) is	(rpm/s) is gro itch to the sec less than (gai	eleration comm eater than (gain cond set of gain in switching lev f gains set of ga	switching s; when the el - gain	
	4	Wh swi erro	en the speed tching time o	error (rj lelay), s ss than (om) is gro witch to t gain swit	eater than (ga he second set ching level -	eed error is large in switching lev t of gains; when gain switching	vel + gain the speed	
	5	larg Wh than set less	ge; hen the filtere n (gain switc of gains; the	d positio hing lev filtered witching	on error (el + gain position	unit is motor switching de error (unit is p	sition error after encoder pulse) lay), switch to t motor encoder p me delay), switc	is greater he second pulse) is	
	6		When position	ning is co	-		e second set of positioning.	-	

P07.25	Name	Gain sw	ritching l	evel	Set method	anytime	Access	RW
	Range	0~32767 Unit -		active	Immediately	default	0	

		moment		

P07.26	Name	Gain swite	hing tim	e delay	Set method	anytime	Access	RW
P07.20	Range	0~32767	Unit	-	active moment	Immediately	default	0

P07.27	Name	Gain switching time			Set method	anytime	Access	RW	
P07.27	Range	0~32767	Unit	ms	active moment	Immediately	default	10	
The two gain switching are smooth switching, and this parameter is the smoothing time parameter.									

P07.28	Name	rigi	d setting		Set method	anytime	Access	RW
FU/.28	Range	0~31	Unit	-	active moment	Immediately	default	10
Set rigidity of the motor								

P07.29	Name	Load iner	tia coeff	ĩcient	Set method	anytime	Access	RW
	Range	0~32767	Unit	-	active moment	Immediately	default	400
Load inertia coefficient								

D07 20	Name	Zero spere reduction	-	C	Set method	anytime	Access	RW
P07.30	Range	0~3276.7	Unit	%	active moment	Immediately	default	50.0

D07.21	Name	Zero-speer reduction	1	U	Set method	anytime	Access	RW
P07.31	Range	0~3276.7	Unit	%	active moment	Immediately	default	100.0

P07.32	Name	Zero speed	decay th	reshold	Set method	anytime	Access	RW
P07.52	Range	0~32767	Unit	rpm	active moment	Immediately	default	10
When th	e speed rpm	is less than t	his valu	e, the gai	ed loop, positio	n loop and	current	
loop will	pop will be attenuated/amplified according to P07.30, P07.31 and P07.34 respectively.							

		Inertia s	self-learr	ning	Set			
P07.33	Name	accele	eration a	nd	method	anytime	Access	RW
		decele	ration ti	me	method			
	Range	0~32767	Unit	ms	active moment	Immediately	default	500

	Name	Zero-speed current gain reduction			Set method	anytime	Access	RW
P07.34	Range	0~3276.7	Unit	%	active moment	Immediately	default	0.0

P07.3	25	Nam	e In	ertia	a self-lear option	rning	Set method	anytime	Access	RW	
F07.	55	Range 0~1		Unit	%	active moment	Immediately	default	0		
	S	etting		Inertia self-learning option							
		0	After l	earn	ing the ir	nertia, o	nly learn the	torque feedforw	vard coefficie	nt	
			After lea	rnii	ng the ine	ertia, au	tomatically c	alculate a set of	gains accord	ing	
		1	to the	to the rigidity setting and the learned inertia coefficient and write to							
						P07	7.03 P07.04 H	207.05			

D07 29	Name	Vibration Threshold		U	Set method	anytime	Access	RW
P07.38	Range	0~32767	Unit	%	active moment	Immediately	default	100

	Nomo	Vibration	n monitor	ring	Set	anstimo	1 00055	RW
P07.39	Name value			method	anytime	Access	КW	
P07.59	Range	0~32767	Unit	-	active	Immediately	default	0
	Kalige	0,~32707	Oint	-	moment	minediatery	uciault	U

P07.5	50	Name	e	torque co r	ompensa node	tion	Set method	anytime	Access	RW	
P07.3	50	Rang	e	0~4 Unit -		-	active moment	Immediately	default	0	
	S	letting		torque compensation mode							
		0			Con	pensate	a fixed value P	07.53			
		1				Compe	ensation via AII				
		2		Compensation via AI2							
		3		Compensation via AI3 (not supported on hardware)							
		4		Automat	ic comp	ensation	through compe	ensation coeffici	ent		

D07.42	Name	Torque compensation gain 1			Set method	anytime	Access	RW
P07.43	Range	10~1000	Unit	-	active moment	Immediately	default	100

P07.89	Name Torque compensation gain		Set method	anytime	Access	RW		
P07.89	Range	10~1000	Unit	-	active moment	Immediately	default	100

P07.51	Name	Torque co filte	ompensa er time	tion	Set method	anytime	Access	RW
P07.31	Range	0~32767	Unit	ms	active moment	Immediately	default	10

D07.50	Name	Torque Con Inertia Co	1		Set method	anytime	Access	RW
P07.52	Range	0~32767	Unit	-	active moment	Immediately	default	0

D07.52	Name	Torque co fixe	ompensa d value	tion	Set method	anytime	Access	RW
P07.53	Range	-32767~ 32767	Unit	-	active moment	Immediately	default	0

P07.54	Name	Torque com	pensatio	n gain	Set method	anytime	Access	RW
P07.34	Range	-32767~ 32767	Unit	%	active moment	Immediately	default	100

D07.55	Name	-	ow frequency rejection notch filter frequency			anytime	Access	RW
P07.55	Range	0~1000	Unit	Hz	active moment	Immediately	default	0

D07.56	Name	Low frequ	iency rej ch depth		Set method	anytime	Access	RW
P07.56	Range	0~100.0	Unit	%	active moment	Immediately	default	10.0

P07.57 Name	Low frequency rejection	Set	anytime	Access	RW	
-------------	-------------------------	-----	---------	--------	----	--

	note	ch width		method			
Range	0~100.0	Unit	%	active moment	Immediately	default	50.0

P07.58	Name	position co filter	ommand frequenc		Set method	anytime	Access	RW
P07.38	Range	0~1000	Unit	Hz	active moment	Immediately	default	0

D07.50	Name	Position c	ommand er depth	notch	Set method	anytime	Access	RW
P07.59	Range	0~100.0	Unit	%	active moment	Immediately	default	10.0

D07.(0	Name	Position co filte	ommand er width	notch	Set method	anytime	me Access	
P07.60	Range	0~100.0	Unit	%	active moment	Immediately	default	50.0

D07 (1	Name	Advanced of se	control f lection	unction	Set method	anytime	Access	RW		
P07.61	Range	0~9999	Unit	-	active moment	Immediately	default	0.0		
AAA.B format. Ordinary feedforward control when AAA=0; single-inertia model prediction when						n when				
AAA=1;	double-inert	ia model prec	liction w	hen AA	A=2; single-in	nertia model pre	diction wh	en		
AAA=3	(no model pr	ediction posi	tion filte	r), double	e-inertia mod	el when AAA=4	4 Model			
prediction (no model prediction position filter), when B=0, the continuous vibration suppression										
function	is invalid, an	function is invalid, and when B=1, the continuous vibration suppression function is valid.								

	Name	Model prediction gain			Set method	anytime	Access	RW
P07.62	Range	1.0~2000.0	Unit	-	active moment	Re-enable takes effect	default	50.0

	Name	Name Model Predicted Compensation Image: Complex stress of the stres of the stress of the stress of the stress of the s		Set method	anytime	Access	RW	
P07.63	Range	50.0~200.0	Unit	-	active moment	Re-enable takes effect	default	100.0

P07.64	Name	The model predicts	Set	anytime	Access	RW
--------	------	--------------------	-----	---------	--------	----

	forward gain			method			
Range	0~3000.0	Unit	-	active moment	Re-enable takes effect	default	100.0

	Name	-	Model predicts inverse gain		Set method	anytime	Access	RW
P07.65	Range	0.0~3000.0	Unit	-	active moment	Re-enable takes effect	default	100.0

	Name Model predicts frequency of suppression 1		Set method	anytime	Access	RW		
P07.66	Range	1.0~250.0	Unit	-	active moment	Re-enable takes effect	default	50.0

	Name Model predicts frequency of suppression 2		Set method	anytime	Access	RW		
P07.67	Range	1.0~250.0	Unit	-	active moment	Re-enable takes effect	default	50.0

	Name	The mode feedforw	1		Set method	anytime	Access	RW
P07.68	Range	0~3000	Unit	-	active moment	Re-enable takes effect	default	100

	Name	Model pre	edicts 2 g	gain	Set method	anytime	Access	RW
P07.69	Range	1.0~2000.0	Unit	-	active moment	Re-enable takes effect	default	50.0

	Name	Model P	rediction	n 2	Set	anytime	Access	RW
	1 (dillo	Comp	ensation		method	ullytille	11000000	100
P07.70	Range	50.0~200.0	Unit	-	active moment	Re-enable takes effect	default	100.0

P07.71 Name continuous vibration	Set	anytime	Access	RW	
----------------------------------	-----	---------	--------	----	--

	suppressio	on freque	ency	method			
Range	1~2000	Unit	-	active moment	Immediately	default	100

P07.72	Name	Continuous vibration suppression inertia compensation			Set method	anytime	Access	RW
	Range	1~1000	1~1000 Unit -		active moment	Immediately	default	100

P07.73	Name	Continuous VibrationSuppression SpeedFeedback CompensationPercentage0~300Unit%		Set method	anytime	Access	RW
	Range			active moment	Immediately	default	0

P07.74	Name	Continuous Vibration Suppression Low Pass Filter Time Constant Compensation			Set method	anytime	Access	RW
	Range	-10~10 Unit -		active moment	Immediately	default	0	

P07.75	Name	Continuo suppressio filtering ti comp	on high-p	oass tant	Set method	anytime	Access	RW
	Range	-10~10 Unit -		active moment	Immediately	default	0	

		Continuo	us vibrat	ion				
P07.76	Name	suppression speed feedback compensation percentage 2			Set method	anytime	Access	RW
	Range	0~300 Unit %		active	Immediately	default	0	
					moment			

P07.77	Name	Continuous vibration suppresses higher vibration frequencies			Set method	anytime	Access	RW
	Range	1~5000 Unit -		active moment	Immediately	default	2000	

P07.78	Name No adjustment param			neters	Set method	anytime	Access	RW			
FU/./8			-	active moment	Immediately	default	0.0				
A.B format. A refers to the rigidity level, the setting range is 0-7, generally 4 or less. B refers to											
the inerti	the inertia level, the setting range is 0-7, generally about 4										

P07.79	Name	Position mode acceleration compensation coefficient			Set method	anytime	Access	RW
P07.79	Range	-32767~32 767	Unit	-	active moment	Immediately	default	0

P07.80	Name	compens	Position mode acceleration compensation time constant		Set method	anytime	Access	RW
	Range	-32767~32 767 Unit -		active moment	Immediately	default	0	

P07.90	Name	Actual speed loop proportional gain			Set method	-	Access	RO
P07.90	Range	0~32767	Unit	-	active moment	-	default	-

P07.91	Name	Actual spe	eed loop gain	integral	Set method	-	Access	RO
P07.91	Range	0~32767	Unit	-	active moment	-	default	-

P07.92	Name		position rtional g	-	Set method	-	Access	RO
P07.92	Range	0~32767	Unit	-	active moment	-	default	-

P07.93	Name	Final value of torque compensation	Set method	-	Access	RO	
--------	------	------------------------------------	------------	---	--------	----	--

VC210 series servo driver instruction manual

	Range	0~3276.7	Unit	-	active moment	-	default	-
--	-------	----------	------	---	------------------	---	---------	---

P07.95	Name	-	recommended current loop		Set method	-	Access	RO
P07.93	Range	0~32767	Unit	-	active moment	-	default	-

P07.96	Name	Recommen of cu	ded inte		Set method	-	Access	RO
P07.90	Range	0~32767	Unit	-	active moment	-	default	-

10.9 P08 group parameters - communication parameters

D 09.16	Name	Torque communication given		Set method	anytime	Access	RW	
P08.16	Range	-3276.7~3276.7	Unit	-	active moment	Immediately	default	0.0

P08.17	Name	Speed commun	ication g	given	Set method	anytime	Access	RW
P08.17	Range	-32767~32767	Unit	-	active moment	Immediately	default	0

	Name				Set method	anytime	Access	RW
P08.18		-2147483647			active			
	Range	~	Unit	-	moment	Immediately	default	0
		2147483647			moment			

P08.20	N	lame	Modbus ba	ud rate r	egisters	Set method	anytime	Acc	cess	RW
P08.20	R	ange	0~5	Unit	bps	active moment	Immediately	defa	ault	1
		S	etting	ng Mo		Iodbus baud	rate			
			0		4800					
			1			9600				
			2			19200				
			3			38400				

VC210 series servo driver instruction manual

4	57600	
5	115200	

P08.21	N	lame		s data foi gisters	rmat	Set method	anytime	Access	RW
P08.21	R	ange	0~3	Unit	-	active moment	Reset takes effect	default	1
		S	etting	8		odbus data fo	ormat		
			0		No parity, 2 stop bits				
			1	1		o parity, 1 sto	p bit		
			2			en parity, 1 st	op bit		
			3			d parity, 1 sto	op bit		

This parameter is valid when reset.

P08.22	N	lame	32-bit addr and lov	ess acce v byte or	•	Set method	anytime	Access	RW
P08.22	Range		0~1	Unit	-	active moment	Immediately	default	1
		S	etting 0 1	Byte	Byte order when 32-bit address is accessed High 16 bits first Low 16 bits first				

P08.23	Name	Modbus slav	ve addre	SS	Set method	anytime	Access	RW
P08.23	Range	1~255	Unit	-	active moment	Immediately	default	1

	Name	Modbus fau	lt regist	er	Set method	-	Access	RO
P08.24	Range	0~32767	Unit	-	active moment	-	default	-

	Name	Transmit FI	FO byte	es	Set method	-	Access	RO
P08.25	Range	0~32767	Unit	-	active	-	default	-
					moment			

P08.26 -	Name	Monitor	port bau	d rate	Set method	anytime	Access	RW
	Range	0~2	Unit	bps	active moment	Reset takes effect	default	2

Setting	RS232 monitor port baud rate
0	9600
1	38400
2	115200

P08.27 -	Name	MODBUS res character (character	cycle	elay	Set method	anytime	Access	RW
	Range	0~32767	Unit	-	active moment	Reset takes effect	default	0

D 00 0 0	N	lame	RS232 mo send curv	-	-	Set method	anytime	Acces	s	RW
P08.29	R	ange	0~1	Unit	-	active moment	Immediately	defaul	lt	0
		S	etting	RS232	2 monitor	nitoring port to send curve or send text				
	0			sending curve						
		1		Send a text						

D 00.20	N	lame	Choose AR PN s	M serial erial por	•	Set method	anytime	Acc	ess	RW
P08.30	P08.30 Range	ange	0~1	Unit	-	active moment	Reset takes effect	defa	ult	0
		S	etting 0			I serial port o ARM	r PN serial port			
	1					PN				

P08.31	Name	Initial value of PN servo P930			Set method	anytime	Access	RW
P06.51	Range	0~10	Unit	-	active moment	Immediately	default	0

P08.32	Name	PN communication position compensation			Set method	anytime	Access	RW
P08.32	Range	0~1000	Unit	-	active moment	Immediately	default	0

P08.40 Name CAN bus baud rate	Set method	anytime	Access	RW	
-------------------------------	---------------	---------	--------	----	--

	Range	125~1000	Unit	Kbps	active moment	Immediately	default	500
--	-------	----------	------	------	------------------	-------------	---------	-----

P08.41	Name CAN node number	ber	Set method	anytime	Access	RW		
P06.41	Range	0~127	Unit	-	active moment	Immediately	default	0

		Name		e custom	402	Set method	anytime	Acce	ess	RW
P08.42	Range 0~1		Unit	-	active moment	Immediately	defa	ult	0	
		Set	tting		Enable	e custom 402	protocol			
			0		Use the	standard 402				
			Do not use the			standard 402	protocol, use th	ne		
				mo			otocol			

P08.44		Name	SDO	byte ord	er	Set method	anytime	Acc	cess	RW
P08.44	Range 0~1		Unit	-	active moment Immediately		defa	ault	0	
		Set	tting	ng			ler			
			0	Stan			dard SDO byte order			
			1 Standar			SDO byte or	der reverse			

D08.40	Name	CANopen b Profinet ser			Set method	-	Access	RO
P08.49	Range	-	Unit	-	active moment	-	default	-

P08.50	Name	CANopen b occupies space encod		ofinet servo	Set method	-	Access	RO
	Range	-	- Unit -		active moment	-	default	-

P08.51	Name	CANopen/Profinet bus send frame count			Set method	-	Access	RO
P08.51	Range	-	Unit	-	active moment	-	default	-

P08.52	Name	CANopen receive f			Set method	-	Access	RO
P08.32	Range	-	Unit	-	active moment	-	default	-

P08.53	Name	CANopen bus receive frame error count or encoder status value G1ZSW		Set method	-	Access	RO	
	Range	-	Unit	-	active moment	-	default	-

P08.54	Name	CANopen b encoder com			Set method	-	Access	RO
P08.34	Range	-	Unit	-	active moment	-	default	-

D09 55	Name Extrapolation speed P08.55	Set method	-	Access	RO			
P08.33	Range	-	Unit	User Units/Sec	active moment	-	default	-

P08.57 Name Interpolation speed	ion speed	Set method	-	Access	RO			
P08.37	Range	-	Unit	User Units/Sec	active moment	-	default	-

P08.59	Name		filtered	speed	Set method	-	Access	RO
P08.39	Range	-	Unit	User Units/Sec	active moment	-	default	-

P08.61	Name	Ext	trapolati	on position	Set method	-	Access	RO
P08.01	Range	-	Unit	User Units	active moment	-	default	-

P08.63	Name	int	terpolate	d position	Set method	-	Access	RO
P08.03	Range	-	Unit	User Units	active moment	-	default	-

D09 (5	Name	E	xtrapola	tion error	Set method	-	Access	RO
P08.65	Range	-	Unit	User Units	active moment	-	default	-

P08.67	Name	ir	nterpolat	ion error	Set method	-	Access	RO
P08.07	Range	-	Unit	User Units	active moment	-	default	-

Name P08.69		contro	l error	Set method	-	Access	RO	
P08.09	Range	I	Unit	User Units	active moment	-	default	-

P08.71	Name	true error			Set method	-	Access	RO
P08.71	Range	-	Unit	User Units	active moment	-	default	-

P08.73	Name	Predicted position error			Set method	-	Access	RO
P08.75	Range	-	Unit	User Units	active moment	-	default	-

D09 74	Name			rd of the)2 protocol	Set method	-	Access	RO
P08.74	Range	-	Unit	-	active moment	-	default	-

P08.75	Name	EC	CAT PD	I JITTER	Set method	-	Access	RO
P08.75	Range	-	Unit	3.556	active moment	-	default	-

P08.76	Name	E	CAT BI	Г STATE	Set method	-	Access	RO
P08.76	Range	-	Unit	-	active moment	-	default	-

D00 77	Name			word of 02 protocol	Set method	-	Access	RO
P08.77	Range	-	Unit	-	active moment	-	default	-

D09 79	P08.78 Name CANSENDERR	NDERR	Set method	-	Access	RO		
P06.76	Range	I	Unit	-	active moment	-	default	-

D08 70	Name ECAT DEBUG		Set method	-	Access	RO		
108.79	Range	-	Unit	-	active moment	-	default	-

10.10 P09 group parameters - advanced debugging parameters

P09.01	Name	Debug para	ameter 1	ļ	Set method	anytime	Access	RW
109.01	Range	-32767~32767	Unit	-	active moment	Immediately	default	0

D00.02	NameDebug parameter 2P09.02	2	Set method	anytime	Access	RW		
P09.02	Range	-32767~32767	Unit	-	active moment	Immediately	default	0

D00.02	Name Debug parameter 3 P09.03			Set method	anytime	Access	RW	
P09.03	Range	-32767~32767	Unit	-	active moment	Immediately	default	0

D 00.04	Name Debug parameter 4		ļ	Set method	anytime	Access	RW	
P09.04	Range	-32767~32767	Unit	-	active moment	Immediately	default	0

D00.05	Name Debug parameter 5				Set method	anytime	Access	RW
109.03	Range	-32767~32767	Unit	-	active moment	Immediately	default	0

P09.06	Name	Name Debug parameter 6			Set method	anytime	Access	RW
P09.00	Range	-32767~32767	Unit	-	active moment	Immediately	default	0

Name P09.07	Debug para	ameter 7	1	Set method	anytime	Access	RW	
P09.07	Range	-32767~32767	Unit	-	active moment	Immediately	default	0

P09.08	Name	Debug para	ameter 8	3	Set method	anytime	Access	RW
P09.08	Range	-32767~32767	Unit	-	active moment	Immediately	default	0

D 00.00	Name Real time speed monitoring P09.09			Set method	-	Access	RO	
P09.09	Range	-	Unit	rpm	active moment	-	default	-

D00 10	P09.10 Name UD output monitoring	nonitoring	Set method	-	Access	RO		
P09.10	Range	-	Unit	-	active moment	-	default	-

P09.11	Name	UQ	UQ output monitoring		Set method	-	Access	RO
P09.11	Range	-	Unit	-	active moment	-	default	-

D00.12	Name	A Con	npares tl regis	ne value of A ster	Set method	-	Access	RO
P09.12	Range	-	Unit	-	active moment	-	default	-

D00 12	Name	B com	pares th regis	e value of the ster	Set method	-	Access	RO
P09.13	Range	-	Unit	-	active moment	-	default	-

D00.14	Name	C com	pare the regis	e value of the ster	Set method	-	Access	RO
P09.14	Range	-	Unit	-	active moment	-	default	-

P09.16	Name		Z-Point	Count	Set method	-	Access	RO
P09.10	Range	-	Unit	-	active moment	-	default	-

P09.19	Name	Electr	ical ang	le value Q10	Set method	-	Access	RO
P09.19	Range	-	Unit	-	active moment	-	default	-

P09.20	Name	S	peed loo	op given	Set method	-	Access	RO
P09.20	Range	-	Unit	%	active moment	-	default	-

P09.21	Name	Spe	ed loop	feedback	Set method	-	Access	RO
P09.21	Range	-	Unit	%0	active moment	-	default	-

P09.22	Name	Speed	loop fo	rward limiter	Set method	-	Access	RO
P09.22	Range	-	Unit	-	active moment	-	default	-

P09.23	Name Speed loop reverse limiter	verse limiter	Set	-	Access	RO		
P09.25	Range	-	Unit	-	active	-	default	-

moment	

P09.24	Name	The	output v speed	value of the loop	Set method	-	Access	RO
P09.24	Range	-	Unit	-	active moment	-	default	-

P09.25	Name	D-axi	s curren	t loop given	Set method	-	Access	RO
P09.23	Range	-	Unit	‰	active moment	-	default	-

P09.26	Name	D-axis current loop feedback			Set method	-	Access	RO
P09.20	Range	-	Unit	‰	active moment	-	default	-

P09.27	Name	D-axis	current limit	loop positive	Set method	-	Access	RO
P09.27	Range	-	Unit	-	active moment	-	default	-

P09.28	Name	D-axis	current limit	loop reverse ing	Set method	-	Access	RO
P09.28	Range	-	Unit	-	active moment	-	default	-

P09.29	Name	D-axis	s curren	t loop output	Set method	-	Access	RO
P09.29	Range	-	Unit	-	active moment	-	default	-

P09.30	Name	Q-axi	s curren	t loop given	Set method	-	Access	RO
P09.30	Range	-	Unit	%0	active moment	-	default	-

P09.31	Name	Q-axis	current	loop feedback	Set method	-	Access	RO
P09.31	Range	-	Unit	‰	active moment	-	default	-

P09.32	Name	Q-axis	current limit	loop positive	Set method	-	Access	RO
P09.32	Range	-	Unit	-	active moment	-	default	-

P09.33	Name	Q-axis	current limit	loop reverse ing	Set method	-	Access	RO
P09.55	Range	-	Unit	-	active moment	-	default	-

P09.34	Name	Q-axis	s curren	t loop output	Set method	-	Access	RO
P09.34	Range	-	Unit	-	active moment	-	default	-

P09.39	Name	original phase			Set method	-	Access	RO
P09.39	Range	-	Unit	-	active moment	-	default	-

D00 41	Name	Brakin	g resisto cyc	or PWM duty le	Set method	-	Access	RO
P09.41	Range	-	Unit	%	active moment	-	default	-

P09.45	Name	Bef	ore Q-a filter	xis current ring	Set method	-	Access	RO
P09.43	Range	-	Unit	%	active moment	-	default	-

D00 47	Name Hardware self-test fault codes				Set method	-	Access	RO
P09.47	Range	-	Unit	-	active moment	-	default	-

D00 49	Name	Start	time of cont	current loop rol	Set method	-	Access	RO
P09.48	Range	-	Unit	-	active moment	-	default	-

P09.49	Name	Start time of speed loop	Set	_	Access	RO
107.47	Indiffe	control	method	-	Access	ĸo

	Range	-	Unit	-	active moment	-	default	-
--	-------	---	------	---	------------------	---	---------	---

	Name	Sine wave generator amplitude	Set method	anytime	Access	RW
P09.59	Range	-32767~32767	Unit	Speed Mod Speed % Torque mo current %	de: Motor	Rated rated
	active moment	Immediately	default		0	

P09.60	Name	Sine wave generator frequency			Set method	anytime	Access	RW
P09.00	Range	-32767~32767	Unit	-	active moment	Immediately	default	0

P09.62	Name	Bits that need to be monitored			Set method	anytime	Access	RW
P09.02	Range	0~65535	Unit	-	active moment	Immediately	default	0

	Name The value of the bit to monitor			Set method	-	Access	RO	
P09.63	Range	-	Unit	-	active moment	-	default	-

P09.75	Name		nber of	speed loop ptions	Set method	-	Access	RO
P09.73	Range	-	Unit	-	active moment	-	default	-

P09.76	Name	Num	ber of c interru	eurrent loop ptions	Set method	-	Access	RO
P09.70	Range	-	Unit	-	active moment	-	default	-

P09.85	Name	Speed	loop ex	ecution cycle	Set method	-	Access	RO
P09.85	Range	-	Unit	us	active moment	-	default	-

P09.86	Name	Speed	loop ex	ecution time	Set method	-	Access	RO
P09.80	Range	-	Unit	us	active moment	-	default	-

P09.87	Name	Current	loop ex	xecution cycle	Set method	-	Access	RO
P09.87	Range	-	Unit	us	active moment	-	default	-

P09.88	Name	Curren	t loop e	xecution time	Set method	-	Access	RO
P09.88	Range	-	Unit	us	active moment	-	default	-

P09.89	Name	Speed	referen mo	ce in position de	Set method	-	Access	RO
P09.89	Range	-	Unit	-	active moment	-	default	-

P09.90	Name	Positi	on erro mo	r in position de	Set method	-	Access	RO
P09.90	Range	-	Unit	-	active moment	-	default	-

D00.01	Name	Br	ake resi percei	stor heat ntage	Set method	-	Access	RO
P09.91	Range	-	Unit	%	active moment	-	default	-

P09.93	Name	1ms t	ask exe	cution cycle	Set method	-	Access	RO
P09.93	Range	-	Unit	us	active moment	-	default	-

P09.94	Name	UD f	eedforw	vard voltage	Set method	-	Access	RO
P09.94	Range	-	Unit	-	active moment	-	default	-

P09.95	Name	UQ feedforward voltage	Set method	-	Access	RO
--------	------	------------------------	---------------	---	--------	----

VC210 series servo driver instruction manual

	Range	-	Unit	-	active moment	-	default	-
--	-------	---	------	---	------------------	---	---------	---

	Name		Absolute encoder communication error			-	Access	RO
P09.96	Range	-	Unit	-	active moment	-	default	-

D 00.09	Name			encoder tion error 2	Set method	-	Access	RO
P09.98	Range	-	Unit	-	active moment	-	default	-

10.11 P10 group parameters - fault protection parameters

D10.01	Name	Overcurren	t Thresh	old	Set method	anytime	Access	RW
P10.01	Range	0~800.0	Unit	%	active moment	Reset takes effect	default	400.0
	e detected c be reported.	urrent percenta	ge P09.	31 is gr	eater than th	nis value, a s	oftware over	current

P10.02	Name Overload value	Set method	anytime	Access	RW			
P 10.02	Range	0~3276.7	Unit	%	active moment	ctive Immediately defau	default	100.0
This valu	ie is recomm	ended to be set	to ——		current °			

	Name	Lock-rotor current t	1		Set method	anytime	Access	RW	
P10.03		current t	hreshold		method				
1 10.05	Range	0~300.0	Unit	%	active	Immediately	default	100	
	Kange	0,~500.0	Om	70	moment	minediatery	uciaun	100	
When the	e drive curre	nt percentage P	09.31 ex	ceeds the	his value and	l lasts for the tir	ne of P10.	04, and	
the speed	l is less than	ess than 5rpm, a fault will be reported. This value is recommended to use the shore					hortcut		
button in	button in the VECObserve software \rightarrow the default value after a full set of matching.								

P10.04	Name	Lock-rotor pr thres	rotection shold	time	Set method	anytime	Access	RW
	Range	0~65535	Unit	ms	active	Immediately	default	800

VC210 series servo driver instruction manual

Image: Non-Stress stand stress than 5 rpm, a fault will be reported. This value is recommended to use the shortcutbutton in the VECObserve software \rightarrow the default value after a full set of matching.

P10.05	Name	Over speed	l percent	tage	Set method	anytime	Access	RW
F 10.03	Range	0~3276.7	Unit	%	active moment	Immediately	default	150.0
Speed pe	ercentage: Th	The percentage of actual speed rela		peed rela	ative to rated	speed. When th	e speed	
percentag	ge is greater t	han the over-sp	eed perc	entage,	an over-speed	d fault is report	ed.	

P10.06	Name Drive Overheat Threshold		Set method	anytime	Access	RW		
F 10.00	Range	0~3276.7	Unit	Ĉ	active moment	Immediately	default	80.0

P10.07	Name	Phase loss pro	tection s	settings	Set method	anytime	Access	RW
F 10.07	Range	0~32767	0~32767 Unit			Immediately	default	0
When the	e 0th bit is 1,	the output phas	ne output phase loss protection		is enabled; v	when the 1st bit	is 1, the in	put
phase los	ss protection	is enabled.						

P10.08	Name	Return to or tin	rigin time me	e-out	Set method	anytime	Access	RW
1 10.08	Range	0~32767	Unit	s	active moment	Immediately	default	0

P10.09	N	ame	Motor en memory f	-	when	Set method	anytime	Acc	cess	RW
	Ra	ange	0~1	Unit	-	active moment	Immediately	defa	ault	0
		S	Setting	etting Power-off mo			position memor	у		
			0	-			r encoder is not ver is turned off			
			1	Pow	er-off me	emory motor	encoder positio	n		

P10.10 Name AI zero drift threshold	Set method	anytime	Access	RW
-------------------------------------	---------------	---------	--------	----

	Range	0~32767	Unit	mV	active moment	Immediately	default	500
--	-------	---------	------	----	------------------	-------------	---------	-----

P10.11	Name	Overload cu	Overload curve selection		Set method	anytime	Access	RW
P10.11	Range	0~4	Unit	-	active moment	Immediately	default	0

P10.12	Name	Zero speed automatically limit			Set method	anytime	Access	RW
	Range	0~3276.7	Unit	%	active moment	Immediately	default	0

D10.10	Name	Custom 1.1 t curve	imes ove e time	erload	Set method	anytime	Access	RW
P10.13	Range	0~3276.7	Unit	s	active moment	Immediately	default	0

D10.14	Name	Custom 1.5 t curv	imes ovo e time	erload	Set method	anytime	Access	RW
P10.14	Range	0~3276.7	Unit	s	active moment	Immediately	default	0

D10.15	Name	Custom 2.0 times overload curve time			Set method	anytime	Access	RW
P10.15	Range	0~3276.7	Unit	s	active moment	Immediately	default	0

	Name	Custom 2.5 t	imes ove e time	erload	Set method	anytime	Access	RW
P10.16	Range	0~3276.7	Unit	S	active moment	Immediately	default	0

	Name	Custom 3.0 t	imes ove e time	erload	Set method	anytime	Access	RW
P10.17	Range	0~3276.7	Unit	S	active moment	Immediately	default	0

P10.18	P10.18 Name Speed monitoring value	ralue	Set method	anytime	Access	RW		
	Range	0~32767	Unit	-	active	Immediately	default	0

P10.20

Name

VC210 series servo driver instruction manual

Access

RO

moment

current fai	ult and a		Set	
current la	un code		method	-
~32767	Unit	-	active	
			moment	-
		Fa	ault description	on

110.20	Ran	ge	0~32767	Unit	-	active moment	-	default	-	
fault c	ode				F	ault description	าท			
Er.10		Softy	vare overcurrent		1	aun desemptiv	511			
Er.10			ware overcurrent							
Er.10	-		voltage							
Er.10	-		ervoltage							
Er.104 or			current sensor is fa	ultv						
Er.105 or	Er.005		e encoder fails and	2	er is no	ot connected. th	e fault is reported.			
Er.106 or			EEPROM verify fa			,	F			
Er.10	07	Phase	e sampling fault,	when the	phas	e obtained thro	ough the HALL s	switch and th	e phase	
		obtai	btained through the encoder are too different, this fault is reported.							
Er.108 or	Er.008	When	n the FPGA and Al	RM comm	unicat	ion are faulty				
Er.10	09	If the	the current changes greatly							
Er.1	10	Magi	Aagnetic encoder failure							
Er.1	11	Current phase sequence learning failure								
Er.1	12	The o	output is out of pha	ise.						
Er.1	13	Did r	not scan to Z point	during sel	f-learr	ing				
Er.1	14	Z poi	int offset not found							
Er.1	15	Hall	code value learning	g error						
Er.1	16	Grea	t change in rotation	nal speed						
Er.1	17	The o	drive is overheated							
Er.11	18	When	n powered on, the	wire-savin	g enco	oder does not fe	edback hall value			
Er.1	19	Moto	or encoder type doe	es not mate	ch					
Er.12	20	Softv	vare is not authoriz	ed						
Er.12	21	Phase	e loss at RST input							
Er.122 or	Er.022	Use t	timeout							
Er.13	30	STO	(INFn75) alarm in	put signal	is vali	d				
Er.13	31	There	e is speed when the	e provincia	al enco	oder starts				
Er.13	32	ARM	I does not match F	PGA						
Er.133 or	Er.033	The l	Profinet protocol cl	nip cannot	comn	nunicate with th	e ARM motor con	trol chip		
Er.20	Er.200		n returns to home,	the home	signal	INFn.34 is not	assigned.			
Er.20	01	INFn	.xx repeated alloca	tion, one	input f	unction bit is as	ssigned to two or r	nore DI		
Er.20	02	Over	speed							
Er.20	03	The p	position error is too	large						
Er.20	04	Unas	signed interrupt fix	ked length	trigge	r signal INFn.4	0			
Er.20	05	No re	eturn to home befo	re absolut	e point	motion				

Er.206	Motor overload
Er.207	Software limit
Er.208	hardware limit
Er.209	Curve planning failed
Er.210	Excessive tension
Er.211	Breakage failure
Er.212	XY pulse type selection error in tension control mode
Er.213	Fully closed loop position error is too large
Er.214	Prohibit positive (reverse) turn
Er.216	Z point signal is unstable
Er.217	RPDO receive timeout
Er.218	Reserved
Er.219	Motor stall
Er.220	Braking resistor overload
Er.221	The forward stroke switch input function bit INFn.43 is not assigned to the entity DI
Er.222	The reverse stroke switch input function bit INFn.44 is not assigned to entity DI
Er.223	Search home error
Er.224	CAN bus state switching error
Er.225	Unsupported CANopen control mode
Er.226	Absolute value mode lap overflow
Er.227	The battery of the absolute encoder is faulty
Er.228	Inertia learning failed, need to reset P07.03 and P07.04
Er.229	When learning fully closed loop parameters
Er.230	reserve
Er.231	Bus error
Er.232	Second encoder battery failure
Er.234	continuous vibration
Er.237	car breakdown
Er.238	Linear motor phase finding failed
Er.239	Linear motor phase finding failed, stuck in forward direction
Er.240	Linear motor phase finding failed, stuck in reverse direction
Er.241	Over-travel error during self-learning
Er.242	Encoder learning error, encoder interference or wrong magnetic pole setting
Er.243	Linear motor phase finding failure (disconnection)
Er.244	Linear motor phase finding failure (large position error)
Er.245	Linear motor phase finding failure (current pulse width is too small)
Er.600	Motor overheating
Er.601	DI function code is not assigned
Er.602	AI zero drift is too large
Er.603	The zero return time out, when the zero return time is greater than P10.08, this fault will be
	reported.

Er.604	When the absolute encoder is self-learning
Er.605	The battery voltage of the absolute encoder is too low
Er.606	The battery voltage of the second encoder is too low
Er.607	Inertia learning failed, need to increase P07.33 and then learn
Er.608	U disk read and write failed
Er.609	Drive parameters not found during factory reset
Er.610	Motor parameters not found when restoring to factory defaults
Er.611	EEPROM verification error when restoring to factory defaults
Er.612	Self-learning current loop error
Er.613	Phase finding not yet completed
Er.701	EtherCAT bus error
Er.702	EtherCAT bus dropped
Er.703	After the back clearance compensation is increased, two steps are required before returning to
	zero to eliminate the back clearance

P10.21	Name	Selected fault	code cou	unt	Set method	anytime	Access	RW
	Range	1~5	Unit	-	active moment	Immediately	default	5

P10.22	Name	Selected trouble code		Set method	-	Access	RO	
P10.22	Range	0~32767	Unit	-	active moment	-	default	-

P10.23	Name	Selected failure point in time		Set method	-	Access	RO	
P10.25	Range	0~32767	Unit	min	active moment	-	default	-

P10.24	Name	Motor speed at selected fault		Set method	-	Access	RO	
P 10.24	Range	-32767~32767	Unit	rpm	active moment	-	default	-

P10 25	Name	RMS value of selected	urrent at	Set method	-	Access	RO	
P10.25	Range	0~3276.7	Unit	А	active moment	-	default	-

P10.26	Nomo	Motor V-phase current at selected	Set		1 00000	DO
F10.20	Name	fault	method	-	Access	KÜ

	Range	-3276.7~3276.7	Unit	А	active moment	-	default	-
--	-------	----------------	------	---	------------------	---	---------	---

D10.07	Name	Name Motor W-pha selecte		ent at	Set method	-	Access	RO
P10.27	Range	-3276.7~3276.7	Unit	А	active moment	-	default	-

P10.28	Name Bus voltage at selected fault		Set method	-	Access	RO		
F 10.28	Range	0~32767	Unit	V	active moment	-	default	-

P10.29 -	Name	Electric drive temperature at selected fault			Set method	-	Access	RO
P10.29	Range	0~3276.7	Unit	°C	active moment	-	default	-

D10.20	Name Entity DI state at the time selected failure			Set method	-	Access	RO	
P10.30	Range	-	Unit	-	active moment	-	default	-

D10.21	Name Entity DO state a selected			me of the	Set method	-	Access	RO
P10.31	Range	-	Unit	-	active moment	-	default	-

P10.32	Name Hardware fault	umulati ue	ve count	Set method	-	Access	RO	
F 10.32	Range	0~32767	Unit	-	active moment	-	default	-

P10.33	Name	fault	shield		Set method	anytime	Access	RW
F 10.55	Range	0~65535 Unit -		active moment	Immediately	default	12	
Displaye	Displayed in decimal format, after conversion to binary format, the 0th digit shields the overload,							
the 1st d	igit shields t	he overcurrent,	the 2nd	digit sh	ields the pha	ase fault, the 3rd	l digit shi	elds the
large cur	rent change	fault, the 4th d	igit shie	lds the l	hardware ove	ercurrent major :	fault, The	5th bit
shields the large speed change fault, the 6th bit shields the Z point instability, the 7th bit shields the								
SYNC lo	SYNC loss, and the 8th bit shields the current sensor fault. Bit 9 masks undervoltage faults. The							

10th bit shields the encoder fault, the 12th bit shields the stall fault

P10.34	Name	Hardware failure time threshold			Set method	anytime	Access	RW	
P10.34	Range	0~32767	Unit	20ns	active moment	Immediately	default	250	
After the IGBT fault exceeds this time, the fault will be reported									

D10 05	Name	Fault minimu respond to			Set method	anytime	Access	RW
P10.35	Range	0~32767	Unit	S	active moment	Immediately	default	60

	Name	1 1	Speed loop reference at last valid fault			-	Access	RO
P10.44	Range	-	Unit	%	active moment	-	default	-

D10.45	Name	Speed loop feedback at last valid fault			Set method	-	Access	RO
P10.45	Range	-	Unit	%	active moment	-	default	-

D10.4(Name	Torque reference at the last valid fault			Set method	-	Access	RO
P10.46	Range	-	Unit	%	active moment	-	default	-

P10.47	Name	Torque feedb	ack at th	ne last	Set	_	Access	RO
	Inallie	valid fault			method	-	Access	ĸo
P10.47	Range	-	Unit	%	active moment	-	default	-

D10 49	Name	Filtered position error at the last valid fault			Set method	-	Access	RO
P10.48	Range	-	Unit	-	active moment	-	default	-

P10.49	Name Index of current record	cord	Set method	-	Access	RO	
	Range	- Unit -		active	-	default	-

		momont		
		moment		

P10.50	Name	The fault code of the fault with index 0			Set method	-	Access	RO
1 10.30	Range	-	Unit	-	active moment	-	default	-

P10.51	Name	failure time f		e with	Set method	-	Access	RO
		index 0			method			
1 10.51	Range	-	Unit	S	active moment	-	default	-

	Name	Rotation speed of fault with index 0			Set method	-	Access	RO
P10.52	Range	-	Unit	rpm	active moment	-	default	-

P10.53	Nama	The rms value	e of the c	current	Set		A	DO
	Name	for the fault with index 0			method	-	Access	RO
P10.55	Range	-	Unit	А	active moment	-	default	-

P10.54	Name	V-phase curre	Instantaneous value of the <i>r</i> -phase current for the fault with index 0		Set method	-	Access	RO
	Range	-	Unit	А	active moment	-	default	-

P10.55	Name	W-phase curre	nstantaneous value of the phase current for the fault with index 0		Set method	-	Access	RO
	Range	-	Unit	А	active moment	-	default	-

D10.56	Name	Capacitor voltage for the fault with index 0			Set method	-	Access	RO
P10.56	Range	-	Unit	V	active moment	-	default	-

	Name	temperature of fault with			Set	-	Access	RO
P10.57	Range	-	Unit	°C	active moment	-	default	-

Name Name		The DI statu with i	is of the ndex 0	fault	Set method	-	Access	RO
P10.58	Range	-	Unit	-	active moment	-	default	-

		DO status of f	àult with	1 index	Set		1 00000	DO
D10.50	P10.59 Name		0		method	-	Access	RO
P10.39	Range	_	Unit	-	active	_	default	-
	Runge		Oint		moment		default	

D10 60	P10.60 Name The fault cod with in			fault	Set method	-	Access	RO
P 10.00	Range	-	Unit	-	active moment	-	default	-

	Name	failure time for failure with index 1			Set method	-	Access	RO
P10.61	Range	-	Unit	S	active moment	-	default	-

	Name	The speed of	the faul	t with	Set		Access	RO
P10.62	ind		ex 1		method	-	Access	KO
P10.02	Range	-	Unit	rpm	active moment	-	default	-

	Name	The rms value of the current for the fault with index 1			Set method	-	Access	RO
P10.63	Range	-	Unit	А	active moment	-	default	-

P10.64	Name	V-phase curre	Instantaneous value of the V-phase current for the fault with index 1		Set method	-	Access	RO
	Range	-	Unit	А	active moment	-	default	-

P10.65	Name	Instantaneous value of the W-phase current for the fault with index 1		Set method	-	Access	RO	
	Range	-	Unit	А	active moment	-	default	-

D10 ((Name Capacitor voltage for the fault with index 1		Set method	-	Access	RO		
P10.66	Range	-	Unit	V	active moment	-	default	-

D10 (7	Name	temperature of fault with index 1		Set method	-	Access	RO	
P10.67	Range	-	Unit	°C	active moment	-	default	-

D10.69	Name The DI status of the fault with index 1 10.68 Image: Control of the fault with index 1		fault	Set method	-	Access	RO	
P10.08	Range	-	Unit	-	active moment	-	default	-

P10.69	Name	ame DO status of fault with index 1		Set method	-	Access	RO	
P10.09	Range	-	Unit	-	active moment	-	default	-

D10 70	Name	Name The fault code inde			Set method	-	Access	RO
P10.70	Range	-	Unit	-	active moment	-	default	-

D10 71	Name Failure time of failure with index 2		e with	Set method	-	Access	RO	
P10./1	Range	-	Unit	s	active moment	-	default	-

	Name Rotation speed of the fault with index 2				Set method	-	Access	RO
P10.72	Range	-	Unit	rpm	active moment	-	default	-

D10 72	Name The rms value of the current for the fault with index 2		Set method	-	Access	RO		
P10.73	Range	-	Unit	А	active moment	-	default	-

P10.74 Name Instantaneous value of the	Set	-	Access	RO
--	-----	---	--------	----

	V-phase curre	ent for th	e fault	method			
	with index 2						
Range	-	Unit	А	active moment	-	default	-

P10.75	Name	instantaneous	W-phase current instantaneous value for fault with index 2		Set method	-	Access	RO
	Range	-	Unit	А	active moment	-	default	-

D10.76	Name Capacitor voltage for fault with index 2		fault	Set method	-	Access	RO	
P10.76	Range	-	Unit	V	active moment	-	default	-

	Name	temperature of fault with			Set		1 22255	RO
P10.77	Ivallie	ind	ex 2		method	-	Access	ĸo
P10.//	Range	_	Unit	ŝ	active	_	default	_
	Range		Omt	C	moment		delault	

	Name	DI state of the fault with			Set	_	Access	RO
P10.78	Ivallie	ind	ex 2		method	-	Access	ĸo
F10.78	Range	-	Unit	-	active moment	-	default	-

D10 70	0 79 DO status of fault with index 2		n index	Set method	-	Access	RO	
P10.79	Range	-	Unit	-	active moment	-	default	-

	Name	The fault code for fault with			Set	_	Access	RO
P10.80	1 vanne	ind	ex 3		method		1100055	no
P 10.80	Range	-	Unit	-	active moment	-	default	-

D10 01	Name			Set method	-	Access	RO	
P10.81	Range	-	Unit	S	active moment	-	default	-

P10.82 Name Rotational speed of the faul	Set	-	Access	RO	
--	-----	---	--------	----	--

	with i	ndex 3		method			
Range	-	Unit	rpm	active moment	-	default	-

Name		The rms value	e of the o	current	Set		Access	RO
P10.83	Ivallie	of the fault	with ind	lex 3	method	-	Access	KO
P 10.85	Range	-	Unit	А	active moment	-	default	-

P10.84	Name	Instantaneous value of the V-phase current for the fault with index 3		Set method	-	Access	RO	
	Range	-	Unit	А	active moment	-	default	-

P10.85	Name	Instantaneous value of W-phase current for fault with index 3		Set method	-	Access	RO	
	Range	-	Unit	А	active moment	-	default	-

	Name	Name Capacitor volt		ne fault	Set method	-	Access	RO
P10.86		with i	nuch J		memou			
1 10.00	Range	-	Unit	V	active moment	-	default	-

D10.97	Name	1	The temperature of the fault with index 3		Set method	-	Access	RO
P10.87	Range	-	Unit	°C	active moment	-	default	-

	Name DI status of		the fault	t with	Set	_	Access	RO
P10.88	Ivallic	ind	ex 3		method	-	Access	RO
F 10.88	Range	-	Unit	-	active moment	-	default	-

P10.89	Name	The DO status of the fault with index 3		Set method	-	Access	RO	
P10.89	Range	-	Unit	-	active moment	-	default	-

P10.90 Name The fault code for the fault	Set	-	Access	RO
--	-----	---	--------	----

	with index 4			method			
Range	-	Unit	-	active moment	-	default	-

	Nomo	Failure time for		or failure with Set			Access	RO
P10.91	Inallie	ind	ex 4		method	-	Access	ĸo
P10.91	Range	-	Unit	s	active moment	-	default	-

	Name Rotational speed of the fault with index 4		e fault	Set method	-	Access	RO	
P10.92	Range	-	Unit	rpm	active moment	-	default	-

	The rms value of the curren			current	Set		Access	RO
D10.02	Ivallie	of the fault	with ind	lex 4	method	-	Access	ĸo
P10.93	Range	-	Unit	А	active moment	-	default	-

P10.94	Name	Instantaneous value of V-phase current for fault index 4		Set method	-	Access	RO	
	Range	-	Unit	А	active moment	-	default	-

P10.95	Name	W-phase curre	Instantaneous value of the W-phase current for the fault with index 4		Set method	-	Access	RO
	Range	-	Unit	А	active moment	-	default	-

D10.06	P10.96 Name Capacitor voltage of the fault with index 4		Set method	-	Access	RO		
P 10.90	Range	-	Unit	V	active moment	-	default	-

P10.97	Name	The temperature of the fault with index 4			Set method	-	Access	RO
P10.97	Range	-	Unit	°C	active moment	-	default	-

P10.98 Name DI state of the fault with	Set	-	Access	RO	
--	-----	---	--------	----	--

	ind	ex 4		method			
Range	-	Unit	-	active moment	-	default	-

D10.00	Name	The DO status of the fault with index 4			Set method	-	Access	RO
P10.99	Range	-	Unit	-	active moment	-	default	-

10.12 P11 group parameters - multi-speed parameters

P11.01	Name Multi-spee			unning n	node	Set method	Stop to set	Access	RW
P11.01	R	ange	0~2	Unit	-	active moment	Immediately	default	0
		S	etting Multi		i-speed runni	ng mode			
			0			run once			
			1		Cycle run				
			2			O switch run	ning		

P11.02	Name	total segment count			Set method	anytime	Access	RW
P11.02	Range	1~16	Unit	-	active moment	Immediately	default	16

D11.02	Name running			time unit		Set method	anytime	Access	RW
P11.03	Range		0~1	Unit	-	active moment	Immediately	default	1
	Setting		etting		:	running time	unit		
			0			ms			
			1						

P11.04	Name	Accelerat	tion time	e 1	Set method	anytime	Access	RW
F11.04	Range	0~65535	Unit	ms	active moment	Immediately	default	500

P11.05	Name	Decelerat	tion time	e 1	Set method	anytime	Access	RW
P11.03	Range	0~65535	Unit	ms	active moment	Immediately	default	500

P11.06	Name	Accelerat	tion time	e 2	Set method	anytime	Access	RW
F11.00	Range	0~65535	Unit	ms	active moment	Immediately	default	500

P11.07	Name	Decelerat	tion time	2	Set method	anytime	Access	RW
F11.07	Range	0~65535	Unit	ms	active moment	Immediately	default	500

P11.08	Name	Acceleration time 3			Set method	anytime	Access	RW
F11.08	Range	0~65535	Unit	ms	active moment	Immediately	default	500

P11.09	Name	Decelerat	tion time	: 3	Set method	anytime	Access	RW
P11.09	Range	0~65535	Unit	ms	active moment	Immediately	default	500

D11 10	Name	ne Acceleration time 4		Set method	anytime	Access	RW	
P11.10	Range	0~65535	Unit	ms	active moment	Immediately	default	500

P11.11	Name	Decelerat	tion time	e 4	Set method	anytime	Access	RW
F11.11	Range	0~65535	Unit	ms	active moment	Immediately	default	500

	Name	The size of the speed command of the first stage			Set method	anytime	Access	RW
P11.12			le msi s	lage	method			
F 11.12	Range	-32767~32767	Unit	røm	active	Immediately	default	0
	Runge	52101 52101	Om	ipin	moment	minediatery	default	U

	Name	The first speed	l comma	and	Set	anytime	A 22255	RW		
D11 12	Ivanie	running time			method	anythie	Access	Κw		
P11.13	Range	0~32767	Unit	-	active moment	Immediately	default	10		
The unit	The unit of this parameter is set in P11.03.									

		The first	section s	peed	C - 4			
P11.14	Name	acceleration time	and dece selection		Set method	anytime	Access	RW
	Range	0~4	Unit	-	active moment	Immediately	default	0

Setting	Acceleration and deceleration time selection
0	Use universal speed mode acceleration and deceleration
	time
1	Use acceleration and deceleration time 1
2	Use acceleration and deceleration time 2
3	Use acceleration and deceleration time 3
4	Use acceleration and deceleration time 4

P11.15	P11.15 The size of the speed Command of the second stage	Set method	anytime	Access	RW			
	Range	-32767~32767	Unit	rpm	active moment	Immediately	default	0

	Name	The second spec	ed comm	nand	Set	anytime	A 22255	RW		
P11.16	Ivanie	running	time		method	anytime	Access	ΚW		
F11.10	Range	0~32767	Unit	-	active moment	Immediately	default	10		
The unit	The unit of this parameter is set on P11.03.									

P11.17	Name	ration	d section and dece selectior	eleration	Set method	anytime	Access	RW	
	Range	0~4	0~4 Unit -				Immediately	default	0
	Setti	ng	g Acceleration and				time selection		
	0		Use universal speed mo				ion and decelera	tion	
						time			
	1			Use a	cceleration	n and deceler			
	2	Use acceleratio				n and deceler	ration time 2		
	3			Use a	cceleration	on and deceleration time 3			
	4			Use a	cceleration	n and deceler	ration time 4		

	Name	the speed		Set	onstimo	Access	RW	
P11.18	Ivallie	command of th	e third s	stage	method	anytime	Access	Κw
F11.10	Range	-32767~32767	Unit	ram	active	Immediately	default	0
	Kange	-32707~32707	Ullit	rpm	moment	mineulatery	ueraun	0

P11.19	Name	The third speed command running time		Set method	anytime	Access	RW
	Range	0~32767 Unit -		active	Immediately	default	10

VC210 series servo driver instruction manual

moment

The unit of this parameter is set on P11.03.

P11.20		e third section speed ration and deceleration time selection			Set method	anytime	Acc	ess	RW	
	Range	0~4	ļ	Unit	-	active moment	Immediately	defa	ult	0
	Setti	ng	g Acceleration and			deceleration	time selection			
	0		Use universal sp			eed mode acc	celeration and			
					dece	eleration time	2			
	1			Use a	cceleration	n and deceler	ration time 1			
	2		Use acceleratio			n and decelei	ration time 2			
	3			Use a	cceleration	n and deceler	ration time 3			
	4			Use a	cceleratio	n and deceler	ration time 4			

	Name	The size of	the spee	ed	Set	onutimo	A 22255	RW
D11 21	Ivallie	command of the	e fourth	stage	method	anytime	Access	K VV
P11.21	Range	-32767~32767	Unit	rpm	active	Immediately	default	0
					moment			

	Nama	The fourth spee	d comm	nand	Set	a matima a	A	DW	
P11.22 Name		running time			method	anytime	Access	RW	
P11.22	Range	0~32767	Unit	-	active moment	Immediately	default	10	
The unit of this parameter is set on P11.03.									

P11.23	Name accelera		accelerati	on	rth section speed on and deceleration ne selection			anytime	А	ccess	RW
		Range	0~4	0~4		-	active moment	Immediately	d	efault	0
		Set	ting	Acceleration and o			deceleration	time selection			
			0	Use universal spe			eed mode acc	celeration and			
						dece	eleration time	2			
			1		Use a	cceleration	n and deceleration time 1				
			2	Use acceleratio			n and deceleration time 2				
			3	Use acceleratio			n and deceler	ration time 3			
			4		Use a	cceleration	n and deceler	ration time 4			

P11.24	Name	The size of command of th			Set method	anytime	Access	RW
P11.24	Range	-32767~32767	Unit	rpm	active moment	Immediately	default	0

	Name	The fifth speed	l comm	command Set anytime Acc				RW	
P11.25		running time			method	anytime	Access	K VV	
P11.23	Range	0~32767	Unit	-	active moment	Immediately	default	10	
The unit of this parameter is set on P11.03.									

P11.26	Name		ration	section s and dece selection	eleration	Set method	anytime	Access	RW
	Range	0~4	0~4		-	active moment	Immediately	default	0
	Setti	ng	g Acceleration and a				time selection		
	0		Use universal speed mo			de accelerat	ion and decelera	ation	
						time			
	1			Use a	cceleration	n and deceler	ration time 1		
	2			Use a	cceleration	n and deceler	ration time 2		
	3			Use a	cceleration	n and deceler	ration time 3		
	4			Use a	cceleration	n and deceler	ration time 4		

	Nomo	The size of	the spee	ed	Set	Access	RW	
D11 27	P11.27 Name	command of the sixth stage			method	anytime	Access	Κw
P11.2/	Range	Range -32767~32767	Unit	rpm	active	Immediately	default	0
	Runge	52101 -52101	Om	ihm	moment	miniediatery	derault	0

	Name	The sixth speed	d comm	and	Set	onutimo	A 22255	RW		
P11.28	Ivanie	running time			method	anytime	Access	ĸw		
F11.20	Range	0~32767	Unit	-	active	Immediately	default	10		
					moment					
The unit	The unit of this parameter is set on P11.03.									

P11.29	Name	The sixth section speed acceleration and deceleration time selection		Set method	anytime	Access	RW	
	Range	0~4	Unit	-	active moment	Immediately	default	0

Setting	Acceleration and deceleration time selection
0	g Acceleration and deceleration time selection Use universal speed mode acceleration and deceleration time Use acceleration and deceleration time 1 Use acceleration and deceleration time 2 Use acceleration and deceleration time 3 Use acceleration and deceleration time 4
	time
1	Use acceleration and deceleration time 1
2	Use acceleration and deceleration time 2
3	Use acceleration and deceleration time 3
0 Use universal speed mode acceleration and deceleration time 1 Use acceleration and deceleration time 1 2 Use acceleration and deceleration time 2 3 Use acceleration and deceleration time 3	

P11.30	Name	The size of the speed command of the sevent stage			Set method	anytime	Access	RW
	Range	-32767~32767	Unit	rpm	active moment	Immediately	default	0

D11 21	Name	The seventh sperrunning		nand	Set method	anytime	Acces s	RW	
P11.31	Range	0~32767	Unit	-	active	Immediately	default	10	
					moment				
The unit of this parameter is set on P11.03.									

P11.32	Name	The seventh section speed acceleration and deceleration time selection		eleration	Set method	anytime	Access	RW		
	Range	0~	4	Unit	-	active moment	Immediately	default	0	
	Setting Acceleration a					deceleration	time selection			
	0		Use	Use universal speed mode acceleration and deceleration						
				time						
	1			Use a	cceleration	n and deceler	ration time 1			
	2			Use a	cceleration	n and deceler	ration time 2			
	3			Use a	Use acceleration and deceleration time 3					
	4			Use a	cceleration	n and deceler	ration time 4			

	Name	The size of	the spee	d	Set	anytime	Access	RW
D11 22	P11.33	command of the	e eighth	stage	method	anytime	Access	17.44
P11.55	Range	-32767~32767	Unit	rpm	active	Immediately	default	0
					moment			

P11.34 Name	Name	The eighth spee	ed comm	nand	Set	anytime	Access	RW	
	I vallie	running	time		method	anytime	1100033	RW	
P11.34	Range	0~32767	Unit	-	active moment	Immediately	default	10	
The unit of this parameter is set on P11.03.									

P11.35	Name		eration	me selection method				Access	RW
	Range	0~	-4	Unit	-	active moment	Immediately	default	0
	Setting	g		Acceleration and deceleration time selection					
	0		Use	Use universal speed mode acceleration and deceleration					
				time					
	1			Use a	cceleration	n and deceler	ration time 1		
	2			Use a	cceleration	n and deceler	ration time 2		
	3			Use a					
	4			Use a	cceleration	n and deceler	ration time 4		

	Name	The size of	1		Set	anytime	Access	RW
D11 26		command of the ninth stag		stage	method	,		
P11.36	Range	-32767~32767	Unit	rpm	active moment	Immediately	default	0

	Name	The ninth spee		and	Set method	anytime	Access	RW	
P11.37		running time			method				
P11.37	Range	0~32767	Unit	-	active moment	Immediately	default	10	
The unit of this parameter is set on P11.03.									

P11.38	Name		ation	section s and dece selection	eleration	Set method	anytime	Access	RW
	Range	0~4	-	Unit	-	active moment	Immediately	default	0
	Setti	ng		Acceleration and deceleration time selection					
	0			Use universal speed mode acceleration and					
					dece	eleration time	2		
	1			Use acceleration and deceleration time 1					
	2			Use a	cceleration	n and deceler	ration time 2		

3	Use acceleration and deceleration time 3
4	Use acceleration and deceleration time 4

	Name	The size of	the spee	ed	Set	anytime	Access	RW
P11.39	command of		e tenth	stage	method	anytime	Access	17.14
P11.39	Range	-32767~32767	Unit	rpm	active moment	Immediately	default	0

D11 40	Name	The tenth spee running		nand	Set method	anytime	Access	RW		
P11.40	Range	0~32767	Unit	-	active moment	Immediately	default	10		
The unit of this parameter is set on P11.03.										

P11.41	Name		ratior	n section and dec selectio	eleration	Set method	anytime	Access	RW
	Range	0~4		Unit	-	active moment	Immediately	default	0
	Sett	ing	ng Acceleration and c				ime selection		
	0		Use	e universa	al speed mo	de acceleratio	on and decelerat	tion	
						time			
	1			Use	acceleratior	and decelera	ation time 1		
	2			Use	acceleratior	and decelera	ation time 2		
	3			Use	acceleration	on and deceleration time 3			
	4			Use	acceleratior	and decelera	ation time 4		

P11.42	Name	The size of the speed command of the eleventh stage		Set method	anytime	Access	RW
	Range	-32767~32767 Unit rpm		active moment	Immediately	default	0

P11.43 Rang	Nama	The eleventh spe	eed com	mand	Set	onutimo	1 00000	RW
	Inallie	running	time		method	anytime	Access	ΚW
	Range	0~32767	Unit	-	active moment	Immediately	default	10
The unit of this parameter is set on P11.03.								

P11.44	Name		eratior	oth section and dece selection	eleration	Set method	anytime	Access	RW
	Range	0~-	4	Unit	-	active moment	Immediately	default	0
	Settir	ng	Acceleration and c			deceleration t	ime selection		
	0		Use universal speed mo			de acceleratio	tion		
						time			
	1			Use	acceleratior	and decelera	ation time 1		
	2		Use acceleration and deceleration time 2						
	3		Use acceleration and deceleration time 3						
	4			Use	acceleratior	and decelera	ation time 4		

P11.45	Name	The size of the speed command of the twelfth stage		Set method	anytime	Access	RW
	Range	-32767~32767 Unit rpm		active moment	Immediately	default	0

	Nama	The twelfth spe	ed com	mand	Set	our times	A	RW	
P11 46		running time			method	anytime	Access	ĸw	
P11.46	Range	0~32767	Unit	-	active moment	Immediately	default	10	
The unit of this parameter is set on P11.03.									

P11.47	Name		leration	th section and dec selection	eleration	Set method	anytime	Access	RW
	Range	0~	4	Unit	-	active moment	Immediately	default	0
	Settin	g		Accele	eration and	deceleration t	ime selection		
	0		Use	universa	al speed mo	de acceleratio	tion		
						time			
	1			Use	acceleratior	and decelera	tion time 1		
	2		Use acceleration and deceleration time 2						
	3		Use acceleration and deceleration time 3						
	4			Use	acceleratior	and decelera	tion time 4		

P11.48	Name	The size of the speed command of the thirteenth stage		Set method	anytime	Access	RW
	Range	-32767~32767 Unit rpm		active moment	Immediately	default	0

P11.49	Name	The thirteer command run	-		Set method	anytime	Access	RW	
	Range	0~32767	Unit	-	active moment	Immediately	default	10	
The unit of this parameter is set on P11.03.									

P11.50	Name		eratior		on speed eleration n	Set method	anytime	Access	RW
	Range	0~-	0~4 Unit -			active moment	Immediately	default	0
	Settin	ıg		Accele	eration and	deceleration t	ime selection		
	0		Use	univers	al speed mo	de acceleratio	ion		
						time			
	1			Use	acceleratior	and decelera	tion time 1		
	2		Use acceleration and deceleration time 2						
	3			Use	acceleratior	tion time 3			
	4			Use	acceleratior	and decelera	tion time 4		

P11.51	Name	The size of the speed command of the fourteenth stage -32767~32767 Unit rpm		Set method	anytime	Access	RW
	Range			active moment	Immediately	default	0

P11.52	Name	The fourteer command run	-		Set method	anytime	Access	RW	
	Range	0~32767	Unit	-	active moment	Immediately	default	10	
The unit of this parameter is set on P11.03.									

P11.53	Name	The fourteenth section speed acceleration and deceleration time selection			Set method	anytime	Access	RW
	Range	0~4 Unit -		active	Immediately	default	0	

					moment				
Setti	ng	A	Accele	leceleration t	ime selection				
0		Use un	niversa	l speed mo	de acceleratio	on and decelerati	on		
1			Use acceleration and deceleration time 1						
2			Use acceleration and deceleration time 2						
3		Use acceleration and deceleration time 3							
4	4			acceleration	and decelera	tion time 4			

P11.54	Name	The size of the speed command of the fifteenth stage			Set method	anytime	Access	RW
	Range	-32767~32767 Unit rpm		active moment	Immediately	default	0	

	Name	The fifteenth spe		mand	Set	anytime	Access	RW	
D11 55		running time			method				
P11.55	Range	0~32767	Unit	-	active moment	Immediately	default	10	
The unit of this parameter is set on P11.03.									

P11.56	Name		eration	th section and decesselection	eleration	Set method	anytime	Acces	s RW		
	Range	0~	4	Unit	-	active moment	Immediately	defaul	t 0		
	Settin	g	Acceleration and				deceleration time selection				
	0		Use	e univers	al speed mo	de accelerati	ion				
						time					
	1			Use	acceleration	n and deceler	ation time 1				
	2		Use acceleration and deceleration time 2								
	3		Use acceleration and deceleration time 3								
	4			Use	acceleration	n and deceler	ation time 4				

P11.57	Name	The size of the speed command of the sixteenth stage -32767~32767 Unit rpm			Set method	anytime	Access	RW
	Range				active moment	Immediately	default	0

D11 59	Name	The sixteen command run	-		Set method	anytime	Access	RW		
P11.58	Range	0~32767	Unit	-	active moment	Immediately	default	10		
The unit of this parameter is set on P11.03.										

P11.59	Name	accelera	The sixteenth section speed acceleration and deceleration time selection			Set method	anytime	Ac	ccess	RW
	Range	0~4		Unit	-	active moment	Immediately	de	fault	0
	Sett	ting	Acceleration and c				ime selection			
	()		Use u	niversal spe	eed mode acceleration and				
					dece	eleration time				
	1			Use	acceleratior	and decelera	tion time 1			
	2	2		Use	acceleration	and decelera	tion time 2			
	3	3		Use	acceleratior	and decelera	tion time 3			
	4	ł		Use	acceleration	and decelera	tion time 4			

10.13 P12 group parameters - virtual DI DO parameters

	Nama	Virtual	DI1 func	tion	Set	autima	A	RW		
P12 01		configuration			method	anytime	Access	ĸw		
P12.01 -	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Name	Virtual DI2 function configuration			Set	anytime	Access	RW		
D12.02		com	iguratio	1	method					
P12.02	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Nama	Name Virtual I			Set	aurtima	A	RW		
D12.02			configuration			anytime	Access	ĸw		
P12.03	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Nama	Virtual	DI4 func	tion	Set		A	DW		
D12.04	Name	configuration			method	anytime	Access	RW		
P12.04	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Name		DI5 func		Set method	anytime	Access	RW		
P12.05		com	iguiatioi	1	memou					
1 12.05	Range	0~99	Unit	_	active	Immediately	default	0		
	Range	077	Oint		moment	minediatery	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Name		DI6 func		Set	anytime	Access	RW		
D12.06	P12.06	conf	iguration	1	method	5				
P12.00	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Nama	Virtual	DI7 func	tion	Set	aurtima	A	RW		
P12.07	Name	conf	iguration	ı	method	anytime	Access	ĸw		
P12.07	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

P12.08 -	Name	Virtual	DI8 func	tion	Set	anytime	1 00000	RW	
	Ivanie	configuration			method	anytinc	Access	ΚW	
	Range	0~99	Unit	-	active moment	Immediately	default	0	
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.									

	Nama	Virtual	DI9 func	tion	Set	autima	A	RW	
P12.09	Name	conf	iguration	1	method	anytime	Access	ĸw	
P12.09	Range	0~99	Unit	-	active moment	Immediately	default	0	
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.									

	Nama	Virtual I	DI10 fun	ction	Set	aurtima	A	RW	
P12.10	Name	conf	iguration	1	method	anytime	Access	ĸw	
P12.10	Range	0~99	Unit	-	active moment	Immediately	default	0	
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.									

Na P12.11	Nama	Virtual I	DI11 fun	ction	Set		A	DW	
	Name	conf	iguration	ı	method	anytime	Access	RW	
P12.11	Range	0~99	Unit	-	active moment	Immediately	default	0	
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.									

Name P12.12	Name	Virtual I	DI12 fun	ction	Set	anytime	Access	RW		
	conf	iguration	1	method	anytime	100035	IX W			
P12.12	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

P12.13	Name	Virtual I	DI13 fun	ction	Set	anytime	Access	RW		
	1 vanne	conf	iguration	1	method	anytime	100035	IX W		
P12.13	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

P12.14 -	Name	Virtual I	DI14 fun	ction	Set	antimo	1 00000	RW		
	Iname	conf	iguration	ı	method	anytime	Access	КW		
	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

P12.15	Name	Virtual I	DI15 fun	ction	Set	anytime	1 00000	RW	
	Iname	conf	iguration	1	method	anytime	Access	КW	
	Range	0~99	Unit	-	active moment	Immediately	default	0	
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.									

	Nama	Virtual I	DI16 fun	ction	Set	autima	A	RW		
P12.16	Name	conf	iguration	ı	method	anytime	Access	ĸw		
P12.16	Range	0~99	Unit	-	active moment	Immediately	default	0		
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.										

	Name	Virtual I	DI20 fun	ction	Set	au tima	A	RW	
P12.17	Iname	conf	iguration	1	method	anytime	Access	ĸw	
P12.17	Range	0~99	Unit	-	active moment	Immediately	default	0	
The specific function of the VDI port is the same as the DI port function. For details, see P06.01.									

	Name	Virtual I			Set	anytime	Access	RW
P12.18		conf	iguration	1	method	2		
P12.18	Range	0~99	Unit	-	active moment	Immediately	default	0
The spec	ific function of	of the VDI p	ort is the	same as	the DI port fi	unction. For det	ails, see P06.	01.

	Name	The monito DI20 and vir	•	lue of virtual 1	Set method	-	Access	RO
P12.19	Range	-	Unit	-	active moment	-	default	-

D12 20	Name	Virtual DI1- settin	DI16 inj 1g registe		Set method	anytime	Access	RW
P12.20	Range	0~65535	Unit	-	active moment	Immediately	default	0

P12.21	N	Jame	Virtual I	DI1 level	type	Set method	anytime	Access	RW
F12.21	R	lange	0~1	Unit	-	active moment	Immediately	default	0
		S	etting			Level type			
			0		Wri	te 1 is always	s valid		
			1		Va	lid on rising	edge		

P12.22	N	lame	Virtual I	DI2 level	type	Set method	anytime	Acce	ess	RW
P12.22	R	ange	0~1	Unit	-	active moment	Immediately	defai	ult	0
		S	etting			Level type				
			0		Wri	te 1 is always	s valid			
			1		Va	lid on rising	edge			

P12.23	N	Jame	Virtual I	DI3 level	type	Set method	anytime	Access	RW
F 12.23	R	lange	0~1	Unit	-	active moment	Immediately	default	0
		S	etting			Level type			
			0		Wri	te 1 is always	s valid		
			1		Va	lid on rising	edge		

P12.24	Ν	Name	Virtual I	DI4 level	type	Set method	anytime	Access	RW
P12.24	R	lange	0~1	Unit	-	active moment	Immediately	default	0
		S	etting			Level type			
			0		Wri	te 1 is always	s valid		
			1		Va	lid on rising	edge		

P12.25	Ň	lame	Virtual I	DI5 level	type	Set method	anytime	Ac	ccess	RW
F12.23	R	ange	0~1	Unit	-	active moment	Immediately	de	fault	0
		S	etting			Level type				
			0		Wri	te 1 is always	s valid			
			1		Va	lid on rising	edge			

P12.26	N	Jame	Virtual I	DI6 level	type	Set method	anytime	Access	RW
P12.20	R	lange	0~1	Unit	-	active	Immediately	default	0
						moment			
		S	etting			Level type			
			0		Wri	te 1 is always	s valid		
			1		Va	lid on rising	edge		

P12.27	N	lame	Virtual I	DI7 level	type	Set method	anytime	Access	RW
F12.27	R	ange	0~1	Unit	-	active	Immediately	default	0
						moment			
		S	etting			Level type			
			0		Wri	te 1 is always	s valid		
			1		Va	lid on rising	edge		

D12 29	Name	Virtual I	DI8 level	type	Set method	anytime	Access	RW
P12.28	Range	0~1	Unit	-	active moment	Immediately	default	0

Setting	Level type
0	Write 1 is always valid
1	Valid on rising edge

P12.29	N	lame	Virtual I	DI9 level	type	Set method	anytime	Access	RW
P12.29	R	ange	0~1	Unit	-	active	Immediately	default	0
						moment			
		S	Setting			Level type			
			0		Wri	te 1 is always	s valid		
			1			lid on rising	edge		

P12.30	N	ame	Virtual D	I10 leve	l type	Set method	anytime	Access	RW
P12.50	R	ange	0~1	Unit	-	active	Immediately	default	0
						moment			
		S	etting						
			0		Wri	te 1 is always	s valid		
			1				edge		

P12.31	N	lame	Virtual D	III leve	l type	Set method	anytime	Access	RW
F12.31	Range		0~1	Unit	-	active moment	Immediately	default	0
		S	etting						
			0		Wri	te 1 is always	s valid		
			1 Va			lid on rising	edge		

D12.22	Ν	Jame	Virtual D	I12 leve	l type	Set method	anytime	Access	RW
P12.32	R	lange	0~1	Unit	-	active moment	Immediately	default	0
		S	etting						
			0		Wri	te 1 is always	s valid		
			1 Va			lid on rising	edge		

P12.33 Name Virtual DI13 level type	Set method	anytime	Access	RW
-------------------------------------	---------------	---------	--------	----

R	ange	0~1	Unit	-	active moment	Immediately	defau	ılt	0
	Setting								
	0								
		1		Va	lid on rising	edge			

P12.34	N	Name	Virtual D	I14 leve	l type	Set method	anytime	A	ccess	RW
F12.34	R	lange	0~1	Unit	-	active moment	Immediately	de	efault	0
		S	etting	Level type						
		0			Wri	te 1 is always	s valid			
		1								

P12.35	N	lame	Virtual DI15 level type			Set method	anytime	Access	RW
F12.55	R	Range 0~1		Unit	-	active moment	Immediately	default	0
		S	etting			Level type			
			0						
			1	1 Va			edge		

P12.36	N	ame	Virtual D	I16 leve	l type	Set method	anytime	Ac	cess	RW
F12.30	R	Range 0~1		Unit	-	active moment	Immediately	det	fault	0
		S	Setting			Level type				
		0			Wri	te 1 is always	s valid			
			1		Valid on rising edge					

P12.37	1	Name	Virtual D	I20 leve	l type	Set method	anytime	Access	RW	
F12.37	F	Range	0~1	Unit	-	active moment	Immediately	default	0	
		Setting				Level type				
		0								
			1		Valid on rising edge					

D12 29	N	ame	Virtual D	I21 leve	l type	Set method	anytime	Access	RW
P12.38	R	ange	0~1	Unit	-	active	Immediately	default	0
						moment			
		S	etting						
			0		Wri	te 1 is always	s valid		
			1	1 V			edge		

	Name	Virtual DO	1 config	uration	Set	au tima	A	DW			
P12.41	Name	register			method	anytime	Access	RW			
F12.41	Range	0~99	Unit	-	active moment	Immediately	default	0			
The VDO	The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

D12 42	Name	Virtual DO2 configuration register			Set method	anytime	Access	RW		
P12.42	Range	0~99	Unit	-	active moment	Immediately	default	0		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

	Name	Virtual DO	3 config	uration	Set	antima	Access	RW		
P12.43	name	re	egister		method	anytime	κw			
P12.43	Range	0~99	Unit	-	active moment	Immediately	default	0		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

	Name	Virtual DO	4 config	uration	Set	anytime	Access	RW		
P12.44		register		method	anytime	Access	IX VV			
P12.44	Range	0~99	Unit	-	active moment	Immediately	default	0		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

	Name	Virtual DO	5 config	uration	Set	anytime	Access	RW		
P12.45		register			method	anythic	Access			
P12.43	Range	0~99	Unit	-	active moment	Immediately	default	0		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

P12.46	Name	Virtual DO re	6 config egister	uration	Set method	anytime	Access	RW		
P12.40	Range	0~99	Unit	-	active moment	Immediately	default	0		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

	Nama	Virtual DO	7 config	uration	Set		A	DW		
P12.47 Name		register		method	anytime	Access	RW			
P12.47	Range	0~99	Unit	-	active moment	Immediately	default	0		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

	Name	Virtual DO	8 config	uration	Set method	anytime	Access	RW		
P12.48		re			method					
r 12.40	Range	0~99	Unit	-	active moment	Immediately	default	0		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

P12.49	Name	Virtual DO9 configuration register			Set method	anytime	Access	RW	
P12.49	Range	0~99	Unit	-	active moment	Immediately	default	0	
The VDO port function is the same as the DO port function. For details, please refer to P06.41.									

	Name		al DO1		Set	anytime	Access	RW	
P12.50		configuration register			method	5			
P12.50	Range	0~99	Unit	-	active moment	Immediately	default	0	
The VDO port function is the same as the DO port function. For details, please refer to P06.41.									

	Nama	Virtu	al DO1	1	Set	aurtima	A	RW		
P12.51	Name	configur	ation reg	gister	method	anytime	Access	КW		
P12.51	Range	0~99	Unit	-	active moment	Immediately	default	0		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

	Name	Virtı	al DO12	2	Set	antima	1 00000	RW		
P12.52	Inallie	configur	ation reg	gister	method	anytime	Access	κw		
P12.52	Range	0~99	Unit	-	active moment	Immediately	default	0		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

P12.53 -	Name	Virtu	al DO1	3	Set	anytime	Access	RW		
	Inallie	configur	ation reg	gister	method	anytime	Access	IX VV		
	Range	0~99	Unit	-	active moment	Immediately	default	0		
The VDO port function is the same as the DO port function. For details, please refer to P06.41.										

	Name	Virtı configur	ual DO14		Set method	anytime	Access	RW
P12.54		configur	ation reg	gister	method			
1 12.54	Range	0~99	Unit	-	active	Immediately	default	0
	Tung	•	0.111		moment			•
The VDO	D port function	on is the same	e as the I	DO port f	unction. For	details, please r	efer to P06.4	1.

	Name		al DO1:		Set	anytime	Access	RW
D12.55		configur	ation reg	gister	method	2		
P12.55	Range	0~99	Unit	-	active moment	Immediately	default	0
The VDO	D port function	on is the same	e as the I	DO port f	unction. For	details, please r	efer to P06.4	1.

D12.50	Name	Virtı configur	al DO10 ation reg		Set method	anytime	Access	RW
P12.56	Range	0~99	Unit	-	active moment	Immediately	default	0
The VDO	D port function	on is the same	e as the I	DO port f	unction. For	details, please r	efer to P06.4	1.

	Name	Virtu configur	ual DO2		Set method	anytime	Access	RW
P12.57	Range	0~99	Unit	-	active moment	Immediately	default	0
The VDC	O port function	on is the same	e as the I	DO port f	unction. For	details, please r	efer to P06.4	1.

	Name	Virtu	al DO2	1	Set	autima	A	RW
P12.58	Name	configur	ation reg	gister	method	anytime	Access	ĸw
F12.38	Range	0~99	Unit	-	active moment	Immediately	default	0
The VDO	O port function	on is the same	e as the I	DO port f	unction. For	details, please r	efer to P06.4	1.

D12.50	Name	Output lev	vel of vir D021	tual DO20	Set method	-	Access	RO
P12.59	Range	0~3	Unit	-	active moment	-	default	-

	Name	Virtual D	01-D01 level	6 output	Set method	anytime	Access	RW
P12.60	Range	0~65535	Unit	-	active	Immediately	default	0

P12.61	Ν	Jame	Active leve	l of virtu	al DO1	Set method	anytime	А	ccess	RW
P12.01	R	lange	0~1	Unit	-	active moment	Immediately	de	efault	0
		S	etting			Level type				
			0		Ou	tput 1 when	valid			
			1		Ou	tput 0 when	valid			

P12.62	١	Name	Active leve	l of virtu	al DO2	Set method	anytime	Access	RW
F12.02	F	Range	0~1	Unit	-	active moment	Immediately	default	0
		S	letting			Level type			
			0		Ou	tput 1 when	valid		
			1		Ou	tput 0 when	valid		

P12.63	N	lame	Active leve	l of virtu	al DO3	Set method	anytime	Acces	s RW
F12.03	R	ange	0~1	Unit	-	active moment	Immediately	defau	t 0
		S	etting			Level type			
			0		Ou	tput 1 when	valid		
			1		Ou	tput 0 when	valid		

P12.64	Name	Active leve	l of virtu	al DO4	Set method	anytime	Access	RW
F12.04	Range	0~1	Unit	-	active moment	Immediately	default	0

Setting	Level type
0	Output 1 when valid
1	Output 0 when valid

P12.65	N	lame	Active leve	l of virtu	al DO5	Set method	anytime	А	ccess	RW
P12.03	R	ange	ge 0~1 Setting		-	active moment	Immediately	de	efault	0
		S	etting			Level type	:			
			0		Ou	tput 1 when	valid			
			1	Ou			valid			

P12.66	N	lame	Active leve	l of virtu	al DO6	Set method	anytime	А	ccess	RW
P12.00	R	Range 0~1		Unit - ac		active moment	Immediately	de	efault	0
		S	Setting			Level type				
			0		Ou	tput 1 when	valid			
			1	l Ou			valid			

P12.67	N	lame	Active level of virtual DO7			Set method	anytime	Access	RW
F 12.07	R	Range 0~1	Unit	-	active moment	Immediately	default	0	
				lg					
			0		Ou	tput 1 when	valid		
			1	Ou			valid		

P12.68	Name Active leve 68				al DO8	Set method	anytime	Acc	ess	RW
F12.08	R	ange	0~1	Unit - active moment		Immediately	defa	ault	0	
		S	etting			Level type				
			0		Ou	tput 1 when	valid			
			1				valid			

P12.69	Name	NameActive level of virtual DO9Range0~1Unit		Set method	anytime	Access	RW
	Range			-	active	Immediately	default

				moment			
	S	etting		Level type			
		0	Ou	tput 1 when	valid		
[1	Ou	tput 0 when	valid		

D12 70	Name P12.70		Active le	evel of v DO10	irtual	Set method	anytime	Access	RW
F12.70	R	Range 0~1 Setting	Unit	-	active moment	Immediately	default	0	
		S	Setting			Level type			
			0		Ou	tput 1 when	valid		
			1		Ou	Output 0 when valid			

P12.71	N	lame	Active le	evel of v DO11	irtual	Set method	anytime	Access	RW
P12./1	R	Range 0~1 Setting		Unit	-	active moment	Immediately	default	0
		S	etting	tting					
			0		Ou	tput 1 when	valid		
			1	1 Ou			valid		

D12 72	N	lame	Active le	evel of v	irtual	Set method	anytime	A	ccess	RW	
P12.72	R	ange	0~1	0~1 Unit -		active moment	Immediately	de	efault	0	
		S	etting	tting							
			0		Ou	utput 1 when	valid				
			1		Ou	tput 0 when	Output 0 when valid				

D12 72	N	lame	Active le	evel of v DO13	irtual	Set method	anytime	Access	RW
P12.73	R	Name	Unit	-	active moment	Immediately	default	0	
		S				Level type			
			0		Ou	tput 1 when	valid		
			1	Output 0 when valid					

P12.74	Name	Active level of virtual	Set	antimo	1 00000	RW
F12.74	Inallie	DO14	method	anytime	Access	ΚW

R	ange	0~1	Unit	-	active moment	Immediately	de	efault	0
	S	etting			Level type				
		0		Ou	tput 1 when	valid			
		1		Ou	tput 0 when	valid			

P12.75	Name		Active le	evel of v DO15	irtual	Set method	anytime	A	ccess	RW
F12.73	R	ange	0~1	Unit	-	active moment	Immediately	de	fault	0
		S	etting			Level type				
			0		Ou	tput 1 when	valid			
			1		Ou	tput 0 when	valid			

P12.76	Name		Active le	evel of vi DO16	irtual	Set method	anytime	Ac	cess	RW
r 12.70	R	ange	0~1	Unit	-	active moment	Immediately	det	fault	0
		S	etting			Level type				
			0		Ou	tput 1 when	valid			
			1				valid			

D12 77	Name P12.77		Active le	evel of v DO20	irtual	Set method	anytime	A	ccess	RW
F12.77	R	ange	0~1	Unit	-	active moment	Immediately	de	efault	0
		S	etting		0	Level type				
			0 1		Output 1 when valid Output 0 when valid					

D12 79	Name		Active le	evel of v	irtual	Set method	anytime	А	ccess	RW
F12.70	F	Range	0~1	Unit	-	active moment	Immediately	de	efault	0
		S	etting	etting						
			0		Ou	tput 1 when	valid			
			1	Output 0 when valid						

P12.79	N	ame	DI1-DI register P1	er the vi 16 input 2.20 is p is cleared	value oowered	Set method	anytime	Access	RW
	R	ange	0~1	Unit	-	active	Immediately	default	1
						moment			
		S	etting	g Clear type					
			0	Virtual	DI input v	alue P12.20,	not cleared whe	n	
					pov	ver is turned	on		
			1	Vi	rtual DI inj	2.20, clear at			

10.14 P13 group parameters - multi-segment position parameters

P13.01	Ν	lame	Multi-segi n	ment pos 10de	ition	Set method	Stop to set	Ac	cess	RW
P13.01	Range 0~2		0~2	Unit	-	active moment	Immediately	default		0
		S	etting	Multi-segment position			n working mode	;		
			0	Stop after a single run						
			1			Cycle opera	ation			
			2		D	switching o	peration			
When]	DI is	switche	ed to run, the valu		ud (INF	n.31, INFn.3	0, INFn.29, INF	Fn.28)	is run a	s the
			segment		gment 1	number.				

D12.02	Name	Total numb	Total number of segments			anytime	Access	RW
P13.02	Range	1~16	Unit	-	active moment	Immediately	default	16

P13.03	N	lame	Idle waiti	ng time	unit	Set method	anytime	Ac	cess	RW
F 15.05	R	ange	0~1	Unit	-	active moment	Immediately	def	àult	1
		S	etting	ting			me unit			
			0			ms				
			1			S				

D12.04	N	lame	remainde m	er process ethod	sing	Set method	anytime	Ac	cess	RW
P13.04	R	Range 0~1		Unit	-	active moment	Immediately	default		0
		S	etting	ting rema			ing method			
			0	Re-ju	mp to th	ne first positio	on command to	run		
			1				p section			

Margin processing method selection: when triggering multi-segment position again, whether to jump to the first position command to run again, or to start from the position command that was stopped last time.

D12.05	P13.05		Absolute position cor			Set method	anytime	Access	RW
P13.03	F	Range			-	active moment	Immediately	default	1
		S	etting 0 1	Absolu	1	elative positic Absolute com relative com		ting	

D12 10	Name	Number of position commands in the first position segment			Set method	anytime	Access	RW
P13.10	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	100 00

	Name	-	Speed of first position segment			anytime	Access	RW
P13.12	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

D12 12	Name		acceleration time of first position segment		Set method	anytime	Access	RW
P13.13	Range	0~65535	Unit	ms	active moment	Immediately	default	500

P13.14	Name	idle time of first position segment		Set method	anytime	Access	RW	
	Range	0~32767	Unit	-	active	Immediately	default	1

				moment		
The unit	t of this param	neter is set in P13	.03.			

	Name	Number o commands i	-	the second method		anytime	Access	RW
P13.15		position	segmen	t	memou			
P13.13		-2147483647		User	active		default	100
	Range	~	Unit	units	moment	Immediately		00
		2147483647		unnts	moment			00

D12 17	Name	Speed of second position segment		Set method	anytime	Access	RW	
P13.17	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

D12 10	Name		acceleration time of second position segment		Set method	anytime	Access	RW
P13.18	Range	0~65535	Unit	ms	active moment	Immediately	default	500

P13.19	Name	idle time of second position segment		Set method	anytime	Access	RW		
P13.19	Range	0~32767	Unit	-	active moment	Immediately	default	1	
The unit	The unit of this parameter is set in P13.03.								

P13.20	Name	commands	Number of position commands in the third position segment		Set method	anytime	Access	RW
P13.20	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000

D12 22	Name	Speed of third position segment		Set method	anytime	Access	RW	
P13.22	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

P13.23	Name	The acceleration/o tim	decelera	tion	Set method	anytime	Access	RW
	Range	0~65535 Unit ms		active	Immediately	default	500	

D10.04	Name		idle time of third position segment			anytime	Access	RW
P13.24	Range	0~32767	Unit	-	active moment	Immediately	default	1
The unit of this parameter is set in P13.03.								

P13.25	Name	Number of position commands in the fourth position segment		Set method	anytime	Access	RW	
F 13.23	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000

D12 27	Name Speed of fourth p segment			tion	Set method	anytime	Access	RW
P13.27	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

P13.28	Name	The 4th acceleration/deceleration time		Set method	anytime	Access	RW	
	Range	0~65535	Unit	ms	active moment	Immediately	default	500

P13.29	Name	idle time of fourth position segment			Set method	anytime	Access	RW	
P13.29	Range	0~32767	Unit	-	active moment	Immediately	default	1	
The unit of this parameter is set in P13.03.									

D12 20	P13.30 Number of position Name commands in the fifth position segment		ifth	Set method	anytime	Access	RW	
P13.30	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000

P13.32	Name	Speed of fifth position segment		Set method	anytime	Access	RW	
	Range	0~32767	0~32767 Unit rpr		active	Immediately	default	500

		moment		
			•	

P13.33	Name	The 5th acceleration/deceleration time		Set method	anytime	Access	RW	
	Range	0~65535	Unit	ms	active moment	Immediately	default	500

	Name	idle time of fi	ifth posi	tion	Set	anytime	Access	RW
P13.34	INAILIC	segment			method	anytine	Access	
r 13.34	Range	0~32767	Unit	-	active moment	Immediately	default	1
The unit of this parameter is set in P13.03.								

P13.35	Name	me Number of position commands in the sixth position segment		Set method	anytime	Access	RW	
P13.33	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000

D12 27	Name	Speed of sixth position segment			Set method	anytime	Access	RW
P13.37	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

P13.38	Name	The 6th acceleration/deceleration time		Set method	anytime	Access	RW	
	Range	0~65535	Unit	ms	active moment	Immediately	default	500

P13.39	Name	idle time of sixth position segment			Set method	anytime	Access	RW
P13.39	Range	0~32767	Unit	-	active moment	Immediately	default	1
The unit of this parameter is set in P13.03.								

P13.40	Name	Number o commands ir position	n the sev	venth	Set method	anytime	Access	RW
	Range	-2147483647 Unit User		active	Immediately	default	10000	

	~	units	moment		
	2147483647				

P13.42	Name	Speed of seve segm		ition	Set method	anytime	Access	RW
F 15.42	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

P13.43	Name	The 7th acceleration/deceleration time		Set method	anytime	Access	RW	
	Range	0~65535	Unit	ms	active moment	Immediately	default	500

	Name	idle time of sev	enth po	sition	Set	onvtimo	A 22255	RW
P13.44	Inallie	segment			method	anytime	Access	
P15.44	Range	0~32767	Unit	-	active moment	Immediately	default	1
The unit of this parameter is set in P13.03.								

	Name	Number of position commands in the eighth position segment			Set method	anytime	Acces s	RW
P13.45	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000

	Name	Speed of eigh	•	tion	Set	anytime	Access	RW
D12 47	P13.47		ent		method			
F15.47	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

P13.48	Name	The 8th acceleration/deceleration time			Set method	anytime	Access	RW
	Range	0~65535	Unit	ms	active moment	Immediately	default	500

	Name	idle time of eighth position		ition	Set	anytime	Access	RW
P13.49		segment			method	anytime	Access	KW
F13.49	Range	0~32767	Unit	-	active moment	Immediately	default	1
The unit	The unit of this parameter is set in P13.03.							

	Name	Number of position commands in the ninth position segment		Set method	anytime	Access	RW	
P13.50	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000

P13.52	Name	Speed of ninth position segment			Set method	anytime	Access	RW
F15.52	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

P13.53	Name	The 9th acceleration/deceleration time		Set method	anytime	Access	RW	
	Range	0~65535	Unit	ms	active moment	Immediately	default	500

	Name	idle time of ninth position Set anytime A				Access	RW	
P13.54	Ivanie	segment			method	unythine	1100035	1.11
P13.34	Range	0~32767	Unit	-	active moment	Immediately	default	1
The unit of this parameter is set in P13.03.								

Name		Number of pos	ition coi	nmands	Set	anytime	Access	RW
	Ivallic	in the tenth position segment		method		Access	K W	
P13.55	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000

	Name	Speed of tenth position segment			Set method	anytime	Access	RW
P13.57	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

P13.58	Name	The 10th acceleration/deceleration time		Set method	anytime	Access	RW	
	Range	0~65535	Unit	ms	active moment	Immediately	default	500

	Name	idle time of tenth position segment			Set	anytime	Access	RW	
D12.50		segn	lent		method				
P13.59	Range	0~32767	Unit	-	active moment	Immediately	default	1	
The unit of this parameter is set in P13.03.									

P13.60	Number of position Name commands in the eleventh position segment		Set method	anytime	Access	RW		
P13.00	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000

	Name	Speed of eleve		ition	Set	anytime	Access	RW
P13.62		segment		method				
F 15.02	Range	0~32767	Unit	rpm	active	Immediately	default	500
	U			-	moment			

P13.63	Name	The 11th acceleration/deceleration time		Set method	anytime	Access	RW	
	Range	0~65535	Unit	ms	active moment	Immediately	default	500

P13.64 -	Name	idle time of eleventh position segment			Set method	anytime	Access	RW	
P13.64	Range	0~32767	Unit	-	active moment	Immediately	default	1	
The unit	The unit of this parameter is set in P13.03.								

P13.65	Name	Number of position commands in the twelfth position segment		Set method	anytime	Access	RW	
F15.05	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000

	Name	Speed of twe	lfth posi	tion	Set	anytime	Access	RW
P13.67	segment		ent		method	,	1100055	
F 15.07	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

P13.68	Name	The 12th acceleration/deceleration time		Set method	anytime	Access	RW	
	Range	0~65535	Unit	ms	active moment	Immediately	default	500

	Name	idle time of tw	elfth pos	sition	Set	anytime	Access	RW	
P13.69		segment			method	2			
F15.09	Range	0~32767	Unit	-	active moment	Immediately	default	1	
The unit of this parameter is set in P13.03.									

Name commands	Number of commands in position	the thirt	eenth	Set method	anytime	Access	RW	
F15.70	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000

D12 72	Name	Speed of thirteenth position segment			Set method	anytime	Access	RW
P13.72	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

P13.73	Name	The 13th acceleration/deceleration time		Set method	anytime	Access	RW	
	Range	0~65535	Unit	ms	active moment	Immediately	default	500

P13.74	Name	idle time of thirteenth position segment			Set method	anytime	Access	RW	
F15.74	Range	0~32767	Unit	-	active moment	Immediately	default	1	
The unit of this parameter is set in P13.03.									

P13.75	Name	commands in	Number of position commands in the fourteenth position segment		Set method	anytime	Access	RW
	Range	-2147483647 ~	Unit	User units	active moment	Immediately	default	10000

	2147483647			

P13.77	Name	Speed of fourteenth position segment			Set method	anytime	Access	RW
P15.//	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

P13.78	Name	The 14th acceleration/deceleration time		Set method	anytime	Access	RW	
	Range	0~65535	Unit	ms	active moment	Immediately	default	500

D13 70	Name	idle time of fourteenth position segment			Set method	anytime	Access	RW	
P13.79	Range	0~32767	Unit	-	active moment	Immediately	default	1	
The unit of this parameter is set in P13.03.									

P13.80 Number of	n the fift	eenth	Set method	anytime	Access	RW		
F15.80	Range	-2147483647 ~ 2147483647	Unit	User units	active moment	Immediately	default	10000

D12.02	Name	Speed of fifteenth position segment			Set method	anytime	Access	RW
P13.82	Range	0~32767	0~32767 Unit rpm		active moment	Immediately	default	500

P13.83	Name	The 15th acceleration/deceleration time			Set method	anytime	Access	RW
	Range	0~65535 Unit ms		active moment	Immediately	default	500	

	Name	idle time of fifte	1	osition	Set	anytime	Access	RW	
D12.04		segment			method				
P13.84	Range	0~32767	Unit	-	active moment	Immediately	default	1	
The unit of this parameter is set in P13.03.									

P13.85	Name	Number of position commands in the sixteenth position segment			Set method	anytime	Access	RW
F15.85	Range	-2147483647 ~ 2147483647	~ Unit User		active moment	Immediately	default	10000

D12.97	Name	Speed of sixteenth position segment			Set method	anytime	Access	RW
P13.87	Range	0~32767	Unit	rpm	active moment	Immediately	default	500

P13.88	Name	The 16th acceleration/deceleration time			Set method	anytime	Access	RW
	Range 0~65535 Unit ms		active moment	Immediately	default	500		

	Name	idle time of	sixteen	th	Set	anytime	Access	RW	
		position s	segment		method	anytime	1100033	IX W	
P13.89	Range	0~32767	Unit	-	active moment	Immediately	default	1	
The unit of this parameter is set in P13.03.									

P13.90	Name	The 1st Decel	eration	time	Set method	anytime	Access	RW
P15.90	Range	0~65535	Unit	ms	active moment	Immediately	default	500

D12 01	Name	The 2st Deceleration time			Set method	anytime	Access	RW
P13.91	Range	0~65535	Unit	ms	active moment	Immediately	default	500

	Name	Multi-segme command trigg	-		Set method	anytime	Access	RW	
P13.92	Range	0~3 Unit		-	active moment	Immediately	default	1	
When BI	When BIT0=0, the rising edge of INFn27 triggers the multi-segment position, and the falling edge								
stops executing the multi-segment position. When BIT0=1, the rising edge triggers and does not									
stop. When BIT1=0, when the multi-segment position comes from DI, a change of DI									

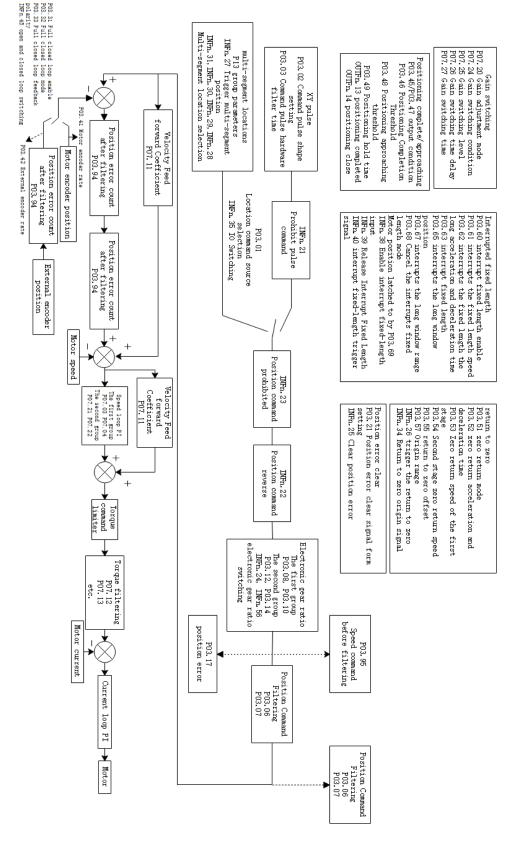
automatically triggers the multi-segment position. When BIT1=1, when the multi-segment position comes from DI, the DI change does not automatically trigger the multi-segment position, and only when INFn27 is re-triggered will the position execution be triggered.

P13.93	Name			or the ne to be ser		Set method	anytime	Access	RW	
P13.95	Range	0~	-1	Unit	-	active moment	Immediately	default	0	
	Setti	ng	Se	election	of acce	leration and	deceleration tim	e		
	0		It is	It is necessary to wait for the previous position to						
			compl	ete the c	output a	nd then delay	y the idle time b	efore		
				send	ing the	next position	n command			
	1		After	the prev	vious po	osition comm	hand is sent, wai	t for		
		the idle time to directly send the second						on		
			command							

D12.04	Name			the spectrum		Set method	anytime	Acc	ess	RW
P13.94	Range	0~	4	Unit	-	active moment	Immediately	defa	ult	0
	Setti	ng		Parameter Description						
	0			From P13.12						
	1			From AI1						
	2					From AI2				
	3		From AI3			Hardware not supported)				
	4					om pulse rat	e			

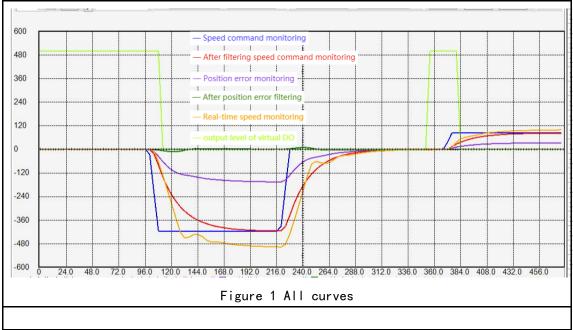
Chapter 11 Commissioning

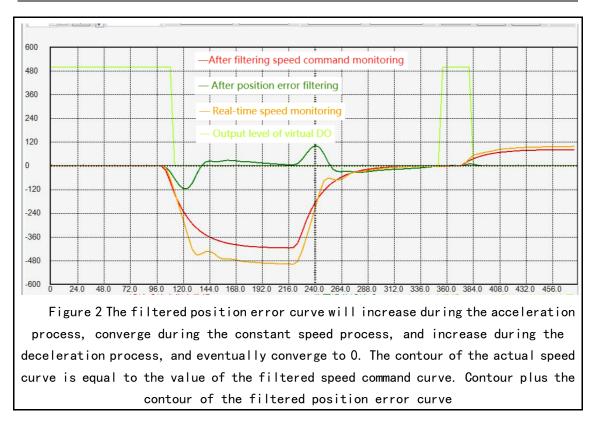
11.1 Factory debugging matching motor steps


1. Connect the motor power cable and encoder cable, and connect the RS232 monitoring cable;

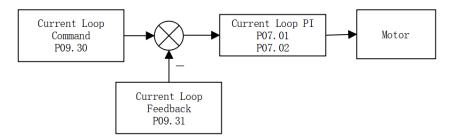
2. Open VECObserve and follow the steps below.

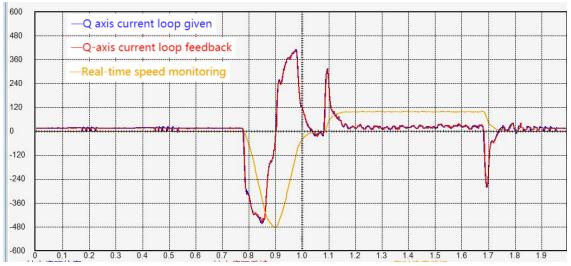
VEC	CObserve V1.9		$\overline{\bigcirc}$
Ena	Force recovery of drive parameters Complete matching	ng 2	
Dis 7 7 7 7 7 7 7 7 7 7 7 7 7	 Complete matching Select the general motor category Motor type SPMSM IM IPMSM IM IPMSM IM Ipmar motor Motor n 68 4.Enter the motor model Selected motor ID68 60MB R4030A21F MF2M fr ID168_130ME-R8515A21F-BM.txt ID368_155MB-5R930A33Fa-MF2D.txt ID68_60MB_R4030A21F_MF2M.txt 	New	- C × Drive type 5.Select servo drive type VC structure C VC+X structure VCXXX structure Drive level nu ID01_00323H Selected drive level rID01_00323H txt ID01_00323H.txt
	SPMSM:ID68_60MB_R4030A21F_MF2M.txt Rated current (A):2.8 Percentage of maximum current (%):300 Rated velocity (rpm):3000 Maximum motor velocity rpm:5000 Rotor inertia (Kgcm'2):0.29 Correla Rated torque (NM):1.27 Back-EMF coefficient (V/krpm):29.6 Stator phase resistance (ohm):2.35	ation of motor	VD structure E:ID01_00323H.txt Rated voltage (V):220 Rated current (A):3 Percentage of maximum current (%):300 Bus voltage correction factor (%):105 switching frequency:8kHz dead zone time (us):3 information of servo driver Stall time (ms):2000 Stall current (ms):200


11.2 Location Mode Debugging Guidelines


11.2.1 Position Mode Block Diagram

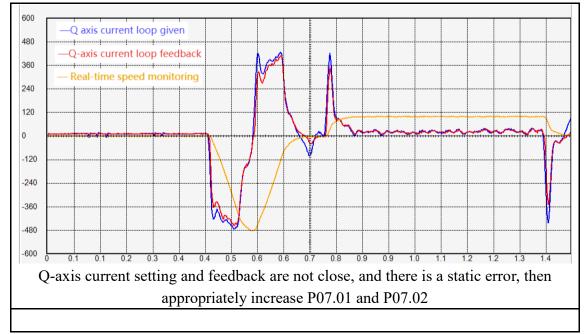
11.2.2 Preliminary analysis of the curve

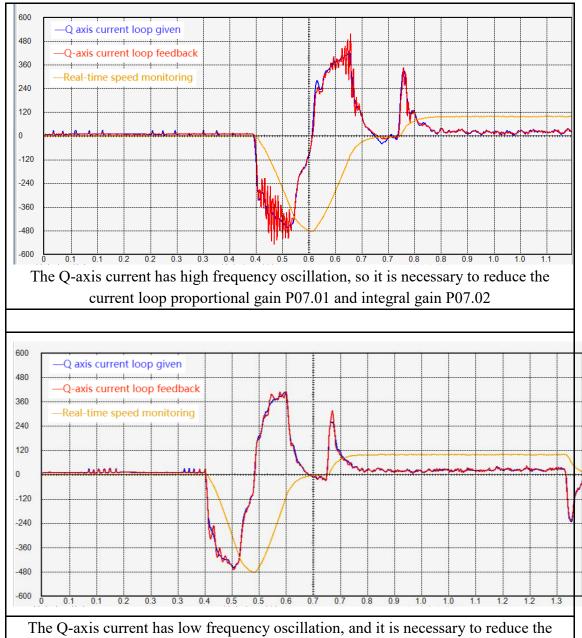

Set the servo drive to position mode, the position comes from multiple positions, run one of the positions, and record the waveform, as shown in Figure 1, the first curve is the planned speed command curve, after filtering, the filtered speed command curve is obtained, the larger the filter time constant, the more serious the lag of the filtered speed command, but the softer. Ideally, the actual velocity curve should coincide with the filtered velocity curve, which is the control target of the position loop. The position error is the accumulated value of the speed command minus the actual speed. Obviously, due to the lag of the filtering, the position error will become larger, and in the later stage of the filtering, the position error curve should coincide with the filtered position error curve. The filtered position error refers to the accumulated value of the filtered speed command minus the actual speed. As mentioned above, ideally, the actual speed curve should be coincident with the filtered speed curve, which means that the filtered speed The position error is always 0 under ideal conditions, but in fact, in the early stage of acceleration, the actual speed will lag behind the filtered speed command, that is to say, in the early stage of acceleration, the filtered position error will continue to increase, and after reaching a constant speed, the filtered position error gradually converges to zero, the speed of convergence depends on the gain of the position loop, the greater the gain, the faster the convergence. As shown in Figure 2 below.



11.2.3 Current loop understanding and tuning

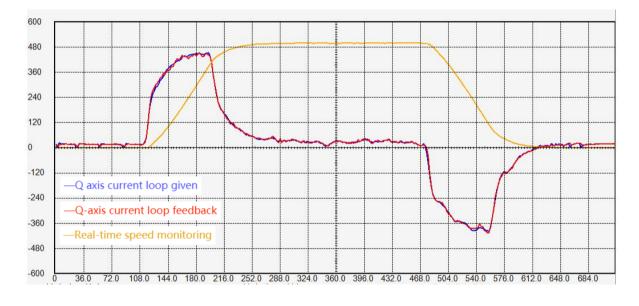
For brushless DC motors, under the condition of no excitation, the greater the current, the greater the output torque. The two are in a proportional relationship. The magnitude of output torque can be monitored through P09.31.

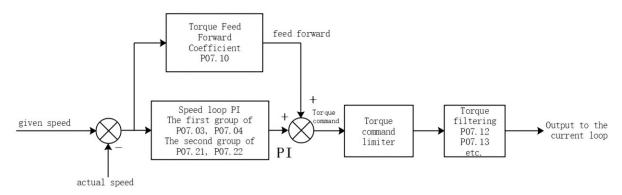



The control goal of the current loop PI is to ensure that the actual motor current (Q-axis current loop feedback) tracks the current command (Q-axis current loop given). As shown in the picture below. The Q-axis current loop feedback tracks the Q-axis current loop reference.

If these two curves are not tracked well, P07.01 and P07.02 need to be adjusted manually. The principle of current loop adjustment is, **Increase the proportional gain and integral gain as much as possible. However, if the current feedback has high frequency oscillation,** <u>the proportional gain P07.01 should be appropriately reduced. If the current feedback</u> <u>has low frequency oscillation, the current loop integral gain P07.02 should be reduced. If</u> <u>the two curves are not close, increase P07.01 and P07.02 appropriately. P07.01 and</u> <u>P07.02 are generally adjusted between 100-300, and the integral gain is generally</u> <u>smaller than the proportional gain.</u>

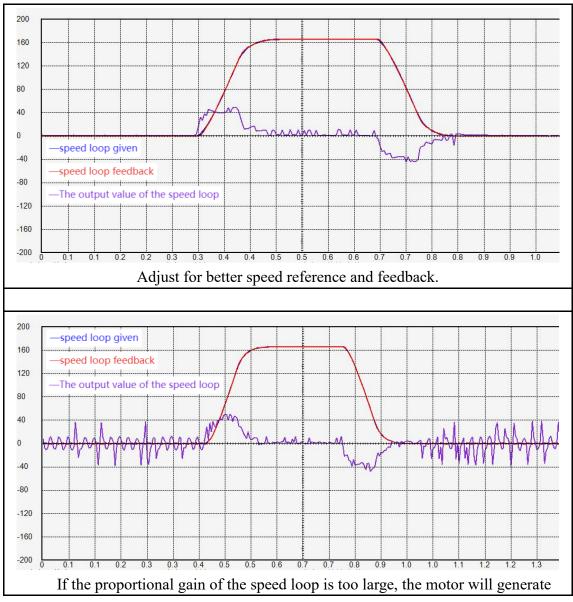
There are two kinds of current oscillations, one is high frequency oscillation and the other is low frequency oscillation. High frequency oscillation is caused by too large proportional gain P07.01. Low frequency oscillation is caused by too large integral gain P07.02.

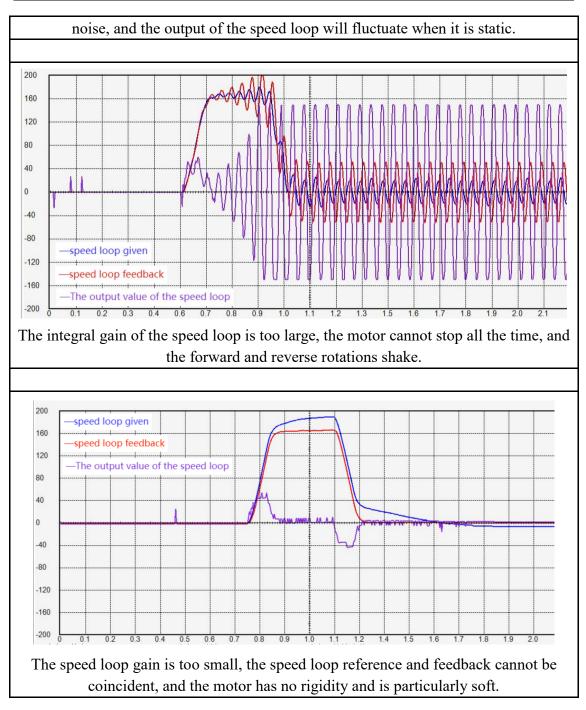



current loop integral gain P07.02

The larger the current command amplitude, the larger the output torque. Specifically, the greater the forward current command (more positive), the greater the output forward torque; the greater the reverse current command (more negative), the greater the output reverse torque. When the current command is close to 0, the output torque is also close to zero. As shown in the figure below, the motor speed is 0 at the beginning, and the motor torque is close to 0. After that, the motor torque increases in the positive direction, and the motor starts to accelerate. The greater the motor forward torque, the greater the motor acceleration, and then the forward torque is slow. Slowly reduce to zero, the motor speed remains constant and does not increase. After that, the motor torque gradually decreases to negative, and the motor begins to decelerate. The greater the negative motor torque, the greater the motor deceleration. The final motor torque is 0, and the motor speed remains unchanged.

11.2.4 Speed loop understanding and tuning


The input of the speed loop is the given speed and the feedback actual speed, and the output is the torque command. The goal is to make the feedback actual speed track the given speed by adjusting the torque. The torque command consists of two parts, one is feedforward and the other is speed loop PI output. The torque feedforward is obtained by multiplying the acceleration of the given speed by a torque feedforward coefficient, and the speed loop PI can quickly eliminate the error between the given speed and the actual speed.


There is a filter after the torque command output, usually low-pass filter (P07.12=0). The function of low-pass filtering is to reduce torque jump and reduce motor noise. Generally speaking, the larger the torque filter time constant P07.13, the smaller the motor noise, but it may cause low-frequency fluctuations in the torque. Generally speaking, the larger the load inertia is, the larger the required torque filter time constant P07.13, and the larger the speed loop proportional gain.

Torque feedforward coefficient P07.10 and torque filter time constant P07.13 can be obtained through inertia self-learning, and generally do not need to be adjusted. It is mainly necessary to adjust the proportional gain and integral gain of the speed loop PI.

The adjustment principles of speed loop proportional gain P07.03 and integral gain P07.04 are:

- <u>The speed loop proportional gain is generally more than 10 times greater than</u> the integral gain, and the speed loop proportional gain is adjusted between <u>1000-10000, and the speed loop integral gain is generally adjusted between</u> <u>20-500. If the integral gain is too large relative to the proportional gain, it is easy</u> to cause low-frequency fluctuation of the rotational speed. The specific performance is that the speed has been reversed and cannot converge.
- 2. When the inertia is large, the proportional gain of the speed loop needs to be increased.
- 3. <u>When the proportional gain of the speed loop is too large, abnormal noise will occur during the static process of the motor.</u>
- 4. <u>When the integral gain of the speed loop is too large, the motor speed is always</u> forward and reverse, and it cannot converge.
- 5. <u>The speed loop proportional gain and integral gain are too small, the given</u> <u>speed and the feedback speed cannot be coincident, the motor rigidity is very</u> <u>small, especially soft.</u>

11.2.5 Position loop understanding and adjustment

The position loop gain is generally set to 100-500. If the position loop proportional gain is too large, it is easy to cause the motor to shake. If it is too small, the convergence rate of the position error is slow.

Version Update Record

release date	Change description	version
2022-03-10	The naming of the servo series is updated to VCXXX, the version	1.01
	number is added, and the calibration manual	
2022-03-16	Calibration Manual	1.02
2022-04-11	Split the manual to generate VC210 servo manual	1.03
2022-11-16	Modify the instructions for brake resistors	1.04
2022-11-25	Add description of dynamic braking function	1.05
2023-09-01	Add -E structure dimension drawing	1.06

深圳市威科达科技有限公司

SHENZHEN VECTOR TCHNOLOGY CO.LTD

地址:深圳市南山区留仙大道创客小镇13栋 电话:0755-26610452 研发大楼:广东省东莞市松山湖高新技术产业开发区南山路一号中集智谷12栋 电话:0769-22235716

关注公众号