CONTENTS

CONTENTS	1
CHAPTER 1 SECURITY REMINDER	1
1.1 SAFETY PRECAUTIONS	1
1.2 STORAGE PRECAUTIONS	2
1.3 TRANSPORTATION PRECAUTIONS	2
1.4 INSTALLATION PRECAUTIONS	3
1.5 WIRING PRECAUTIONS	4
1.6 OPERATING PRECAUTIONS	5
1.7 MAINTENANCE AND INSPECTION PRECAUTIONS	6
CHAPTER 2 PRODUCT INFORMATION	7
2.1 Servo driver Appearance	7
2.2 NAMEPLATE DESCRIPTION	8
2.2.1 E structure servo driver nameplate	8
2.2.2 C structure servo driver nameplate	8
2.2.3 Motor nameplate	8
2.3 Servo Driver Specifications	9
2.4 DRIVER SELECTION	. 11
2.4.1 E structure 220V Driver selection	. 11
2.4.2 E structure 380v Driver selection	. 11
2.4.3 C structure 220V Driver selection	. 12
2.4.4 C structure 380V Driver selection	. 12
2.5 STANDARDS COMPLIANCE	12
CHAPTER 3 WIRING	14
3.1 VEC Servo Driver Overview	14
3.1.1 C structure servo driver	. 15
3.1.2 E structure servo driver	. 16
3.2 MAIN CIRCUIT WIRING	16
3.2.1 Main circuit terminal name and function	. 16
3.2.2 Typical Main Circuit Wiring Example	. 17
3.2.3 Main circuit wiring precautions	. 18
3.3 Encoder signal wiring	19
3.3.1 Pin Assignment of Encoder Connection Port (CN2)	. 19
3.3.2 Pin Definition of Encoder Connection Port (CN2)	. 19
3.3.3 Encoder wiring precautions	. 19

3.4 INPUT/OUTPUT SIGNAL WIRING	20
3.4.1 Pin assignment of input/output signal port (CN3)	20
3.4.2 Pin Definition and Function of Input/Output Signal Port (CN3)	21
3.4.3 Input and output signal type selection	21
3.4.4 Pulse Command Input Wiring Example	22
3.5 COMMUNICATION SIGNAL WIRING	23
3.5.1 Pin assignment and definition of E structure communication port (CN1)	23
3.5.2 E structure monitoring port pin assignment and definition	24
3.6 WIRING RECOMMENDATIONS AND ANTI-INTERFERENCE MEASURES	25
3.6.1 Wiring recommendations	25
3.6.2 Anti-interference measures	26
CHAPTER 4 LED DISPLAY AND KEYBOARD OPERATION	30
4.1 PANEL COMPOSITION INTRODUCTION	30
4.1.1 C structure servo driver panel	30
4.1.2 E structure servo driver panel	30
4.2 PANEL OPERATION MODE	31
4.2.1 C structure servo driver panel	31
4.2.2 E structure servo driver panel	31
4.3 Status display	32
4.4 PARAMETER READING AND WRITING	32
4.4.1 Display rules for numbers of different lengths	32
4.4.2 Parameter setting steps	33
4.5 FUNCTIONAL OPERATION	33
4.5.1 Fn000 RESET DRIVER	34
4.5.2 Fn001 JOG Test Function	34
4.5.3 Fn002-Reset all parameters to default value function	34
4.5.4 Fn003 Update ARM program	35
4.5.5 Fn004 Learning motor UVW winding P00.70	35
4.5.6 Fn005 Learning Encoder Related Parameters	35
4.5.7 Fn006 Single Parameter Gain Adjustment	36
4.5.8 Fn007 Learning Load Inertia	36
4.5.9 Fn008 Update FPGA Program Reset Function	37
4.5.10 Fn009 restores all parameters to default except P00 and P01 parameter groups	37
4.5.11 Fn010 Backup All Parameters	38
4.5.12 Fn011 Restores Parameters That Have Been Backed Up	38
4.5.13 Fn012 restarts RS232 communication	38
4.5.14 Self-learning feedback polarity and the number of second encoder pulses corresponding	g to one
revolution of the motor in full-closed mode	38
4.6 VARIABLE MONITORING	39
CHAPTER 5 CONTROL MODE	41
5.1 Basic parameter setting	42

5.1.1 Control mode	42
5.1.2 Servo start and stop	
5.1.3 Servo braking option	
5.1.4 Instruction reverse	
5.2 Position mode	
5.2.1 Position command source and direction selection	45
5.2.2 Position command is derived from pulse command	
5.2.3 Position command is derived from multi-segment position command planning	48
5.2.4 Electronic gear ratio	
5.2.5 Electronic gear ratio smooth switching function	56
5.2.6 Position command filtering function	
5.2.7 Position error clear function	
5.2.8 Positioning completed/close output	58
5.2.9 Divided Pulse output	61
5.2.10 Output motor encoder Z index	62
5.2.11 Homing	62
5.2.12 Cubic speed curve	81
5.2.13 Full closed loop function	81
5.2.14 Travel limit function	83
5.2.15 Position mode typical wiring diagram (NPN mode)	85
5.2.16 Position tracking (pulse + direction) example	86
5.3 Speed Mode	87
5.3.1 Speed command source	87
5.3.2 Multi-speed mode	89
5.3.3 UP/DOWN speed mode	92
5.3.4 Ramp control and speed command filtering	92
5.3.5 Speed limit	93
5.3.6 Torque limit	95
5.3.7 Position lock function	97
5.3.8 Other functions	97
5.3.10 Speed mode typical wiring diagram (NPN mode)	. 101
5.3.11 VC servo for analog voltage control speed example	. 102
5.4 Torque mode	. 103
5.4.1 Torque command source	. 103
5.4.2 Torque limiting	. 104
5.4.3 Speed limit	. 107
5.4.4 Torque arrival output	. 108
5.4.5 Small torque jitter suppression	. 109
5.4.6 Torque mode typical wiring diagram (NPN mode)	. 110
CHAPTER 6 INPUTS AND OUTPUTS FUNCTION	. 112
6.1 ENTITY DI/DO FUNCTION	. 112
6.2 VIRTUAL DI/DO FUNCTION	. 121

6.3 ANALOG INPUT ANALOG OUTPUT AI/AO FUNCTION	128
6.3.1 Analog input Al	128
6.3.2 Analog output AO	133
CHAPTER 7 AUXILIARY FUNCTION	136
7.1 FAULT PROTECTION	136
7.1.1 Fault Downtime	136
7.1.2 All faults	138
7.1.3 Troubleshooting	143
7.1.4 Motor overload protection	158
7.1.5 Brake resistor overload protection	159
7.1.6 Motor overheat protection	160
7.1.7 Motor phase loss protection	160
7.2 BRAKE OUTPUT FUNCTION	161
7.2.1 Brake process	161
7.3 Absolute encoder instructions	164
7.4 Other Auxiliary functions	165
7.4.1 Internal trigger function	165
7.4.2 Software counter function	
7.4.3 U disk update / save parameter function	167
7.4.4 Record waveforms in real time and store them to the U disk's function	168
CHAPTER 8 GAIN ADJUSTMENT	
8.1 CONTROL LOOP GAIN ADJUSTMENT	
	169
8.1 CONTROL LOOP GAIN ADJUSTMENT	
8.1 CONTROL LOOP GAIN ADJUSTMENT	
 8.1 CONTROL LOOP GAIN ADJUSTMENT 8.1.1 Current loop PI gain adjustment 8.1.2 Speed loop PI gain adjustment 	
 8.1 CONTROL LOOP GAIN ADJUSTMENT 8.1.1 Current loop PI gain adjustment 8.1.2 Speed loop PI gain adjustment	
 8.1 CONTROL LOOP GAIN ADJUSTMENT	
 8.1 CONTROL LOOP GAIN ADJUSTMENT	
 8.1 CONTROL LOOP GAIN ADJUSTMENT	
 8.1 CONTROL LOOP GAIN ADJUSTMENT	
 8.1 CONTROL LOOP GAIN ADJUSTMENT	169 174 175 175 175 175 175 176 176 176 177
 8.1 CONTROL LOOP GAIN ADJUSTMENT	
 8.1 CONTROL LOOP GAIN ADJUSTMENT	
 8.1 CONTROL LOOP GAIN ADJUSTMENT	169 174 175 175 175 175 175 176 176 176 177 177 177 178 178
 8.1 CONTROL LOOP GAIN ADJUSTMENT	
 8.1 CONTROL LOOP GAIN ADJUSTMENT	169 174 175 175 175 175 175 176 176 176 177 177 177 177 178 178 178 178 178
 8.1 CONTROL LOOP GAIN ADJUSTMENT	169 174 175 175 175 175 175 176 176 176 177 177 177 177 178 178 180 181 183
 8.1 CONTROL LOOP GAIN ADJUSTMENT	169 174 175 175 175 175 175 176 176 177 177 177 177 178 178 180 181 183 184

10.2 P01 group parameters - driver hardware parameters	194
10.3 PO2 group parameters - basic control parameters	198
10.4 P03 GROUP PARAMETER - POSITION MODE PARAMETER	204
10.5 P04 group parameter - speed mode related parameters	213
10.6 P05 group parameter - torque mode related parameters	218
10.7 P06 group parameter -Inputs and Outputs Function	223
10.8 P07 group parameters - loop control parameters	238
10.9 P08 group parameters - communication parameters	245
10.10 P09 group parameters - advanced debugging parameters	248
10.11 P10 GROUP PARAMETERS - FAULT PROTECTION PARAMETERS	249
10.12 P11 GROUP PARAMETERS - MULTI-SPEED PARAMETERS	255
10.13 P12 group parameters - virtual DI DO parameters	265
10.14 P13 GROUP PARAMETERS - MULTI-SEGMENT POSITION PARAMETERS	279

Chapter 1 Security Reminder

This chapter describes important items that users must follow for product identification, storage, handling, installation, wiring, operation, and inspection.

1.1 Safety Precautions

• Dismount the driver after the power is turned off for more than 5 minutes, otherwise it may cause electric shock due to residual voltage.

• Do not disassemble or install the driver while the servo unit is powered on. Otherwise, it may cause electric shock, product stop operation or burnout.

• Never touch the inside of the servo driver, otherwise it may cause electric shock.

• During the period of power-on and after the power is turned off, the heat sink of the servo driver, external braking resistor, servo motor, etc. may be hot. Do not touch it, otherwise it may cause burns. To prevent inadvertent contact with hands or components (such as cables), take safety measures such as installing the casing.

• Use the power supply specifications that match the product of the servo driver power supply. Otherwise, the product may be burnt out, electric shock or fire.

• Make sure to connect the electromagnetic contactor and the no-fuse breaker between the power supply and the main circuit power supply of the servo drive. Otherwise, when the servo driver fails, it is impossible to cut off a large current and cause a fire.

• The grounding terminal of the servo driver must be grounded, otherwise it may cause electric shock.

• Do not set, disassemble, or repair the product unless it is a designated person. Otherwise it may cause electric shock or injury.

• Please do not modify this product, otherwise it may cause injury or mechanical damage.

• Do not damage or pull the cable hard, and do not subject the cable to excessive force. Do not place it under heavy objects or clamp it. Otherwise it may cause malfunction, damage, or electric shock.

• When the servo motor is running, please never touch the rotating part, otherwise it may be injured.

• Do not use this product in a place where it may splash water, corrosive environment, flammable gas or combustible materials, as this may result in electric shock or fire.

• Install the servo driver, servo motor, and external braking resistor on incombustible materials, otherwise it may cause a fire.

• In the servo driver and servo motor, do not mix flammable foreign matter such as oil or grease, or conductive foreign matter such as screws or metal sheets. This may

cause a fire.

•When starting to operate on the machine, please put the servo motor in an emergency stop state at any time, otherwise it may cause injury.

•In the state where the servo motor and the mechanical connection are connected, if an operation error occurs, not only mechanical damage but also personal accident may occur.

• Set the emergency stop device externally to ensure that the power is turned off and the operation stops immediately when an abnormality occurs.

• Use a noise filter to reduce the effects of electromagnetic interference, otherwise electromagnetic interference may be caused to electronic devices used near the servo unit.

• Use the servo unit and servo motor in the specified combination.

1.2 Storage Precautions

• Do not stack too many products together, as this may result in injury or malfunction.

• Please keep it in the following environment:

- places without direct sunlight;
- Locations with an ambient temperature in the range of -20 °C to +65 ° C;
- ▶ Relative humidity in the range of 0% to 95%, and no condensation;
- Locations free of water droplets, vapors, dust and oily dust;
- Locations where there is no high heat device;
- ➢ Non-corrosive, flammable gas and liquid sites;
- ➢ It is not easy to splash water, oil and medicine;
- > places that are not exposed to radioactive radiation;
- Strong and vibration-free places;
- > Locations where there is no electromagnetic noise interference.

Storage in an environment other than the above may result in malfunction or damage to the product.

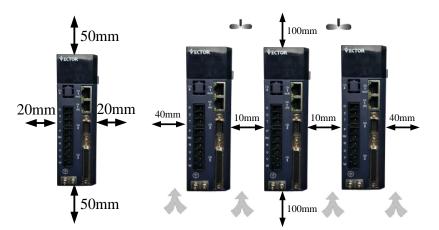
1.3 Transportation Precautions

• When moving the servo unit and servo motor, pay attention to the sharp parts such as the corners of the device, otherwise it may cause injury.

• Do not stack too many products together, as this may result in injury or malfunction.

•This is a precision device. Do not drop it or apply a strong impact to it. Failure to do so may result in malfunction or damage.

• Do not apply impact to the connector part, as this may result in poor connection or malfunction.


1.4 Installation Precautions

• Install the driver on a dry and sturdy platform. Maintain good ventilation and heat dissipation during installation and maintain good grounding.

• Please install in the specified direction to avoid malfunction.

• When installing, please ensure that the servo driver is kept at a specified distance from the inner surface of the cabinet and other machines, otherwise it may cause fire or malfunction.

• When installing, do not block the suction and exhaust ports, and do not allow foreign objects inside the product to enter, otherwise it may cause malfunction or fire due to aging of internal components.

• Do not place heavy objects on or under this product as this may result in injury.

- Please install in the following environment:
 - ➢ places without direct sunlight;
 - \triangleright Locations where the ambient temperature is in the range of 0 °C to 55 °C;
 - \triangleright Relative humidity in the range of 0% to 95%, and no condensation;
 - ➤ Locations free of water droplets, vapors, dust and oily dust;
 - Locations where there is no high heat device;
 - ➤ Non-corrosive, flammable gas and liquid sites;
 - ➤ It is not easy to splash water, oil and medicine;
 - > places that are not exposed to radioactive radiation;

Strong and vibration-free places;

 \succ Locations where there is no electromagnetic noise interference.

Installation in an environment other than the above may result in product failure or damage.

1.5 Wiring precautions

• It is recommended not to use single-phase 220V for main power supply, which may cause damage to electrolytic capacitor due to lack of phase.

• Do not change the wiring during power-on, otherwise it may cause electric shock or injury.

• Please perform wiring or inspection by professional technicians, otherwise it may cause electric shock or product failure.

• Please carefully confirm the wiring and power supply. The output circuit may be short-circuited due to wiring errors or application of different voltages. The brake does not operate when the above fault occurs, which may result in mechanical damage or personal injury.

• Do not connect the input power cable to the U, V, and W terminals of the drive. Otherwise, the servo driver will be damaged.

• When wiring, do not pass the power cable and signal cable through the same pipe, and do not bundle them together. The distance between the two should be more than 30cm to avoid interference.

• The driver ground terminal must be grounded to avoid leakage and reduce the interference of the system, and the diameter of the ground wire should be the same as or above the power supply line.

• When connecting the AC power supply and DC power supply to the servo unit, connect to the specified terminal. Failure to do so may result in malfunction or fire.

• For the wiring length, the command input line is up to 3m and the encoder line is up to 20m.

• Use a twisted-pair shielded cable for the signal cable and encoder cable, and ground the shield with a single end.

•The U, V, W terminals of the driver and the U, V, and W terminals of the motor should be connected one by one according to the name. If it is wrong connected, the motor cannot operate normally.

• Common DC bus products require pressure sensitive resistors and the wiring is secure.

• Please check the power after the power is off for at least 5 minutes. Even if the power is turned off, high voltage may remain inside the servo drive. Therefore, do not touch the power terminal within 5 minutes after the power is turned off, otherwise it may cause electric shock.

• Do not turn the power ON/OFF frequently. When it is necessary to continuously turn ON/OFF the power, please control it once or less in 1 minute. Since the power supply section of the servo driver has a capacitor, a large charging current

(charge time of 0.2 seconds) flows during the ON/OFF power supply. Therefore, if the power is turned ON/OFF frequently, the performance of the main circuit components inside the servo driver will be degraded.

• Do not apply power when the terminal block screws are loose or the cable is loose. Otherwise, it may cause fire.

• Take appropriate shielding measures in the following locations, otherwise the machine may be damaged:

Locations that cause interference due to static electricity;

- > A place that produces a strong electric field or a strong magnetic field;
- Locations where there may be radiation radiation;
- ➤ A place with a power cord nearby.
- 1.6 Operating precautions

• in the test operation, in order to prevent accidents, please test the servo motor with no load (not connected to the driver shaft), otherwise it may cause injury.

• when starting to operate on the supporting machine, set the user parameters that match the machine in advance. If you start operation without parameter setting, it may cause mechanical loss or malfunction.

• to avoid accidents, install a limit switch or a stopper at the end of the movable part of the machine, otherwise it will cause mechanical damage or injury.

• do not make extreme changes to the parameter settings, as this may result in unstable operation, mechanical damage or injury.

•when the power is turned on or the power supply is cut off, the heat sink of the servo driver, external braking resistor, motor, etc. may be in a high temperature state. Do not touch it, otherwise it may cause burns.

• when using a servo motor on the vertical axis, set a safety device to prevent the workpiece from falling under alarm, over travel, etc. In addition, please perform the servo lock stop setting when an over travel occurs, otherwise the workpiece may fall in the over travel condition.

• do not enter the operating range of the machine during operation, otherwise it will cause injury.

• do not touch the servo motor or the movable part of the machine during operation, otherwise it will cause injury.

• please set up the safety system to ensure safety even in the event of a signal line breakage. For example, when the positive over travel switch (P-OT) and negative over travel switch (N-OT) signals are disconnected at the factory setting, they operate safely.

• be sure to set the servo OFF state when turning off the power.

• do not turn the power on/off frequently. After the actual operation starts, the power ON/OFF interval should be more than 1 hour, otherwise the components inside the servo unit will be prematurely aged.

•when an alarm occurs, reset the alarm after the cause is removed and ensure safety, and restart the operation, otherwise it may cause injury.

• do not use the brake of the brake motor for normal braking, otherwise it may cause a malfunction.

1.7 Maintenance and inspection Precautions

• do not change the wiring while the power is on, otherwise it may cause electric shock or injury.

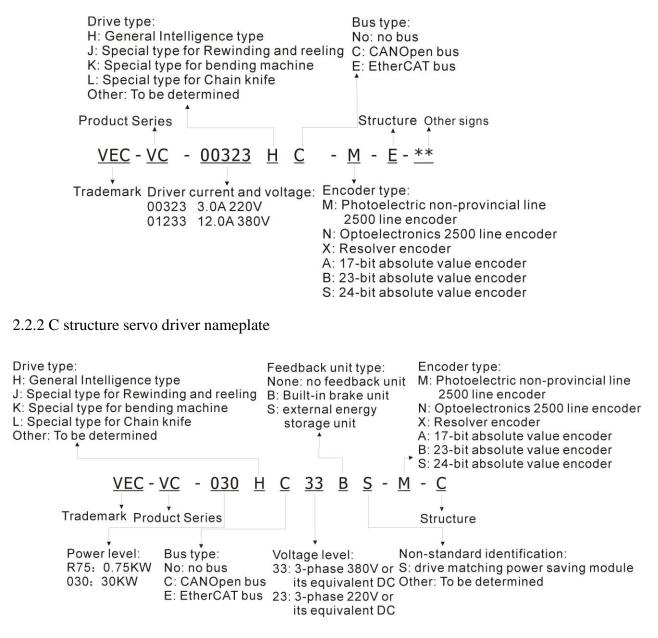
• please perform wiring or inspection by professional technicians, otherwise it may cause electric shock or product failure.

• please check the power after the power is off for at least 5 minutes. Even if the power is turned off, high voltage may remain inside the servo drive. Therefore, do not touch the power terminal within 5 minutes after the power is turned off, otherwise it may cause electric shock.

•when replacing the servo drive, please back up the servo driver user parameters to be replaced before the replacement, and transfer the backup to the new servo drive, and then restart the operation, otherwise the machine may be damaged.

Chapter 2 Product Information

2.1 Servo driver Appearance


C structure servo driver

E structure servo drive

2.2 Nameplate Description

2.2.1 E structure servo driver nameplate

2.2.3 Motor nameplate

60 Flange size	MB Product Series	Ra	40 ated wer		20 Rated		A stallation nethod	V	33 oltage level	b	F rake	-			F2 oderline umber	M In-plant remarks
(mm)		R40 1R5	1.5KW 11KW	15 20 25	1000rpm 1500rpm	D	B5 Flange	33	Spec 3-phase 380V 3-phase 220V	В		X M N A B	p Spec Rotary encoder Photoelectric non-linear encoder Photoelectric line-type encoder 17-bit absolute encoder 23-bit absolute encoder 24-bit absolute encoder	F2 F5 F6	<u>Spec</u> 1024C/T 2500C/T 5000C/T 6000C/T	

2.3 Servo Driver Specifications

	Items	description				
Voltage	e control mode	Single-phase / three-phase full-controlled rectification SVPWM modulation				
Encode r	encoder feedback	 2500 pulse incremental + Hall encoder; 2500 pulse incremental; 17bit Tamagawa absolute encoder; 23bit Tamagawa absolute encoder; 24bit Nikon absolute encoder; 				
	pulse type	differential input Open collector				
Pulse comma	Frequency range	differential input: 0-500kHz, pulse width greater than 1us Open collector: 0-300kHz, pulse width greater than 2.5us				
nd input	Pulse mode	pulse + direction; AB pluses; CW+CCW;				
	voltage range	-10V to 10V				
Analog	Input impedance	10kΩ				
input Maximum frequency		1.5kHz				
DI/DO	interface type	NPN/PNP				
Comm	unication	Modbus/CANopen/EtherCAT				
	command input method	 pulse command Internal planning position Plan by target position, speed, acceleration and deceleration time Trapezoidal speed curve Cubic speed curve Absolute / relative command mode 				
tion Instruction smoothing mod mode		low pass filtering / median filtering				
e	Electronic gear ratio	N/M;(M=1~2147483647,N=1~2147483647)				
	Torque limit	internal torque limit Analog torque limit				
	Feedforward compensation	speed feedforward/torque feedforward				
	Torque compensation	fixed torque compensation / analog torque compensation / automatic torque compensation;				
Spe	Command input type	Pulse Frequency / Analog / Internal planning speed				
ed	Speed control range	1~max speed				

9

cont	bandwidth	1kHz			
rol	Torque limit	internal torque limit / analog torque limit			
mod	Instruction smoothing				
e	mode	low pass filtering / median filtering			
	Feedforward				
	compensation	torque feedforward			
	Torque compensation	fixed torque compensation / analog torque compensation / automatic torque compensation;			
torq	Command input type	internal torque reference / analog control torque			
ue cont	Torque compensation	fixed torque compensation / analog torque compensation / automatic torque compensation;			
rol mod e	Speed	limit internal speed limit / analog speed limit			
Digi tal Inpu t	Enable Drive, Reset Drive, Torque Command A/B Switch, Torque Command Rever Enable, Forward Torque Limit A/B Switch, Negative Torque Limit A/B Switch, Forwar Speed Limit A/B switch, negative speed limit A/B switch, forward jog, reverse jog, spe command reverse enable, main speed source A/B switch, speed stop enable, clear positi count, speed mode Zero fixed, multi-speed speed selection 0, multi-speed speed selecti 1, multi-speed speed selection 2, multi-speed speed selection 3, position comman prohibited, position command reverse, pulse command prohibited, electronic gear rat switch 1, position error Clear, return to zero, trigger multi-segment position multi-segment position selection 0, multi-segment position selection 1, multi-segment position selection 2, multi-segment position selection 1, multi-segment position selection 2, multi-segment position selection 1, multi-segment position selection 2, multi-segment position selection 3, multi-segment position directi selection, zero return origin switch input, xy pulse and internal position planni switching, control Mode switch 0, control mode switch 1, enable interrupt fixed lengt input, cancel interrupt fixed length, trigger interrupt fixed length, first set of second s gain switch, reset fault, positive limit switch in position mode, Reverse limit switch position mode, open and closed loop in full closed loop mode , electronic gear ratio swit 2, motor overheat input, emergency stop input, internal trigger clear, internal trigger s internal counter count pulse, internal counter clear, speed mode UPDOWN mode U signal, speed mode UPDOWN mode DOWN Signal, AI zero drift automatic correction				
Digi tal outp ut	the positioning is close to the output, the zero return is completed, the position error is to				
Trou	-	hardware overcurrent, overvoltage, under voltage, current sensor			
bles	· · ·	EPROM check fault, phase sampling fault, FPGA and ARM			

communication fault, current change big fault, magnetic encoder fault, current Phase hoot sequence learning failure, Z-point is not scanned during self-learning, Z-point offset is not ing found, Hall code value learning error, driver over-temperature, power-on, line-saving encoder has no feedback threshold value, motor encoder type Mismatch, when the origin returns to zero, the origin switch INFn.34 is not allocated, INFn.xx is repeatedly allocated, over speed, position error is too large, the interrupt fixed length trigger signal INFn.40 is not assigned, there is no zero return before the absolute point motion, the motor Overload, software limit, hardware limit, curve planning failure, full closed loop position error is too large, prohibit positive (reverse) turn, Z point signal is unstable, RPDO receive timeout, motor stall, brake resistor overload, forward stroke Switch input function bit INFn.43 is not assigned to entity DI, reverse travel switch input function bit INFn.44 is not assigned to entity DI, origin search error, CAN bus status switching error, unsupported CANopen control mode, absolute value mode The number of laps overflows, the absolute encoder battery fails, the inertia learning fails. When the full closed loop parameter is learned, the position value detected by the second encoder is too small, the bus error, the motor overheats, the DI function code is not allocated, and the AI zero drift is too large., zero return timeout, absolute value encoder battery failure, absolute value encoder rotation direction error when self-learning, absolute value encoder battery voltage is too low Atmospheric pressure 86~106kPa

Inst	Atmospheric pressure	80~100KPa
allat	Ambient humidity	0~55℃
ion	Ambient temperature	0~90%RH
envi	IP rating	IP20
ron		
men		
t	X 7'1	0.40
requ	Vibration	0~4.9m/s^2
irem		
ents		

2.4 Driver selection

2.4.1 E structure 220V Driver selection

Input voltage(V)	Output rate current(A)	Output max current A
Single / three phase 220	3	9
Single / three phase 220	6	18
Single / three phase 220	12	36

2.4.2 E structure 380v Driver selection

Input voltage(V)	Output rate current(A)	Output max current A
------------------	------------------------	----------------------

Three phase 380	7	21
Three phase 380	12	36
Three phase 380	16	40
Three phase 380	20	50
Three phase 380	27	67.5
Three phase 380	19.5	49.0
Three phase 380	27.0	68.0

2.4.3 C structure 220V Driver selection

Input voltage(V)	Output Rate Power(kw)		
Single / three phase 220	0.4		
Single / three phase 220	0.75		
Single / three phase 220	1.5		
Single / three phase 220	2.2		

2.4.4 C structure 380V Driver selection

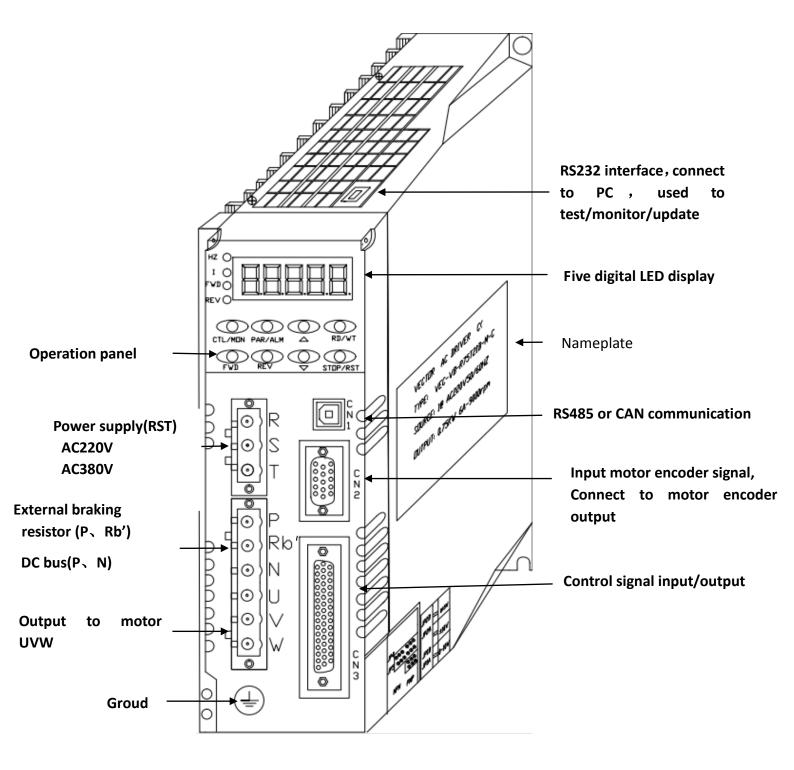
Input voltage(V)	Output Rate Power(kw)
Three phase 380	1.5
Three phase 380	2.2
Three phase 380	4
Three phase 380	5.5
Three phase 380	7.5
Three phase 380	11
Three phase 380	15
Three phase 380	18
Three phase 380	22
Three phase 380	30
Three phase 380	37
Three phase 380	45
Three phase 380	55
Three phase 380	75

2.5 Standards Compliance

The VEC Servo has been tested and according to the following standards.

1. CE (EU Safety Standard);

2. IEC/EN61800-5-1:2007 (Safety requirements for electrical, thermal and energy in Section 5-1 of the variable speed electric driver system), corresponding to the national standard GB12668.501-2013;


3, IEC / EN61800-3: 2004 + A1 (speed control electric driver system part 3 electromagnetic compatibility standards and its specific test methods), corresponding to the national standard GB12668.3-2012.

Chapter 3 Wiring

This chapter describes the wiring method of servo drives and the definition of various signals.

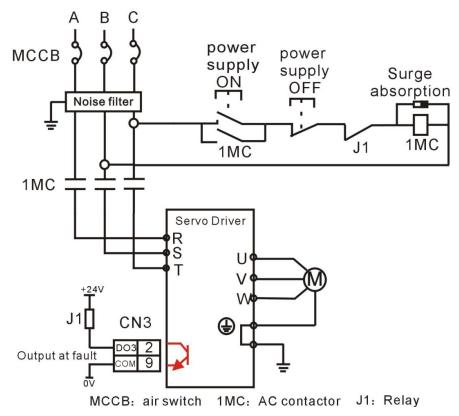
3.1 VEC Servo Driver Overview

3.1.1 C structure servo driver

3.1.2 E structure servo driver

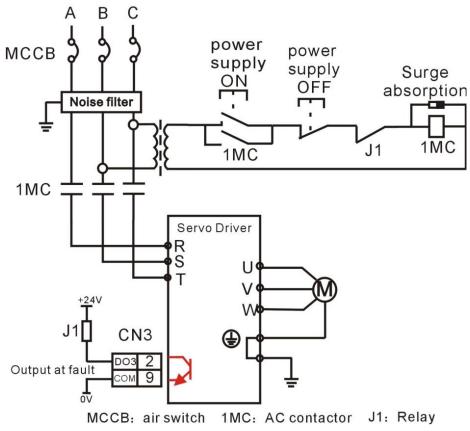
3.2 Main circuit wiring

This section explains the functions of the main circuit terminals, the wiring examples of the main circuit, and the precautions for the main circuit wiring.


Terminal symbol	name	function				
R ₂ S ₂ T	main circuit power	power supply				
input te	input terminal	power suppry				
U, V, W	motor terminals	connected to the motor U, V, W				
P、Rb'	braking resistor	connected to external braking resistor				
F NU	terminal	connected to external braking resistor				
P、N	DC bus terminal	External power saving module or shared DC bus				

\bigcirc	The grounding	Connected to the ground and directly connected to the
	terminal	ground wire of the motor.

Note the following when sharing the DC bus: The 380V driver can only share the DC bus with the 380V drive, and the 220V driver can only share the DC bus with the 220V drive.


3.2.2 Typical Main Circuit Wiring Example

(1) Three phase 220V driver

•IO's power supply +24V needs to be supplied externally.

(2) Three phase 380V driver

• IO's power supply +24V needs to be supplied externally.

3.2.3 Main circuit wiring precautions

(1) Do not connect the input power cable to the P, RB', N, U, V, W terminals of the drive, otherwise the servo driver will be damaged.

(2) The U, V, W terminals of the driver and the U, V, and W terminals of the motor should be connected one by one according to the name. When the error is connected, the motor cannot operate normally.

(3) The braking resistor cannot be connected between the P and N terminals of the DC bus, otherwise it may cause a fire!

(4) The driver ground terminal must be grounded to avoid leakage and reduce the interference of the system, and the diameter of the ground wire should be the same as or above the power supply line.

(5) When wiring, do not pass the power cable and signal cable through the same pipe, and do not bundle them together. The distance between the two should be more than 30cm to avoid interference.

(6) Use a twisted pair shielded cable for the signal cable and encoder cable.

(7) For the wiring length, the command input line has a maximum length of 3 m and the encoder line has a maximum length of 20 m.

(8) Even if the power is turned off, a high voltage may remain inside the servo driver. Therefore, do not touch the power terminals within 5 minutes after turning off the power.

(9) Do not apply power when the terminal block screws are loose or the cable is loose,

otherwise it may cause fire.

(10) Do not turn the power on and off frequently. When repeated continuous ON/OFF power is required, control it once or less for 1 minute. Since the capacitor is provided in the power supply section of the servo driver, a large charging current (charge time of 0.2 seconds) flows during the ON power supply. If the power is turned ON/OFF frequently, the performance of the main circuit components inside the servo driver will be degraded and the service life will be shortened.

3.3 Encoder signal wiring

3.3.1 Pin Assignment of Encoder Connection Port (CN2)

3.3.2 Pin Definition of Encoder Connection Port (CN2)

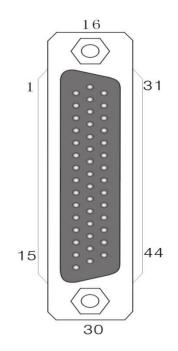
Pin No.	Signal Name	Pin No.	Signal Name
1	A+	2	A-
3	B+	4	B-
5	Z+ or absolute	6	Z-or absolute
5	encoder signal +	6	encoder signal -
7	U+	8	U-
9	V+	10	V-
11	W+	12	W-
13	+5V	14	0V
15	Reserved	case	Shield

3.3.3 Encoder wiring precautions

(1) When the encoder type of the servo motor is a non-line-saving incremental photoelectric encoder, it can be directly connected to the CN2 port as defined.

(2) When the encoder type of the servo motor is a resolver, it is necessary to use the

vector angle resolver card to resolve the angle and then connect to the CN2 port.


(3) The encoder cable needs to use twisted pair shielded cable, and the wiring length is within 20m. If it exceeds 20m, please increase the wire diameter of the signal wire.

• the angle resolver card is optional. Please consult your Agent for details.

3.4 Input/output signal wiring

In order to communication with the host controller, the VEC servo driver provides 10 digital inputs and 6 digital outputs that can be arbitrarily configured. In addition, XY pulse input and encoder differential output signals OA+, OA-, OB+, OB-, and analog input and output signals can be provided.

3.4.1 Pin assignment of input/output signal port (CN3)

Pin num	name	function	Pin num	name	function
10、26	+24V	+24V external DC24V	21	RST	Reset driver
9、25	COM	power supply for DI, DO	12	AGND	analog ground
3	DO1		14	AI1	Configurable analog
18	DO2		15	AI2	Configurable analog
2	DO3		29	AI3	input
17	DO4	Configurable digital	44	AO1	Configurable analog
1	D05	output	28	AO2	output
1	DO5	output	13	SIG+	tension sensor signal
16	DO6		30	SIG-	input, tension sensor can
10	D00		30	310-	be powered by 35, 36
24	DI1		37	OA+	Can be selected as the
8	DI2		38	OA-	encoder signal crossover
23	DI3		39	OB+	output or the second
7	DI4		40	OB-	encoder input by
/	DI		40	OD-	parameter P03.78.
22	DI5	Configurable digital	41	OZ+	Encoder Z index ouput
6	DI6	Configurable digital	42	OZ-	Elicodel Z liidex ouput
5	DI7	input	35	+5V	- 51
20	DI8		36	0V	+5V
4	DI9		11	SW-DO	DO NPN/PNP Jumper
19	DI10		27	SW-DI	DI NPN/PNP Jumper
31	X+	position command input	12	VVDU	XY input pull-up
32	X-	Input signal type	43	ХҮРН	resistor
33	Y+	selectable(differential	22	Ch:-1-1	Croud to the Fourth
34	Y-	signal or open collector)	case	Shield	Groud to the Earth

3.4.2 Pin Definition and Function of Input/Output Signal Port (CN3)

3.4.3 Input and output signal type selection

Depending on the type of host controller, the DI and DO signals of the VEC servo driver are designed to be selected by jumpers.

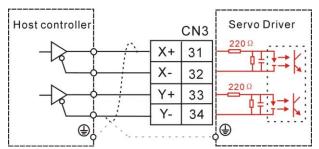
1) DIx jumper selection

SW-DI (27 pin of CN3) and +24V (26 pin of CN3) are shorted to select NPN, SW-DI (27 pin of CN3) and COM (25 pin of CN3) are shorted to select PNP.In other words, if SW-DI connect to +24V,NPN signal is selected, SW-DI connect to COM ,PNP signal is selected

2) DOx jumper selection

SW-DO (11 pin of CN3) and COM (25 pin of CN3) are shorted to select NPN,

SW-DO (11 pin of CN3) and +24V (26 pin of CN3) are shorted to select PNP.In other words, if SW-DO connect to +24V, PNP signal is selected, SW-DO connect to COM, NPN signal is selected


Remark: The external DC24V power supply is connected to 9 feet (COM) and 10 feet (+24V).

3.4.4 Pulse Command Input Wiring Example

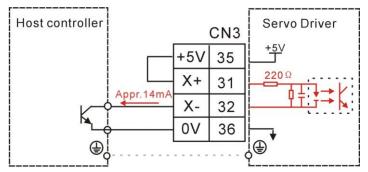
The wiring method of the Pulse command input (31, 32, 33, and 34 feet) in the CN3 port will be described in detail below. There are two choices of input signal types, namely differential signal input and open collector input. The details are as follows:

(1) When differential signal is input

Maximum input frequency ≤ 500 KHz (before multiplier)

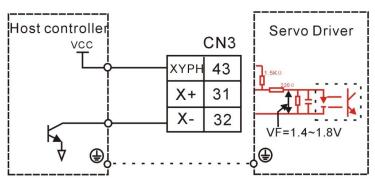
Please ensure that:

• $3.2V \le [$ (High level) - (Low level) $] \le 5.1V$


If the above formula is not satisfied, the input pulse of the servo driver is unstable, and pulse loss or instruction inversion may occur.

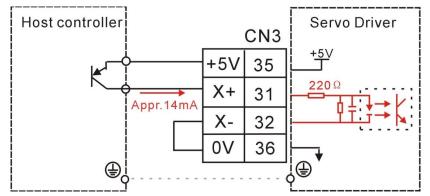
(2) When the open collector input

Maximum input frequency ≤ 300 KHz

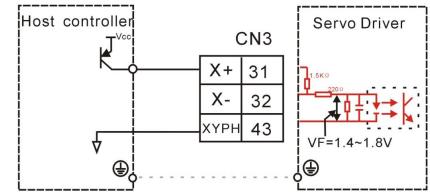

(1)The host controller is NPN type (Mitsubishi, Panasonic, Omron and other Japanese PLC)

a. When using the internal 5V power supply of the drive:

• the wiring of Y+ (33 feet) and Y- (34 feet) is the same as X+ and X-

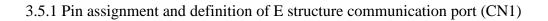

b. When using an external power supply:

- The wiring of Y+ (33 feet) and Y- (34 feet) is the same as X+ and X- $_{\circ}$
- VCC=24V。


⁽²⁾The host controller is PNP type (European PLC such as Siemens)

a. When using the internal 5V power supply of the drive:

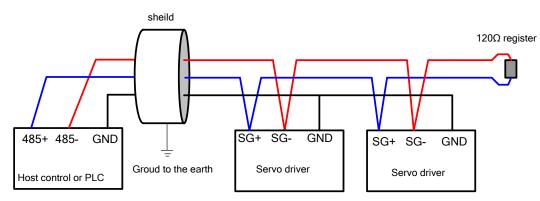
• The wiring of Y+ (33 feet) and Y- (34 feet) is the same as X+ and X- $_{\circ}$


b. Use the external power supply

• The wiring of Y+ (33 feet) and Y- (34 feet) is the same as X+ and X- $_{\circ}$

• VCC=24V°

3.5 Communication signal wiring

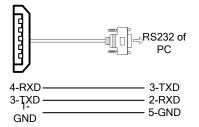


symbol Terminal appearance Description
--

		The definition	n of both interf	faces is the same.		
		Pin num	definition	Description		
		1	CANH	CAN bus high signal		
		2	CANL	CAN bus low signal		
		3	GND	power ground		
		4	SG+	RS485 signal+		
		5	SG-	RS485 signal-		
	OUT	6	NC	unconnect		
		7	NC	unconnect		
		8	GND	power ground		
CN1		(1) Whether it is RS485 or CAN bus, it is necessar				
		to connect the power ground of the controller (PLC)				
		to the power ground of the servo driver.				
		(2) When multiple drivers are used in parallel with				
		the RS485 bus, add a 120Ω termination resistor				
		between the SG+ and SG- terminals to the farthest				
		drive.				
		(2) When multiple drivers are used in parallel with				
		the CAN bus, add a 120Ω termination resistor				
		between the CANH and CANL terminals to the				
		farthest driv				

Remark: Universal servo uses RS-485 signal communication, CANopen bus type servo uses CAN signal communication.

Note: When wiring, connect the GND of the host device to the GND terminal of the servo driver.



3.5.2 E structure monitoring port pin assignment and definition

Pin symbol	Terminal	Description
i m symoor	appearance	Description

CN5	Pin num 1 2	define GND NC	Description power ground unconnect
CN5	1	GND	power ground

Remark: The function of the FPGARST pin is: When the FPGA firmware update fails, short the pin to GND (5 pin) to update the FPGA firmware again. After the update is completed, disconnect it from GND (5 pin). The power is turned on again for the driver to work properly. The connection to the computer is as follows:

The RS232 baud rate selection parameters are as follows:

Parameter	Parameter Description	Setting	Defa	
No	Farameter Description	Range	ult	
P08.26	RS232 monitoring port baud rate	0~2	2	RW
	0- 9600			
	1- 38400			
	2- 115200			

3.6 Wiring recommendations and anti-interference measures

3.6.1 Wiring recommendations

For the safety and stability of the product, please pay attention to the following when wiring:

1. For the command input and the cable related to the encoder wiring, please select the shortest distance wiring.

2. Use a thick wire (2mm2 or more) as much as possible for the grounding wire.

• All parts of the system (servo drive, servo motor, noise filter, host controller, switching power supply, HMI, etc.) must be grounded and must be grounded at one point.

• It is recommended that the grounding resistance be 100Ω or less.

• Use a shielded cable for the motor cable.

3. Do not bend or withstand the cable.

•The cable diameter of the signal cable is only 0.2mm or 0.3mm. Please use it with care.

4. To prevent RF interference, use a noise filter.

• when using near a residential building or when you are concerned about radio frequency interference, install a noise filter on the input side of the power cord.

5. To prevent malfunction caused by noise, the following processing methods can be used:

• Install the superior device and the noise filter as close as possible to the servo drive.

• Install a surge suppressor on the coil of the relay or AC contactor.

• when wiring, please separate the strong electric line from the weak electric line and keep the interval of 30cm or more. Do not put it in the same pipe or bundle it together.

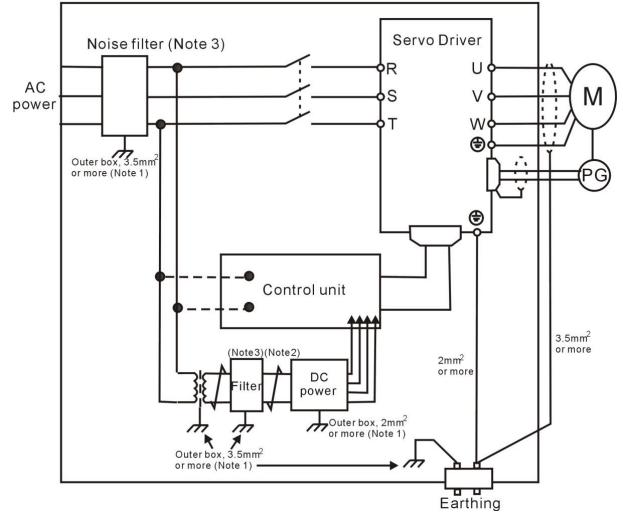
• do not share power with welding machines, EDM equipment, etc. Even if there is no power supply, when there is a high frequency generator nearby, install a noise filter on the input side of the wire.

6. Use a circuit breaker or fuse to protect the power cord.

•In order to prevent cross-electric shock accidents in the servo system, be sure to use a circuit breaker or fuse for wiring. \circ

3.6.2 Anti-interference measures

1. Servo motor housing is grounded


Be sure to connect the ground terminal "" of the servo motor directly to the ground terminal "" of the servo drive. In addition, connect the ground terminal of the driver to the ground. Otherwise, when the servo motor is mechanically grounded, the switching disturbance current will flow out from the main circuit of the driver through the parasitic capacitance of the servo motor.

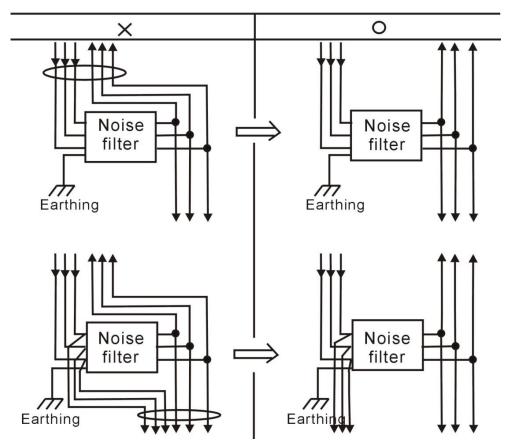
2. When interference occurs on the command input line

When interference occurs on the command input line, connect the 0V line of the input line to the ground, the motor main circuit wiring passes through the metal conduit, and connect the conduit and the junction box to the ground.

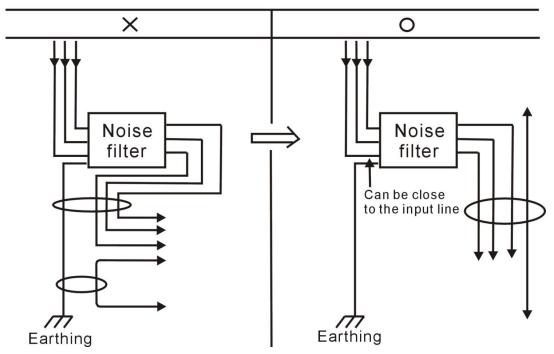
• please ground the above grounding and ground all at one point.

3. Anti-interference wiring example

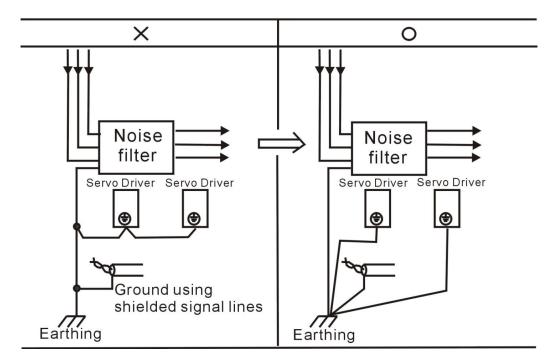
Note 1: For the outer box connecting wires used for grounding, use thick wires of 3.5mm2 or more as much as possible (weaved copper wire is recommended).

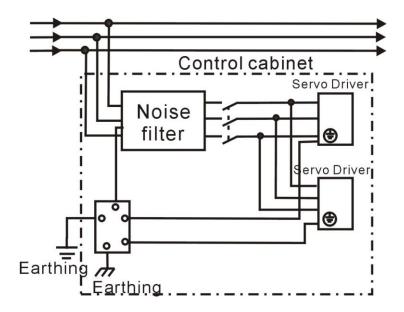

Note 2: Be sure to use twisted pair shielded wires.

Note 3: Please refer to "Using the Noise Filter" below when using a noise filter.


4. How to use the noise filter

In order to prevent the interference of the power line and reduce the influence of the servo driver on other devices, please select the noise filter that can make the servo system comply with the IEC/EN 61800-3 electromagnetic compatibility standard according to the power of the servo driver, and observe it in use. The following notes:


• Separate the input wiring of the noise filter from the output wiring. Do not put them in the same sleeve, and do not bundle them together.


• Separate the ground wire of the noise filter from the output wiring. Do not put them in the same casing, let alone bundle them together.

• Connect the ground wire of the noise filter to the grounding plate separately. Do not connect other ground wires.

•please ground the noise filter and other components in the control cabinet when the noise filters and servo driver are installed in the same control cabinet.

Chapter 4 LED Display and Keyboard Operation

4.1 Panel composition introduction

4.1.1 C structure servo driver panel

The panel contains 8 buttons and 5 digital tubes. Only 5 of the 8 buttons can be used, and the remaining 3 buttons reserved. The general functions of the five buttons are shown in the table below.

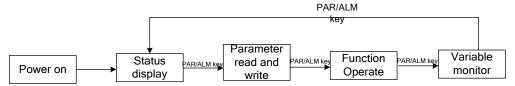
Key name	Key function
PAR/ALM	mode switch, return to the previous menu
▲(add)	increase flashing bit value of the LED digital tube
▼(dec)	Decrease flashing digit value of the LED digital tube
STOP/RST	Moves the blinking LED tube to the left; checks the high value of data
	longer than 5 bits; Fault reset; execute Fn function
RD/WT	read/write parameter values;enter fn page

4.1.2 E structure servo driver panel

The panel contains 5 buttons and 5 digital tubes. The general functions of the five buttons are shown in the table below.

Key name Key function	
-----------------------	--

mode	mode switch, return to the previous menu
▲(add)	increase flashing bit value of the LED digital tube
▼(dec)	Decrease flashing digit value of the LED digital tube
◄◄ (shift)	Moves the blinking LED tube to the left; checks the high value of data
	longer than 5 bits; Fault reset; execute Fn function
SET	read/write parameter values

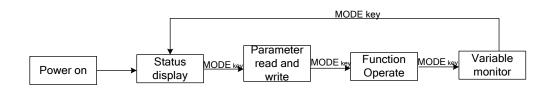

4.2 Panel operation mode

4.2.1 C structure servo driver panel

There are a total of four operating modes, namely status display, parameter reading and writing, variable monitoring, and functional operation.

mode introduction		
Displays the status of the drive, such as reset (panel display rst), ready		
(panel display rdy), run (panel display run), fault (Er.xxx), or monitor a		
specific variable in the run (eg speed, busbar) Voltage, etc.)		
reading and writing all parameters		
Perform specific functions, such as jog test run, parameter reset factory		
value, driver reset		

Each mode is switched by PAR/ALM key.



4.2.2 E structure servo driver panel

There are a total of four operating modes, namely status display, parameter reading and writing, variable monitoring, and functional operation.

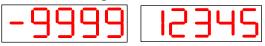
Panel operation mode	mode introduction		
	Displays the status of the drive, such as reset (panel display rst), ready		
Status display	(panel display rdy), run (panel display run), fault (Er.xxx), or monitor a		
	specific variable in the run (eg speed, busbar) Voltage, etc.)		
Parameter reading and	noding and writing all non-motors		
writing	reading and writing all parameters		
Variable monitoring	monitors a variable or IO state of a drive		
E	Perform specific functions, such as jog test run, parameter reset factory		
Function operation	value, driver reset		

Each mode is switched by MODE key.

4.3 Status display

In this mode, the status of the driver is displayed. There are several states as follows.

Status Name	Status Description	Panel Display
Reset state	The driver is powered on or reset to restart.	rSt
Ready state	rdy	
Running state	When the driver is enabled, the motor is powered on	run
Equit status	The driver reported a fault and the panel displays the	Er.xxx
Fault status	reported fault code Er.xxx	

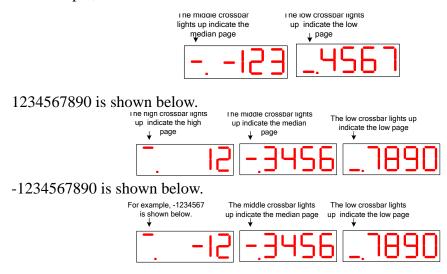

In the non-fault state of the status display, the panel can be set to display a specific variable via P02.05.

4.4 Parameter reading and writing

When you enter the parameter read/write mode for the first time, Pxx.yy is displayed. Where xx is the parameter group and yy is the parameter number in the group. The parameters of the driver are divided into 0~13groups, and each group can accommodate up to 99 16-bit parameters. The parameters are divided into four types, namely unsigned 16-bit parameters, signed 16-bit parameters, unsigned 32-bit parameters, and signed 32-bit parameters. Unsigned 16-bit parameters range from 0 to 65535. The range of signed 16-bit parameters ranges from -32767 to 32767. Unsigned 32-bit parameters range from 0 to 4294967295. The range of signed 32-bit parameters ranges from -2147483647 to 2147483647.

4.4.1 Display rules for numbers of different lengths

A negative number less than 4 digits and a positive number less than 5 digits can be displayed intact by 5 digital tubes. For example, -9999 and 12345 are shown below.



Negative numbers of more than 4 digits or positive digits of more than 5 digits are divided into 2 pages or 3 pages. Switching between pages and pages is achieved by long pressing the " \blacktriangleleft " (shift) button. The leftmost digital tube of each page identifies the number of pages displayed at this time. The high crossbar lights up to represent the high position page, the middle crossbar lights up to represent the median page, and the low crossbar lights up to represent the low position page.

For example, 1234567 is shown below.

For example, -1234567 is shown below.

4.4.2 Parameter setting steps

For example, the process of setting P00.02 to 4000 is as follows.

- Press the MODE button to switch the mode to the parameter read/write mode. At this time, the keyboard displays P00.00.
- ✓ use "▲" (increase), "◀◀" (shift), "▼" (decrease) 3 keys to change the parameter number to P00.02;
- > Press the SET button to read out the value of P00.02 first;
- > use "▲" (increase), "◀◀" (shift), "▼" (decrease) 3 keys to set the parameter value to 4000;
- > Press the SET button to write the set parameter value to P00.02.

For multi-page display data, you can automatically shift to other pages by " \blacktriangleleft \clubsuit " (shift), or you can directly shift to other pages by long-pressing " \blacktriangleleft \clubsuit " (shift).

4.5 Functional operation

Currently the servo supports the following features.

Function	Function
number	
Fn000	reset drive
Fn001	JOG test run
Fn002	Reset all parameter to default value
Fn003	Update ARM firmware
Fn004	learning motor UVW phase sequence
Fn005	Learn motor pole pairs and encoder parameters
Fn006	Self-learning gain and feedforward coefficient and other loop parameters
Fn007	learning load inertia
Fn008	Update FPGA program
Fn009	Reset all parameter to default value except the P00 and P01 parameter

	groups				
Fn010	backs up all parameters				
Fn011	restores the parameters that have been backed up				
Fn012	re-open RS232 communication				
Fn013	Self-learning full closed loop polarity and the number of second encoder pulses				
	of the motor one revolution				

4.5.1 Fn000 RESET DRIVER

The steps are as follows:

- Press the MODE button to switch the mode to the function operation mode. At this time, the first two digits of the digital tube display Fn;
- Using "▲" (increase), "◀◀" (shift), "▼" (decrease) 3 buttons to set the display value of the digital tube to Fn000;
- > Press the SET button to reset the driver directly.

Note: In any state, press the " \blacktriangle " (increase) and " \blacktriangledown " (decrease) buttons simultaneously for 2 seconds to reset the drive.

4.5.2 Fn001 JOG Test Function

The steps are as follows:

- Press the MODE button to switch the mode to the function operation mode. At this time, the first two digits of the digital tube display Fn;
- Using "▲" (increase), "◀◀" (shift), "▼" (decrease) 3 buttons to set the display value of the digital tube to Fn001;
- Press the SET button, the driver is enabled and the digital tube is displayed as below. The first number indicates that the current speed is given by the value of 10, the maximum Jog speed can be set to 90, and the minimum Jog speed can be set to -90;

- Press the "▲" (increase) button to increase the Jog speed by 10 rpm, press the "▼" (decrease) button to reduce the Jog speed by 10 rpm, and press the "◀ ◀" (shift) button to set the Jog speed to 0;
- After the Jog test run is completed, press the MODE button to exit the Jog mode, and the servo is not enabled.

Note: When the driver is enabled, the JOG Test is invalid.

4.5.3 Fn002-Reset all parameters to default value function

All parameters are reset to their original values, which refer to all application parameters, motor parameters, and driver parameters reset to an initial value. Note that this function will also cover the motor parameters and driver parameters. After the recovery, the VECObserve

must match the motor driver parameters for the servo to run.

The steps are as follows:

- Press the MODE button to switch the mode to the function operation mode. At this time, the first two digits of the digital tube display Fn;
- ▶ Using " \blacktriangle " (increase), " \blacktriangleleft \blacktriangleleft " (shift), " \blacktriangledown " (decrease) 3 buttons to set the display value of the digital tube to Fn002;
- Press SET to display rECY; (Recovery)
- \triangleright Press and hold the " \blacktriangleleft " (shift) button;
- ▶ If the recovery is successful, donE is displayed, and if it fails, Err is displayed.

note:

* When the driver is enabled, this function is invalid.

* When powering up, if you press " \blacktriangle ", " \blacktriangledown ", " \checkmark ", " \checkmark " at the same time, all parameters can also be reset to the defaults.

*This function is protected by the driver password.

4.5.4 Fn003 Update ARM program

The steps are as follows:

- Press the MODE button to switch the mode to the function operation mode. At this time, the first two digits of the digital tube display Fn;
- ▶ Using " \blacktriangle " (increase), " \blacktriangleleft \blacktriangleleft " (shift), " \blacktriangledown " (decrease) 3 buttons to set the display value of the digital tube to Fn003;
- Click SET to display UPd; (Update)
- > Press and hold the " \blacktriangleleft \blacksquare " (shift) button to reset the drive;
- The ARM firmware can be updated via RS232
- 4.5.5 Fn004 Learning motor UVW winding P00.70

When using a motor other than the company, you need to learn the motor winding.

The steps are as follows:

- > Press the MODE button to switch the mode to the function operation mode. At this time, the first two digits of the digital tube display Fn;
- ➤ Using "▲" (increase), "◀◀" (shift), "▼" (decrease) 3 buttons to set the display value of the digital tube to Fn004;
- Click SET to display SEL0; (Self-Learn0)
- \triangleright Press the " \blacktriangleleft \checkmark " (Shift) button to start self-learning, and automatically disable or report the fault after the self-learning is completed.

Note: This feature does not work when the driver is enabled.

4.5.6 Fn005 Learning Encoder Related Parameters

When using another company's motor, you need to learn the encoder parameters.

Before self-learning, set the self-learning maximum current limit P02.36 (this value is generally set to 50% of the motor rated current / driver rated current ratio), motor maximum speed P00.03, motor rated speed P00.02, motor Rated current P00.01, driver rated current

P01.03.

The steps are as follows:

- Press the MODE button to switch the mode to the function operation mode. At this time, the first two digits of the digital tube display Fn;
- ➤ Using "▲" (increase), "◀◀" (shift), "▼" (decrease) 3 buttons to set the display value of the digital tube to Fn005;
- Click SET to display SEL1; (Self-Learn1)
- Press "I I (Shift) to start self-learning. After self-learning is completed, it will automatically disable or report faults. The learned parameters are as follows: P00.05 Motor pole pair, P00.71 Z point offset, P00.11 motor encoder resolution, P00.72 encoder AB phase sequence.

If during the learning process, the overcurrent Er.100 is reported, the parameters P02.36 (self-learning maximum current limit), P07.01 (current loop proportional gain), and P07.02 (current loop integral gain) can be appropriately reduced.

Note: This feature does not work when the driver is enabled.

4.5.7 Fn006 Single Parameter Gain Adjustment

Single-parameter gain adjustment refers to the purpose of adjusting servo stiffness by adjusting one parameter. Before the single parameter gain adjustment, the servo load inertia ratio P07.29 must be accurately obtained. Refer to Fn007 for the method of obtaining the load inertia ratio.

The steps are as follows:

- Press the MODE button to switch the mode to the function operation mode. At this time, the first two digits of the digital tube display Fn;
- ➤ Using "▲" (increase), "◀◀" (shift), "▼" (decrease) 3 buttons to set the display value of the digital tube to Fn006;
- Click SET to display the value of the stiffness level P07.28;
- ➢ Press the "◀◀" (Shift) button and the motor starts to reverse.
- ➤ Gradually increase or decrease the value of the stiffness level by pressing "▲" or "▼" until the servo stiffness meets the actual application. Under normal circumstances, the rigidity level can be gradually increased until the motor has abnormal noise, and then decrease 1-2 of the rigidity level.

Note: This feature does not work when the driver is enabled.

4.5.8 Fn007 Learning Load Inertia

The load inertia is the most important parameter of the servo system. Only when the inertia is matched, the servo can achieve the best performance. Before learning the load inertia, please set the acceleration/deceleration time P07.33 (generally set to 300-2000, the larger the inertia ratio, the larger the value). The servo can automatically learn the load inertia through Fn007. During the learning of the load inertia, the motor will rotate forward for 3 rounds and then reverse for 3 rounds. The acceleration/deceleration time is P07.33. If the load

can only move in one direction, then you need to set P02.03 to prohibit forward or reverse. The learned load inertia will be placed in P07.29.

The steps are as follows:

- > Press the MODE button to switch the mode to the function operation mode. At this time, the first two digits of the digital tube display Fn;
- > Using "▲" (increase), "◀◀" (shift), "▼" (decrease) 3 buttons to set the display value of the digital tube to Fn007;
- Click SET to display SEL3; (Self-Learn 3)
- ▶ Press "◀◀" (Shift) to start self-learning and automatically disable after self-learning. If it does not learn successfully, it will report a failure.

If the overcurrent Er.100 is reported during the learning process, P07.01 (current loop proportional gain), P07.02 (current loop integral gain), P07.03 (speed loop proportional gain), P07.04 (speed loop integral gain) can be appropriately reduced.

If the load inertia is too large, low-frequency oscillation may occur during self-learning. In this case, you need to manually increase P07.03, reduce P07.04, and then learn again.

Note:

1. This function does not work when the driver is enabled.

2. When the load inertia is large, self-learning may cause low-frequency oscillation. You need to manually increase P07.03, reduce P07.04, and then learn again.

3. When the load inertia is small, reduce the inertia self-learning acceleration/deceleration time P07.33.

4. When the machine shakes, reduce the position loop gain P07.05

4.5.9 Fn008 Update FPGA Program Reset Function

The steps are as follows:

- > Press the MODE button to switch the mode to the function operation mode. At this time, the first two digits of the digital tube display Fn;
- ➤ Using "▲" (increase), "◄◄" (shift), "▼" (decrease) 3 buttons to set the display value of the digital tube to Fn008;
- Click SET to display FUPD; (FPGA Update)
- \triangleright Press and hold the " \blacktriangleleft " (shift) button to reset the drive;
- > The FPGA firmware can now be updated via the VEC FPGA Firmware Update Tool.

4.5.10 Fn009 restores all parameters to default except P00 and P01 parameter groups

The steps are as follows:

- > Press the MODE button to switch the mode to the function operation mode. At this time, the first two digits of the digital tube display Fn;
- > Using "▲" (increase), "◀◀" (shift), "▼" (decrease) 3 buttons to set the display value of the digital tube to Fn009;
- Click SET to display -rECy; (-Recovery)

- \blacktriangleright Press and hold the " \blacktriangleleft " (shift) button;
- > If the recovery is successful, donE is displayed, and if it fails, Err is displayed.

4.5.11 Fn010 Backup All Parameters

The steps are as follows:

- Press the MODE button to switch the mode to the function operation mode. At this time, the first two digits of the digital tube display Fn;
- ▶ Using " \blacktriangle " (increase), " \blacktriangleleft \blacktriangleleft " (shift), " \blacktriangledown " (decrease) 3 buttons to set the display value of the digital tube to Fn010;
- Click SET to display bcuP; (backup Parameter)
- \triangleright Press and hold the " \blacktriangleleft " (shift) button;
- ▶ If the backup is successful, donE is displayed, and if it fails, Err is displayed.

Note: The driver backup parameters are stored in another address area of the drive's memory.

4.5.12 Fn011 Restores Parameters That Have Been Backed Up

The steps are as follows:

- > Press the MODE button to switch the mode to the function operation mode. At this time, the first two digits of the digital tube display Fn;
- ▶ Using " \blacktriangle " (increase), " \blacktriangleleft \blacktriangleleft " (shift), " \blacktriangledown " (decrease) 3 buttons to set the display value of the digital tube to Fn011;
- Click SET to display rESto. (restore)
- \triangleright Press and hold the " \blacktriangleleft " (shift) button;
- ▶ If the restore is successful, donE is displayed, and if it fails, Err is displayed.

4.5.13 Fn012 restarts RS232 communication

When the servo RS232 does not communicate for a long time, it will automatically turn off. RS232 communication can be restarted via Fn012.

The steps are as follows:

- > Press the MODE button to switch the mode to the function operation mode. At this time, the first two digits of the digital tube display Fn;
- ➤ Use "▲" (increase), "◀◀" (shift), "▼" (decrease) 3 buttons to set the display value of the digital tube to Fn012;
- Click SET to display SEnd;
- ➢ Press the "◀◀" (Shift) button;

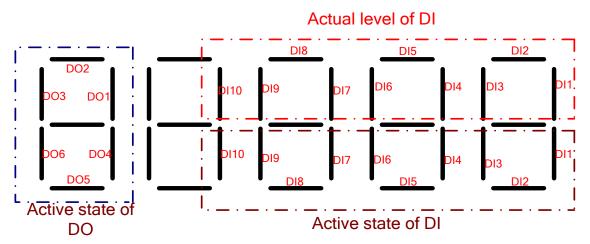
4.5.14 Self-learning feedback polarity and the number of second encoder pulses

corresponding to one revolution of the motor in full-closed mode

In the full-closed mode, the feedback polarity P03.33 and P03.34 need to be set, and the appropriate value can be automatically calculated by this function operation. When performing this function operation, please make sure that the second encoder measuring wheel is in close contact with the material to ensure that no slippage occurs between the measuring wheel and the material.

The steps are as follows:

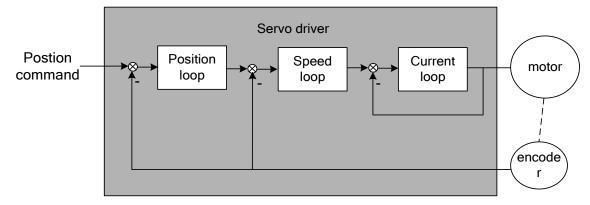
- > Press the MODE button to switch the mode to the function operation mode. At this time, the first two digits of the digital tube display Fn;
- ➤ Combine "▲" (increase), "◀◀" (shift), "▼" (decrease) 3 buttons to set the display value of the digital tube to Fn013:
- Click SET to display LFCP. (Learn Full Close Parameter);
- > Press the " \blacktriangleleft \blacksquare " (shift) button; The electric machine made a forward rotation of 3 turns at a speed of 10 rpm.


4.6 Variable Monitoring

Press the MODE button several times to switch the mode to the variable monitoring mode. In this mode, the first two digits of the digital tube display Un. Use " \blacktriangle " (increase), " \blacktriangleleft " (shift), " ∇ " (decrease) three buttons to set the display value of the digital tube to the number to be monitored (such as Un007 to monitor the DIDO status). Press SET to display the variables that need to be monitored.

Currently, the driver can monitor 14 variables, and the values corresponding to the monitor numbers are shown in the following table.

Number	corresponding value
Un000	motor speed In rpm
Un001	DC Bus Voltage V
Un002	temperature °C
Un003	Current RMS A
Un004	Postion command pulse count value
Un005	Motor encoder pulse count value
Un006	Second encoder pulse count value
Un007	DIDO status
Un008	AI1 voltage value
Un009	AI2 voltage value
Un010	AI3 voltage value
Un011	Output motor instantaneous current percentage
Un012	Output motor instantaneous power percentage
Un013	Output rated current of the drive
Un014	motor load rate


It should be noted that for DIDO status monitoring. The actual level of DI(high level-bright, low level-off), active state of DI (active-bright, inactive-off), active state of DO (active-bright, inactive-off) can be monitored simultaneously on five digital tubes,. The meaning of each segment of the digital tube is as follows.

As shown in the above figure, the first digital tube displays the active state of DO1~DO6, and the active state of each DO corresponds to the bright/off of the corresponding digital tube. The upper 3 segments of the last 4 digits correspond to the actual levels of DI1~DI10, respectively. The high level is on and the low level is off. The lower 3 segments of the last 4 digits of the digital tube correspond to the active states of DI1~DI10, respectively, active is bright, inactive is off.

Chapter 5 Control Mode

The servo system consists of three main parts: the servo drive, the motor and the encoder.

The servo driver is the control core of the servo system. Through the processing of the input signal and the feedback signal, the servo driver can perform precise position, speed and torque control of the servo motor, namely position, speed, torque and hybrid control mode. Among them, position control is the most important and most common control mode of the servo system.

The control modes are briefly described as follows:

Position control refers to the position of the motor controlled by the position command. The motor target position is determined by the total number of position commands, and the position command frequency determines the motor rotation speed. The position command can be given by the external pulse input, the internal position command + speed limit. With an internal encoder (servo motor with encoder) or a second encoder (full closed loop control), the servo driver enables fast and precise control of the position and speed of the machine. Therefore, the position control mode is mainly used in occasions where positioning control is required, such as robot, mounter, CNC etc.

Speed control refers to the speed of the machine controlled by the speed command. The servo driver provides fast, precise control of the mechanical speed through digital, analog voltage or communication-given speed commands. Therefore, the speed control mode is mainly used to control the speed. If you want to use host controller to realize the speed control of motor, you can output speed command input servo drive, such as analog engraving and milling machine.

Torque control refers to controlling the output torque of the motor through a torque command. The torque command is given by digital, analog voltage or communication. The torque control mode is mainly used in equipments where the stress of materials is strictly required, such as rewinding and unwinding devices. Some torque control should ensure that the material stress is not affected by the change of the winding radius.

The hybrid control mode is realized by the DI terminal, and can switch the control mode

in the running state.

5.1 Basic parameter setting

5.1.1 Control mode

The servo driver has three basic control modes: position mode, speed mode, and torque mode. A variety of hybrid control modes can be derived from three basic control modes. Which mode is used can be set by the P02.01 parameter.

No	Descriptio	n	Rang e	Unit	Setti ng	activ e	defa ult	AC CES S
P02.01	Driver control mod	le. Used to	0~6	-	Anyti	imme	0	RW
	select the servo dr			me	diatel			
	mode.				у			
	0- position mode							
	1-speed mode							
	2- Torque mode							
	3- Position/torque mode	IO switching, s	elect Torqu	ie mode w	hen INFn	.36 is acti	ve	
	4- Position/speed mode I	O switching, se	elect speed	mode whe	n INFn.3	6 is active	e	
	5- Torque/speed mode IC) switching, sel	ect torque	mode whe	n INFn.30	5 is active		
	6- Position/Torque/Speed	l Mode IO Swit	tching, Swi	tching via	INFn.36	, INFn.37		
		INFn.37	INFn.36	Contro	l mode			
		active	inactive	speed	mode			
		inactive	active	Torque	mode			
		active	XX	positio	n mode			

The relevant input function bits are as follows.

NUM	DESCRIPTION
INFn.36	Control mode switch 0
INFn.37	Control mode switch 1

5.1.2 Servo start and stop

The servo is enabled when the internal input function bit INFn.01 of the driver is active via IO or communication. After OUTFn.25 is output, the command input command is valid, and the position/speed/torque command is accepted and the servo is running.

The servo will perform the shutdown action under the following three situations. First situation is deactive the internal input function bit INFn.01; the second situation is a fault occurs; the third situations is when the emergency stop signal INFn.58 is active. The shutdown option of the three situations can be set separately. The deactive INFn01 situation is set by P02.13, the fault stop situation refers to "7.1.1 Fault Handling", and the emergency stop situation is set by P02.14.

The servo has 5 stop options to choose from. The first option is free rotate; the second option is rapid deceleration stop, after the motor stop, the motor is powered off; the third is slow deceleration stop, after the motor stop, the motor is powered off; the fourth is Quickly decelerate to stop, and then keep enabled after stop, users need to deactive INFn.01 to disable the driver; the fifth is slow deceleration stop, and then keep enabled after stop, users need to deactive INFn.01 to disable then driver.

Free rotate means that the driver is diable and the motor is free to stop by frictional resistance. Deceleration stop means that the servo driver drives the motor to decelerate. In this process, the motor is kept enable. The deceleration time for rapid deceleration stop is set by P02.16. The deceleration time for slow deceleration stop is set by P02.17. The deceleration time refers to the time from the rated speed to the zero speed. The actual deceleration time is determined by the speed at the time of the fault and the set deceleration time.

相关参数如下。

Num	Description	Range	unit	Set	active	defau	ACC		
	Description		unit	moment	moment	lt	ESS		
P02.13	Stop option for deactive	0~2	-	running	Immediately	0	RW		
	INFn.01								
	0- free to rotate								
	1- rapid deceleration s	top and disal	ble driv	ver					
	2- slow deceleration stop and disable driver								

P02.14	Stop option	for	0~4	-	anytime	Immediately	0	RW			
	emergency	stop									
	INFn.58 active										
	Stop option when emergency stop INFn.58 bit is active										
	0-free to rotate										
	1- rapid deceler	ation sto	op and disab	le drive	er						
	2- slow decelera	tion stop	p and disable	e drivei	:						
	3- rapid decelera	ation sto	p and keep e	enable of	driver						
	4- slow decelerat	tion stop	and keep	enable	driver						

P02.16	Rapid st	stop	0~65535	ms	anytime	Immediately	500	RW
	deceleration time							
P02.17	Slow st	stop	0~65535	ms	anytime	Immediately	1000	RW
	deceleration time							

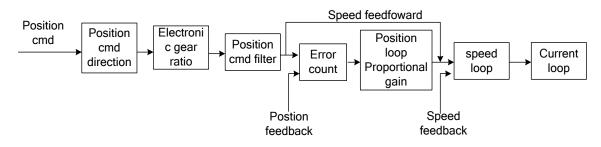
5.1.3 Servo braking option

When the motor decelerates, it will generate electricity and store it in the DC bus capacitor. When the DC bus capacitor voltage is too large, an overvoltage fault will be reported. Therefore, it is necessary to connect the braking resistor to the servo to consume excess energy stored in the bus capacitor. When the capacitor voltage is high, the energy brake circuit is activated. For the 220V drive, when the DC bus voltage is greater than 380VDC, the energy brake circuit is activated; for the 380V drive, when the DC bus voltage is greater than 680VDC, the energy brake circuit is activated. The user can select the servo brake option through P02.20 to release the excess energy on the DC bus.

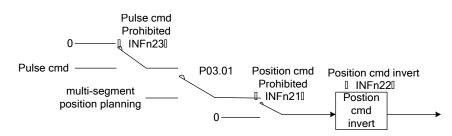
Num	Description F		Danga	unit	Set	active	defau	ACCE		
INUIII	Desci	iption	Range	um	moment	moment	lt	SS		
P02.20	Servo	braking	0~3	-	anytime	Immediate	2	RW		
	option					ly				
	0- Never sta	rt the brake								
	1- Start the	brake when de	celeration a	nd DC bus c	capacitor volta	age is too large	e			
	2-Start the b	orake at anytim	e when DC	bus capacit	or voltage is t	oo large				
	3- Start the brake when regenerate energy and DC bus capacitor voltage is too large									

Num	Description	Range unit		Set	active	defau	ACCE
Inum	Description	Kange	unit	moment	moment	lt	SS
P02.21	Braking	0~3276.7	Ω	anytime	Immediate	0	RW
	resistor value				ly		
P02.22	Braking	0~3276.7	Kw	anytime	Immediate	0	RW
	resistor power				ly		
P02.23	Braking	0~100	%	anytime	Immediate	50	RW
	resistor heat				ly		
	dissipation						
	coefficient						
If P02.23 is set t	to 100%, it means th	hat the time from	n the max	imum heat l	oss to 0 is 1	0s.	

5.1.4 Instruction reverse


The speed, torque and position commands can be reversed by setting register P02.50. P02.50 contains 16-bit binary. When the 0th bit is valid, the position command is reversed. When the 1st bit is valid, the speed command is reversed. When 2 bits are valid, the torque command is reversed.

Num	Description	Rang e	unit	Set mom ent	activ e mom ent	defa ult	AC CES S
P02.50	Reverse Instruction	0~7	-	anyti	Imme	0	RW


_		1		
	When the 0th bit is valid, the position	me	diatel	
	command is reversed. When the 1st bit is		у	
	valid, the speed command is reversed.			
	When 2 bits are valid, the torque command			
	is reversed.			

5.2 Position mode

The position mode is a control mode in which the motor position is used as a control target, and is often used to achieve high-precision positioning. The implementation of the position mode is shown in the figure below.

5.2.1 Position command source and direction selection

The position command can be derived from a pulse command, or from an internal multi-segment position plan, or through an IO switching pulse and an internal multi-segment position planning command.

Num	Description	Range	unit	Set moment	active moment	default	ACCESS					
P03.01	Source of	0~2	-	anytime	Immediately	0	RW					
	position cmd											
	0- pulse command											
	1- multi-segme	nt position p	olan									
	2- through an	IO switch	ing pu	lse and an	internal n	nulti-segmen	t position					
	planning comm	and										
	3- pulse comma	and add seco	ond enc	oder pulse c	ount							
	4- pulse comma	and add inte	rnal mu	lti-segment	position pla	nning comn	nand					

Related input function bits...

num	Bit description
INFn.21	Position command is Prohibited. When active, position command is prohibited from being input
	to the servo.
INFn.22	Position command is Reverse. When active, position command is Reverse from being input to
	the servo.
INFn.23	Pulse command is Reverse. When active, Pulse command is prohibited from being input to the
	servo.
INFn.35	switch position command source, when deactive, it is derived from multi-segment position
	command; when active, it is derived from pulse command

5.2.2 Position command is derived from pulse command

For the pulse command, there are five pulse patterns, and which one to use is set by P03.02.

Num	Description	Range	unit	Set moment	active moment	default	ACCESS			
P03.02	pulse pattern	0~4	-	Disable to set	Immediate	2	RW			
					ly					
	When Position command is derived from pulse command, select pulse patterns									
	of pulse command									
	0- pulse count & pulse di	rection positive								
	1- pulse count & pulse di	rection negative	;							
	2- AB pulse									
	3- CW+CCW positive	3- CW+CCW positive								
	4- CW+CCW negative									

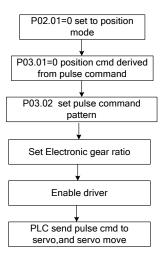
The pulse command pattern are detailed in the following figure: :

pulse pattern	Input port	Forward rotation command	Reverse rotation command
pulse count & pulse	Х		
direction positive	Y	High level	Low level
pulse count & pulse	Х		
direction negative	Y	Low level	High level
AB pulse X		→ - + ← 90°	→ + ← 90°
	Y		

Shenzhen VECTOR Technology Co., Ltd.

VC Servo manual

CW+CCW positive	Х	Low level	
Cw+CCw positive	Y		Low level
CW+CCW negative	Х	High level	
	Y		High level


For pulse commands, the pulse can be hardware filtered to eliminate the effects of interference on the pulse command. The filter parameters can be set by P03.03. $_{\circ}$

Num	Description	Range	unit	Set mome nt	activ e mom ent	defa ult	ACCES S
P03.03	Command pulse hardware filter,	0~32767	20ns	Disable	Imme	50	RW
	used to set the time of pulse			to set	diatel		
	command hardware filter.				у		

The count value of the pulse command can be monitored by parameter P03.04.

Num	Description	Range	unit	Set mome nt	activ e mom ent	defa ult	ACCES S
P03.04	Command pulse count value, used to display the number	-	-	-	-	-	RO
	of pulse commands.						

When the position is derived from a pulse command, the driver parameter setting procedure is as follows.

5.2.3 Position command is derived from multi-segment position command planning

It is derived from the multi-segment position command, which means that the user presets the parameters such as the mechanical position command, speed. acceleration/deceleration time, and number of segments to be operated by parameters, and then triggers the operation of the multi-stage position, after which the motor moves according to the set procedure. Starting and stopping the multi-segment position is realized by operating INFn.27. When P13.92=0, the rising edge of INFn.27 starts the operation of the multi-segment position, and the falling edge of INFn.27 stops the operation of the multi-stage position; when P13.92=1, the rising edge of INFn.27 sets the operation of the multi-segment position until the multi-segment position is completed. The relevant parameters are listed below. It should be noted that the set position command refers to the mechanical position command.

Note: The position command of the multi-segment position will be multiplied by the electronic gear ratio, which is the position of the motor encoder P00.13; however, the speed setting of the multi-stage position is not affected by the electronic gear ratio.

Num	Description	Range	unit	detail	Set mom ent	activ e mom ent	defa ult	AC CES S
P13.01	Multi-segment position working mode 0- Stop after a single run 1- Cycle operation 2- DI switching operation, read the values of INFn.31, INFn.30, INFn.29, INFn.28 as	0~2	-	When the position command is derived from the multi-segment position command, it is	Disab le to set	Imme diatel y	0	RW
	the segment number.			used to set the multi-segment position operation mode				
P13.02	Total number of segments	1~16	-	Set the total number of segments for the position command.	anyti me	Imme diatel y	16	RW
P13.03	Idle waiting time unit 0- millisecond 1- second	0~1	-	The unit of waiting time when running with the multi-segment position function.	anyti me	Imme diatel y	1	RW
P13.04	remainder processing	0~1	-	When the	anyti	Imme	0	RW

	method			multi-segment	me	diatel		
	0- Re-jump to the first			position function		У		
	position command to run			is resumed, the				
	1- From the last stop section			segment number				
				of the start				
				segment is set				
P13.05	Absolute or relative	0~1	-	sets the type of	anyti	Imme	1	RW
	position command setting			position	me	diatel		
	0-Absolute command			command when		У		
	1- relative command			running with the				
				multi-segment				
				position function				
P13.10	Number of position	-2147483	Custo	Number of	anyti	Imme	1000	RW
	commands in the first	647 ~	m unit	position	me	diatel	0	
	position segment	21474836		commands in		у		
		47		the first				
				position				
				segment				
P13.12	Speed of first position	0~32767	rpm	Speed of first	anyti	Imme	500	RW
	segment			position	me	diatel		
				segment		у		
P13.13	acceleration time of first	0~32767	ms	acceleration time	anyti	Imme	500	RW
	position segment			of first	me	diatel		
				position		у		
				segment				
P13.90	deceleration time of first	0~32767	ms	deceleration	anyti	Imme	500	RW
	position segment			time of first	me	diatel		
				position		у		
				segment		-		
P13.14	idle time of first position	0~32767	ms(s)	idle time of	anyti	Imme	1	RW
	segment		(-)	first position	me	diatel		
	unit of this parameter depend			segment		у		
	on P13.03			Segment		5		
P13.15	Number of position	-2147483	Custo	Number of	anyti	Imme	1000	RW
1 10.10	commands in the second	647 ~	mize	position	me	diatel	0	
	position segment	21474836	unit	commands in		y	Ŭ	
	r section segment	47		the second		5		
		.,		position				
				segment				
P13.17	Speed of second position	0~32767	rpm	Speed of	anyti	Imme	500	RW
113.17		0-52101	ihm	second	-	diatel	500	17.44
	segment				me			
				position		У		
				segment				

D10 10		0.007.67				-	7 00	DIU
P13.18	acceleration time of second	0~32767	ms	acceleration time	anyti	Imme	500	RW
	position segment			of second	me	diatel		
				position		У		
				segment				
P13.91	deceleration time of	0~32767	ms	deceleration	anyti	Imme	500	RW
	second position segment			time of second	me	diatel		
				position		У		
				segment				
P13.19	idle time of second	0~32767	ms(s)	idle time of	anyti	Imme	1	RW
	position segment			second	me	diatel		
	unit of this parameter depend			position		У		
	on P13.03			segment				
				unit of this				
				parameter				
				depend on				
				P13.03				
P13.20	Number of position	-2147483	Custo	Number of	anyti	Imme	1000	RW
	commands in the 3th	647 ~	mize	position	me	diatel	0	
	position segment	21474836	unit	commands in		у		
		47		the 3th				
				position				
				segment				
P13.22	Speed of 3th position	0~32767	rpm	Speed of 3th	anyti	Imme	500	RW
	segment			position	me	diatel		
				segment		у		
P13.23	Acceleration/ deceleration	0~32767	ms	Acceleration/	anyti	Imme	500	RW
	time of 3th position			deceleration	me	diatel		
	segment			time of 3th		у		
				position				
				segment				
P13.24	idle time of 3th position	0~32767	ms(s)	idle time of	anyti	Imme	1	RW
	segment			3th position	me	diatel		
	unit of this parameter depend			segment		у		
	on P13.03			unit of this				
				parameter				
				depend on				
				P13.03				
P13.25	Number of position	-2147483	Custo	Number of	anyti	Imme	1000	RW
	commands in the 4th	647 ~	mize	position	me	diatel	0	
	position segment	21474836	unit	commands in		y	Ŭ	
	position segment	47	unit	the 4th		у		
		·+ /		position 4ui				
				-				
				segment				

P13.27	Speed of 4th position	0~32767	rpm	Speed of 4th	anyti	Imme	500	RW
115.27	segment	0 52101	ipin	position	me	diatel	500	1
	segment			segment		у		
P13.28	Acceleration/ deceleration	0~32767	ms	Acceleration/	anyti	Imme	500	RW
1 10.20	time of 4th position	0 02/0/		deceleration	me	diatel	000	
	segment			time of 4th		у		
				position		2		
				segment				
P13.29	idle time of 4th position	0~32767	ms(s)	idle time of	anyti	Imme	1	RW
	segment			4th position	me	diatel		
	unit of this parameter depend			segment		у		
	on P13.03			unit of this				
				parameter				
				depend on				
				P13.03				
P13.30	Number of position	-2147483	Custo	Number of	anyti	Imme	1000	RW
	commands in the 5th	647 ~	mize	position	me	diatel	0	
	position segment	21474836	unit	commands in		у		
		47		the 5th				
				position				
				segment				
P13.32	Speed of 5th position	0~32767	rpm	Speed of 5th	anyti	Imme	500	RW
	segment			position	me	diatel		
				segment		у		
P13.33	Acceleration/ deceleration	0~32767	ms	Acceleration/	anyti	Imme	500	RW
	time of 5th position			deceleration	me	diatel		
	segment			time of 5th		У		
				position				
				segment				
P13.34	idle time of 5th position	0~32767	ms(s)	idle time of	anyti	Imme	1	RW
	segment			5th position	me	diatel		
	unit of this parameter depend			segment		У		
	on P13.03			unit of this				
				parameter				
				depend on				
				P13.03				
		•••		1		1		
P13.92	Multi-segment position	0~1	-	Multi-segment	anyti	Imme	1	RW
	command trigger signal			position	me	diatel		
	type			command		У		
	0- INFn.27 rising edge			trigger signal				
	triggers start multi-segment			type				
	position; falling edge triggers							

stop running multi-segment				
position				
1- INFn.27 rising edge trigger				
start multi-segment position,				
falling edge does not work				

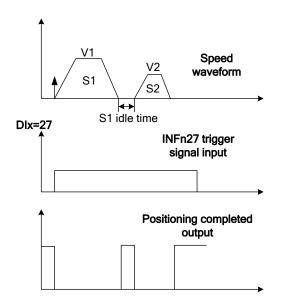
The absolute position command refers to the position that relative to the origin, and the relative position command refers to the position that relative to the current position. Therefore, the homing must be performed before the absolute position command is taken, otherwise the fault is reported.

For example, suppose that the 3-segment absolute position command is taken, the first segment position command is set to 1000, the second segment position command is set to 2000, and the third segment position command is set to 0. First, the zero return operation is performed, and then the multi-segment position is triggered. The motor first goes forward 1000, then goes forward 1000, then reverses 2000 and reach at zero.

For further example, assume that the 3-segment relative position command is set, the first-segment position command is set to 1000, the second-segment position command is set to 2000, and the third-segment position command is set to -1000. After triggering multiple positions, the motor goes forward 1000, then goes forward 2000, then go reverses 1000.

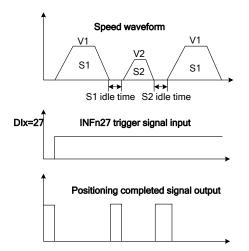
If you want to use the multi-segment position command, in addition to setting P03.01 and P13.01 first, you must also configure the DIx function control register to be set to INFn.27 (trigger multi-segment position function number). Then control the active level of DIx to implement the rising edge trigger to execute the multi-segment position command, and the falling edge to stop the execution of the multi-segment position command (P13.92=0). Select the segment number to execute similarly, configure the DIx function control register, set the corresponding level, and then trigger. The relevant input function bits are as follows.

num	Bit description
INFn.27	Trigger start multi-segment position
	The rising edge triggers the execution of the multi-segment position command, and the falling edge
	stops the execution of the multi-segment position command.
	Or only the rising edge triggers the execution of the multi-segment position command, and the falling
	edge does not operate. Specific reference P13.92
INFn.28	INFn.28 Multi-segment position command segment number selection 0
INFn.29	INFn.28 Multi-segment position command segment number selection 1
INFn.30	INFn.28 Multi-segment position command segment number selection 2
INFn.31	INFn.28 Multi-segment position command segment number selection 3
INFn.32	INFn.32 Multi-segment position direction selection. When active, set the position command of
	multi-segment position to reverse

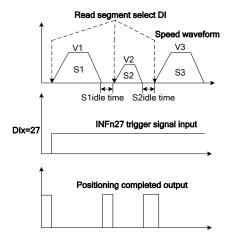

According to the state of $INFn28\sim31$, the multi-segment run segment number = INFn.31*8 + INFn.30*4 + INFn.29*2 + INFn.28*1 + 1. See the table below for details.

INFn.31	INFn.30	INFn.29	INFn.28	run
				segment
				number

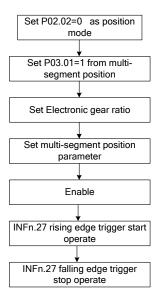
0	0	0	0	1				
0	0	0	1	2				
0	0	1	0	3				
· · · · · · · · · · · · · · · · · · ·								
1	1	1	1	16				


5.2.3.1 Stop after a single run

In this mode, the motor runs the n-segment position command, and the idle time of each position command can be set separately. INFn.27 starts/stops the multi-segment position mode. (Note: When P13.92=0, the INFn.27 rising edge starts multiple segments. When the position is running, the falling edge of INFn.27 stops the operation of the multi-stage position; when P13.92=1, the rising edge of INFn.27 starts the operation of the multi-stage position, and the falling edge does not move). Its operating speed curve is as follows. Assume that the total number of segments is 2.


5.2.3.2 Cycle operation

In this mode, after the motor runs the n-segment position command, it automatically jumps to the first-segment position command operation. The idle time of each position command can be set separately. INFn.27 starts/stops the multi-segment position mode (Note: When P13 When .92=0, the rising edge of INFn.27 starts the operation of the multi-segment position, and the falling edge of INFn.27 stops the operation of the multi-segment position; when P13.92=1, the rising edge of INFn.27 sets the operation of the multi-segment position, the falling edge No action). Its operating speed curve is as follows. Assume that the total number of segments is 2.



5.2.3.3 DI switching operation

In this mode, once the multi-segment position is triggered, the driver reads the valid states of INFn.31, INFn.30, INFn.29, and INFn.28 to select a certain position command. After the operation is completed, the idle time of the corresponding segment is suspended. , read the valid state of INFn.31, INFn.30, INFn.29, INFn.28 again to select another position command, and if another valid position change is found, select another position command to run. This is repeated until the operation of stopping the multi-segment position is stopped.

5.2.3.4 When the position is derived from multi-segment position, the driver parameter setting procedure is as follows.

5.2.4 Electronic gear ratio

The meaning of the electronic gear ratio is that the user position command unit is converted into the motor encoder unit. Which is

Custom command position $\times \frac{\text{Electronic gear ratio numerator}}{\text{Electronic gear ratio denominator}} = \text{motor encoder position}$

For example, assuming the pulse tracking mode, the user PLC sends pulse command to the servo driver, which stipulates that one pulse motor must go 1 micron, and the motor takes 1 micrometer need to turn 100 motor encoder pulses, then the electronic gear ratio is 100.

The system has two sets of electronic gear ratios to choose from, the relevant parameters are as follows.

Num	Description	Range	unit	Set mom ent	activ e mom ent	defa ult	ACCESS
P03.08	Electronic gear ratio 1	1~2147483647	-	anyti	Imme	1000	RW
	numerator			me	diatel		
					У		
P03.10	Electronic gear ratio 1	1~2147483647	-	anyti	Imme	1000	RW
	denominator			me	diatel		
					У		
P03.12	Electronic gear ratio 2	1~2147483647	-	anyti	Imme	1000	RW
	numerator			me	diatel		
					у		
P03.14	Electronic gear ratio 2	1~2147483647	-	anyti	Imme	1000	RW
	denominator			me	diatel		

			v	
			5	

Servo default using electronic gear ratio 1. Multiple electronic gear ratios can also be switched via INFn.24 and INFn.56 $_{\circ}$

INFn.56	INFn.24	Select electronic gear ratio
deactive	deactive	Electronic gear ratio 1 numerator Electronic gear ratio 1 denominator
deactive	active	Electronic gear ratio 2 numerator Electronic gear ratio 2 denominator
active	deactive	Electronic gear ratio 1 numerator Electronic gear ratio 2 denominator
active	active	Electronic gear ratio 2 numerator Electronic gear ratio 1 denominator

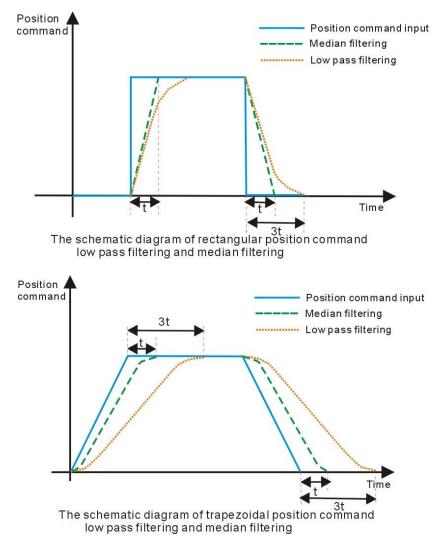
5.2.5 Electronic gear ratio smooth switching function

When the electronic gear ratio is greatly changed, it is easy to cause a sudden change in the motor speed. The internal gear ratio can be smoothly switched by the P03.16(electronic gear ratio switching filter time constant).

Num	Description	Range	unit	detail	Set mom ent	activ e mom ent	defa ult	AC CES S
P03.16	electronic gear ratio switching filter time constant	0~32767	ms	Set the electronic gear ratio switching time to make the internal electronic gear ratio smoothly switch.	anyti me	Imme diatel y	0	RW

5.2.6 Position command filtering function

The position command filtering is to filter the position command. Consider adding positional command filtering in the following situations:


- > The position command output by the host controller is not accelerated or decelerated.
- ➤ The pulse command frequency is low;
- > When the electronic gear ratio is 10 times or more.

There are two filtering methods to choose from, one is a low-pass filter and the other is a

Num	Description	Range	unit	detail	Set mom ent	activ e mom ent	defa ult	AC CES S
P03.06	Position command	0~128	ms	Set Position	set	Imme	0	RW
	given median filter			command	when	diatel		
	time constant			given median	stop	У		
				filter time				
				constant				
P03.07	Position command	0~32767	ms	Set Position	set	Imme	20	RW
	given low-pass filter			command	when	diatel		
	time constant			given low-pass	stop	У		
				filter time				
				constant				

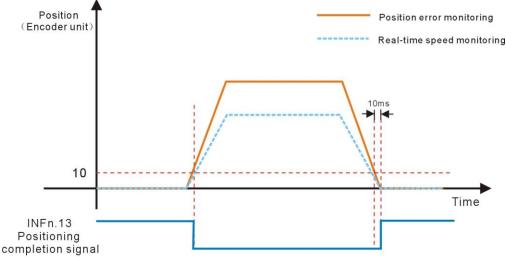
median filter...

The larger the filter time constant is set, the more severe the position command lags and the greater the position error during operation. The waveform is as follows.

5.2.7 Position error clear function

Position error = (position command - position feedback) (0.0001 round)

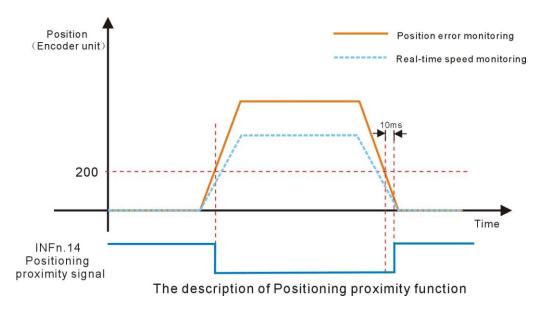
The position error clear function clears the position error by the level change of the position error clear signal INFn.25. For the position error clear function, there are several options for setting the action of the driver after the position error is cleared.


Num	Description	Range	unit	detail	Set mom ent	activ e mom ent	defa ult	AC CES S
P03.21	Position error clear signal INFn.25 pattern	0~3	-	Set Position error clear	anyti me	Imme diatel	0	RW
	0- clear position error when			signal		У		
	INFn.25 is active			INFn.25				
	1- clear postion error when			pattern				
	INFn.25 from deactive to							
	active							
	2- clear position error when							
	INFn.25 is deactive							
	3- clear postion error when INFn.25 from active to							
	deactive							
P03.22	Position error clear	0~6	_	Set Position	anyti	Imme	0	RW
	option			error clear	me	diatel	Ĩ	
	0- clear postion error and			option		у		
	speed cmd fored to zero							
	1- Reserved							
	3- Reserved							
	4- Clear the position error							
	while the speed drops to zero							
	in a straight line, and the							
	falling time is set by P02.16.							
	5- Reserved							
	6- Clear the position error and							
	the speed will drop to zero							
	with the quadratic curve. The							
	fall time is set by P02.16							

5.2.8 Positioning completed/close output

The positioning completion function means that the absolute value of the position error P03.17 satisfies the condition P03.45 set by the user and the time threshold (ms) set by P03.49 is maintained. It can be considered that the positioning is completed in the position control

mode. At this time, the servo driver can output a positioning completion signal, and the host controller receives the signal to confirm that the servo driver is positioned. The positioning completion/close output signal can be directly configured with the DOx function control register, and the signal is monitored by the DO terminal active state (P06.49).


As shown in the figure below, the positioning completion threshold is set to 10 units (10*0.0001 weeks), and when the hold time is set to 10ms, the DO output positioning completion signal.

The description of Positioning completion function

The positioning close function means that the absolute value of the position error P03.17 satisfies the condition P03.47 set by the user, and the time threshold (ms) set by P03.49 is maintained, and the positioning is considered to be close in the position control mode. At this time, the servo driver can output a positioning close signal, and the host constroller receives the signal to confirm that the servo driver is positioned close.

As shown in the figure below, the positioning close threshold is set to 200 pulses, and when the hold time is set to 10 ms, the DO output the positioning signal.

相关参数如下。

Num	Description	Range	unit	Set moment	active moment	default	ACCESS				
	Positioning completion signal output condition	0~3	-	anytime	Immediatel y	0	RW				
	In the position control mode, when the servo is running, the absolute value of the position error P03.17 is within the										
	set value of P03.46 (positioning completion threshold), and after P03.49 (positioning completion/proximity time										
	threshold) is maintained, the servo will be Output positioning completion signal;										
	The output condition of the positioning completion signal can be set by P03.45.										
P03.45	0-Output when the position error is less than the positioning completion threshold, otherwise clear the output;										
	1- Output when The position er	ror is smaller th	an the position	ing completion	threshold and t	he speed co	mmand in				
	position mode P03.95 is zero, o	otherwise the ou	tput is cleared;								
	2- Output when The position e	rror is less than	the positioning	completion three	eshold and the	filtered spee	ed command				
	in position mode P03.96 is zero	o, otherwise the	output is cleare	ed;							
	3-Output when the position err	or is less than th	ne positioning c	ompletion thres	hold and the s	peed comma	ind in				
	position mode P03.95 is zero.	Clear output wh	en speed comm	and in position	mode P03.95 i	is not zero					
	positioning completion	0~32767	0.0001ro	onutimo	Immediatel	10	RW				
P03.46	threshold	0~32707	und	anytime	У	10	K VV				
P03.40	Set the positioning completion threshold (The positioning completion signal is valid only when the servo driver is in										
	position control mode and is in the running state)										
	Positioning close signal	0~3		antina	Immediatel	0	RW				
	output condition	0~3	-	anytime	у	0	KW				
	In the position control mode, when the servo is running, the absolute value of the position error P03.17 is within the										
	set value of P03.48 (positioning close threshold), and after P03.49 (positioning completion/close time threshold) is										
	maintained, the servo will be Output positioning close signal;										
	The output condition of the positioning close signal can be set by P03.47.										
P03.47	0-Output when the position error is less than the positioning close threshold, otherwise clear the output;										
	1- Output when The position error is smaller than the positioning close threshold and the speed command in position										
	mode P03.95 is zero, otherwise	mode P03.95 is zero, otherwise the output is cleared;									
	2- Output when The position e	rror is less than	the positioning	close threshold	and the filtere	d speed con	mand in				
	position mode P03.96 is zero	, otherwise the	output is cleare	d;							
	3-Output when the position en	rror is less than	the positionin	g close thresho	ld and the spe	ed comman	d in position				
	mode P03.95 is zero. Clear out	put when speed	command in p	osition mode P(3.95 is not zer	0					
D02.40	positioning close threshold	0~32767	0.0001roun d	anytime	Immediatel y	100	RW				
P03.48	Set the positioning close thresh	old (The position	oning close sigr	nal is valid only	when the serve	o driver is ir	position				
	control mode and is in the runr	ing state)									
	positioning completion/close	0.227/7			Immediatel	10					
	time threshold	0~32767	ms	anytime	У	10	RW				
P03.49	In the position control mode, w	when the servo i	s running, the a	absolute value o	f the position	error P03.17	is within the				
	In the position control mode, when the servo is running, the absolute value of the position error P03.17 is within the positioning completion/close threshold, and after P03.49 (positioning completion/close time threshold) is										
	positioning completion/close	threshold, and	a after P03.4	9 (positioning	completion/ci	lose time	threshold) is				
	positioning completion/close maintained, the servo will be C				completion/en	lose time	threshold) is				

			und				
P03.95	the speed command in position mode	-	rpm	-	-	-	RO
P03.96	the filtered speed command in position mode	-	rpm	-	-	-	RO

The relevant output function bits are as follows.

num	Bit description				
OUTFn.13	Positioning completion signal output, active when Positioning completion				
OUTFn.14	Positioning close signal output, active when Positioning close				

5.2.9 Divided Pulse output

There are two types of divided pulse output types: open collector signal output and differential signal output.

When the output signal is the open collector signal, the servo can output the motor encoder pulse by setting P06.40. The motor pulse can be divided and output, and the maximum frequency of the motor pulse output is 3 KHz, and the output port is DO1 and DO2. When the output signal is a differential signal, the full-closed function must be turned off (setting P03.31=0), the servo can output the command pulse or the motor encoder pulse, the output pulse type is set by P03.78, and the output port is 37, 38, 39, 40 pins in CN3. For differential signals, only the motor pulse can be divided.

The division factor of the motor pulse output can be set by P03.79. The larger the division factor, the lower the output pulse frequency. For example, P03.78 sets the output motor pulse, and P03.79 is set to 2, then when the motor rotates 2 motor pulses, the terminal outputs 1 pulse.

outputs	i puise.							
Num	Description	Range	unit	detail	Set mom ent	activ e mom ent	default	AC CES S
P03.78	Select source of	0~2	-	Select source of	anyti	Imme	0	RW
	Divided Pulse			Divided Pulse	me	diately		
	output			output				
	0-output motor encoder pulse; 1-output pulse command; 2-do not output, as input port							
P03.79	division factor	1~65535	-		anyti	Imme		RW
					me	diately		
	If the motor type is incremental, this value indicates the number of motor encoder output pulses when the pulse							
	output terminal outputs 1 pulse. If the motor is an absolute value of the encoder type, this value indicates the							
	number of pulses output from the pulse output terminal when the motor rotates one revolution, and the Z-point							
	output port outputs a Z-point pulse. This value is only valid for the motor pulse division, invalid for the							
	command pulse, the incremental encoder defaults to 1; the absolute encoder defaults to 10							
P03.80	Pulse output	0~1	-		anyti	Imme	0	RW
	direction				me	diately		

	Set the active level type of the divided pulse output. Only valid for motor pulses, invalid for command pulses.							
	0-normal output, 1-inverted output.							
P06.40	ControlregisteroftheDO1 andDO2	0~2	-	Control register of the DO1and DO2	anyti me	Imme diately	0	RW
	0- DO1、DO2 output depend on the configure byt P06.41、P06.42							
	1- DO1 $\$ DO2 output motor encoder A $\$ B pulse							
	2- DO1 output Z index , DO2 output depend on the configure by P06.42							

5.2.10 Output motor encoder Z index

The servo can set the DO1 output Z point pulse signal through P06.40. The Z-point pulse is an open-collector signal output with an effective level width of 5 ms.

Num	Description	Range	unit	detail	Set mom ent	activ e mom ent	defa ult	AC CES S
P03.81	Z pulse polarity	0~1	-	Set the output	anyti	Imme	0	RW
	selection			level when the	me	diatel		
	0- postive			pulse output		У		
	1- negtive			terminal Z pulse				
				is active.				

5.2.11 Homing

This section describes the method by which a driver seeks the home position (also called, the datum, reference point or zero point). There are various methods of achieving this using limit switches at the ends of travel or a home switch (zero point switch) in mid-travel, most of the methods also use the index (zero) pulse train from an incremental encoder. VEC servo has a variety of homing mode. The user can select the appropriate homing mode according to the site conditions and process requirements. The parameters related to the homing are as follows.

Num	Description	Range unit		Set	active	defa	ACCE		
Nulli	Description Kange		um	moment	moment	ult	SS		
P03.51	Homing method	0~99	-	Disable to	Immediatel	0	DW		
P05.51	Homing method			set	у	U	RW		
	Homing acceleration and	0~32767	ms	anytime	Immediatel	500	RW		
P03.52	deceleration time	0~32707			у	300			
	Set acceleration and deceleration time when execute homing								
	First homing speed	0~32767	rpm	anytime	Immediatel	500	RW		
P03.53					у	300	KW		
	Also called high speed hoing speed								
P03.54	Second homing speed	0~32767	mm	onutimo	Immediatel	100	RW		
		0~32707	rpm	anytime	у	100	K VV		

	Also called low speed hoing speed,						
P03.55	Homing offset	-214748364 7~ 2147483647	customize unit	anytime	Immediatel y	0	RW
P03.57	Zero point range	0~32767	0.0001rou nd	anytime	Immediatel y	5	RW

The relevant input function bits are as follows.

num	Bit description	
INFn.26	Trigger Homing	
INFn.34	Zero point switch input	
INFn.43	positive postion limit switch	
INFn.44	negtive postion limit switch	
•		

The relevant output function bits are as follows.

num	Bit description
OUTFn.15	Homing completes output. When the encoder position of the motor is within the Zero point
	range, and the speed reference in the position mode P09.89=0, the time of P03.49 is also
	maintained, and the Homing completes output signal is output.

The vec servo has a variety of homing method to choose from, including:

(1) Method 1: Depends on the negtive postion limit switch and Z index pulse;

(2) Method 2: Depends on the positive postion limit switch and Z index pulse;

(3) Method 3-Method 6: Depends on the zero postion switch and Z index pulse;

(4) Method 7-Method 10: Depends on the zero postion switch, positive postion limit switch and Z index pulse;

(5) Method 11 - Method 14: Depends on the zero postion switch, negtive postion limit switch and Z index pulse

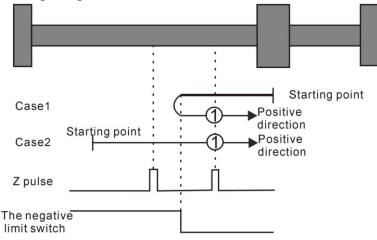
(6) Method 17: Depends on the negtive postion limit switch

(7) Method 18: Depends on the positive postion limit switch

(8) Method 19 - Method 22: Depends on the zero postion switch

(9) Method 23 - Method 26: Depends on the zero postion switch, positive postion limit switch(10) Method 27 - Method 30: Depends on the zero postion switch, negtive postion limit switch

(11) Method 33 - Method 34: Depends on the Z pulse

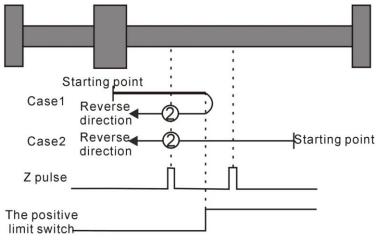

(12) Method 35: Depends on the current position

Homing method 1: Homing on the negative limit switch and Z index pulse

Case 1: When the user triggers the execution of homing, if the negative limit switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the negative limit switch is in the high level, the moving direction changes and the starts to move at second speed; the position where the first Z index pulse is encountered when the negative

limit switch state is low is the zero point position.

Case 2: When the user triggers the execution of homing, if the negative limit switch state is at the high level, the axis starts to move in the positive direction at the second speed, and the first Z index pulse is encountered when the negative limit switch state is at the low level. The location is the zero point position.

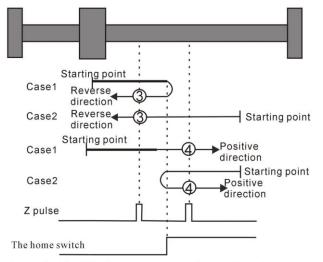


Homing method 1: Homing on the negative limit switch and Z index pulse

Homing method 2: Homing on the positive limit switch and Z index pulse

Case 1: When the user triggers the execution of homing, if the positive limit switch state is in the low level, the axis starts to move forward at the first speed, and when the positive limit switch is in the high level, the moving direction changes and moving speed changes at the second speed, the position where the first Z index pulse is encountered when the positive limit switch state is low is the zero point position.

Case 2: When the user triggers the execution of homing, if the positive limit switch state is at the high level, the axis starts the reverse motion directly at the second speed, and the first Z index pulse is encountered when the positive limit switch state is at the low level. The location is the zero point position.


Homing method 2: Homing on the positive limit switch and Z index pulse

Homing method 3 ~ 6 Homing on the home switch and the Z index pulse

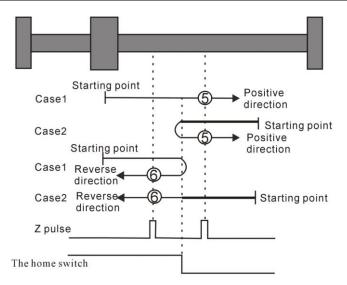
Homing method 3

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the origin switch is in the high level, the motion direction changes and starts to move at the second speed. The position where the first Z index pulse is encountered when the home switch state is in the low level is the zero point position.

Case 2: When the user triggers the execution of homing, if the home switch state is at the high level, the axis starts the reverse motion directly at the second speed, and the position where the first Z index pulse is encountered when the home switch state is at the low level is the zero point position.

Homing method 3 \sim 4 Homing on the home switch and the Z index pulse

Homing method 4


Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the high level, the second speed is reversed. The position of a Z index pulse is the zero point position.

Case 2: When the user triggers the execution of homing, if the home switch state is at the high level, the axis starts the reverse motion directly at the second speed. When the home switch is in the low level, the motion direction changes and starts to move at the first speed. When the home switch is in the high level again, it moves in the reverse direction at the second speed, and the position where the first Z index pulse is encountered is the zero point position.

Homing method 5

Case 1: When the user triggers the execution of homing, if the home switch state is at the high level, the axis starts to move forward at the second speed, and the position where the first Z index pulse is encountered when the home switch state is low is the zero point position.

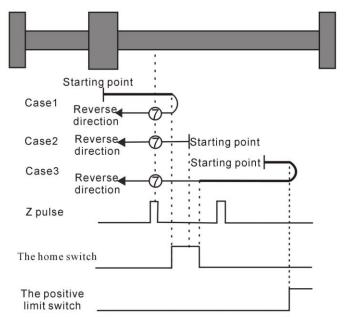
Case 2: When the user triggers to perform homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the high level, the motion direction changes and starts to move at the second speed. The position where the first Z index pulse is encountered when the home switch state is low is the zero point position.

Homing method 5 ~ 6 Homing on the home switch and the Z index pulse

Homing method 6

Case 1: When the user triggers the execution of homing, if the home switch state is in the high level, the axis starts to move forward in the second speed. When the home switch is in the low level, the motion direction changes and starts to move at the first speed. When the home switch is in the high level again, it moves forward in the second speed, and the position where the first Z index pulse is encountered is the zero point position.

Case 2: When the user triggers to perform zero return, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the high level, the motion direction changes and starts to move at the second speed. The position where the first Z index pulse is encountered is the zero point position.

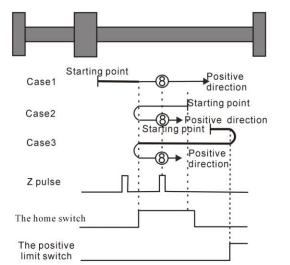

Homing method 7 ~ 10 Homing on the home switch, positive limit switch, and Z index pulse

Homing method 7

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the high level, the motion direction changes and starts to move at the second speed. The position where the first Z index pulse is encountered when the home switch state is low is the zero point position.

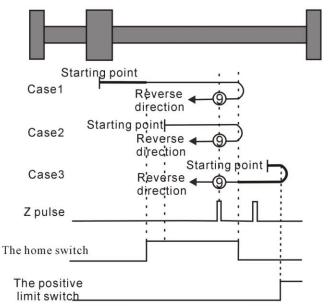
Case 2: When the user triggers the execution of homing, if the home switch state is at the high level, the axis starts the reverse motion directly at the second speed, and the position where the first Z index pulse is encountered when the home switch state is at the low level is the zero point position.

Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the low level and the positive limit switch is in the high level, the moving direction changes. The movement starts at the first speed, and when the home switch is in the high level, the movement starts at the second speed, and the position where the first Z index pulse is encountered when the home switch state is low is the zero point position.


Homing method 7 Homing on the home switch, positive limit switch, and Z index pulse

Homing method 8

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the high level, the second speed starts to move. The position of the first Z index pulse is the zero point position.

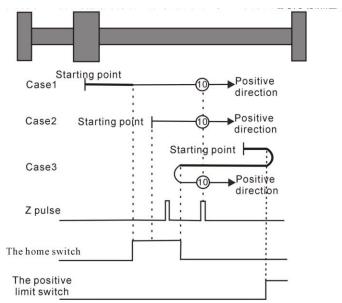

Case 2: When the user triggers the execution of homing, if the home switch state is at the high level, the axis directly starts the reverse motion at the second speed. When the home switch is in the low level, the motion direction changes and starts to move at the second speed. When the home switch is in the high level, the position where the first Z index pulse is encountered is the zero point position.

Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the low level and the positive limit switch is in the high level, the moving direction changes. When the home switch is in the high level, it still moves at the first speed. The motion direction changes when the home switch state is low, and then starts to move at the second speed. When the home switch in the high level, and the position where the first Z index pulse is encountered is the zero point position.

Homing method 8 Homing on the home switch, positive limit switch, and Z index pulse

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move at the first speed. When the home switch is in the high level, the motion starts at the second speed. When the switch is in the low level, the direction of motion changes and continues to move at the second speed. When the home switch is in the high level, is in the high level, the position where the first Z index pulse is encountered is the zero point position.

Homing method 9 Homing on the home switch, positive limit switch, and Z index pulse


Case 2: When the user triggers to perform zero return, if the home switch state is at a high level, the axis starts to forward at the second speed. The direction of motion changes and untill the home switch is in the low level. When the home switch is in the high level, the position where the first Z index pulse is encountered is the zero point position.

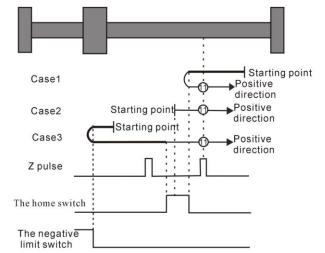
Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the low level and the positive postion limit switch is in the high level, the moving direction changes. When the home switch is in the high level, start the movement at the second speed. The position where the first Z index pulse is encountered is the zero point position.

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to forward at the first speed. The speed changes to the second speed untill the home switch is in the high level., the position where the first Z index pulse is encountered and the home switch is in the low level is the zero point position.

Case 2: When the user triggers the execution of homing, if the home switch state is in the high level, the axis starts to forward at the second speed. The position where the first Z index pulse is encountered and the home switch is in the low level is the zero point position.

Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the low level and the positive postion limit switch is in the high level, the moving direction changes.When the home switch is in the high level, the motion direction changes again and starts to move at the second speed. When the home switch is in the low level, the position where the first Z index pulse is encountered is the zero point position.

Homing method 10 Homing on the home switch, positive limit switch, and Z index pulse

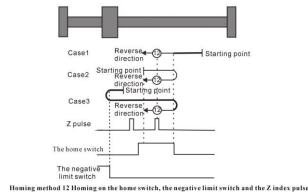

Homing method 11 ~ 14 Homing on the home switch, the negative limit switch and the Z index pulse

Homing method 11

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the high level, the motion direction changes and starts to move at the second speed. The position where the first Z index pulse is encountered when the home switch state is low is the zero point position.

Case 2: When the user triggers the execution of homing, if the home switch state is at the high level, the axis directly starts the forward motion at the second speed, and the position where the first Z index pulse is encountered when the home switch state is at the low level is the zero point position.

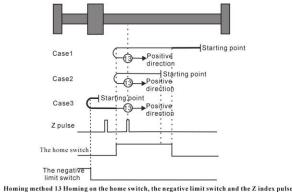
Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the low level and the negative limit switch is in the high level, the motion direction changes. when the home switch is in the high level, the movement starts at the second speed, and the position where the first Z index pulse is encountered when the home switch state is low is the zero point position.


Homing method 11 Homing on the home switch, the negative limit switch and the Z index pulse

Homing method 12

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. The motion starts at the second speed untill the home switch is in the high level. The position of the first Z index pulse when the home switch is in the high level is the zero point position.

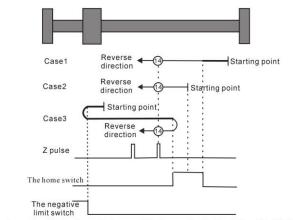
Case 2: When the user triggers the execution of homing, if the home switch state is at the high level, the axis starts to move forward at the second speed. The direction of motion changes untill the home switch is in the low level. When the home switch is in the high level, the position where the first Z index pulse is encountered is the zero point position.


Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the low level and the negative limit switch is in the high level, the motion direction changes. The motion direction changes again until the home switch state is low. When home switch state is in the high level, the movement starts at the second speed, and the position where the first Z index pulse is encountered is the zero point position.

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the high level, the motion starts at the second speed. When the switch is in the low level, the direction of motion changes and starts to move at the second speed. When the home switch is in the high level, the position where the first Z index pulse is encountered is the zero point position.

Case 2: When the user triggers to perform homing, if the home switch state is at a high level, the axis directly moves in the second speed, and when the home switch is in the low level, the motion direction changes. When the home switch is in the high level, the position where the first Z index pulse is encountered is the zero point position.

Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the low level and the negative limit switch is in the high level, the motion direction changes. When the home switch is in the high level, start the movement at the second speed. The position where the first Z index pulse is encountered is the zero point position.



Homing method 14

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the high level, the motion starts at the second speed. When the switch is in the low level, the position where the first Z index pulse is encountered is the zero point position.

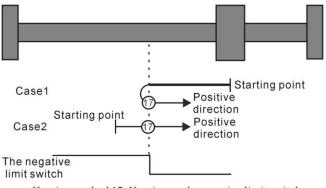
Case 2: When the user triggers the execution of homing, if the home switch state is in the high level, the axis starts to move in the second speed in the reverse direction. When the home switch is in the low level, the position where the first Z index pulse is encountered is the zero point position.

Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the low level and the negative postion limit switch is in the high level, the motion direction changes. The motion direction changes again until the home switch is in the high level, and then move at the second speed. When the home switch is in the low level, the position where the first Z index pulse is encountered is the zero point position.

Homing method 14 Homing on the home switch, the negative limit switch and the Z index pulse

Homing method 15 ~ Homing method 16 Reserved

• Homing method 15 and Homing method 16 are reserved as the Homing method for future development.

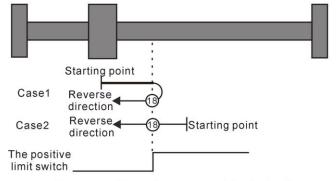

Homing method 17 ~ homing method 30 does not require Z index pulse

Homing method 17 to 30 are similar to Homing method 1 to Homing method 14, respectively, except that the positioning of their zero point no longer requires Z index pulses, but only based on the state changes of the associated home switches and limit switches. Homing method 17 is similar to Method 1, Homing method 18 is similar to Homing method 2, Homing method 19 and Homing method 20 are similar to the Homing method 3, Homing method 21 and Homing method 22 are similar to the Homing method 5, and Homing method 25 and Homing method 26 are similar to the Homing method 9. Homing method 27 and 28 are similar to the Homing method 11, which is similar to the Homing method 13.

Homing method 17: Homing on the negative limit switch

Case 1: When the user triggers the execution of homing, if the negative postion limit switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the negative limit switch is in the high level, the moving direction changes and starts to move at the second speed; the position when the negative limit switch state is in the low level is the zero point position.

Case 2: When the user triggers the execution of homing, if the negative postion limit switch state is at the high level, the axis directly starts the forward motion at the second speed, and the position when the negative limit switch state is at the low level is the zero point position.

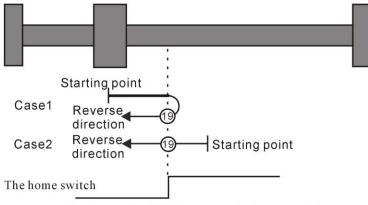


Homing method 17: Homing on the negative limit switch

Homing method 18: Homing on the positive limit switch

Case 1: When the user triggers the execution of homing, if the positive postion limit switch state is in the low level, the axis starts to move forward at the first speed, and when the positive postion limit switch is in the high level, the moving direction changes and starts to move at second speed, and the position at the time when the positive limit switch state is at the low level is the zero point position.

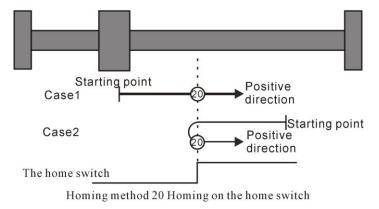
Case 2: When the user triggers the execution of homing, if the positive postion limit switch state is at the high level, the axis directly starts the reverse motion at the second speed, and the position when the positive postion limit switch state is at the low level is the zero point position.


Homing method 18: Homing on the positive limit switch

Homing method 19 ~ 22 Homing on the home switch

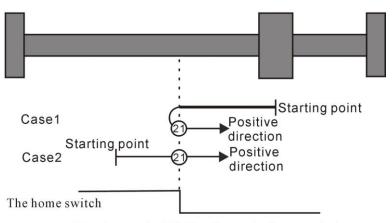
Homing method 19

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the high level, the motion direction changes and starts to move at the second speed. The position when the home switch is in the low level is the zero point position.


Case 2: When the user triggers the execution of homing, if the home switch state is in the high level, the axis starts to move in the reverse direction at the second speed, and the position when the home switch is in the low level is the zero point position.

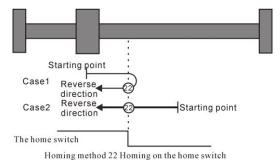
Homing method 19 Homing on the home switch

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the positive direction at the first speed, and the position when the home switch is in the high level is the zero point position.


Case 2: When the user triggers the execution of homing, if the home switch state is at the high level, the axis starts the reverse motion directly at the second speed. When the home switch is in the low level, the motion direction changes and starts to move at the first speed. The position when the home switch is in the high level is the zero point position.

Homing method 21

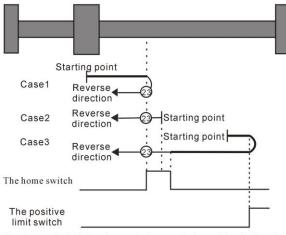
Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the high level, the motion direction changes and starts to move at the second speed. The position when the home switch is in the low level is the zero point position.


Case 2: When the user triggers the execution of homing, if the home switch state is in the high level, the axis starts to move forward in the second speed, and the position when the home switch is in the low level is the zero point position.

Homing method 21 Homing on the home switch

Case 1: When the user triggers the execution of homing, if the home switch state is in the high level, the axis starts to move forward in the second speed. When the home switch is in the low level, the motion direction changes and starts to move at the first speed. The position when the home switch is in the high level is the zero point position.

Case 2: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed, and the position when the home switch is in the high level is the zero point position.

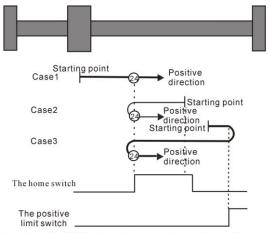

Homing method 23 ~ 26 Homing on the home switch, positive limit switch

Homing method 23

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the high level, the motion direction changes and starts to move at the second speed. The position when the home switch state is in the low level is the home position.

Case 2: When the user triggers the execution of homing, if the home switch state is at the high position, the axis directly starts the reverse motion at the second speed, and the position when the home switch state is at the low position is the zero point position.

Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the low level and the positive limit switch is in the high level, the moving direction changes. The movement starts at the first speed, and when the home switch is in the high level, the movement starts at the second speed, and the position when the home switch state is low is the zero point position.



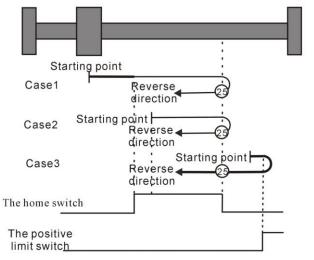
Homing method 23 Homing on the home switch, positive limit switch

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the positive direction at the first speed, and the position when the home switch is in the high level is the zero point position.

Case 2: When the user triggers the execution of homing, if the home switch state is at the high position, the axis directly starts the reverse motion at the second speed. The motion direction changes when the home switch is in the low level. The position where the home switch is in the high level is the zero point position.

Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the low level and the positive limit switch is in the high level, the moving direction changes.When the home switch is in the high level, it still moves at the first speed. The motion direction changes untill the home switch state is low, and starts to move at the second speed.The position when the home switch is encountered is the zero point position.

Homing method 24 Homing on the home switch, positive limit switch

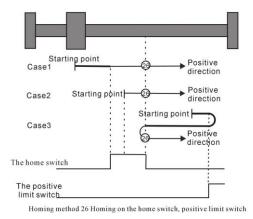

Homing method 25

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis forward at the first speed. When the home switch is in the high level, the motion starts at the second speed. The direction of motion changes untill the switch is in the

low level, and the position when the home switch is in the high level is the zero point position.

Case 2: When the user triggers to perform homing, if the home switch state is at a high level, the axis forward at the second speed. The direction of motion changes untill the home switch is in the low level. The position when the home switch is in the high level is the zero point position.

Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the low level and the positive limit switch is in the high level, the moving direction changes. The position when the home switch is in the high level is the zero point position.

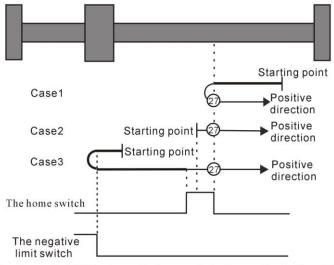

Homing method 25 Homing on the home switch, positive limit switch

Homing method 26

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts forward at the first speed. When the home switch is in the high level, the motion starts at the second speed. The position when the switch is in the low level is the zero point position.

Case 2: When the user triggers the execution of homing, if the home switch state is in the high level, the axis starts to forward at the second speed, and the position when the home switch is in the low level is the zero point position.

Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move forward at the first speed. When the home switch is in the low level and the positive limit switch is in the high level, the moving direction changes. The moving direction changes again untill the home switch is in the high level, then starts to move at the second speed. When the home switch is in the low level, the position is the zero point position.


Homing method 27 ~ 30 Homing on the home switch, the negative limit switch

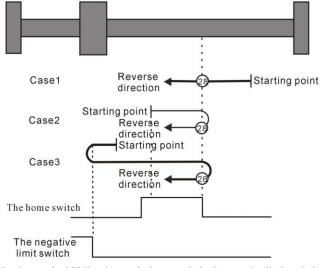
Homing method 27

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the high level, the motion direction changes and starts to move at the second speed. The position when the home switch state is in the low level is the home position.

Case 2: When the user triggers the execution of homing, if the home switch state is at the high position, the axis starts to move forward at the second speed, and the position when the home switch state is at the low position is the zero point position.

Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the low level and the negative limit switch is in the high level, the motion direction changes. When the home switch is in the high level, the movement starts at the second speed, and the position when the home switch state is low is the zero point position.

Homing method 27 Homing on the home switch, the negative limit switch

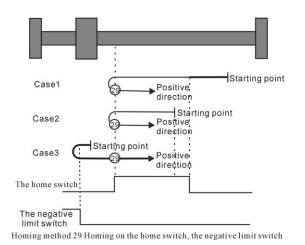

Homing method 28

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed, and the position when the home switch is in the high level is the zero point position.

Case 2: When the user triggers the execution of homing, if the home switch state is at the

high level, the axis starts to move forward at the second speed. The direction of motion changes untill the home switch is in the low level. The position when the home switch is in the high level is the zero point position.

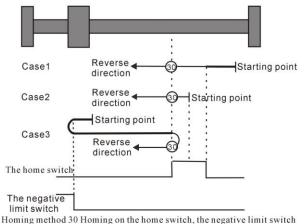
Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the low level and the negative limit switch is in the high level, the motion direction changes. The motion direction changes again when the home switch state is from high to low, and starts to move at the second speed. The position at the high level when the home switch is encountered is the zero point position.


Homing method 28 Homing on the home switch, the negative limit switch

Homing method 29

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the high level, the motion starts at the second speed. When the switch is in the low level, the direction of motion changes and starts to move at the second speed, and the position when the home switch is in the high level is the zero point position.

Case 2: When the user triggers to perform homing, if the home switch state is at a high level, the axis start to reverse in the second speed, and when the home switch is in the low level, the motion direction changes. The position when the home switch is in the high level is the zero point position.

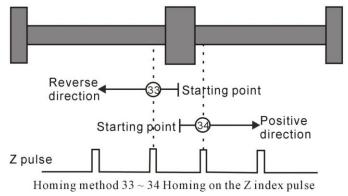

Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the low level and the negative limit switch is in the high level, the motion direction changes. And then keep forwarding; the position when the home switch is in the high level is the zero point position.

Case 1: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the high level, the motion starts at the second speed. The position when the switch is in the low level is the zero point position.

Case 2: When the user triggers the execution of homing, if the home switch state is at the high level, the axis starts to move in the reverse direction at the second speed, and the position when the home switch is in the low level is the zero point position.

Case 3: When the user triggers the execution of homing, if the home switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the home switch is in the low level and the negative limit switch is in the high level, the motion direction changes. And then keep forwarding, the motion direction changes again until the home switch is in the high level. The position when the home switch is in the low level is the zero point position.

froming method 50 froming on the nome switch, the negative mint sw


Homing method 31 and 32 are reserved.

Homing method 33 ~ 34 Homing on the Z index pulse

Homing method 33

In method 33, when the user triggers the execution of homing, the axis begins to move in the reverse direction at the second speed, and the position where the first Z index pulse is encountered is the zero point position.

In method 34, when the user triggers a zero return, the axis begins to move forward at the second speed, and the position where the first Z index pulse is encountered is the zero point position.

Homing method 35: Homing on the current position

In method 35, when the user triggers the execution of homing, the axis does not move, and the current position is the zero point position.

5.2.12 Cubic speed curve

In general, the servo uses a trapezoidal velocity curve for position planning. The trapezoidal speed curve has a certain impact on the machine. In order to reduce the impact of the trapezoidal speed curve on the machine, the cubic speed curve function can be enabled. When enabled, the speed curve is planned using a cubic curve, which greatly reduces the impact on the mechanical system.

Num	Description	Range	unit	detail	Set mom ent	activ e mom ent	defa ult	AC CES S
P03.82	Enale Cubic speed curve	0~1	-	Set the position	Disabl	imme	1	RW
	0- use trapezoidal velocity			curve planning	e to	diatel		
	curve			method	set	У		
	1- use Cubic speed curve							

5.2.13 Full closed loop function

In actual field applications, such as steel plate feeding, the displacement between the steel plate and the motor is inconsistent due to the sliding between the steel plate and the motor. Therefore, an external encoder is required to measure the displacement of the actual material. The servo driver controls the motor speed based on the given position command and the position signal fed back by the second encoder. That is, the position of the second encoder is closed-loop controlled so that the position of the given position command and the feedback of the second encoder are consistent.

				Set	active		AC
Num	Description	Range	unit	mom	momen	defau	CES
Tum	Description	Runge	unit	ent	t	lt	S
P03.31	Enable full closed loop	0~1		Disabl	immedia	0	RW
105.51	0- does not enable full closed loop	0~1	-		tely	0	IX VV
	-			e to	tery		
	1- Enable full-closed loop (P03.78 setting is			set			
	invalid, servo pulse port (CN3's 37, 38, 39,						
	40 pins) is used as the second encoder						
D 02.22	input)	0.0			. ,.	0	DIV
P03.32	Full closed loop mode	0~2	-	anyti	immedia	0	RW
	0- semi-closed loop; using electronic gear			me	tely		
	ratio 1						
	1- full closed loop; using electronic gear						
	ratio 1						
	2- Switch full-closed and semi-closed						
	according to IO; IO is invalid, servo runs in						
	semi-closed loop, adopts electronic gear						
	ratio 1; IO is valid, servo runs in full closed						
	loop, adopts electronic gear ratio 2						
	Full closed loop feedback polarity						
P03.33	Full closed loop feedback polarity	0~1	-	anyti	immedia	0	RW
	0- The values of the motor encoder counter			me	tely		
	and the second encoder counter are						
	incremented or decremented simultaneously						
	1- The value of the motor encoder counter						
	and the second encoder counter are						
	incremented, one decremented						
P03.34	The number of pulses of the second encoder	0~214	-	anyti	immedia	1000	RW
	corresponding to one revolution of the	748364		me	tely	0	
	motor	7					
P03.36	Full closed loop position error excessive	0~214	0.00	anyti	immedia	1000	RW
	threshold, unit is 0.0001 round	748364	01ro	me	tely	0	
		7	und				
D02.29			0.00				
P03.38	Full closed loop position error, 0.0001	-	0.00	-	-	-	RO
	weeks		01				
			roun				
			d				

Related parameters are as follows

P03.40	Full closed loop position error clearing	0~327	-	anyti	immedia	0	RW
	weeks	67		me	tely		
P03.41	Motor encoder speed in full closed loop	-	clk/	-	-	-	RO
	mode		5ms				
P03.42	Second encoder rate in full-closed mode	-	clk/	-	-	-	RO
			5ms				
P00.32	Second encoder software filter time constant	0~327	ms	anyti	immedia	5	RW
		67		me	tely		

Self-learning feedback polarity and the number of second encoder pulses corresponding to one revolution of the motor in full-closed mode

In the full-closed mode, the feedback polarity P03.33 and P03.34 need to be set, and the appropriate value can be automatically calculated by this function operation. When performing this function operation, please make sure that the second encoder measuring wheel is in close contact with the material to ensure that no slippage occurs between the measuring wheel and the material.

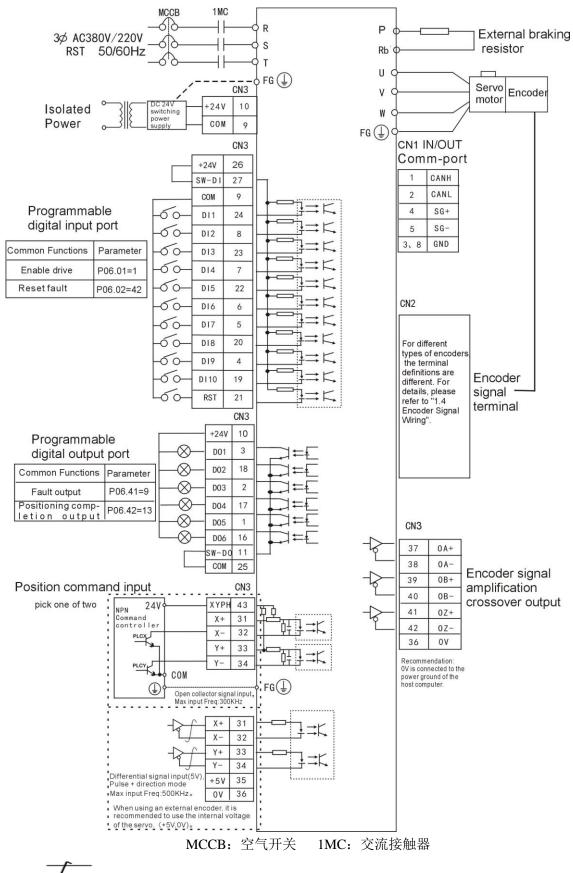
The steps are as follows:

- Press the MODE button to switch the mode to the function operation mode. At this time, the first two digits of the digital tube display Fn;
- Combine "▲" (increase), "◀◀" (shift), "▼" (decrease) 3 buttons to set the display value of the digital tube to Fn013;
- Click SET to display LFCP. (Learn Full_Close Parameter);
- ➢ Press the "◀◀" (shift) button; The electric machine made a forward rotation of 3 turns at a speed of 10 rpm.

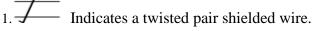
num	Bit description
INFn.45	Switching semi-closed loop and full-closed loops
	When invalid, the servo is in semi-closed mode, using electronic gear ratio 1; when valid, the
	servo is in full-closed mode, using electronic gear ratio 2

5.2.14 Travel limit function

In the position mode, the servo has a software limit function. After the software limit is enabled, if the encoder position value is detected to be less than the software limit lower limit value (P03.74) and the motor moves in the negative direction, the software limit fault is


reported(Er207). If it is detected that the encoder position value is greater than the software limit upper limit value (P03.76) and the motor moves in the positive direction, the software limit fault (Er207) is reported.

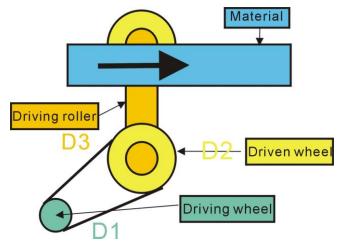
In position mode, the servo also has a hardware limit detail. If INFn.43 is valid and the speed is greater than zero, the hardware limit fault Er208 is reported. If INFn.44 is valid and the speed is less than zero, the hardware limit fault Er208 is reported.


Num	Description	Range	unit	Set mom ent	activ e mom ent	defa ult	AC CES S
P03.73	Enable software travel limit	0~2	-	anyti	imme	0	RW
	0- does not enable software travel			me	diatel		
	limit				У		
	1- Power-on direct enable						
	software travel limit						
	2- Enable software travel limit						
	after zero return						
P03.74	Software travel limit lower limit	-214748364	custo	anyti	imme	-1000	RW
		7 ~	mize	me	diatel	0000	
		2147483647	unit		у		
P03.76	Software travel limit upper limit	-214748364	custo	anyti	imme	1000	RW
		7 ~	mize	me	diatel	0000	
		2147483647	unit		У		

Related input function bits...

num	Bit description
INFn.43	Hardware positive limit switch in position mode, when the speed is greater than zero, and
	INFn.43 is valid, the hardware limit fault is reported.
INFn.44	Hardware negative limit switch in position mode, when the speed is less than zero, and
	INFn.44 is valid, the hardware limit fault is reported.

5.2.15 Position mode typical wiring diagram (NPN mode)


2. DC24V power supply is prepared by the user. The DC24V switching power supply should be powered by an isolation transformer, and its grounding terminal should be directly connected to the ground terminal of the driver.

3. For the wiring of the position command input, refer to the detailed description in "3.4.4 Position Command Input Wiring Example".

4. The position command mode is the default working mode of the drive. The parameters in the illustration are set at the factory.

5.2.16 Position tracking (pulse + direction) example

The PLC pulse (pulse + direction) position mode is the most commonly used servo position control mode. The application is very rich, and the transmission material is one of them, as shown below.

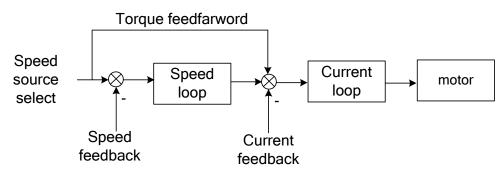
The servo motor drives the driving wheel (diameter D1), and the driven wheel (diameter D2) is rotated by the belt. The driving roller (diameter D3) and the driven wheel rotate coaxially, and the material is driven to the right.

In order for the material to move accurately for a distance (displacement L), the electronic gear ratio must be set first and then the XY pulses (number N) must be sent. Assuming that the number of lines of the encoder is 2500 and the AB pulse is 4 times, the motor encoder resolution (P00.11) = 2500 * 4 = 10000. Send N XY pulses, requiring the material to be displaced by L

$$L = \frac{N * \text{electronic gear ratio}}{2500 * 4} * \frac{D1}{D2} * \pi * D3 \text{ (meters)}$$

Then the electronic gear ratio is set to,

$$\frac{\text{electronic gear ratio num(P03.08)}}{\text{electronic gear ratio den(P03.10)}} = \frac{2500*4}{N} * \frac{D2}{D1} * \frac{L}{\pi*D3}$$


For example, sending 100 XY pulses requires a material displacement of 0.01 m, D1 = 0.05 m, D2 = 0.10 m, and D3 = 0.08 m. then,

$$\frac{\text{electronic gear ratio num(P03.08)}}{\text{electronic gear ratio den(P03.10)}} = \frac{2500*4}{100} * \frac{0.1}{0.05} * \frac{0.01}{\pi * 0.08} = \frac{7958}{1000}$$

The specific para	ameters are set as follows:
P02.01=0	work in position mode
P03.01=0	position command is from external pulse
P03.02=0	pulse command pattern is pulse + direction
P03.08=7958	Set the electronic gear ratio Numerator
P03.10=1000	Set the electronic gear ratio denominator
P06.01=1	Enable servo when terminal DI1 is valid
P06.02=42	Reset the driver when terminal DI2 is valid
P06.41=9	Servo driver failure when terminal DO1 is active
P06.42=13	Servo motor positioning completed when terminal DO2 is valid

5.3 Speed Mode

The speed mode is a control mode in which the motor speed is used as a control target, and is often used for dragging the spindle. The speed mode is implemented as shown in the figure below.

5.3.1 Speed command source

The servo has two speeds to choose from, namely the main speed A and the auxiliary speed B. These two speeds can be superimposed on each other or can be switched to each other. Both the main speed A and the auxiliary speed B have multiple speed sources. As shown below.

P04.02 select speed source of main speed A 0 - from P04.03 1 - from Al1 2 - from Al2 3 - from Al3 4 - from Pulse frequency	main speed A →	P04.01select speed command source 0 - from main speed A 1 - from auxiliary speed B
P04.04 select speed source of auxiliary speed B 0 - from P04.05 1 - from Al1 2 - from Al2 3 - from Al3 4- from Pulse frequency	auxiliary speed B	B 2 - from A/B switch 3 - from A+B 4 - from P08.17 5 - from multi-speed 6 - from UPDOWN speed mode 7 - from sin wave
Multi -speed P11 Group parameter	Multi -speed	

Related parameter as follows.

Num Description	Range	unit	Set	activ	defa	ACCESS
-----------------	-------	------	-----	-------	------	--------

				mom ent	e mom	ult	
				Citt	ent		
P04.01	Speed command source	0~7	-	anyti	imme	0	RW
	0- main speed A			me	diatel		
	1- auxiliary speed B				У		
	2- INFn.12 switch A/B						
	3- A+B						
	4- P08.17						
	5- mulit speed						
	6-UP/DOWN speed mode						
	7- sin wave						
P04.02	main speed A source	0~4	-	anyti	imme	0	RW
	0- from P04.03			me	diatel		
	1- from AI1				У		
	2- from AI2						
	3- from AI3						
	4- from pulse frequency						
P04.03	Digit setting of main	-32767~32	rpm	anyti	imme	500	RW
	speed A	767		me	diatel		
					у		
P04.04	auxiliary speed B	0~4	-	anyti	imme	0	RW
	source			me	diatel		
	0- from P04.05				У		
	1- from AI1						
	2- from AI2						
	3- from AI3						
	4- from pulse frequency						
P04.05	Digital setting of	-32767~32	rpm	anyti	imme	500	RW
	auxiliary speed B	767		me	diatel		
					У		
P08.17	Communication setting	-32767~32	rpm	anyti	imme	0	RW
		767		me	diatel		
					У		

Related input function bits.

num	Bit description
INFn.12	Switch the main speed A and the auxiliary speed B, and use the auxiliary speed B when it is
	active.

When the speed command is derived from AIx, please refer to "6.3.1 Analog Input AI" for details.

5.3.2 Multi-speed mode

The servo supports multi-speed mode. There are three Methods for multi-speed, which are single-run stop, cycle run, and IO switch run.

The single-run stop means that after the motor is enabled, the first speed is run first. After the operation, the next speed is run until the running segment number is equal to the total number of speed segments, and then the machine stops.

For example, the total number of speed is set to 2, using a single run stop mode. After the motor is enabled, the motor runs the first speed first. After the operation is completed, the second speed is run again. After the operation is completed, the motor stops.

The cycle operation is to run the first stage speed again when the single operation is to be stopped, so that the cycle does not stop.

For example, the total number of segments is set to 3, using the loop mode. After the motor is enabled, the motor runs the first speed first, then the second speed, then the third speed, and then the first speed.

IO switching operation means that after the motor is enabled, the driver reads the value of DI, thereby obtaining the segment number, and then running the segment speed. After the state of DI changes, the driver re-reads the value of IO, regains the segment number, and then runs the Segment speed.

Num	Description	Range	unit	Set moment	activ e mom	defa ult	ACCESS
					ent		
P11.01	Multi-speed mode	0~2	-	Disable to	imme	0	RW
	0- single-run stop			set	diatel		
	1-cycle run				У		
	2- IO switch run						
P11.02	the total number of speed	1~16	-	anytime	imme	16	RW
	segments				diatel		
					у		
P11.03	Running time unit	0~1	-	anytime	imme	1	RW
	0- ms				diatel		
	1- s				у		
P11.04	Acceleration time1	0~32767	ms	anytime	imme	500	RW
					diatel		
					у		
P11.05	deceleration time 1	0~32767	ms	anytime	imme	500	RW
					diatel		
					У		
P11.06	Acceleration time2	0~32767	ms	anytime	imme	500	RW
					diatel		
					У		

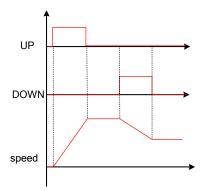
The relevant parameters are as follows.

P11.07	deceleration time 2	0~32767	ms	anytime	imme diatel	500	RW
P11.08	Acceleration time3	0~32767	ms	anytime	y imme diatel y	500	RW
P11.09	deceleration time 3	0~32767	ms	anytime	imme diatel y	500	RW
P11.10	Acceleration time 4	0~32767	ms	anytime	imme diatel y	500	RW
P11.11	deceleration time 4	0~32767	ms	anytime	imme diatel y	500	RW
P11.12	1st speed command	-32767~ 32767	rpm	anytime	imme diatel y	0	RW
P11.13	1st speed command run time This parameter unit is set by P11.03.	0~32767	ms(s)	anytime	imme diatel y	10	RW
P11.14	The first speed acceleration and deceleration time selection 0-Use acceleration/deceleration time P04.17 P04.18 1- Use acceleration/deceleration time 1 2- Using acceleration/deceleration time 2 3- Using acceleration/deceleration time 3 4- Using acceleration/deceleration time 4	0~4	-	anytime	imme diatel y	0	RW
P11.15	2nd speed command	-32767~ 32767	rpm	anytime	imme diatel y	0	RW
P11.16	2nd speed command run time This parameter unit is set by P11.03.	0~32767	ms(s)	anytime	imme diatel y	10	RW
P11.17	The second speed acceleration and deceleration time selection 0-Use acceleration/deceleration time P04.17 P04.18 1- Use acceleration/deceleration time 1 2- Using acceleration/deceleration time 2 3- Using acceleration/deceleration time 3 4- Using acceleration/deceleration time 4	0~4	-	anytime	imme diatel y	0	RW

P11.18	Third speed command	-32767~	rpm	anytime	imme	0	RW
	r	32767	r	5	diatel	-	
					у		
P11.19	Third speed command run	0~32767	ms(s)	anytime	imme	10	RW
	time				diatel		
	This parameter unit is set by				у		
	P11.03.						
P11.20	The Third speed acceleration and	0~4	-	anytime	imme	0	RW
	deceleration time selection				diatel		
	0-Use acceleration/deceleration time				у		
	P04.17 P04.18						
	1- Use acceleration/deceleration time 1						
	2- Using acceleration/deceleration time 2						
	3- Using acceleration/deceleration time 3						
	4- Using acceleration/deceleration time 4						
P11.21	4th speed command	-32767~	rpm	anytime	imme	0	RW
		32767			diatel		
					у		
P11.22	4th speed command run time	0~32767	ms(s)	anytime	imme	10	RW
	This parameter unit is set by				diatel		
	P11.03.				у		
P11.23	The 4th speed acceleration and	0~4	-	anytime	imme	0	RW
	deceleration time selection				diatel		
	0-Use acceleration/deceleration time				у		
	P04.17 P04.18						
	1- Use acceleration/deceleration time 1						
	2- Using acceleration/deceleration time 2						
	3- Using acceleration/deceleration time 3						
	4- Using acceleration/deceleration time 4						
	1	****		1	1	n	
P11.57	16th speed command	-32767~	rpm	anytime	imme	0	RW
		32767			diatel		
					у		
P11.58	16th speed command run time	0~32767	ms(s)	anytime	imme	10	RW
	This parameter unit is set by				diatel		
	P11.03.				у		
P11.59	The 16th speed acceleration and	0~4	-	anytime	imme	0	RW
	deceleration time selection				diatel		
	0-Use acceleration/deceleration time				У		
	P04.17 P04.18						
	1- Use acceleration/deceleration time 1						
	2- Using acceleration/deceleration time 2						
	3- Using acceleration/deceleration time 3						

4- Using acceleration/deceleration time 4						
---	--	--	--	--	--	--

Related input function bits.如 ⁻	F	0
--	---	---

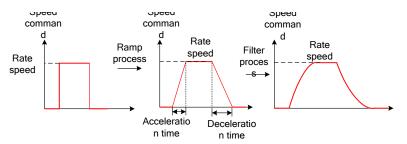

num	Bit description
INFn.17	Multi-speed speed segment number selection 0
INFn.18	Multi-speed speed segment number selection 1
INFn.19	Multi-speed speed segment number selection 2
INFn.20	Multi-speed speed segment number selection 3

According to the state of $INFn17\sim20$, the multi-speed speed segment number = INFn.20*8 + INFn.19*4 + INFn.18*2 + INFn.17*1 + 1. See the table below for details.

INFn.20	INFn.19	INFn.18	INFn.17	speed segment number				
0	0	0	0	1				
0	0	0	1	2				
0	0	1	0	3				
	i i							
1	1	1	1	16				

5.3.3 UP/DOWN speed mode

When the UP/DOWN speed mode is selected, the speed is controlled by the input detail bits INFn.63 (UP) and INFn.64 (DOWN). When it is detected that INFn.63 is active, the speed raises; when it is detected that INFn.64 is active, the speed decreases; when both signals are deactive, the speed remains unchanged. The timing diagram is shown below.


Related input function bits.

num	Bit description
INFn.63	UP signal
INFn.64	DOWN signal

5.3.4 Ramp control and speed command filtering

All speed sources have ramp control to prevent the impact of a given speed on the machine. The ramp control is achieved by setting the acceleration/deceleration time of the

speed. The speed command after the ramp processing is then subjected to low-pass filtering to make the speed command smoother. For example, when the set speed is the rated speed, the actual running speed is processed as shown below.

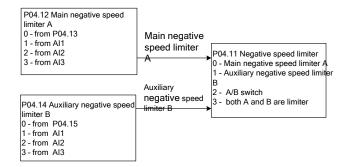
It should be noted that the actual acceleration/deceleration time is related to the change of the given speed. The set acceleration/deceleration time refers to the acceleration time required to accelerate from 0 to the rated speed.

The advantage of the filtering process is to make the speed output smoother. The disadvantage is that the speed command will be delayed. The larger the set filter time constant, the smoother the speed output and the larger the lag time.Related parameters are as follows.

Num	Description	Range	unit	Set mom ent	activ e mom ent	defa ult	ACCESS
P04.20	Time const for speed	0~32767	ms	anyti	imme	20	RW
	command filter			me	diatel		
					у		
P04.17	Acceleration time	0~65535	ms	anyti	imme	500	RW
				me	diatel		
					У		
P04.18	deceleration time	0~65535	ms	anyti	imme	500	RW
				me	diatel		
					у		

5.3.5 Speed limit

Speed limiting includes forward limiting and reverse limiting, each of which has a primary limiting A source and an auxiliary limiting B source. That is, the main postive limiter A, the auxiliary postive limiter B, the main negative limiter A, and the auxiliary negative limiter B.


5.3.5.1 Postive speed limiting

The source of the forward speed limit is shown below. There are two types of postive speed limiting, one is the main postive speed limiter A, and the other is the auxiliary postive speed limiter B. Both speed limits have different speed limit sources.

P04.07 select main positive speed	main positive speed
limiter A	limiter A
0 - from P04.08	P04.06 positive speed limit source
1 - from Al1	0 - main positive speed limiter A
2 - from Al2	1 - auxiliary postive speed limiter
3 - from Al3	B
P04.09 select auxiliary postive speed limiter B 0 - from P04.10 1 - from Al1 2 - from Al2 3 - from Al3	auxiliary postive speed limiter B 3 - both A and B are limiter

5.3.5.2 Negative speed limiter

The source of the reverse speed limit is shown below. There are two types of reverse speed limiting, one is the main negative speed limiter A, and the other is the auxiliary reverse speed limiter B. Both speed limits have different speed limit sources.

Related parameters are as follows.

Num	Description	Range	unit	Set mom	active mome	defau lt	AC CES
				ent	nt		S
P04.06	source of postive speed limiting	0~3	-	anyti	immedi	0	RW
	0- main postive speed limiter A			me	ately		
	1- auxiliary reverse speed limiter B						
	2- A/B switch						
	3-both A and B are limiter						
P04.07	Soure of main postive speed limiter A	0~3	-	anyti	immedi	0	RW
	0- from P04.08			me	ately		
	1- fromAI1						
	2- fromAI2						
	3- fromAI3						
P04.08	Digital value of postive speed limiter A	0~327	rpm	anyti	immedi	3000	RW
		67		me	ately		
P04.09	Soure of auxiliary reverse speed limiter	0~3	-	anyti	immedi	0	RW
	В			me	ately		
	0- fromP04.10						
	1- fromAI1						
	2- fromAI2						
	3- fromAI3						

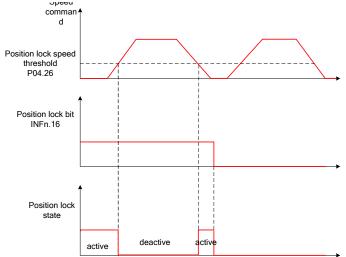
P04.10	Digital value of postive speed limiter B	0~327	rpm	anyti	immedi	3000	RW
		67		me	ately		
P04.11	source of negative speed limiting	0~3	-	anyti	immedi	0	RW
	0- main negative speed limiter A			me	ately		
	1- auxiliary negative speed limiter B						
	2- A/B switch						
	3- both A and B are limiter						
P04.12	Source of main negative speed limiter	0~3	-	anyti	immedi	0	RW
	А,			me	ately		
	0- fromP04.13						
	1- fromAI1						
	2- fromAI2						
	3- fromAI3						
P04.13	Digital value of main negative speed	0~327	rpm	anyti	immedi	3000	RW
	limiter A	67		me	ately		
P04.14	Source of auxiliary negative speed	0~3	-	anyti	immedi	0	RW
	limiter B			me	ately		
	0- fromP04.15						
	1- fromAI1						
	2- fromAI2						
	3- fromAI3						
P04.15	Digital value of auxiliary negative	0~327	rpm	anyti	immedi	3000	RW
	speed limiter B	67		me	ately		

Related input function bits.

num	Bit description			
INFn.07	postive speed limiter A/B switch ,active select B			
INFn.08	negative speed limiter A/B switch, active select B			

5.3.6 Torque limit

Please refer to "5.4.2 Torque Limiting" of the torque mode. Both are same.


Num	Description	Range	unit	Set mom ent	activ e mom ent	defa ult	ACCES S
P05.10	Torque limit method	0~1	-	anyti	imme	0	RW
	0- Forward and reverse limit are from			me	diatel		
	positive limiting				у		
	1- Forward and reverse limit separately						
P05.11	Positive torque limiting source	0~3	-	anyti	imme	0	RW
	0- Forward Limit A			me	diatel		
	1- Forward limiter B				у		

	2- A/B switching						
	3- A and B are simultaneously limit						
P05.12	Source of forward torque limit A	0~3	-	anyti	imme	0	RW
	0- from P05.13			me	diatel		
	1- from AI1				у		
	2- from AI2				-		
	3- from AI3						
P05.13	Set value of forward torque limiter	0~300.0	%	anyti	imme	150.	RW
	A			me	diatel	0	
					у		
P05.14	Forward Torque Limit B Source	0~3	-	anyti	imme	0	RW
	0- from P05.15			me	diatel		
	1- from AI1				у		
	2- from AI2						
	3- from AI3						
P05.15	Set value of forward torque limiter	0~300.0	%	anyti	imme	150.	RW
	В			me	diatel	0	
					у		
P05.16	Reverse torque limiting source	0~3	-	anyti	imme	0	RW
	0- Reverse Limit A			me	diatel		
	1- Reverse limit B				у		
	2- A/B switching						
	3- A and B are simultaneously						
	limit						
P05.17	Source of reverse torque limit A	0~3	-	anyti	imme	0	RW
	0- from P05.18			me	diatel		
	1- from AI1				у		
	2- from AI2						
	3- from AI3						
P05.18	Set value of reverse torque limiter	0~300.0	%	anyti	imme	150.	RW
	А			me	diatel	0	
					у		
P05.19	Reverse Torque Limit B Source	0~3	-	anyti	imme	0	RW
	0- from P05.20			me	diatel		
	1- from AI1				у		
	2- from AI2						
	3- from AI3						
P05.20	Set value of reverse torque limiter	0~300.0	%	anyti	imme	150.	RW
	В			me	diatel	0	
					у		

5.3.7 Position lock function

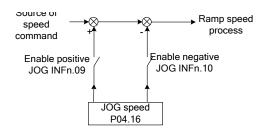
The position lock function means that when the position lock DI signal INFn.16 is valid in the speed control mode, when the speed command amplitude is less than or equal to the set value of P04.26, the servo motor enters the position lock state. At this time, the position loop is built inside the servo driver, and the speed command is invalid. The servo motor is fixed within ± 1 pulse of the lock position, and the lock position is returned even if the external force is rotated. If the speed command amplitude is greater than P04.26, the servo motor exits the position lock state, and the servo motor continues to run according to the currently input speed command.

If the position lock DI signal INFn.16 is invalid, the position lock function is invalid.

Related parameters are as follows.

Num	Description	Range	unit	Set mom ent	activ e mom ent	defa ult	ACCESS
P04.26	Position lock speed threshold	0~32767	rpm	anyti me	imme diatel y	5	RW

Related input function bits.


Num	Bit description			
INFn.16	Position lock Enable Bit			

5.3.8 Other functions

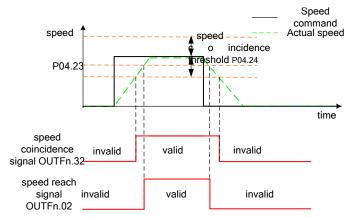
5.3.8.1 Speed JOG

In the speed mode, there are positive jog and reverse jog, which are controlled by INFn.09 and INFn.10 respectively. When INFn.09 or INFn.10 is active, the speed output will be superimposed with a jog speed P04.16 based on the current speed command. As shown

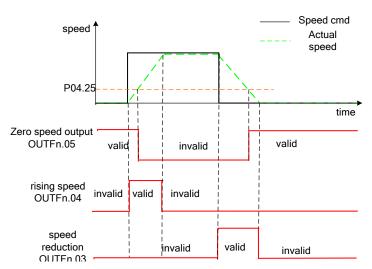
below.

5.3.8.2 Speed command reverse

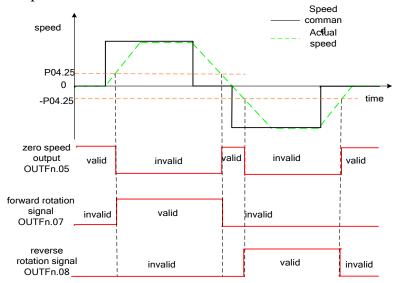
When INFn.11 is active, the speed command will be inverted.


5.3.8.3 Speed pause

Speed command is set to zero when INFn.13 is active.


5.3.8.4 Speed mode related signal output

When the actual output speed P04.21 and the speed reference command are different from the speed matching threshold P04.24, the speed coincidence signal OUTFn.32 is valid. When the absolute value of the actual output rotational speed P04.21 is greater than the speed reaching threshold P04.23, the speed reaching signal OUTFn.02 is valid.


The signal output is shown below.

When the amplitude of the actual output speed P04.21 is less than the zero speed threshold P04.25, the zero speed signal OUTFn.05 is valid. When the amplitude of the acceleration is greater than the lifting speed threshold P04.27, the rising speed OUTFn.04 is valid. When the amplitude of the deceleration is greater than the lifting speed threshold P04.27, the speed threshold P04.27, the speed reduction OUTFn.03 is valid. The signal output is shown below.

When the actual output speed P04.21 is greater than the zero speed threshold, the forward rotation signal OUTFn.07 is valid, and when the actual output rotation speed P04.21 is smaller than the negative zero speed threshold, the reverse rotation signal OUTFn.08 is valid. The signal output is shown below.

5.3.8.5 Speed feedback filtering and display filtering

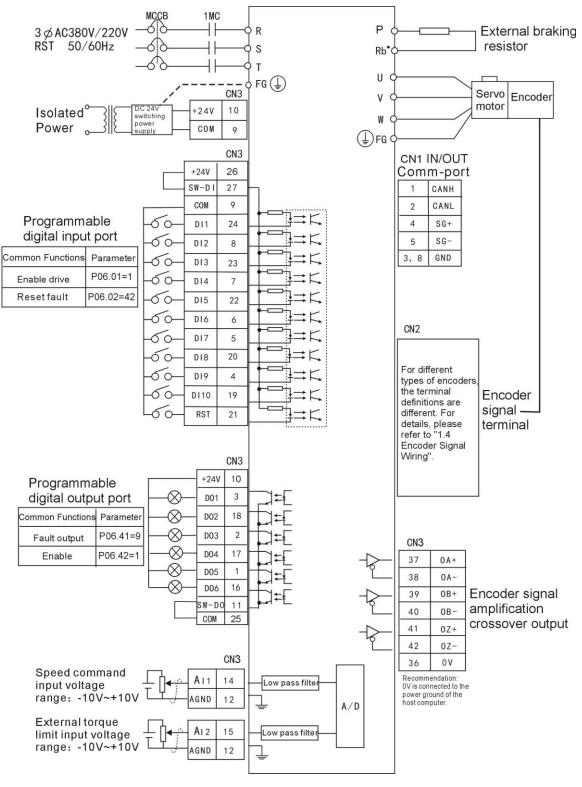
The speed feedback value is low-pass filtered by setting the software filter time constant P00.10. It is also possible to set the speed display filter time constant P04.22 to filter the speed display value.

5.3.8.6 Related parameters

Num	Description	Range	unit	Set mom ent	activ e mom ent	default	ACCESS
P04.16	JOG speed	0~32767	rpm	anyti	imme	20	RW

Related parameters are as follows.

				me	diately		
P04.17	acceleration time	0~65535	ms	anyti	imme	500	RW
				me	diately		
P04.18	deceleration time	0~65535	ms	anyti	imme	500	RW
				me	diately		
P04.20	Speed command first-order	0~32767	ms	anyti	imme	20	RW
	filtering time constant			me	diately		
P04.21	Filtered speed value	-	rpm	-	-	-	RO
P04.22	Speed display filter time	0~32767	ms	anyti	imme	300	RW
				me	diately		
P04.23	Speed arrival threshold	0~32767	rpm	anyti	imme	1000	RW
				me	diately		
P04.24	Speed consistent threshold	0~32767	rpm	anyti	imme	10	RW
				me	diately		
P04.25	Zero speed threshold	0~32767	rpm	anyti	imme	5	RW
				me	diately		
P04.27	Lifting speed threshold	0~32767	rpm/s	anyti	imme	375	RW
				me	diately		
P00.10	Motor encoder software filter time	0~32767	ms	anyti	reset	5	RW
				me	takes		
					effect		


Related input function bits...

num	Bit description
INFn.09	Forward speed jog
INFn.10	Reverse speed jog
INFn.11	Speed reverse
INFn.12	Main speed A/B switching
INFn.13	Speed pause

相关输出 detail 位。

num	Bit description
OUTFn.02	Speed arrival
OUTFn.03	Speed down
OUTFn.04	Speed up
OUTFn.05	Zero speed
OUTFn.06	Speed overrun
OUTFn.07	Forward rotate
OUTFn.08	Reverse rotate
OUTFn.32	Consistent speed

5.3.10 Speed mode typical wiring diagram (NPN mode)

MCCB: air switch 1MC: AC contactor

1. \checkmark is Twisted pair shielded wire.

2. The DC24V power supply is prepared by the user. The DC24V switching power supply should be powered by an isolation transformer, and its grounding terminal should be

directly connected to the ground terminal of the driver.

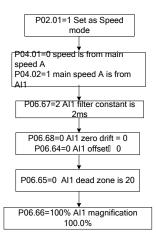
5.3.11 VC servo for analog voltage control speed example

(1) Analog signal wiring

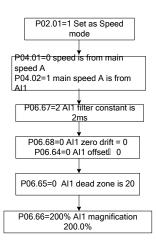
The analog signal can be input from AI1 (14-pin) or AI2 (15-pin) or AI3 (29-pin). Here, taking AI1 as an example, the analog signal line is connected to AI1 (14-pin) of CN3, and the analog ground is connected to AGND (12-pin).

(2) Correspondence between analog voltage and actual speed command

Under the default parameters, -10V corresponds to the negative rated speed of the motor and 10V corresponds to the positive rated speed of the motor. Taking the AI1 input command voltage as an example, if you need to change the correspondence, you can modify the AI1 offset (P06.64) and AI1 magnification (P06.66). If the dead band is set to zero, the corresponding relationship between the input voltage and the speed command is:


actual speed cmd=rate speed $\times (AI1 \ magnification \ P06.66)\% \times$

For example:

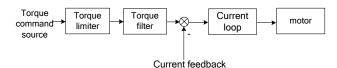

- > By default, AI1 magnification = 100.0%, AI1 zero drift = 0 mV; AI1 offset = 0 mV; When inputting ± 10000 mV, the actual output speed is = \pm rated speed;
- > If AI1 magnification = 200.0%; AI1 zero drift = 0mV; AI1 offset = 0 mV; When inputting ± 5000 mV, the actual output speed is = \pm rated speed;
- > If AI1 magnification = 200.0%; AI1 zero drift = 0 mV; AI1 offset = 5000 mV; When inputting 0-10000mV, the actual output speed is = \pm rated speed;

(3) Parameter setting step

a. Input the speed command with AI1, input $\pm 10V$ corresponding to \pm rated speed as an example:

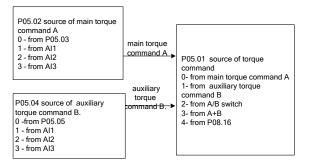
b. Input the speed command with AI1, input $\pm 5V$ corresponding to \pm rated speed as an example:

(4) Enable the motor


In the case of default parameters, P06.01=1, the enable signal is input from DI1. If P06.21 is set to 1, the servo can be enabled without any signal.

(5) Zero drift correction

In the case of analog input 0mV, set P06.79=4 once, then trigger zero drift correction once. Zero drift can also be corrected by DI.


5.4 Torque mode

The torque mode is a control mode in which the motor output torque is used as a control target, such as tension control. The implementation of the torque mode is shown in the figure below.

5.4.1 Torque command source

The servo has two torque commands to choose from, namely the main torque command A and the auxiliary torque command B. Two torque commands can be superimposed on each other or can be switched to each other. Both the main torque A and the auxiliary torque B have multiple sources of torque. As shown below.

Num	Description	Range	u ni t	Set mom ent	activ e mom ent	defau lt	ACCE SS
P05.01	Torque command source	0~4	-	anyti	imme	0	RW
	0- main torque command A			me	diately		
	1- auxiliary torque command B						
	2- INFn.03 switching A/B						
	3- A+B						
	4- from P08.16						
P05.02	Source of main torque command A	0~3	-	anyti	imme	0	RW
	0- from P05.03			me	diately		
	1- from AI1						
	2- from AI2						
	3- from AI3						
P05.03	Digital value of main torque command A	-300.0~30	%	anyti	imme	0.0	RW
		0.0		me	diately		
P05.04	Source of auxiliary torque command B	0~3	-	anyti	imme	0	RW
	0- from P05.05			me	diately		
	1- from AI1						
	2- from AI2						
	3- from AI3						
P05.05	Digital value of auxiliary torque command B	-300.0~30	%	anyti	imme	0.0	RW
		0.0		me	diately		
P08.16	Communication setting	-3276.7~3	%	anyti	imme	0.0	RW
		276.7		me	diately		
T	Polated input function hits	•					

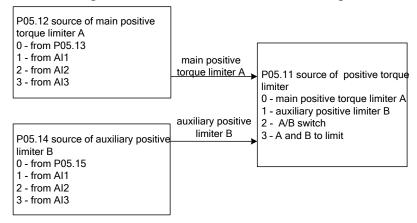
Related parameters are as follows.

Related input function bits.

num	Bit description
INFn.03	Switch the main torque command A and the auxiliary torque command B, and use the auxiliary
	torque command B when it is valid.

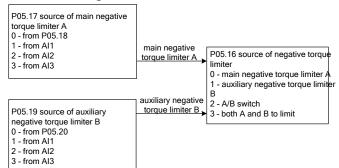
For torque instructions from AIx, please refer to "6.3.1 Analog Input AI" for details. .

5.4.2 Torque limiting


Torque limiting is achieved by limiting the output current of the driver to limit the output torque of the motor. The larger the torque limit value is, the larger the motor output torque is, and the easier the driver is to over-current. There are two kinds of limiting methods for torque limiting. One is that the forward and reverse limiters are from the positive limiter value; the other is the positive and negative limiting separately. Which one depends on P05.10. Both the positive limiting and the reverse limiting have a primary limiter A source and an auxiliary limiter B source, respectively a primary forward torque limiter A, an auxiliary forward torque limiter B.

In addition to the above torque limiter, in order to protect the motor, the torque output is limited according to the three values of the rated motor current P00.01, the rated current of the driver P01.03, and the current peak current percentage P00.24.the value of this limit is calculate as follows:

 $\frac{\text{motor rated current P00.01}}{\text{driver rate current P01.03}} \times \text{current peak current percentage P00.24}$


5.4.2.1 Positive torque limiting

The source of the positive torque limit is shown below. There are two types of positive torque limiting, one is the main positive torque limiter A, and the other is the auxiliary positive limiter B. Both torque limits have different sources of torque.

5.4.2.2 Negative torque limiting

The source of the negative torque limit is shown below. There are two types of negative torque limiting, one is the main negative torque limiter A, and the other is the auxiliary negative torque limiter B. Both torque limiters have different sources.

Related parameters are as follows.

Num	Description	Range	unit	Set mom ent	activ e mom ent	defa ult	ACCES S
P05.10	Torque limit method	0~1	-	anyti	imme	0	RW
	0- Forward and reverse limit are from			me	diatel		
	positive limiting				У		
	1- Forward and reverse limit separately						

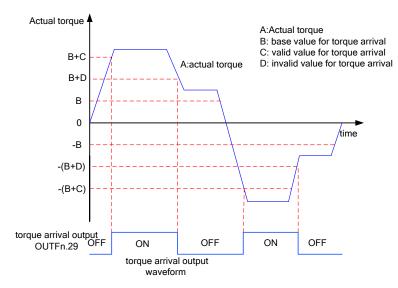
P05.11	Positive torque limiting source	0~3	_	anyti	imme	0	RW
105.11	0- Forward Limit A	0.5		me	diatel	Ū	IC.V
	1- Forward limiter B				у		
	2- A/B switching				5		
	3- A and B are simultaneously limit						
P05.12	Source of forward torque limit A	0~3	-	anyti	imme	0	RW
	0- from P05.13			me	diatel		
	1- from AI1				у		
	2- from AI2				-		
	3- from AI3						
P05.13	Set value of forward torque limiter	0~300.0	%	anyti	imme	150.	RW
	A			me	diatel	0	
					у		
P05.14	Forward Torque Limit B Source	0~3	-	anyti	imme	0	RW
	0- from P05.15			me	diatel		
	1- from AI1				у		
	2- from AI2						
	3- from AI3						
P05.15	Set value of forward torque limiter	0~300.0	%	anyti	imme	150.	RW
	В			me	diatel	0	
					у		
P05.16	Reverse torque limiting source	0~3	-	anyti	imme	0	RW
	0- Reverse Limit A			me	diatel		
	1- Reverse limit B				у		
	2- A/B switching						
	3- A and B are simultaneously						
	limit						
P05.17	Source of reverse torque limit A	0~3	-	anyti	imme	0	RW
	0- from P05.18			me	diatel		
	1- from AI1				У		
	2- from AI2						
	3- from AI3						
P05.18	Set value of reverse torque limiter	0~300.0	%	anyti	imme	150.	RW
	А			me	diatel	0	
					у		
P05.19	Reverse Torque Limit B Source	0~3	-	anyti	imme	0	RW
	0- from P05.20			me	diatel		
	1- from AI1				У		
	2- from AI2						
	3- from AI3						
P05.20	Set value of reverse torque limiter	0~300.0	%	anyti	imme	150.	RW
l	В			me	diatel	0	
					У		

num	Bit description
INFn.05	Forward torque limiting source A/B switching, positive limiting B is used when active
INFn.06	Reverse torque limiting source A/B switching, reverse limiting B is used when active

Related input function bits..

5.4.3 Speed limit

When the motor is unloaded, given a large torque will increase the speed of the motor, so the speed needs to be limited. The speed limit is the same as the speed limit in the speed mode.


Num	Description	Range	unit	Set mom ent	active mome nt	defau lt	AC CES S
P04.06	source of postive speed limiting	0~3	-	anyti	immedi	0	RW
	0- main postive speed limiter A			me	ately		
	1- auxiliary reverse speed limiter B						
	2- A/B switch						
	3-both A and B are limiter						
P04.07	Soure of main postive speed limiter A	0~3	-	anyti	immedi	0	RW
	0- from P04.08			me	ately		
	1- fromAI1						
	2- fromAI2						
	3- fromAI3						
P04.08	Digital value of postive speed limiter A	0~327	rpm	anyti	immedi	3000	RW
		67		me	ately		
P04.09	Soure of auxiliary reverse speed limiter	0~3	-	anyti	immedi	0	RW
	В			me	ately		
	0- fromP04.10						
	1- fromAI1						
	2- fromAI2						
	3- fromAI3						
P04.10	Digital value of postive speed limiter B	0~327	rpm	anyti	immedi	3000	RW
		67		me	ately		
P04.11	source of negative speed limiting	0~3	-	anyti	immedi	0	RW
	0- main negative speed limiter A			me	ately		
	1- auxiliary negative speed limiter B						
	2- A/B switch						
	3- both A and B are limiter						
P04.12	Source of main negative speed limiter	0~3	-	anyti	immedi	0	RW
	А,			me	ately		

Related parameters are as follows.

	0- fromP04.13						
	1- fromAI1						
	2- fromAI2						
	3- fromAI3						
P04.13	Digital value of main negative speed	0~327	rpm	anyti	immedi	3000	RW
	limiter A	67		me	ately		
P04.14	Source of auxiliary negative speed	0~3	-	anyti	immedi	0	RW
	limiter B			me	ately		
	0- fromP04.15						
	1- fromAI1						
	2- fromAI2						
	3- fromAI3						
P04.15	Digital value of auxiliary negative	0~327	rpm	anyti	immedi	3000	RW
	speed limiter B	67		me	ately		

5.4.4 Torque arrival output

The torque arrival function is used to determine whether the actual torque has reached the set interval. When the actual torque reaches the torque threshold, the driver can output the corresponding DO signal (OUTFn29: torque arrival).

Actual torque: A;

Base value for torque arrival P05.31: B;

Valid value for torque arrival P05.32: C;

Invalid value for torque arrival P05.33: D;

Therefore, when the torque arrival signal (OUTFn29) from invalid to active, the actual torque must satisfy:

$$|A| \ge B + C$$

Otherwise, the torque reaching signal remains inactive.

When the torque arrival signal from active to inactive, the actual torque must satisfy:

|A| < B+D

Otherwise, the torque arrival signal remains valid.

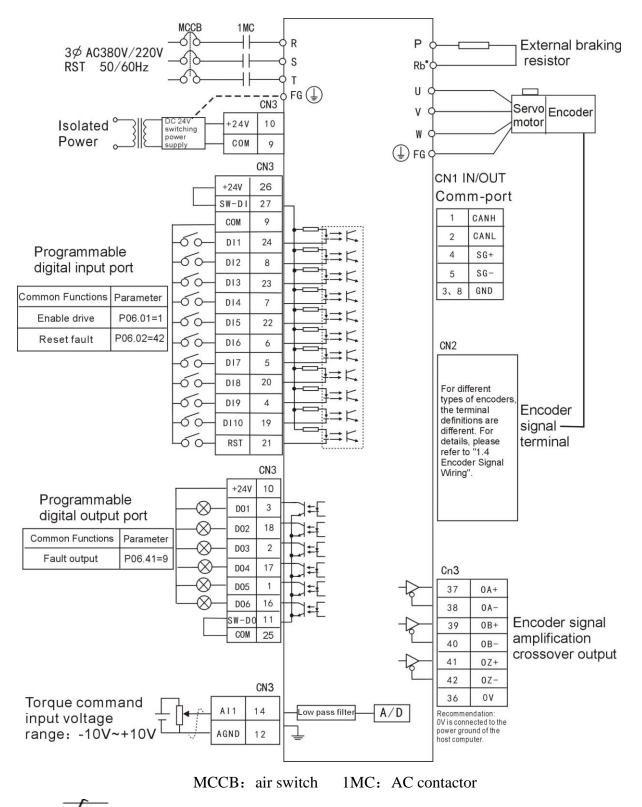
Num	Description	Range	unit	Set mom ent	activ e mom ent	defa ult	ACCESS
P05.31	Base value for torque arrival	0~300.0	%	anyti	imme	50.0	RW
				me	diatel		
					у		
P05.32	Valid value for torque arrival	0~300.0	%	anyti	imme	10.0	RW
				me	diatel		
					у		
P05.33	Invalid value for torque	0~300.0	%	anyti	imme	0.0	RW
	arrival			me	diatel		
					у		

Related parameters are as follows.

Related output function bits.

num	Bit description
OUTFn.29	The torque arrival signal;

5.4.5 Small torque jitter suppression


When the given torque is small, the motor may be shaken due to uneven distribution of the magnetic poles of the motor. The motor can output a certain reverse torque to overcome the motor shake, so that the motor speed output is stable.

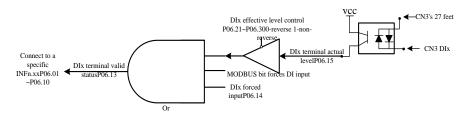
Related parameters are as follows:

Num	Description	Range	unit	Set mom ent	activ e mom ent	defa ult	ACCESS
P05.35	Maximum output limit of	0~10.0	%	anyti	imme	0	RW
	torque that suppresses jitter			me	diatel		
					у		
P05.36	Percentage of gain that	0~300.0	%	anyti	imme	100.	RW
	suppresses jitter			me	diatel	0	
					у		
P05.37	time constant for detect Jitter	0-32767	ms	anyti	imme	500	RW
	speed			me	diatel		
					у		
P05.38	detected Jitter speed	-	ms	anyti	imme	-	RO

				me	diatel		
					у		
P05.39	Torque output that suppresses	-	ms	anyti	imme	-	RO
	jitter			me	diatel		
					у		

5.4.6 Torque mode typical wiring diagram (NPN mode)

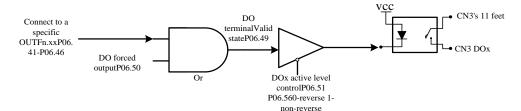
1. - is Twisted pair shielded wire.


2. The DC24V power supply is prepared by the user. The DC24V switching power supply should be powered by an isolation transformer, and its grounding terminal should be directly connected to the ground terminal of the driver.

Chapter 6 Inputs and Outputs Function

6.1 Entity DI/DO function

The servo has 10 physical DIs, which are DI1~DI10. Each entity DI can be assigned an input function bit INFn.xx. The effective level of each entity DI can be set separately (P06.21-P06.30). Each entity DI can be forced to enter a specific level via P06.14, or a DI input can be forced via the Modbus bit.


The internal logic of DI is shown in the figure below.

(Remark: SW-DI: CN3's 27-pin and +24V are short-circuited to NPN mode; short-circuit with COM is PNP mode.)

As can be seen from the above figure, to make the DIx terminal valid, you can modify the actual level of DIx, or by setting the MODBUS communication bit, or setting the forced valid register P06.14. If input from an external terminal, a voltage difference of 24V is required between the 27th pin of the servo CN3 terminal and the corresponding DIx pin.

The servo has a total of 6 physical DOs, which are DO1~DO6. Each DO can be assigned an output function bit OUTFn.xx. The active level of each entity DO can be set separately, or a DO bit can be output by the P06.50 forced register. The effective level output of DO eventually drives an opt coupler. Once the opt coupler is turned on, DOx outputs the voltage at pin 11 of CN3 port.

 $(\mbox{Remark: SW-DO: CN11's 11 pin is shorted to COM in NPN mode; shorted to +24V is PNP mode.)$

Among them, DI1[~]DI8 are hardware low speed DI, DI9 and DI10 are hardware high speed DI, the details are as follows:

Hardware low speed DI description (DI1~DI8)						
DI function effective logic state	e Remarks					
Low level	High More than 3ms Low Effective					

Shenzhen VECTOR Technology Co., Ltd. VC Servo manual

RO/ RW

RW

	Effective
High level	riigii
	Low More than 3ms
	Effective High
Rising edge	
	Low More than 3ms
	High More than 3ms
Falling edge	
	Low Effective
	Effective Effective High
Rising and falling edges	
	LowMore than 3ms

Hardy	ware high speed DI description (DI9, DI10)
DI function effective logic state	Remarks
Low level	High More than 0.25ms Low Effective
High level	High Low More than 0.25ms
Rising edge	Effective High Low More than 0.25ms
Falling edge	High More than 0.25ms Low Effective
Rising and falling edges	High Low More than 0.25ms

DO1 and DO2 are set to output the A, B, and Z signals of the motor encoder through P06.40.

_	The relevant parameters are as follows:								
	Num	Description	Range	unit	function	Set mom ent	active mom ent	Def ault	
	P06.01	DI1 function	0~99	-	Set the DI function	anyti	immed	1	
		control register			corresponding to the	me	iately		
					hardware DI1 terminal.				

The relevant parameters are as follows:

				Coothe Difunction				
				See the DI function				
				table for specific				
				functions.				
P06.02	DI2 function	0~99	-	-	anyti	immed	42	RW
	control register				me	iately		
P06.03	DI3 function	0~99	-	-	anyti	immed	0	RW
	control register				me	iately		
P06.04	DI4 function	0~99	-	-	anyti	immed	0	RW
	control register				me	iately		
P06.05	DI5 function	0~99	_	-	anyti	immed	0	RW
	control register				me	iately		
P06.06	DI6 function	0~99	_	-	anyti	immed	0	RW
	control register				, me	iately	-	
P06.07	DI7 function	0~99			anyti	immed	0	RW
100.07	control register	0 55			me	iately	U	
P06.08	DI8 function	0~99				immed	0	RW
P00.08		0 99	-	-	anyti		0	L AA
500.00	control register	000			me	iately	•	D 14
P06.09	DI9 function	0~99	-	-	anyti	immed	0	RW
	control register				me	iately		
P06.10	DI10 function	0~99	-	-	anyti	immed	0	RW
	control register				me	iately		
P06.13	DI terminal valid	-	-	Displayed in decimal	anyti	-	-	RO
	status			format, converted to	me			
				binary format,				
				containing 0-9 digits,				
				low to high indicates				
				the state of digital				
				output terminals				
				DI1~DI10, 0=OFF,				
				1=ON, the 0th bit				
				corresponds to DI1,, 9				
				bits correspond to				
				DI10. For the				
				parameter valid status				
				display, see "4.6				
				Variable Monitoring".				
P06.14	DI forced input	0~1023		When the DI forced	anyti	immed	0	RW
r 00.14		0 1025	-	input is valid, the level	me	iately	0	1.00
					me	ately		
				logic of the DI function				
				is set by this parameter.				
				Input in decimal (BCD)				
				format, converted to				

		1						
				binary (Binary) is the				
				corresponding DIx				
				input signal. For				
				example: P06.14=42				
				(BCD)=0000101010				
				(Binary), indicating DI2,				
				DI4 and DI6 terminals				
				are ON.				
P06.15	DI Actual terminal	-	-	Displayed in decimal	anyti	-	-	RO
	level			format, after	me			
				conversion to binary				
				format, it contains 0-9				
				digits, and the low to				
				high digits indicate the				
				state of digital output				
				terminals DI1~DI10. For				
				the parameter valid				
				status display, see "4.6				
				Variable Monitoring".				
P06.16	High speed DI	1~32767		When the high-speed	anyti	immed	10	RW
P00.10	High speed DI filter	1 52/07	us	pulse input terminal is			10	LAA
					me	iately		
	configuration			in the peak				
				interference, the spike				
				interference can be				
				filtered out by setting				
				P06.16. INFn.34 and				
				INFn.40 are high-speed				
				DI signals whose				
				filtering time is				
				determined by P06.16;				
				other input signals are				
				low-speed DI signals,				
				and the filtering time is				
				determined by P06.17.				
P06.17	Low speed DI	1~32767	us	When there is spike	anyti	immed	100	RW
	filter			interference at the	me	iately	0	
	configuration			low-speed pulse input,				
				the spike interference				
				can be suppressed by				
				setting P06.17 to				
				prevent the				
				interference signal				
				0				

				driver.				
P06.21	DI1 active level	0~1	-	Set the level logic of	anyti	immed	0	RW
	0-active low			the hardware DI1	me	iately		
	1-active high			terminal when the DI				
				function selected by				
				DI1 is enabled.				
P06.22	DI2 active level	0~1	-	-	anyti	immed	0	RW
	0-active low				me	iately		
	1-active high							
P06.23	DI3 active level	0~1	-	-	anyti	immed	0	RW
	0-active low				me	iately		
	1-active high							
P06.24	DI4 active level	0~1	-	-	anyti	immed	0	RW
	0-active low				me	iately		
	1-active high							
P06.25	DI5 active level	0~1	-	-	anyti	immed	0	RW
	0-active low				me	iately		
	1-active high							
P06.26	DI6 active level	0~1	-	-	anyti	immed	0	RW
	0-active low				me	iately		
	1-active high							
P06.27	DI7 active level	0~1	-	-	anyti	immed	0	RW
	0-active low				me	iately		
	1-active high							
P06.28	DI8 active level	0~1	-	-	anyti	immed	0	RW
	0-active low				me	iately		
	1-active high							
P06.29	DI9 active level	0~1	_	-	anyti	immed	0	RW
	0-active low	• -			me	iately	-	
	1-active high					,		
P06.30	DI10 active level	0~1	_	-	anyti	immed	0	RW
	0-active low	0 -			me	iately	Ū	
	1-active high					,		
P06.40	DO1 and DO2	0~2			anyti	immed	0	RW
1 001 10	function	0 2			me	iately	U	
	configuration					,		
	registers							
	0- DO1, DO2							
	function							
	output							
	configured							
	with P06.41,							

	P06.42							
	respectively							
	1- DO1, DO2							
	output A, B							
	-							
	pulse							
	respectively							
	2- DO1 outputs							
	Z point signal,							
	DO2							
	functions							
	output with							
	P06.42							
	configuration							
P06.41	DO1 function	0~99	-	Set the DO function	anyti	immed	9	RW
	control register			corresponding to the	me	iately		
				hardware DO1				
				terminal. See the DO				
				function table for				
				specific functions.				
P06.42	DO2 function	0~99	-	-	anyti	immed	13	RW
	control register				me	iately		
P06.43	DO3 function	0~99	-	-	anyti	immed	0	RW
	control register				me	iately		
P06.44	DO4 function	0~99	-	-	anyti	immed	0	RW
	control register				me	iately		
P06.45	DO5 function	0~99	-	-	anyti	immed	0	RW
	control register				me	iately		
P06.46	DO6 function	0~99	-	-	anyti	immed	0	RW
	control register				me	iately		
P06.49	DO terminal valid	-	-	Displayed in decimal	anyti	-	-	RO
	status			format, after	me			
				conversion to binary				
				format, it contains 0-5				
				digits. The low to high				
				digits indicate the state				
				of digital output				
				terminals DO1~DO6,				
				0=OFF, 1=ON, and the				
				Oth bit corresponds to				
				DO1,, 5 bits				
				correspond to DO6. For				
				the parameter valid				
				status display, see "4.6				

				Variable Monitoring".				
P06.50	DO forced output	0~63	-	When the DO forced	anyti	immed	0	RW
				output is valid, this	me	iately		
				parameter is used to				
				set whether the DO				
				function is valid. Input				
				in decimal (BCD)				
				format, converted to				
				binary (Binary) is the				
				corresponding DOx				
				input signal. For				
				example: P06.50=42				
				(BCD)=101010 (Binary),				
				indicating that DO2,				
				DO4 and DO6 output				
				are ON.				
P06.51	DO1 active level	0~1	-	The output level logic	anyti	immed	0	RW
	0-active low			of the hardware DO1	me	iately		
	1- active high			terminal is set when				
				the DO function				
				selected by DO1 is				
				enabled.				
P06.52	DO2 active level	0~1	-	-	anyti	immed	0	RW
	0-active low				me	iately		
	1- active high							
P06.53	DO3 active level	0~1	-	-	anyti	immed	0	RW
	0-active low				me	iately		
	1- active high							
P06.54	DO4active level	0~1	-	-	anyti	immed	0	RW
	0-active low				me	iately		
	1- active high							
P06.55	DO5 active level	0~1	-	-	anyti	immed	0	RW
	0-active low				me	iately		
	1- active high							
P06.56	DO6 active level	0~1	-	-	anyti	immed	0	RW
	0-active low				me	iately		
	1- active high							

The DI specific function INFn.xx configuration is shown in the table below, and its valid status can be monitored by P06.13.

DI function		Effective rule
number	DI function	

0	Nama	
0	None	- Maltid och an Alex contrat starter to bitch
1	Enable servo	Valid when the valid state is high
2	Reset servo	Effective state changes from low to high
3	Torque AB selector	Valid when the valid state is high
4	Torque reverse selector	Valid when the valid state is high
5	Forward torque limit selector	Valid when the valid state is high
6	Reverse torque limit selector	Valid when the valid state is high
7	Forward speed limit selector	Valid when the valid state is high
8	Reverse speed limit selector	Valid when the valid state is high
9	Positive jog	Valid when the valid state is high
10	Reverse jog	Valid when the valid state is high
11	Speed given reverse	Valid when the valid state is high
12	Main speed AB selector	Valid when the valid state is high
13	Speed stop input	Valid when the valid state is high
14	Download ARM program reset	Effective state changes from low to high
15	Clear encoder position counter	Effective state changes from low to high
16	Zero position fixed in speed mode	Valid when the valid state is high
17	Multi-speed selector 0	Valid when the valid state is high
18	Multi-speed selector 1	Valid when the valid state is high
19	Multi-speed selector 2	Valid when the valid state is high
20	Multi-speed selector 3	Valid when the valid state is high
21	Position instruction prohibited	Valid when the valid state is high
22	Position command reversal	Valid when the valid state is high
23	Pulse command prohibition	Valid when the valid state is high
24	Electronic gear ratio selector 1	Valid when the valid state is high
25	Position error clear	Depends on P03.21
26	Trigger position mode homing	Effective state changes from low to high
		The rising edge of the active state triggers
		the start of the multi-segment position.The falling
27	Multi-segment position trigger signal	edge of the active state triggers the stop of
		multiple positions
28	Multi-segment position selector 0	Valid when the valid state is high
29	Multi-segment position selector 1	Valid when the valid state is high
30	Multi-segment position selector 2	Valid when the valid state is high
31	Multi-segment position selector 3	Valid when the valid state is high
32	Position direction in multi-segment position mode	Valid when the valid state is high
33	Reserved	Reserved
34	Return home signal input	Depends on return home mode
	XY pulse tracking and multi-segment position	Valid when the valid state is high
35	switching in position mode	
36	Control mode selector 0	Valid when the valid state is high
37	Control mode selector 1	Valid when the valid state is high

	Enable detection trigger interrupt fixed length	Valid when the valid state is high
38	signal INFn.40	
39	Uninterrupted fixed length	Valid when the valid state is high
	Trigger an input signal that interrupts the fixed	Effective state from low to high
40	length	
41	First or second set of gain switch	Valid when the valid state is high
42	Reset fault	Valid when the valid state is high
43	Position mode positive limit switch	Valid when the valid state is high
44	Position mode reverse limit switch	Valid when the valid state is high
45	Open-closed switching in full-closed mode	Valid when the valid state is high
46	FPGA download program reset	Effective state from low to high
47	Tension compensation direction	Valid when the valid state is high
48	Tension tracking direction	Valid when the valid state is high
49	Forced to limit at maximum compensation speed	Valid when the valid state is high
50	Prohibit roll diameter calculation	Valid when the valid state is high
51	Change volume	Valid when the valid state is high
52	Initial roll diameter switch	Valid when the valid state is high
53	Clear feed length	Valid when the valid state is high
54	Forced fast tightening	Valid when the valid state is high
	No tension compensation in closed loop speed	Valid when the valid state is high
55	mode	
56	Electronic gear ratio selector 2	Valid when the valid state is high
57	Motor overheating	Valid when the valid state is high
58	Emergency stop input	Valid when the valid state is high
59	Internal trigger reset	Effective state from low to high
60	Internal trigger set	Effective state from low to high
61	Internal counter count pulse	Effective state from low to high
62	Internal counter clear	Valid when the valid state is high
63	UPDOWN mode UP signal in speed mode	Valid when the valid state is high
64	UPDOWN mode DOWN signal in speed mode	Valid when the valid state is high
65	UPDOWN mode speed hold signal in speed mode	Valid when the valid state is high
66	Speed stack enable	Valid when the valid state is high
67	Correct all zero drift of AI	Valid when the valid state is high to low
	Tension closed loop speed / torque mode	Valid when the valid state is high
68	switching	

The DO specific function OUTFn.xx is shown in the following table.

DO function	
number	DO function
0	None
1	Drive is enabling
2	Speed has arrived

3	Speed is falling
4	Speed is rising
5	Speed is at zero speed
6	Speed overrun
7	Speed forward
8	Speed reversal
9	Fault output
10	Forward speed limit in torque mode
11	Negative speed limit in torque mode
12	Speed limit in torque mode
13	Positioning completion output
14	Positioning close to the output
15	return home completed output
16	Position error too large output
17	Interrupt fixed length output
18	Software limit output
24	Brake output
25	Input command is valid
26	Often OFF
27	Always ON
28	Torque limit output
29	Torque arrival
30	Internal trigger status
31	Internal counter count arrives
32	Consistent speed
33	Pulse position command is zero output

6.2 Virtual DI/DO function

The servo drive has 16 general-purpose virtual DIs (VDIs), and each virtual DI has two levels of level types, including write 1 always active and rising edge valid. The function of each virtual DI (P12.01 to P12.16) can be configured separately. The level of the VDI is simulated by writing a value to the virtual DI input register (P12.20).

The servo driver has 16 general-purpose virtual DOs (VDOs). There are two types of level types for each virtual DO. One is output when it is valid, and the output is 0 when it is valid. The function of each virtual DO (P12.41-P12.56) can be configured separately. The output level of the DO can be displayed in P12.60.

The servo drive also has two sets of dedicated inputs and outputs: VDI20 and VDO20, VDI21 and VDO21. These two VDI/VDOs are internally connected.

The relevant parameters are as follows.

Num	Description	Dango	unit	function	Set	active	def	RO/
Num	Description	Range	unit	function	mom	mome	ault	RW

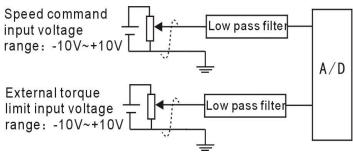
					ent	nt		
P12.01	VDI1 function	0~99	-	Set the DI	anyti	immedi	0	RW
	configuration register			function	me	ately		
				corresponding to				
				VDI1 (virtual input				
				terminal 1). The				
				specific function				
				of the VDI port is				
				the same as that				
				of the physical DI				
				port.				
P12.02	VDI2 function	0~99	-	-	anyti	immedi	0	RW
	configuration register				me	ately		
P12.03	VDI3 function	0~99	-	-	anyti	immedi	0	RW
	configuration register				me	ately		
P12.04	VDI4 function	0~99	-	-	anyti	immedi	0	RW
	configuration register				me	ately		
P12.05	VDI5 function	0~99	-	-	anyti	immedi	0	RW
	configuration register				me	ately		
P12.06	VDI6 function	0~99	-	-	anyti	immedi	0	RW
	configuration register				me	ately		
P12.07	VDI7 function	0~99	-	-	anyti	immedi	0	RW
	configuration register				me	ately		
P12.08	VDI8 function	0~99	-	-	anyti	immedi	0	RW
	configuration register				me	ately		
P12.09	VDI9 function	0~99	-	-	anyti	immedi	0	RW
	configuration register				me	ately		
P12.10	VDI10 function	0~99	-	-	anyti	immedi	0	RW
	configuration register				me	ately		
P12.11	VDI11 function	0~99	-	-	anyti	immedi	0	RW
	configuration register				me	ately		
P12.12	VDI12 function	0~99	-	-	anyti	immedi	0	RW
	configuration register				me	ately		
P12.13	VDI13 function	0~99	-	-	anyti	immedi	0	RW
	configuration register				me	ately		
P12.14	VDI14 function	0~99	-	-	anyti	immedi	0	RW
	configuration register				me	ately		
P12.15	VDI15 function	0~99	-	-	anyti	immedi	0	RW
	configuration register				me	ately		
P12.16	VDI16 function	0~99		-	anyti	immedi	0	RW
	configuration register				me	ately		
P12.17	VDI20 function	0~99	-	-	anyti	immedi	0	RW

	configuration register				me	ately		
P12.18	VDI21 function	0~99	-	-	anyti	immedi	0	RW
	configuration register				me	ately		
P12.19	Monitor value of	-	-	Read the virtual	-	-	-	RO
	virtual DI20 and virtual			values of the				
	DI21.			VDI20 and VDI21				
				terminals.				
P12.20	Virtual DI1-virtual DI16	0~65535	-	Set the input	anyti	immedi	0	RW
	input value setting			value of VDI1-16.	me	ately		
	register							
P12.21	VDI1 level type	0~1	-	Set the DI	anyti	immedi	0	RW
	0-Write 1 is always			function selected	me	ately		
	valid			by VDI1 to be				
	1- rising edge is valid			valid, and the				
				input level logic of				
				the VDI1 terminal.				
P12.22	VDI2 level type	0~1	-	-	anyti	immedi	0	RW
	0-Write 1 is always				me	ately		
	valid							
	1- rising edge is valid							
P12.23	VDI3 level type	0~1	-	-	anyti	immedi	0	RW
	0-Write 1 is always				me	ately		
	valid							
	1- rising edge is valid							
P12.24	VDI4 level type	0~1	-	-	anyti	immedi	0	RW
	0-Write 1 is always				me	ately		
	valid							
	1- rising edge is valid							
P12.25	VDI5 level type	0~1	-	-	anyti	immedi	0	RW
	0-Write 1 is always				me	ately		
	valid							
	1- rising edge is valid							
P12.26	VDI6 level type	0~1	-	-	anyti	immedi	0	RW
	0-Write 1 is always				me	ately		
	valid							
	1- rising edge is valid							
P12.27	VDI7 level type	0~1	-	-	anyti	immedi	0	RW
	0-Write 1 is always				me	ately		
	valid							
	1- rising edge is valid							
P12.28	VDI8 level type	0~1	-	-	anyti	immedi	0	RW
	0-Write 1 is always				me	ately		

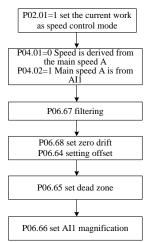
	valid							
	1- rising edge is valid							
P12.29	VDI9 level type	0~1	_	_	anyti	immedi	0	RW
	0-Write 1 is always				me	ately	-	
	valid					,		
	1- rising edge is valid							
P12.30	VDI10 level type	0~1	_	-	anyti	immedi	0	RW
	0-Write 1 is always				me	ately	-	
	valid					,		
	1- rising edge is valid							
P12.31	VDI11 level type	0~1	_	-	anyti	immedi	0	RW
1 12.51	0-Write 1 is always	0 1			me	ately	U	
	valid					atory		
	1- rising edge is valid							
P12.32	VDI12 level type	0~1	_	_	anyti	immedi	0	RW
12:52	0-Write 1 is always	0 1			me	ately	U	
	valid					,		
	1- rising edge is valid							
P12.33	VDI13 level type	0~1	_	_	anyti	immedi	0	RW
	0-Write 1 is always				me	ately	-	
	valid					,		
	1- rising edge is valid							
P12.34	VDI14 level type	0~1	-	-	anyti	immedi	0	RW
	0-Write 1 is always				me	ately		
	valid							
	1- rising edge is valid							
P12.35	VDI1 5level type	0~1	-	-	anyti	immedi	0	RW
	0-Write 1 is always				me	ately		
	valid							
	1- rising edge is valid							
P12.36	VDI16 level type	0~1	-	-	anyti	immedi	0	RW
	0-Write 1 is always				me	ately		
	valid							
	1- rising edge is valid							
P12.37	VDI20 level type	0~1	-	-	anyti	immedi	0	RW
	0-Write 1 is always				me	ately		
	valid							
	1- rising edge is valid							
P12.38	VDI21 level type	0~1	-	-	anyti	immedi	0	RW
	0-Write 1 is always				me	ately		
	valids							
	1- rising edge is valid							

P12.41	VDO1	configuration	0~99	-	Set the DO	anyti	immedi	0	RW
	register				function	me	ately		
					corresponding to				
					VDO1. The VDO				
					specific function				
					is the same as the				
					physical DO				
					function.				
P12.42	VDO2	configuration	0~99	-	-	anyti	immedi	0	RW
	register					me	ately		
P12.43	VDO3	configuration	0~99	-	-	anyti	immedi	0	RW
	register					me	ately		
P12.44	VDO4	configuration	0~99	-	-	anyti	immedi	0	RW
	register					me	ately		
P12.45	VDO5	configuration	0~99	-	-	anyti	immedi	0	RW
	register					me	ately		
P12.46	VDO6	configuration	0~99	-	-	anyti	immedi	0	RW
	register					me	ately		
P12.47	VDO7	configuration	0~99	-	-	anyti	immedi	0	RW
	register					me	ately		
P12.48	VDO8	configuration	0~99	-	-	anyti	immedi	0	RW
	register					me	ately		
P12.49	VDO9	configuration	0~99	-	-	anyti	immedi	0	RW
	register					me	ately		
P12.50	VDO10	configuration	0~99	-	-	anyti	immedi	0	RW
	register					me	ately		
P12.51	VDO11	configuration	0~99	-	-	anyti	immedi	0	RW
	register					me	ately		
P12.52	VDO12	configuration	0~99	-	-	anyti	immedi	0	RW
	register					me	ately		
P12.53	VDO13	configuration	0~99	-	-	anyti	immedi	0	RW
	register					me	ately		
P12.54	VDO14	configuration	0~99	-	-	anyti	immedi	0	RW
	register					me	ately		
P12.55	VDO15	configuration	0~99	-	-	anyti	immedi	0	RW
	register					me	ately		
P12.56	VDO16	configuration	0~99	-	-	anyti	immedi	0	RW
	register					me	ately		
P12.57	VDO20	configuration	0~99	-	-	anyti	immedi	0	RW
	register					me	ately		
P12.58	VDO21	configuration	0~99	-	-	anyti	immedi	0	RW
	register					me	ately		

					1			
P12.59	Output level of virtual	-	-	Read the virtual	-	-	-	RO
	DO20 D021			level of the				
				VDO20 and				
				VDO21 terminals.				
P12.60	Virtual DO1-DO16	-	-	Read the virtual	-	-	-	RO
	output level			level of the VDO1				
				- VDO16 terminal.				
P12.61	Active level of virtual	0~1	-	The output level	anyti	immedi	0	RW
	D01			logic of the VDO1	me	ately		
	0-Output 1 when valid			terminal is set				
	1-Output 0 when valid			when the DO				
				function selected				
				by VDO1 is				
				enabled.				
P12.62	Active level of virtual	0~1	-	-	anyti	immedi	0	RW
	DO2				me	ately		
	0-Output 1 when valid							
	1-Output 0 when valid							
P12.63	Active level of virtual	0~1	-	-	anyti	immedi	0	RW
	DO3				me	ately		
	0-Output 1 when valid							
	1-Output 0 when valid							
P12.64	Active level of virtual	0~1	-	-	anyti	immedi	0	RW
	DO4				me	ately		
	0-Output 1 when valid							
	1-Output 0 when valid							
P12.65	Active level of virtual	0~1	-	-	anyti	immedi	0	RW
	DO5				me	ately		
	0-Output 1 when valid							
	1-Output 0 when valid							
P12.66	Active level of virtual	0~1	-	-	anyti	immedi	0	RW
	DO6				me	ately		
	0-Output 1 when valid							
	1-Output 0 when valid							
P12.67	Active level of virtual	0~1	-	-	anyti	immedi	0	RW
	DO7				me	ately		
	0-Output 1 when valid							
	1-Output 0 when valid							
P12.68	Active level of virtual	0~1	-	-	anyti	immedi	0	
	DO8				me	ately		
	0-Output 1 when valid					,		
	1-Output 0 when valid							
P12.69	Active level of virtual	0~1			anyti	immedi	0	RW


	DO9				me	ately		
	0-Output 1 when valid				ine	atory		
	1-Output 0 when valid							
P12.70	Active level of virtual	0~1	-	_	anyti	immedi	0	RW
-	DO10	-			me	ately	-	
	0-Output 1 when valid					-		
	1-Output 0 when valid							
P12.71	Active level of virtual	0~1	-	-	anyti	immedi	0	RW
	D011				me	ately		
	0-Output 1 when valid							
	1-Output 0 when valid							
P12.72	Active level of virtual	0~1	-	-	anyti	immedi	0	RW
	DO12				me	ately		
	0-Output 1 when valid							
	1-Output 0 when valid							
P12.73	Active level of virtual	0~1	-	-	anyti	immedi	0	RW
	DO13				me	ately		
	0-Output 1 when valid							
	1-Output 0 when valid							
P12.74	Active level of virtual	0~1	-	-	anyti	immedi	0	RW
	DO14				me	ately		
	0-Output 1 when valid							
	1-Output 0 when valid							
P12.75	Active level of virtual	0~1	-	-	anyti	immedi	0	RW
	DO15				me	ately		
	0-Output 1 when valid							
	1-Output 0 when valid							
P12.76	Active level of virtual	0~1	-	-	anyti	immedi	0	RW
	DO16				me	ately		
	0-Output 1 when valid							
	1-Output 0 when valid							
P12.77	Active level of virtual	0~1	-	-	anyti	immedi	0	RW
	D017				me	ately		
	0-Output 1 when valid							
	1-Output 0 when valid							
P12.78	Active level of virtual	0~1	-	-	anyti	immedi	0	RW
	DO21				me	ately		
	0-Output 1 when valid							
	1-Output 0 when valid							
P12.79	Whether the virtual	0~1	-	Whether the VDI1	anyti	immedi	1	RW
	DI1-DI16 input value			-VDI16 input	me	ately		
	register P12.20 is			value register is				
	powered on is cleared.			powered on is				

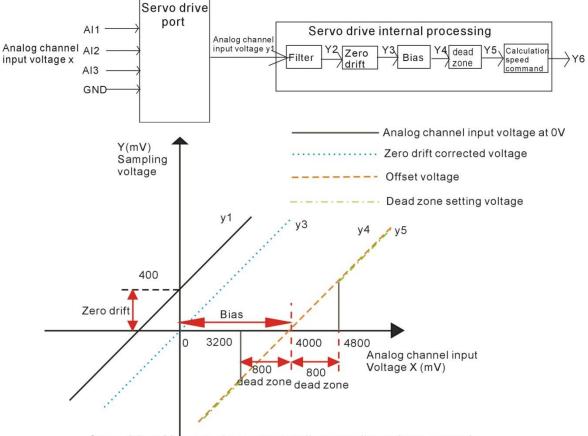
0-not clear		cleared.		
1-Clear				


6.3 Analog input analog output AI/AO function

6.3.1 Analog input Al

The servo drive has 3 AI terminals, and the input range of AI1-AI3 is ±10V input. Analog input circuit:

Operation method and steps: Take AI1 as an example to explain the analog voltage setting speed command method.


Glossary:

Zero drift: refers to the value of the servo drive sampled voltage value relative to GND when the analog channel input voltage is zero.

Offset: Refers to the input voltage value of the analog channel when the sampling voltage is zero after zero drift correction.

Dead zone: refers to the input voltage range of the analog channel when the sampling voltage is zero.

The unprocessed analog channel output voltage is shown in Figure y1. After being processed internally by the servo driver, the speed command y6 is finally obtained.

Servo driver AI processing corresponding sampling voltage example

• Filtering:

The servo driver provides analog channel filtering. By setting the filter time constants P06.67, P06.72, and P06.77, it can prevent the motor command fluctuation caused by the unstable analog input voltage, and can also reduce the motor fault caused by the interference signal. The filtering function has no elimination or suppression of zero drift and dead zone.

• Zero drift correction:

When the actual input voltage is corrected to 0V, the voltage P06.61 collected by the analog channel AI1 deviates from the value of 0V.

In the figure, the analog channel output voltage that is not processed internally by the driver is shown as y1. Taking the filter time constant P06.67=0.00ms as an example, the filtered sample voltage y2 is consistent with y1.

It can be seen that when the actual input voltage x=0, the collected voltage P06.61=y1=400mV, this 400mV is called zero drift.

After zero drift correction, the sample voltage is shown as y3. Y3=y1-400.0.

• Offset correction:

Set the actual input voltage value when the sampling voltage is 0.

As shown in the figure, when the sampling voltage y4=0 is preset, the corresponding actual input voltage x=4000mV, which is called offset. Set P06.64=4000.

Dead zone setting:

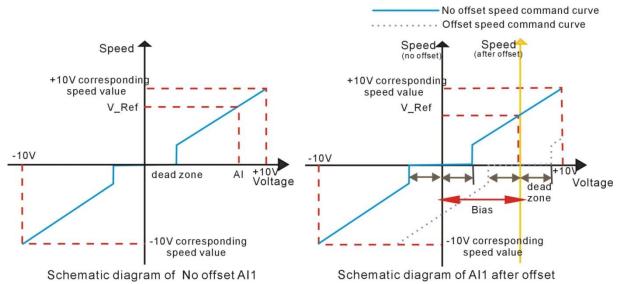
A valid input voltage range when the drive sample voltage is not zero.

After the offset setting is completed, when the input voltage x is between 3200mV and

4800mV, the sampled voltage value is 0. This 800mV is called the dead zone. Set P06.65 = 800.0. After setting the dead band, the sampling voltage is as shown in y5.

$$y_5 = \begin{cases} 0,3200 \le x \le 4800 \\ y_4,4800 \le x \le 10000 \text{ cm} - 10000 \le x \le 3200 \end{cases}$$

• Calculate the percentage of analog instructions


After the zero drift, offset, and dead zone settings are completed, divide by 10000mV and multiply by the magnification percentage to get the final simulation command percentage.

$$y_6 = \frac{y_5}{10000} \times (P06.66)\%$$

• Calculate speed command y6 or torque command Speed command (rpm) =rated speed (rpm) X Analog instruction percentage.

Torque command percentage = Analog instruction percentage.

For example, when there is no offset, as shown on the left of the figure below, there is an offset as shown in the right figure below. When the correct settings are completed, the Al1 sampled voltage value and the speed command value corresponding to the analog input can be viewed in real time through the oscilloscope channel.

The relationship between the final speed command value percentage y6 and the input voltage x:

$$y6 = \begin{cases} 0, & B - C \le x \le B + C \\ \frac{(x - B)}{10000} \times (P06.66 \text{ or } P06.72 \text{ or } P06.77)\%, & B + C \le x \le 10000 \text{ or } -10000 \le x \le B - C \end{cases}$$

Where: B: offset; C: dead zone.

To sum up, assuming that the Al1 filter time constant is 0, the Al1 analog command calculation process is as follows:

(1) Eliminate zero drift and offset

b1 = (Al1 input voltage value P06.61)-(Al1 zero drift P06.68)-(Al1 offset P06.64)

- Join the dead zone (2)
- $b2 = \begin{cases} 0, \\ b1, \end{cases}$ |b1| < dead zone P06.65
 - |b1| > dead zone P06.65
 - (3) Calculate the percentage of analog instructions

All analog command percentage P06.91 = $\frac{b2}{10000} \times (All magnification P06.66)\%$

(4) Calculate the speed command or torque command

Speed command (rpm) = Al1 analog command percentage P06.91×rated speed P00.02

Torque command (%) = AI1 analog command percentage P06.91.

The AI correction zero drift method is as follows: write 1 to P06.79, trigger calibration Al1 zero drift; write 2 trigger to P06.79 to correct Al2 zero drift; write P06.79 to 3 trigger correction AI3 zero drift; for P06. 79 write 4 trigger correction AI1, AI2, AI3 zero drift. Or trigger INFn67 through DI, and perform zero drift correction on AI1, AI2, and AI3.

Num	Description	Range	unit	function	Set mom ent	active mome nt	def ault	RO/ RW
P06.61	AI1 input voltage	-	mV	Display Al1 input voltage	-	-	-	RO
P06.62	AI2 input voltage	-	mV		-	-	-	RO
P06.63	AI3 input voltage	-	mV	-	-	-	-	RO
P06.64	AI1 bias	-10000~	mV	Set the actual input	anyti	immedi	0	RW
		10000		voltage of AI1 when the	me	ately		
				zero-drift corrected driver				
				sample voltage value is 0.				
P06.65	AI1 dead zone	0~5000	mV	When the drive sample	anyti	immedi	0	RW
				voltage value is set to 0,	me	ately		
				the AI1 input voltage				
				range.				
P06.66	AI1 magnification	0~1000.	%	Set the AI1 magnification.	anyti	immedi	100	RW
		0			me	ately	.0	
P06.67	AI1 low pass filter	0~32767	ms	Set the filter time	anyti	immedi	2	RW
	time constant			constant of the software	me	ately		
				to the AI1 input voltage				
				signal.				
P06.68	AI1 zero drift	-32767~	mV	Zero drift: refers to the	anyti	immedi	0	RW
		32767		value of the sampled	me	ately		
				voltage value of the servo				
				driver relative to GND				
				when the input voltage of				
				the analog channel is				
				zero.				

The AI related parameters are as follows.

P06.69	AI2 bias	-10000~	mV	-	anyti	immedi	0	RW
		10000			me	ately		
P06.70	AI2 dead zone	0~5000	mV	-	anyti	immedi	0	RW
					me	ately		
P06.71	AI2 magnification	0~1000.	%	-	anyti	immedi	100	RW
		0			me	ately	.0	
P06.72	AI2 low pass filter	0~32767	ms	-	anyti	immedi	2	RW
	time constant				me	ately		
P06.73	AI2 zero drift	-10000~	mV	-	anyti	immedi	0	RW
		10000			me	ately		
P06.74	AI3 bias	-10000~	mV	-	anyti	immedi	0	RW
		10000			me	ately		
P06.75	AI3 dead zone	0~5000	mV	-	anyti	immedi	0	RW
					me	ately		
P06.76	AI3 magnification	0~1000.	%	-	anyti	immedi	100	RW
		0			me	ately	.0	
P06.77	AI3 low pass filter	0~32767	ms	-	anyti	immedi	2	RW
	time constant				me	ately		
P06.78	AI3 zero drift	-10000~	mV	_	anyti	immedi	0	RW
		10000			me	ately		
P06.79	Automatic zero	0-7		-	anyti	, immedi	0	RW
	drift correction	•			me	ately		
	Write 1 trigger to					,		
	correct Al1 zero							
	drift;							
	Write 2 trigger							
	correction AI2							
	zero drift;							
	Write 3 trigger							
	correction AI3							
	zero drift;							
	Write 4 trigger							
	correction Al1-Al3							
	zero drift;							
	Write 5 trigger							
	correction current							
	sensor;							
	Write 6 to clear							
	the current							
	sensor zero drift							
DOC 04	value;	2276 76	0/	显示				D O
P06.91	Al1 analog	-3276.7~	%	並小	-	-	-	RO

	instruction	3276.7						
	percentage							
P06.92	AI2 analog	-3276.7~	%	显示	-	-	-	RO
	command	3276.7						
	percentage							
P06.93	AI3 analog	-3276.7~	%	显示	-	-	-	RO
	command	3276.7						
	percentage							

Related input function bits.

num	Bit description
INFn.67	Valid to invalid jump triggers zero drift of AI1, AI2, AI3

6.3.2 Analog output AO

The servo drive has two AO outputs with an output range of $\pm 10V$. The AO can output a specific value by configuring P06.84 and P06.85.

Actual port output voltage =

The corresponding variable is converted to the value of the voltage \times AOx Magnification -

AOx Bias.

Num	Description	Range	unit	function	Set mom ent	active mome nt	def ault	RO/ RW
P06.80	AO1 offset	-10000~	mV	When the theoretical	anyti	immedi	0	RW
		10000		output voltage is set to	me	ately		
				0V, AO1 actually				
				outputs the voltage				
				value after being				
				biased.				
P06.81	AO1 magnification	-1000.0~	%	Set the theoretical	anyti	immedi	100	RW
		1000.0		output voltage to 1V.	me	ately		
				After amplification,				
				AO1 actually outputs				
				the voltage value.				
P06.82	AO2 bias	-10000~	mV	When the theoretical	anyti	immedi	0	RW
		10000		output voltage is set to	me	ately		
				0V, the AO2 actually				
				outputs the voltage				
				value after being				
				biased.				

The relevant parameters are as follows.

P06.83	AO2 magnification	-1000.0~	%	Set the theoretical	anyti	immedi	100	RW
P06.83	AUZ magnification	1000.0	70		-		100	KVV
		1000.0		output voltage to 1V. After amplification,	me	ately		
				AO2 actually outputs				
				the voltage value.				
P06.84	AO1 configuration	-10000~		Set the output signal	anyti	immedi	0	RW
P00.64	register value	10000	-	type of analog output	me	ately	0	L AA
	0-Actual speed, 1mv	10000		terminal 1	me	atery		
	corresponds to 1rpm			(AO1).10000				
	1- Speed loop speed			corresponds to output				
	command, 1mv			10V; -10000				
	corresponds to 1rpm			corresponds to output				
	2-Torque command, 1mv			-10V.				
	corresponds to 0.1%			10 V.				
	rated torque							
	3-Position error before							
	filtering, 1mv							
	corresponds to 1 motor							
	encoder pulse							
	4- Filtered position error,							
	1mv corresponds to 1							
	, motor encoder pulse							
	5-Feed forward speed,							
	1mv corresponds to							
	0.1% rated speed							
	6-Position command							
	speed, 1mv corresponds							
	to 1rpm							
	7-Filtered position							
	command speed, 1mv							
	corresponds to 1rpm							
	8-A phase current							
	instantaneous value,							
	1mV corresponds to							
	0.1A							
	9-B phase current							
	instantaneous value,							
	1mV corresponds to							
	0.1A							
	10-torque feedback, 1mv							
	corresponds to 0.1%							
	rated torque							
P06.85	AO2 configuration	-10000~	-	Set the output signal	anyti	immedi	0	RW

register value	10000	type of analog output	me	ately	
0-Actual speed, 1mv		terminal 2			
corresponds to 1rpm		(AO2).10000			
1- Speed loop speed		corresponds to output			
command, 1mv		10V; -10000			
corresponds to 1rpm		corresponds to output			
2-Torque command, 1m	v	-10V.			
corresponds to 0.1%					
rated torque					
3-Position error before					
filtering, 1mv					
corresponds to 1 motor					
encoder pulse					
4- Filtered position erro	r,				
1mv corresponds to 1					
motor encoder pulse					
5-Feed forward speed,					
1mv corresponds to					
0.1% rated speed					
6-Position command					
speed, 1mv corresponds	5				
to 1rpm					
7-Filtered position					
command speed, 1mv					
corresponds to 1rpm					
8-A phase current					
instantaneous value,					
1mV corresponds to					
0.1A					
9-B phase current					
instantaneous value,					
1mV corresponds to					
0.1A					
10-torque feedback, 1m	IV .				
corresponds to 0.1%					
rated torque					

Chapter 7 Auxiliary Function

7.1 Fault protection

7.1.1 Fault Downtime

The failure of the servo drive is divided into three categories.

Class I is a serious fault. Once such a fault is reported, the motor power must be cut off immediately and the motor is free to stop. The fault code range for class I is Er. 100-Er. 199.

Class II is a general fault. When reporting such a fault, customize can report the running action of the motor after the fault according to parameter P02.10. The fault code range for a Type II fault is Er. 200-Er. 599.

Class III is not a serious fault. When reporting such a fault, customize can report the running action of the motor after the fault according to parameter P02.11. The fault code range for Class III faults is Er. 600-Er. 999.

When the hardware/software travel limit occurs, the servo over travel fault stop mode can be set separately by P02.12.

There are five types of downtime. The first type is free stop; the second type is rapid deceleration stop, the drive is disconnected after stop, the motor is powered off; the third is slow deceleration stop, disconnected after parking is enabled, the motor is powered off; the fourth is Quickly decelerate to stop, keep enabling after parking, users need to disconnect the enable signal to disable; the fifth is slow deceleration stop, keep enabled after parking, users need to disconnect the enable signal to disable. Free parking means that the drive is broken and the motor is free to stop by frictional resistance. Deceleration stop means that the servo drive drives the motor to decelerate. In this process, the motor is kept energized. The deceleration time for rapid deceleration stop is set by P02.16. The deceleration time for slow deceleration stop is set by P02.17. The deceleration time refers to the time from the rated speed to the zero speed. The actual deceleration time is determined by the speed at the time of the fault and the set deceleration time.

Actual deceleration time = Set deceleration time X

Speed	at	faii	lure
rate	d s	mee	d

Set active def RO/ Num Description Range unit function mom mome ault RW ent nt P02.10 Servo type 2 failure stop 0~4 0 RW immedi -Set the servo anyti mode selection motor's type II fault, me ately 0-break enable free the servo motor's parking deceleration mode 1-Fast deceleration and from rotation to

The relevant parameters are as follows.

	l	[
	stop after the parking is			stop, and the motor				
	enabled			state after stopping.				
	2-Slow deceleration stop							
	and enable							
	3- Fast deceleration stop							
	and keep enabled4-							
	Slow deceleration stop							
	and keep enabled							
P02.11	Servo three types of	0~4	-	Set the servo	anyti	immedi	0	RW
	failure mode selection			motor's type III fault,	me	ately		
	0- break enable free			the servo motor's				
	parking			deceleration mode				
	1- Fast deceleration and			from rotation to				
	stop after the parking is			stop, and the motor				
	enabled			state after stopping.				
	2- Slow deceleration							
	stop and enable							
	3- Fast deceleration stop							
	and keep enabled4-							
	Slow deceleration stop							
	and keep enabled							
P02.12	Over travel stop mode	0~4	-	Set the deceleration	anyti	immedi	0	RW
	selection			mode of the servo	me	ately		
	0- break enable free			motor from rotation				
	parking			to stop and the state				
	1- Fast deceleration and			of the motor after				
	stop after the parking is			stopping when the				
	enabled			over travel occurs				
	2- Slow deceleration			during servo motor				
	stop and enable			operation.				
	3- Fast deceleration stop							
	and keep enabled							
	4- Slow deceleration							
	stop and keep enabled							
P02.16	Fast stop time	0~65535	ms	Set the deceleration	anyti	immedi	500	RW
				time when the servo	me	ately		
				is fast stopped.		-		
P02.17	Slow parking time	0~65535	ms	Set the deceleration	anyti	immedi	100	RW
				time when the servo	me	ately	0	
				is slow to stop.				

7.1.2 All faults

error	Fault description
code	
Er.100	Software over-current, when the percentage of current detected by software P09.31 is greater
	than the value set by P10.01, the software over-current fault is reported, and the fault can be
	shielded by BIT1 of P10.33.
Er.101	Hardware overcurrent
Er.102	Overvoltage, for 220V driver, overvoltage when bus voltage P01.08 is greater than
	420V.For 380V drivers, overvoltage is reported when the bus voltage P01.08 is greater than
	750V.
Er.103	Under voltage, under voltage when the bus voltage P01.08 is less than the rated voltage
	P01.07*1.414*0.7.
Er.104	The current sensor is faulty. It is detected that the current is not 0 before the relay is turned on
	for the first time.
Er.105	If the encoder fails and the encoder is not connected, the fault is reported.
Er.106	The EEPROM verify fault, and the fault is reported when the value written to the EEPROM and
	the value of the read EEPROM are inconsistent.
Er.107	The phase sampling fault is reported when the phase obtained by the HALL switch and the
	phase obtained by the encoder differ too much.
Er.108	When the FPGA and ARM communication are faulty, the fault is reported when the values
	written and read by the ARM are inconsistent.
Er.109	If the current changes greatly, the fault is reported when the two samples are separated by
	50%.
Er.110	Magnetic encoder failure
Er.111	Current phase sequence learning failure
Er.112	The output is out of phase.
Er.113	Did not scan to Z point during self-learning
Er.114	Z point offset not found
Er.115	Hall code value learning error
Er.117	The driver overheats and reports a driver overheat fault when it detects that the driver
	temperature P01.10 is greater than the driver overheat threshold P10.06.
Er.118	The line-saving encoder does not have a feedback threshold value at power-on.
Er.119	Motor encoder type does not match
Er.121	RST input phase loss
Er.200	When returns to home, the home signal INFn.34 is not assigned.
Er.201	INFn.xx repeated allocation, one input function bit is assigned to two or more DI
Er.202	Over speed, when the speed percentage (actual speed / rated speed) exceeds P10.05, the over
	speed is reported.
Er.203	The position error is too large. When the position error P03.17 is greater than P03.19 and
	P03.19 is not equal to 0, the fault is reported. Note that it is easy to report this fault if the

	1
	position is set to a large filter time.
Er.204	Unassigned interrupt fixed length trigger signal INFn.40
Er.205	No return to home before absolute point motion
Er.206	Motor overload
Er.207	Software limit, after enabling the software limit P03.73, when the encoder position value is
	less than the software limit limit or greater than the software limit limit, report this fault.
Er.208	Hardware limit
Er.209	Curve planning failed
Er.210	Excessive tension
Er.211	Breakage failure
Er.212	XY pulse type selection error in tension control mode
Er.213	Full closed loop position error is too large
Er.214	Prohibit positive (reverse) turn
Er.216	Z point signal is unstable
Er.217	RPDO receive timeout
Er.218	Reserved
Er.219	Motor stall
Er.220	Braking resistor overload
Er.221	The forward stroke switch input function bit INFn.43 is not assigned to the entity DI
Er.222	Reverse stroke switch input function bit INFn.44 is not assigned to entity DI
Er.223	Search home error
Er.224	CAN bus state switching error, switching CiA402 state machine when the bus is in
	non-Operation state
Er.225	Unsupported CANopen control mode
Er.226	Absolute value mode lap overflow
Er.227	Absolute encoder battery failure
Er.228	Inertia learning failed, need to reset P07.03 and P07.04
Er.229	When learning the full closed loop parameter, the position value detected by the second
	encoder is too small
Er.231	Bus error
Er.232	Second encoder battery failure
Er.600	Motor overheating
Er.601	Dlfunction code is not assigned
Er.602	The AI zero drift is too large. When the AIx zero drift P06.68/P06.73/P06.78 is greater than the
	threshold P10.10, the zero drift is too large.
Er.603	return home timeout, when the zero return time is greater than P10.08, the fault is reported.
Er.604	When the absolute encoder is self-learning, the motor rotates in the wrong direction and
	needs to change the UVW wiring.
Er.605	Absolute encoder battery voltage is too low, need to replace the new battery when the drive is
	powered on
Er.606	The second encoder battery voltage is too low, you need to replace the new battery when the
	drive is powered on.

Er.607

Inertia learning fails, need to increase P07.33 and then learn

Set active def RO/ Num Description Range unit function mom mome RW ault ent nt P09.31 Q axis current loop % Displays the Q-axis -_ _ RO feedback current loop feedback value. P10.01 Software overcurrent 0~800 % When the anyti immedi 400 RW threshold detected current me ately .0 percentage P09.31 is greater than this value, the software overcurrent fault is reported. P10.02 Motor overload value 0~3276.7 % 100 RW Set the overload anyti immedi protection point, me ately .0 which is generally set to the motor rated current / drive rated current * 100%. P10.03 Stall protection current 0~300.0 % When the driver anyti immedi 100 RW threshold current percentage me ately .0% P09.31 exceeds this value and the time of P10.04 continues, and the speed is less than 5 rpm, the jam is faulty. This value is recommended to be set to the motor rated current / drive rated current * 100%. P10.04 Blocked 0~65535 800 RW Motor ms anyti immedi protection time me ately threshold P10.05 Percentage of speed 0~3276.7 % When the immedi 150 RW anyti

The relevant parameters are as follows.

	r		Γ	[ſ	1		
				percentage of the	me	ately	.0	
				actual speed/rated				
				speed is greater				
				than the				
				overspeed				
				percentage, the				
				overspeed fault is				
				reported.				
P10.06	Drive overheat	0~3276.7	°C	When the drive	anyti	immedi	80.	RW
	threshold			temperature	me	ately	0	
				P01.10 is greater				
				than this value, the				
				drive is				
				overheated.				
P10.08	return home timeout	0~32767	S	When the zero	anyti	immedi	0	RW
				return time	me	ately		
				exceeds this value,				
				a zero timeout				
				fault is reported.				
				When set to 0,				
				zero return				
				timeout protection				
				is not performed.				
P10.09	Power-off motor	0~1	-	Set whether to	anyti	immedi	0	RW
	encoder position	-		remember the	, me	ately		
	memory function			motor encoder	_	,		
	0-Power off does not			position after				
	remember motor			power off.				
	encoder position			F				
	1-Power-off memory							
	motor encoder							
	position							
P10.10	Al zero drift threshold	0~32767	mV	When the zero	anyti	immedi	500	RW
1 10.10		0 52/07		drift of Alx is	me	ately	500	
				greater than this		acciy		
				value, the zero				
				drift drifts over a				
				large fault.				
P10.11	Mator overland owne	0~4	_	Select the motor	anyti	immedi	0	RW
	WOLDE OVERDAD CITOE	U T	1		anyti	inneur	0	11.00
F 10.11	Motor overload curve			overload curve	me	ately		
	selection		_	overload curve.	me	ately		PO
P10.20 P10.21		- 1~5	-	overload curve. Display fault code Used to select to	me - anyti	ately - immedi	- 1	RO RW

				faults of the servo				
				drive. This function				
				code is used to set				
				the number of				
				faults to be				
				viewed:				
P10.22	Fault code for selected	-	-	-	-	-	-	RO
	x times of failure							
P10.23	Time of selected x times of failure	-	min	-	-	-	-	RO
P10.24	Motor speed of x times selected	-	rpm	-	-	-	-	RO
P10.25	Motor current rms	_	А	-	-	-	-	RO
	value for selected x							
	faults							
P10.26	Instantaneous value of	-	А	_	-	-	-	RO
	V-phase motor current							
	for selected x faults							
P10.27	Instantaneous value of	_	А		_	_	_	RO
110.27	W-phase motor		~					NO
	current for selected x							
	faults							
D10.20								
P10.28	Bus voltage for	-	V	-	-	-	-	RO
	selected x faults							
P10.29	Drive temperature for	-	°C	-	-	-	-	RO
	selected x faults							
P10.30	Entity DI status of	-	-	-	-	-	-	RO
	selected x times of							
	failure							
P10.31	Entity DO status of	-	-	-	-	-	-	RO
	selected x times of							
	failure							
P10.32	Hardware fault count	-	-	-	-	-	-	RO
	value							
P10.33	Fault shielding	0~65535	_	BITO Shield	anyti	immedi	12	RW
				Overload BIT1	me	ately	_	-
				Shield Software	-	1		
				Overcurrent BIT2				
				Shield Phase Fault				
				BIT3 Shield				
				Current Change				
				Large BIT4 Shield				

Hardware
Overcurrent BIT5
Shield Speed
Change Large BIT6
Shield Z Point
Unstable BIT7
Shield SYNC Loss
BIT8 Shield
Current Sensor
Fault BIT9 Shield
Under voltage
BIT10 Shield
Encoder
malfunction

7.1.3 Troubleshooting

(1) Er.100 Software overcurrent

Fault generation conditions:

The percentage of current detected by the software P09.31 is greater than the P10.01 overcurrent threshold, and the software overcurrent fault is reported. The fault can be shielded by BIT1 of P10.33.

Cause	Confirmation method	Processing method
1 、 Motor UVW phase	➢ Confirm UVW phase	Adjust the UVW phase
sequence reversed or	sequence and lack of	sequence or replace the
missing phase	phase	motor
2, P10.01 setting is too	➤ Check if the value	
small	of parameter P10.01	Increase P10.01
SIIIATT	is too small	
	≻ Check P07.01	
	current loop ratio,	
	P07.02 current loop	
	integral gain,	
2 Coin actting is too	P07.03 speed loop	Paduas main valated
3. Gain setting is too	proportional gain,	Reduce gain related
large	P07.10 torque feed	parameters
	forward coefficient,	
	whether these	
	parameters are set	
	too large	
4 . Motor peak current	► Check the	Correct P20.24 motor peak
percentage setting is too	P00.24 motor peak	current percentage

large		current percentage,	
	whether it is		
	consistent with the		
	actual peak current		
		of the motor	
5. Motor power is too	A	Confirmation based	Replace the more powerful
small		on actual load	motor
	A	Check if the drive	
6 Mator output ourront is		torque limit value	
6. Motor output current is greater than motor peak		(default limiter	Reduce the torque limit
		source P05.13) is	value
current		greater than the	
		motor peak current	

(2) Er.101 Hardware overcurrent

Fault generation conditions:

The hardware detects that the driver output current has reached the peak threshold.

Cause	C	Confirmation method	Processing method
1. The initial phase of the magnetic pole is incorrect	۶	Check the UVW phase sequence Is the servo motor a standard motor?	Operate Fn005, re-learn the encoder
2、Motor UVW power cable connection is abnormal	A	Check the driver and motor terminals of the UVW cable for poor contact and port aging. Unplug the UVW motor cable and check if the wire is shorted.	Connect the motor cable correctly
3、 Motor power is too small		Determined based on actual load conditions	Replace the more powerful motor
4. Motor damage		Unplug the motor cable and measure the resistance between the motor's UVW by the multimeter.	If the UVW resistor is unbalanced, replace the motor
5、Braking resistor too small or shorted		Measure whether the resistance across the driver P, Rb'is normal	Replace the brake resistor
6、Drive failure		Unplug the motor cable, then enable	Replace the drive

			1
		the servo and still	
		report the fault.	
	\triangleright	During the rotation	
		of the motor, it can	
		shake sharply or make	
7 、 Unreasonable gain		a sharp sound. You	Adjust the main
setting		can also observe the	Adjust the gain
		curve of the current	
		loop through	
		VECObserve.	
	A	VECObserve	
		observes whether the	Modify the acceleration
		control command is	given by the control
8. The acceleration and		too drastic	command, increase the
deceleration time is too	\triangleright	Check if the	filter time of the control
short		acceleration/decele	command, increase the
		ration time	acceleration and
		parameter setting is	deceleration time
		too small	
	\checkmark	Check if the motor	
9 、 Motor UVW line		cable is too long	Shorten the motor wire and
connected to capacitive	\triangleright	Check if the motor	eliminate the capacitance
load		UVW is connected to	on the UVW terminal
		the capacitor	
10 Machanical alacteries	A	Check if the	Doduce mechanical
10、Mechanical clearance		mechanical clearance	Reduce mechanical
is too large		is too large	clearance
	l		

(3) Er.102 High voltage

Fault generation conditions:

When the DC bus voltage detection value P01.08 is greater than the overvoltage threshold, an overvoltage is reported.

For drives with a rated voltage of P01.07 less than 300V, the overvoltage threshold is 420V. For drives with a rated voltage of P01.07 greater than 300V, the overvoltage threshold is 750V.

Cause	Confirmation method		Processing method
1 、 Drive rated voltage setting error	4	Check if the P01.07 parameter setting is correct.	Modify the drive rated voltage parameter P01.07
2 、 DC bus voltage calibration coefficient setting error	A	Check if the P01.09 parameter setting is correct.	Modify the bus voltage calibration coefficient P01.09 (adjustment range 90%~110%)
3. Drive RST power supply	≻	Oscilloscope checks	Adjust the power supply or

is unstable		if the RST power	increase the power supply
is unstable		-	noise filter
	~	supply is normal	
	٨	The multimeter	Adjust the bus voltage
4、DC bus voltage is too		measures whether the	calibration coefficient
high		voltage across the	P01.09 (adjustment range
		driver P and N is	90% 110%) or adjust the
		normal.	power supply
		Check the brake	
		resistor for poor	
		contact, short	
		circuit or open	Comment mining on
5、Brake resistor is not		circuit	Correct wiring or
working properly	\blacktriangleright	The multimeter	replacement of braking
		measures whether the	resistor
		resistance at both	
		ends of the driver P	
		and Rb'is normal.	
	\triangleright	Check whether the	
		energy consumption	
		brake P02.20	
		parameter, the	Set P02.20, P02.21
6 . Braking resistor		braking resistor	correctly,P02.22 can be
parameter setting is		resistance value	set up to 5 times the
unreasonable		P02.21, and the	braking resistor power
		braking resistor	braking resistor power
		power P02.22 are set	
		correctly.	
7. The system is a large	A	View actual	
inertia load and the	-	deceleration time	Adjust the deceleration
		decereration time	time appropriately
deceleration time is too			time appropriately
short	~		
8 Unreasonable gain	\checkmark	Check if the motor is	Adjust the gain
setting		oscillating	

(4) Er.103 Under voltage

Fault generation conditions:

When the bus voltage detection value P01.08 is less than the under voltage threshold, the under voltage is reported. Under voltage threshold = rated voltage of the driver P01.07*1.414*0.7.

Cause	Confirmation method	Processing method
1. The driver RST power	> Check if the P01.07	
supply does not match the	parameter setting is	Modify the rated voltage of
rated voltage of the	correct.	the drive P01.07
driver P01.07.		

2. Acceleration time is	\triangleright	View actual	
too short		acceleration time	Reduce acceleration time
3、Grid voltage is too low	>	Measuring grid voltage	Adjust the rated voltage of the drive P01.07 to be consistent with the grid voltage
4、Other heavy equipment starts	>	As soon as other heavy-duty devices are started, the drive reports this failure.	Adjust RST power
5 、 Charging circuit failure	\wedge	Report the fault as soon as the drive is enabled	Replace the drive
6. Braking resistors P, Rb'are shorted to ground	>	Check if the P and Rb' terminals of the driver are shorted to the ground.	Prevent braking resistors P, Rb' from shorting to ground
7、Overloaded	4	When using a single-phase power supply, the actual load is too large	Use three-phase power or reduce the load
8、Main power supply RST three-phase current imbalance	4	Measuring power supply RST three-phase current	Adjust RST three-phase power supply
9、RST power cable cross section is too small	>	Calculate whether the RST wire meets the driver current	Thickening RST power cable

(5) Er.104 **Current sensor failure**

Fault generation conditions:

The current sensor is faulty.

Cause	Confirmation method	Processing method
1. Current sensor	▶ -	Poplage the drive
failure		Replace the drive

(6) Er.105 **Encoder failure**

Fault generation conditions:

The encoder has no signal or the signal is unstable.

Cause	Confirmation method	Processing method
1. Encoder line interface definition error	View encoder line interface definitions	Adjust encoder wiring
2 , Poor encoder line	➢ Detect encoder line	Correct wiring

cor	tact					
3	`	Encoder	line	А	Multimeter detection	Doplage the speeder line
dis	conne	ected			encoder line	Replace the encoder line
4	ì	Subject	to	A	Turn off other	
ele	ectron	nagnetic			devices that may	Eliminate interference
int	erfer	rence			cause interference	

(7) Er.106 EEPROM failure

Fault generation conditions:

EEPROM read and write data error.

Cause	Confirmation method	Processing method
1、EEPROM read data error	-	Replace the drive

(8) Er.107 Phase sampling fault

Fault generation conditions:

When the phase obtained by the HALL switch is too different from the phase obtained by the encoder, Report this fault.

Cause	Confirmation method	Processing method
	> -	Set BIT2 of fault mask
1. Phase sampling fault		parameter P10.33 to 1 to
		shield this fault.

(9) Er.108 FPGA and ARM communication failure

Fault generation conditions:

The fault is reported when the value written by ARM does not match the value read to the FPGA.

Cause	Confirmation method	Processing method
1. The fault is reported	▶ -	
when the value written by		Replace the drive
ARM does not match the		Replace the drive
value read to the FPGA.		

(10) Er.109 Large current change

Fault generation conditions:

The fault is reported when the two sampled currents differ by 50%.

Cause	Confirmation method	Processing method
1、when the two sampled currents differ by 50%.	A -	Set BIT3 of fault mask parameter P10.33 to 1 to shield this fault.

(11) Er.111 Motor winding abnormal

Fault generation conditions:

When the motor learns the winding direction, the current changes direction wrong.

Cause	Confirmation method	Processing method
1、Motor winding abnormal	➢ Check motor UVW	Correctly connect the UVW
	wiring	motor line

(12) Er.113 No encoder Z point detected

Fault generation conditions:

When the encoder is self-learning, the Z-point signal is not detected.

Cause	Confirmation method	Processing method
1 、 Poor encoder line	\succ Check the encoder	Connect the encoder cable
contact	line	correctly
	Correctly connect	
	the encoder cable,	
2、编码器损坏	after learning a few	Replace the motor
	times, still report	
	this fault	

(13) Er.114 Z point offset error

Fault generation conditions:

When the encoder is self-learning, the detected Z-point signal position is greater than the encoder resolution.

Cause	Confirmation method	Processing method
	> Correctly connect	
1 Encodor gignol ig	the encoder cable,	
1 . Encoder signal is	after learning a few	Replace the motor
a01101 IIIa1	times, still report	
	this fault	

(14) Er.115 HALL code value is wrong

Fault generation conditions:

When learning the encoder, the HALL code value is zero or one at the same time.

Cause	Confirmation method	Processing method
1 、 Encoder signal is abnormal	▶ -	Replace the motor

(15) Er.117 overheat

Fault generation conditions:

When the driver temperature P01.10 is greater than the overheat threshold P10.06, the overheat fault is reported.

Cause	Confirmation method	Processing method
1 , Drive temperature	➢ Measuring drive	Increase drive cooling
overheating	surface temperature	increase drive cooring
2. The cooling fan is not	➢ Check the fan running	Replace the cooling fan
working properly	status	Replace the cooling fail
3. The site temperature is	➢ Thermometer measures	Reduce ambient temperature
too high	field temperature	or Increase drive cooling
4 、 Long-term low	➢ Monitor actual load	
frequency and high	conditions	Inonacca draine nomen
current operation of the		Increase drive power
motor		

(16) Er.118 The HALL encoder value of the line-saving encoder is incorrect at

power-on

Fault generation conditions:

The HALL encoder value of the line-saving encoder is incorrect at power-on

Cause	Confirmation method	Processing method
1 、 Provincial line encoder signal is abnormal	Correctly connect the encoder cable, after learning a few times, still report this fault	Replace the motor

(17) Er.119 Encoder type does not match

Fault generation conditions:

The encoder type recognized by the FPGA does not match the encoder type set by the drive.

Cause	Confirmation method	Processing method
1. Incorrect parameter	> Check that POO.08 is	
setting	consistent with the	Modify parameter P00.08
Setting	actual encoder type.	
	\succ Check that the	
	encoder type	
	identified in the	Perlage the meter time or
2. Motor type error	FPGA version	Replace the motor type or
	(P01.02) matches the	change the FPGA program
	actual connected	
	encoder type.	

(18) Er.200 Return home signal is assigned

Fault generation conditions:

The return home mode requires access to the home switch, and the home switch is not assigned in the DI configuration.

Cause	Confirmation method	Processing method
1、DI is not configured with the return home signal INFn.34	_	DI configuration return home signal INFn.34

(19) Er.201 DI repeat distribution

Fault generation conditions:

The same INFn function is assigned to two different DI or VDI terminals.

Cause	Confirmation method	Processing method
1. The same INFn function	➢ Check DI or VDI	
is assigned to two	configuration	Modify DI or VDI
different DI or VDI		configuration
terminals.		

(20) Er.202 Over speed

Fault generation conditions:

The over speed fault is reported when the speed percentage (actual speed/rated speed) is greater than the over speed percentage 10.05.

Cause	Confirmation method	Processing method
1, Over speed percentage 10.05 setting is too small	Check the value of parameter 10.05	Increase 10.05 or decrease the speed
2、Gain setting is too large	 Check the P07.03, P07.04, P07.05 parameter settings 	Reduce the gain
3、HALL switch detection error	► -	Re-learning encoder
4、Z point offset P00.71 error	A	If it is the company's motor, the value is set to 0. Set this value before setting P02.35=8421.

(21) Er.203 Position error is too large

Fault generation conditions:

When the difference P03.17 between the given position and the actual position is greater than the position error excessive threshold P03.19, the fault is reported.

Cause	Confirmation method Processing method		
1 , Position command	A	Check the values of	
filter parameters P03.06		P03.06 and P03.07	Decrease P03.06 and P03.07
and PO3.07 are too large			
	A	Check whether the	
		P07.03, P07.04, and	
2. The gain is too small		P07.05 parameter	Adjust the gain
		settings are	
		reasonable.	
3. Position command too	A	Check position	Reduce position command
fast		command	speed
4 , Position error	\triangleright	Check position error	Increase position orren
threshold PO3.19 is too		too large threshold	Increase position error too large threshold PO3.19
small		P03. 19	too large threshold P03.19
	A	Check if the	
5、Mechanical stuck motor		mechanical	Handling mechanical jam
J MECHAIICAI SLUCK MOLOI		transmission is	problems
		stuck	

(22) Er.204 DI function does not assign interrupt fixed length trigger signal Fault generation conditions:

The interrupt fixed length function is enabled, but the DI of the interrupt fixed length trigger function number INFn.40 is not assigned.

Cause	Confirmation method	Processing method
1 DI unassigned interrupt fixed length trigger function number INFn.40	View DI configuration	Configure a DI to interrupt the fixed length trigger function number INFn.40

(23) Er.205 No return to home before running absolute position mode

Fault generation conditions:

No return to home before running absolute position mode

Cause	Confirmation method	Processing method
1. No return to home	→ -	Return to home before
before running absolute		running absolute position
position mode		mode

(24) Er.206 Motor overload

Fault generation conditions:

The motor current is greater than the servo rated current and runs continuously for a period of time to report motor overload.

Cause	Confirmation method	Processing method
	\succ Check the value of	Set P10.02 as a percentage
1. Incorrect parameter	P10.02	of the rated motor current
settings		to the rated current of the
		drive.
2. Motor power is not	> Confirm according to	Replace the servo motor
enough	actual load	with more power

(25) Er.207 Software limit

Fault generation conditions:

After the software limit is enabled by P03.73, when the actual user position is less than the lower limit of the position and the speed is negative, the software limit is reported. When the actual user position is greater than the upper limit of the position and the speed is positive, the software limit is reported.

Cause	Confirmation method	Processing method
1. Incorrect parameter settings	➢ View P03.73	Modify P03.73
2. Software limit value setting is unreasonable	➢ View P03.74, P03.76	Modify P03.74, P03.76

(26) Er.208 Hardware limit

Fault generation conditions:

After the hardware limit is enabled by P03.73, when the reverse position limit switch is valid and the speed is negative, the hardware limit is reported. When the positive position limit switch is active and the speed is positive, the hardware limit is reported.

Cause	Confirmation method	Processing method
1 , Incorrect parameter settings	➢ View P03.73	Modify P03.73

2 、 Whether the	limit >	• Check that the limit	Adjust the	limit signal
Signal sensor	is	Signal sensor is	sensor	installation
installed properly.		installed properly.	position	

(27) Er.209 4th power position curve planning failed

Fault generation conditions:

4th power position curve planning failed

Cause	Confirmation method	Processing method
1, 4th power position	> -	Reset reasonable speed and
curve planning failed		position planning values

(28) Er.213 Full closed loop position error is too large

Fault generation conditions:

In the full closed loop, the detected second encoder position error is too large

Cause	Confirmation method	Processing method
1, Material slippage	Observe the movement of materials	Press the material to prevent the material from slipping.
2 、 Full closed loop position error too large threshold PO3.36 setting too small	 View full closed loop position error excessive threshold P03.36 	Increase the full closed loop position error excessive threshold PO3.36
3 、 Fully closed-loop position error clear parameter P03.40 setting is unreasonable	➢ View P03.40	Set reasonable full-closed position error clear parameter P03.40
4 、 Full-closed mode encoder polarity setting error	Check whether the parameters set in the full-closed mode encoder polarity P03.33 match the actual conditions.	Modify P03.33

(29) Er.214 Prohibit positive/reverse

Fault generation conditions:

Prohibited forward/reverse is set by P02.03, but the forward/reverse command is actually input.

Cause	Confirmation method	Processing method
1 , Prohibited	> Check the input	
forward/reverse is set by	command direction	Modify the direction of the
P02.03, but the		
forward/reverse command		command
is actually input.		

(30) Er.216 Z point signal is unstable

Fault generation conditions:

The detected encoder position difference of two Z points is too different from the actual

encoder resolution.

Cause	Confirmation method	Processing method
1 、 Poor encoder line	\succ Check the encoder	Comment mining
contact	line	Correct wiring
	\blacktriangleright After the encoder has	
2 、 Encoder signal is	learned a few times,	Poplage the motor
abnormal	it still reports this	Replace the motor
	fault.	

(31) Er.217 SYNC signal timeout

Fault generation conditions:

The SYNC signal was received for longer than the actual synchronization period.

Cause	Confirmation method	Processing method
1 The CVNC signal was	➢ Check if the	
1. The SYNC signal was	CANopen/EtherCAT	
received for longer than	communication line	Correct wiring
the actual	is connected	<u> </u>
synchronization period.	normally	

(32) Er.219 Motor stall

Fault generation conditions:

When the driver current percentage P09.31 is greater than P10.03, and the speed is close to zero, and the time of P10.04 continues, it is blocked.

Cause	Confirmation method	Processing method
1 、 Improper parameter setting	Check out P10.03 and P10.04. Generally, P10.03 is set to motor current to drive current %; P10.04 is set to 200.	Modify P10.03, P10.04
2、Mechanical stuck motor	 Check if the mechanical drive is stuck 	Handling mechanical transmission problems
3、 Motor power is too small	 Judging according to the actual load 	Increase motor power

(33) Er.220 Braking resistor overload

Fault generation conditions:

When the braking resistor is continuously in the braking state, and the actual braking average power is greater than the braking resistor power, the braking resistor overload fault is reported.

Cause	Confirmation method	Processing method
1 . Improper parameter	 View brake resistance value 	Reasonably set P02.21,
setting	P02.21, braking	P02. 22, P02. 23

		resistor power P02.22, braking resistor heat dissipation coefficient P02.23	
2、Braking resistor power is too small	A	Braking is frequent, braking resistor heat is too small	Replace high power braking resistor

(34) Er.221 Forward travel limit DI function number is not assigned Fault generation conditions:

The return home mode requires access to the forward stroke limit signal, but the forward stroke limit DI function number INFn.43 is not assigned in the DI configuration.

Cause	Confirmation method	Processing method
1 , Unassigned forward	➢ View DI function	Assign forward stroke
stroke limit DI function	configuration	limit DI function number
number INFn.43	parameters	INFn. 43

(35) Er222 Reverse travel limit DI function number is not assigned Fault generation conditions:

The return home mode requires access to the reverse stroke limit signal, but the reverse stroke limit DI function number INFn.44 is not assigned in the DI configuration.

Cause	Confirmation method	Processing method
1 , Unassigned reverse	> View DI function	Assign reverse stroke
stroke limit DI function	configuration	limit DI function number
number INFn.44	parameters	INFn. 44

(36) Er223 Finding home failed

Fault generation conditions:

During the return home process, the signal was not found.

Cause	Confirmation method		Processing method
	٨	Check if the home	
1. Not connected to the		signal is correctly	Connect the home signal
home signal		connected to the	correctly
		servo DI	

(37) Er224 CAN bus status switch failed

Fault generation conditions:

During the enable servo process, the state machine of the CAN bus switches to the pre-operation mode.

Cause	Confirmation method	Processing method
1. During the enable servo process, the state machine of the CAN bus switches to the pre-operation mode.	View the servo enable process	CAN bus state machine cannot be switched to pre-operation mode during servo enable

(38) Er.225 Unsupported CANopen bus mode of operation

Fault generation conditions:

Unsupported CANopen bus mode of operation

Cause	Confirmation method	Processing method
1 、 Unsupported CANopen	> -	Use other CANopen bus
bus mode of operation		operating modes

(39) Er.226 Absolute encoder lap overflow in absolute mode

Fault generation conditions:

Absolute encoder lap overflow in absolute mode.

Cause	Confirmation method	Processing method
1, Absolute encoder lap	▶ -	
overflow in absolute mode		

(40) Er.227 Absolute encoder with battery failure in absolute mode

Fault generation conditions:

Absolute encoder loses battery in absolute mode, absolute position information is lost.

Cause	Confirmation method	Processing method
1. Battery is dead	➢ Measuring encoder	Replacement battery
	battery voltage	Repracement Dattery

(41) Er.228 Inertia learning failure

Fault generation conditions:

When self-learning system inertia, the frictional resistance is too large, and the self-learning current limit P02.36 is too small.

Cause	Confirmation method	Processing method		
1 、 When self-learning	➢ View P02.36			
system inertia, the				
frictional resistance is				
too large, and the		Increase PO2.36		
self-learning current				
limit PO2.36 is too				
small.				
2. The system inertia is	➢ View P07.33			
too large, and the				
acceleration and		Increase P07.33		
deceleration time P07.33		Increase 107.35		
of the learning habit is				
too small.				
3 、 Unreasonable gain	➢ Motor jitter	Increase P07.03 and		
setting		decrease P07.04		

(42) Er.229 Full closed loop parameter learning failure

Fault generation conditions:

During the full closed loop parameter learning process, the position value of the second encoder changes too little.

Cause	Confirmation method	Processing method		
During the full closed	\blacktriangleright Check whether the			
loop parameter learning	second encoder works	Ensure that the second		
process, the position	normally during the	encoder works properly		
value of the second	full closed loop	during full-closed		
encoder changes too	learning process.	learning and that the		
little.		material does not slip.		
1、				

(43) Er.600 Motor overheating

Fault generation conditions:

Motor temperature is too high

Cause	Confirmation method	Processing method			
1. Because the load is too	➢ Observe the load	Replace the more powerful			
large, the motor is hot		motor			
2. The site temperature is	➢ Detecting the	Reduce the ambient			
too high	ambient temperature	temperature around the			
		motor			

(44) Er.601 DI function code is not assigned

Fault generation conditions:

DI function code is not assigned

Cause	Confirmation method	Processing method
1. The speed/torque is	➢ View DI	
derived from AB	configuration	
switching, but the AB		Configure DI correctly
switching function		
number is not assigned.		

(45) Er.602 Al zero drift too large

Fault generation conditions:

Al1 zero drift P06.68/Al2 zero drift P06.73/Al3 zero drift P06.78 is greater than Al zero drift threshold P10.10.

Cause	Confirmation method	Processing method
1 AT 1. C	➤ Check if the input	Make sure the analog input
1、AI zero drift too large	analog is normal	is normal

(46) Er.603 Return home timeout

Fault generation conditions:

The actual time of return home exceeds the return home timeout threshold P10.08.

Cause	Confirmation method	Processing method
1. The return home signal is not properly connected.	Check if the home signal is normally connected to the servo	Correct access to home signal

(47) Er.604 Motor rotation direction is wrong during self-learning

Fault generation conditions:

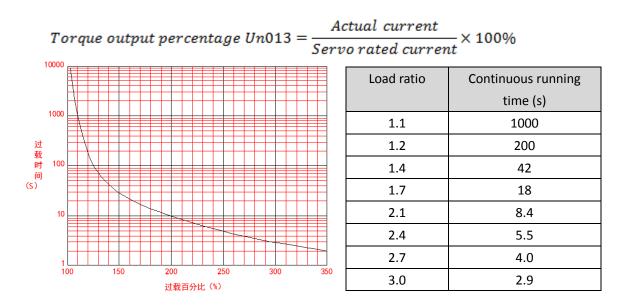
Motor rotation direction is wrong during self-learning.

Cause	Confirmation method	Processing method		
1 、 Motor rotation direction is wrong during self-learning	> -	Check that the motor and encoder wiring are correct		
2 . Motor UVW phase	➢ Confirm UVW phase	Change the UVW phase		
sequence is wrong	sequence	sequence		

(48) Er.605 Absolute encoder battery alarm

Fault generation conditions:

The absolute encoder operates in absolute mode and the battery voltage is too low.


Cause		Confirmation method	Proce	essing me	thod
1. The absolute encoder	٧	Check battery			
operates in absolute mode		voltage	Replace	the	encoder
and the battery voltage			battery		
is too low.					

7.1.4 Motor overload protection

The motor load factor is defined as (torque output percentage Un013) / (overload value P10.02). The load rate of the motor output is related to the time that can be continuously operated. In other words, the higher the motor load factor, the smaller the sustainable operation time. Once the continuous run time is exceeded, a motor overload fault is reported.

Motor load ratio =

$$\frac{Torque \ output \ percentage \ Un013}{Motor \ overload \ threshold \ P10.02}$$

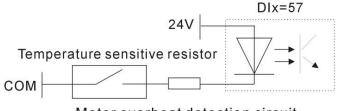
Num	Description	Range	unit	function	Set mom ent	active mome nt	def ault	RO/ RW
P10.02	Overload value	0~3276.7	%	Set the overload protection point	anyti me	imme diatel	100	RW
						у		

The relevant parameters are as follows.

7.1.5 Brake resistor overload protection

The servo brakes at the rated power of the resistor based on the actual set resistance value and resistance power. For 220V drives, when the DC bus voltage is greater than 380VDC, the energy brake circuit can be activated by setting parameters. For 380V drives, when the DC bus voltage is greater than 680VDC, the energy brake circuit can be activated by setting parameters. It can brake for 33s continuously under the rated power and the heat dissipation coefficient is equal to zero. If the braking time is exceeded, the brake resistor overload fault is reported. When the braking resistor is not working, if the heat dissipation coefficient is not equal to zero, heat is dissipated according to the set heat dissipation coefficient. If the heat dissipation coefficient is set to 100%, 10s can dissipate heat from the maximum heat to zero. The actual resistance used needs to be calculated according to the field conditions. Refer to the table below for the selection of braking resistors under normal conditions.

Input	Pated power	Rated	Recommended	ended braking resistor		
Input	Rated power	current	resistance	Resistance		
power		(A)	(Ω)	power (W)		
	0.4	3	180	400		
Three-phas	0.75	6	100	500		
e 220V	1.5	9	50	1000		
	2.2	15	35	1500		
	1.5	3.7	150	1000		
	2.2	6	100	1500		
Thurse where	4	10	60	2500		
Three-phas	5.5	13	40	3500		
e 380V	7.5	16	35	4500		
	11	25	25	6000		
	15	32	15	10000		


The relevant parameters are as follows.

					Set	activ	defau	RO/
Num	Description	Range	unit	function	mom	е	lt	RW
					ent	mom		

						ent		
P02.21	Brake resistor resistance	0~3276.7	Ω	Used to set the	anyti	imme	0	RW
				resistance of the	me	diatel		
				drive brake		у		
				resistor.				
P02.22	Braking resistor rated	0~3276.7	KW	Power for setting	anyti	imme	0	RW
	power			the brake resistor	me	diatel		
				of the drive		у		
P02.23	Braking resistor heat	0~100	%	The heat	anyti	imme	50	RW
	dissipation coefficient			dissipation	me	diatel		
				coefficient of the		у		
				braking resistor. If				
				100% is set, 10s				
				can fall from 0 to				
				0.				

7.1.6 Motor overheat protection

Set the DI function number to INFn.57, and external motor overheat detection circuit. The motor overheat detection circuit adopts PTC protection. The schematic diagram is as follows. When the output of the external motor overheat detection circuit pulls the DI to be valid, the driver reports the motor overheat fault Er.600.

Motor overheat detection circuit

7.1.7 Motor phase loss protection

The servo drive has input phase loss and output phase loss protection. Determined by P10.07 whether it is enabled. Input phase loss means that the servo input voltages R, S and T lack one of the phases. The lack of an output phase means that the motor wires U, V and W lack one of the phases. The parameter P10.07 has 16 bits from 0 to 15. When the 0th bit is 1, the output phase loss protection is enabled. When the first bit is 1, the input phase loss protection is enabled. That is to say, when P10.07 = 0, phase loss protection is not enabled; when P10.07 = 1, the output phase loss protection function is valid; when P10.07 = 2, the input phase loss protection function is valid; when P10.07 = 3, the input and output phases are simultaneously disabled.

Nume	Description	Danga		function	Set	active	def	RO/
Num	Description	Range	unit	function	mom	mome	ault	RW

					ent	nt		
P10.07	Phase loss	0~32767	-	When the 0th bit is 1,	anyti	immedi	3	RW
	protection setting			the output phase loss	me	ately		
				protection is enabled.				
				When the 1st bit is 1,				
				the input phase loss				
				protection is enabled.				

7.2 Brake output function

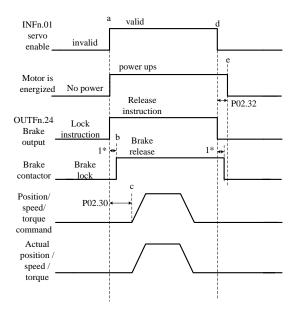
The brake is a mechanism that prevents the servo motor from moving in the non-operating state when the servo drive is in the non-operating state, so that the motor is kept in position so that the moving part of the machine does not move due to its own weight or external force.

For a servo motor with a brake, if the brake output OUTFn.24 is assigned to a terminal, the brake function is automatically enabled. It should be noted that the effective level of the brake function terminal can only be set to low level, otherwise there will be a situation of loosening during power-on.

The relevant output function number is as follows.

num	Bit description
OUTFn.24	Brake output.
	When it is invalid, the brake power supply is disconnected, the brake is actuated, and the
	motor is in the position lock state;
	When it is valid, the brake power is turned on, the brake is released, and the motor can be
	rotated.

7.2.1 Brake process


The brake is divided into two situations. The first is the brake process under static conditions, and the second is the brake process under dynamic conditions.

The brake sequence under static refers to the moment when the input break enable command (ie, INFn.01 is switched from ON to OFF) and the brake speed is lower than 20 rpm.

The dynamic brake timing refers to the moment when the input break enable command (ie, INFn.01 is switched from ON to OFF) and the motor speed is higher than 20 rpm.

Static brake process

When the INFn.01 is switched from ON to OFF, the brake process when the motor speed is lower than 20 rpm is as follows.

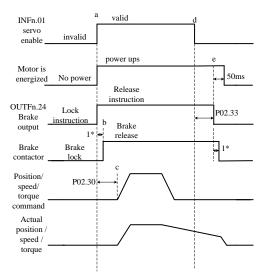
At the beginning, the brake is locked. At time a, the PLC gives the servo enable signal (INFn.01). When the servo receives the enable signal, it energizes the motor immediately. The motor locks and sends the brake release command (OUTFn.24), waiting for 1*. After the time b, the brake contactor is completed and the brake is released. The servo driver starts accepting the position/speed/torque command after the P02.30 millisecond to c time from the receipt of the enable signal, and the motor starts to rotate. After the motor rotates, when the motor reaches the time d, the PLC sends a break enable signal. When the servo detects that the motor speed is lower than 20 rpm, the static brake process is executed, and the brake lock signal is issued immediately. After 1* delay, the brake contactor acts. Finished, the brake is locked, and then arrives at e time, the motor is powered off.

Note: 1* is the time from when the servo sends the brake signal to the actual brake contactor action.

P02.32 is the power-on time of the driver after the lock is locked. After the servo is turned off, the mechanical movement moves due to its own weight or external force.

P02.30 is the delay from the enable of the drive to the input position/speed/torque command.

<u>Note: After the drive is enabled, it is forbidden to input any torque or speed command</u> within the time range of P02.30. Similarly, the position/speed/torque command must brake the motor when servo break is enabled.


Dynamic brake process

When the servo enable is turned from ON to OFF, if the current motor speed is greater than 20 rpm, the drive performs the dynamic brake process. After the servo enable is turned off, the servo always detects the following two conditions. When any one of the conditions is met, the brake lock signal is output.

a. The filtered motor speed (P04.21) is lower than the brake zero speed threshold (P02.31);

b. Start timing when the servo enable is turned from ON to OFF, and the time exceeds the maximum wait time for the brake (P02.33).

After the brake lock signal is output, the servo will remain energized for 50ms.

The relevant parameters are as follows.

Num	Description	Range	unit	function	Set mom ent	active mome nt	def ault	RO/ RW
P02.30	Command input delay	0~32767	ms	The servo drive	anyti	immedi	250	RW
	after brake release			starts to receive the	me	ately		
	command output			enable signal. After				
				the time of P02.30, it				
				starts to accept the				
				position/speed/torq				
				ue command and				
				the motor starts to				
				rotate.				
P02.31	Brake zero speed	0~32767	rp	The motor speed is	anyti	immedi	30	RW
	threshold		m	lower than P02.31	me	ately		
				and the brake lock				
				signal is output.				
P02.32	Power-on hold time	0~32767	ms	After the brake lock	anyti	immedi	150	RW
				signal is output, the	me	ately		
				servo will continue				
				to maintain the				
				power-on time				
				P02.32. This				
				parameter is only				
				used when the brake				
				output function is				
				active.				
P02.33	Brake signal output	0~32767	ms	The servo enable is	anyti	immedi	500	RW
	maximum waiting time			turned from ON to	me	ately		
				OFF, and the timer is				
				started. If the time				

	exceeds P02.33, the		
	brake lock signal is		
	output.		

7.3 Absolute encoder instructions

The absolute encoder not only detects the position of the motor within one week of rotation, but also counts the number of revolutions of the motor. It can memorize 16-bit multi-turn data, and the single-turn resolution is 17-bit and 24-bit. The single-turn 17-bit resolution rotates one week to produce 131072 code values, and the single-turn 24-bit resolution rotates one week to produce 16777216 code values. The absolute value system has an incremental usage mode and an absolute value usage mode, which are modified by P00.18. Incremental usage mode uses the absolute encoder as an incremental encoder. It can be used without a battery, without counting the number of turns, and requires zero return every time. Absolute value mode, you need to increase the battery, you will also remember the number of turns, you only need to perform return home to the origin, but the motor stroke is limited. Specifically, after the encoder is connected to the battery for the first time, the motor is used as the reference. The maximum can only be rotated 32767 laps, the maximum can only reverse 32767 laps, and otherwise the encoder overflow fault will be reported.

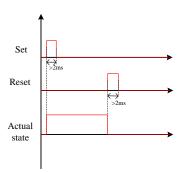
For the absolute value system of the absolute value system, when the battery is first powered on, the driver will report Er.227 (battery power failure), you need to re-power the drive, and then perform the return home operation. After homing, the servo will be Record the mechanical zero offset (ie the distance of the mechanical zero position relative to the encoder zero). At this point, the mechanical position and the encoder position have the following relationship:

Mechanical position = encoder position - mechanical zero offset

It should be noted that with the incremental encoder, the encoder position is automatically reset to zero after return home, that is, the mechanical position and encoder position are the same after return home. With the absolute encoder, after the return home, the encoder position does not return to zero, and the mechanical position and the encoder position are different from the mechanical zero offset. The command value in the multi-segment position command mode refers to the mechanical position, and the unit is the user position unit.

When the battery voltage is too low, the driver will report Er.605 (battery voltage is too low fault). At this time, the battery needs to be replaced when the drive is powered on.

Num	Description	Range	unit	function	Set mom ent	active mome nt	def ault	RO/ RW
P00.08	Encoder type	0~5	ms		Disabl	Reset	0	RW
	0: incremental encoder				e to	takes		
	1:17-bit absolute encoder				set	effect		
	2: 24-bit absolute encoder							


The relevant parameters are as follows:

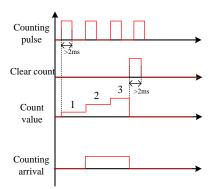
r		1	1				
	3: Magnetic encoder						
	4: Rotary encoder to incremental						
	encoder						
	5: Provincial line incremental						
	encoder						
	6:23-bit absolute encoder						
P00.18	Absolute value system usage	0~1	-	anytim	immedi	0	RW
	mode			е	ately		
	0: incremental mode						
	1: absolute value mode						
P00.37	Mechanical zero offset low 32	0~	-	/	/	/	RO
	bits	4294967					
		296					
P00.39	Mechanical zero offset is 32 bits	0~	-	/	/	/	RO
	high	4294967					
		296					
P00.41	Absolute encoder battery fault	0~ 3	-	/	/	/	RO
	alarm shielding						
	BIT0: Shielded battery alarm						
	BIT1: Shielded battery failure						
P03.90	Actual mechanical position	-214748	cust	/	/	0	RO
		3648~	omi				
		2147483	ze				
		648	pos				
			itio				
			n				
			unit				
L					1		

7.4 Other auxiliary functions

7.4.1 Internal trigger function

There is a software trigger inside the servo. The software trigger is realized by MCU software scanning. The trigger has a reset (clear) input function bit INFn.59, a set input function bit INFn.60, and a status output function bit. OUTFn.30. The timing of the three is shown in the figure below. It should be noted that the internal trigger is implemented by software scanning, therefore, the pulse width of all trigger signals must be greater than 2ms.

Related input function bits.


num	Bit description			
INFn.59	he rising edge resets the output of the internal flip-flop OUTFn.30			
INFn.60	The rising edge sets the output of the internal flip-flop OUTFn.30			

Related output function bits.

num	Bit description
OUTFn.30	Internal trigger output

7.4.2 Software counter function

The servo implements a software counter internally. The software counter is implemented by MCU software scan. The counter has a count pulse input bit INFn.61, a count clear input function bit INFn.62, and a status output function bit OUTFn.31. The timing of the three is shown in the figure below, where the count arrival register P02.39 is set to 2. The count value P02.37 counts the pulse signal. When the count value P02.37 reaches the count arrival value P02.39, the count arrival signal OUTFn.31 is valid. The count value pulse INFn.62 clears the count value. It should be noted that the internal counter is implemented by software scanning, so the pulse width of all trigger signals must be greater than 2ms.

Related input function bits.

num	Bit description			
INFn.61	ount pulse input of internal software counter			
INFn.62	The rising edge clears the count value of the internal software counter			

Related output function bits.

num Bit description

OUTFn.31 Internal counter count reaches output

Num	Description	Range	unit	function	Set mom	active mome	def	RO/
					ent	nt	ault	RW
P02.37	Internal software counter	0~214748	-	This value is	-	-	-	RO
	count value	3647		read-only.				
				Double-byte				
				parameter and				
				power down				
P02.39	Internal software counter	0~214748	-	Double-byte	anyti	immedi	0	RW
	arrival value	3647		parameter. When	me	ately		
				the count value				
				P02.37 reaches				
				the count arrival				
				value P02.39, the				
				count arrival				
				signal OUTFn.31				
				is valid.				

The relevant parameters are as follows.

7.4.3 U disk update / save parameter function

The servo can save all the parameters inside the servo to the USB flash drive through the USB interface, and can also update the parameters in the USB flash drive to the servo through the USB interface.

The steps for saving parameters to a USB flash drive are:

- (1) Set the startup option P02.09=1 (save the servo parameters to the USB flash drive before starting),
- (2) Insert a USB flash drive
- (3) After restarting the servo again, the parameters will be saved to the U disk, and the saved file name will be fixed to PARA.CSV. If there is a PARA.CSV file in the U disk, it will be automatically replaced. The servo will enter the rdy state after the file is saved.

The steps to update parameters from a USB flash drive are:

(1) Set the startup option P02.09=2 (update the parameters in the USB flash drive to the servo before starting)

(2) Insert a USB flash drive

(3) After restarting the servo again, the parameters in the PARA.CSV file in the USB flash drive will be updated to the servo. After the completion, the servo will enter the rdy state.

Note: U disk must be in the format of FAT32 file system in order to operate

7.4.4 Record waveforms in real time and store them to the U disk's function

In order to facilitate fault diagnosis, the servo has a function to record waveforms in real time and store them in real time to the USB flash drive. The specific steps are:

(1) Prepare the U disk. It must be ensured that the USB flash drive has a capacity of 4GByte and is internally a FAT32 file system.

(2) Write a waveform configuration file. First store the waveform configuration file wavecfg in the USB flash drive and configure it as follows:

CCC,AAAA,B,AAAA,B,AAAA,B,....

Where CCC is the sampling period ms, AAAA is the address, B is the data type, 1 is S16, 2 is S32, 3 is U16, and 4 is U32. The servo can record up to 16 sets of address waveforms, that is, up to 16 waveforms can be recorded. For example, the sampling period is 1, you need to record P09.20, P09.21, P09.30, P09.31, P03.94, P03.17, P00.13, P02.01, P03.04, P01.08 Value. And P00.13 and P03.04 are U32 type numbers, and others are S16 type numbers. The content in the configuration file is:

001,0920,1,0921,1,0930,1,0931,1,0394,1,0317,1,0013,4,0201,1,0304,4,0108,1,

<u>It should be noted that even if the number of address bits is less than 4 digits, it is necessary to fill in</u> <u>zero by the front to obtain 4 digits.</u>

(3) The startup option P02.09=3 will be set.Note that you need to reset the value to 3 each time you need to save the waveform data. This means that the setting of this value can only be used once.

(4) Insert the USB flash drive, power it on again, and start recording the waveform.

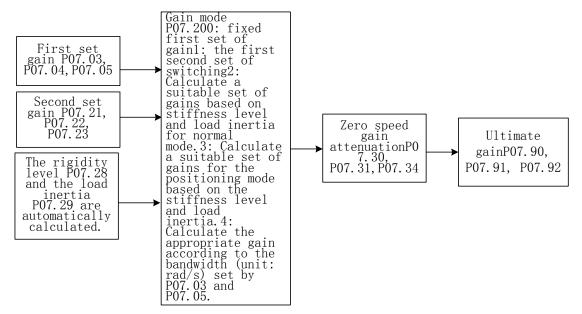
(5) After power failure, copy the WAVEDATA.DAT file in the U disk to the computer, and read and display the waveform through UdiskWaveRead.exe.

Chapter 8 Gain Adjustment

8.1 Control loop gain adjustment

The control loop gain includes a speed loop proportional gain, a speed loop integral gain, and a position loop proportional gain. There are five types of control loop gain adjustment modes. You can choose one of the modes to adjust the gain. In the first type, the first set of gains is fixed. In the second type, the first set of gains and the second set of gains are switched. In the third type, a set of suitable gains for the normal mode is automatically calculated according to the set rigidity level. In the fourth type, a set of suitable gains for the positioning mode is automatically calculated according to the set rigidity calculated according to the set rigidity calculated by setting the speed loop and the position loop bandwidth.

In the first type, the first set of gain is fixed: in this mode, the user can manually modify the three values of P07.03, P07.04, and P07.05 to optimize the control performance.


The second type, the first set or the second set of gain switching: switch the first set of gains or the second set of gains according to the switching condition P07.24 and other switching related parameters.

In the third and fourth modes, a set of suitable gains is automatically calculated according to the set stiffness level and the self-learned load inertia. The difference is that the gain calculated by the third mode is mainly used for ordinary Mode, the gain calculated by the fourth mode is mainly used for the positioning mode.

In the fifth type, the gain is automatically calculated by setting the speed loop and the position loop bandwidth.

When using the 3/4/5 gain adjustment method, the motor rated current P00.01, motor rated torque P00.25, motor rotor inertia P00.27, load inertia ratio 07.29, and drive rated current P01.03 must be set.

In addition, the servo driver has a zero-speed gain attenuation/amplification function, that is, when the motor speed is less than the zero-speed attenuation threshold P07.32, the speed loop proportional gain/integral gain, position loop proportional gain, current loop proportional/integral gain can be reduced or increased. High to a certain percentage. Zero-speed gain reduction can effectively avoid high-frequency vibration of the motor at zero speed. Zero-speed gain amplification can effectively speed up the positioning time at low speeds.

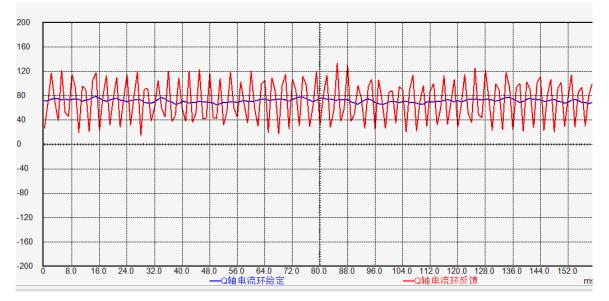
Gain switching example: When the gain switching condition P07.24=2, the gain switching level P07.25=2000, and the gain switching time lag P07.26=100, the gain switching condition is: the speed command is the basic switching condition, the speed command When rising, when the speed command is greater than 2100 (P07.25+P07.26), switch to the second set of gain; when the speed command is reduced, the speed command is less than 1900 (P07.25-P07.26), switch back to the first set Gain.

Remark: The units of parameters P07.25 and P07.26 vary according to the selection of P07.24 (gain switching condition).

Num	Description	Range	unit	Set mom ent	activ e mom ent	defau It	RO/RW			
	Current loop	0~32767	-	anyti	imme	100	RW			
	proportional gain			me	diatel					
P07.01					У					
	Set the current loop proportional gain. This value is factory set and is not									
	recommended for modification.									
	Current loop integral gain	0~32767	-	anyti	imme	20	RW			
				me	diatel					
P07.02					у					
	Set the current loop integral gain. This value is factory set and is not recommended									
	for modification.									
	Speed loop proportiona	0~32767	-	anyti	imme	600	RW			
	gain			me	diatel					
007 00					у					
P07.03	Set the proportional gain	of the speed	oop. Th	is param	eter det	ermines	the			
	response of the speed lo	p. The larger	the spee	ed loop i	response	e is, the l	arger the			
	setting may cause vibrati	on. In position	mode, i	if you wa	ant to in	crease th	ne position			

The relevant parameters are as follows.

	loop gain, you need to incr	ease the spe	ed loop	gain at t	the same	e time.			
	Speed loop integral gain	0~32767	-	anyti	imme	50	RW		
P07.04				me	diatel				
					у				
	Position loop	0~32767	-	anyti	imme	200	RW		
	proportional gain			me	diatel				
					У				
P07.05	Set the proportional gain of the position loop. This parameter determines th								
	responsiveness of the position loop and sets a larger position loop gain to shorte								
	the positioning time. However, it should be noted that vibration may be cause								
	when the setting is too large.								
	Position loop maximum	0~100.0%	-	anyti	imme	100%	RW		
	output speed percentage			me	diatel				
P07.06					у				
	Set the maximum speed pe	ercentage of	the posi	tion loo	p output	t			
	Output voltage filtering	0~32767	_	anyti	imme	0	RW		
	time			me	diatel				
P07.07					у				
	Set the filter time of the voltage output to the motor								
	Torque feedforward filter	0-63		anyti	imme	10	RW		
	time constant			me	diatel				
P07.08				_	y				
107100	Set the torque feedforward filter time constant. The larger the inertia, the larger th								
	value.								
	Speed feedforward filter	0-63		anyti	imme	10	RW		
	time constant			, me	diatel				
P07.09				inc	y				
107.05	Set the speed feedforward	filter time co	nstant	The larg		hertia th	e larger th		
	value.		sistant.						
	Torque feed forward	0~32767	_	anyti	imme	0	RW		
	coefficient	5 52,07		me	diatel				
P07.10					y				
. 07.10	In the non-torque control mode, the torque feedforward signal is multiplied b								
	P07.10, and the result is ca	-	•			•	•		
	Speed feedforward	0~300.0	_	anyti	imme	50.0	RW		
	coefficient	0 500.0		me	diatel	50.0	1.00		
	Coemcient			me					
P07.11	In the position control mas		ocod fur	ction +	y ho spoor	l foodfor	word ciana		
	In the position control mod								
	is multiplied by P07.11, and	a the result is	s called !	speed fe	eulorWa	nu as pal	it of the		
	speed command.	0.02			1000	<u> </u>	D14/		
P07.12	Torque filter type 0-low pass filtering	0~2	-	anyti	imme	0	RW		
	() low poss tiltoring			me	diatel	1			


		[
	1-notch filter				У					
	2- no filter									
	Torque low pass filter	0~327.67	ms	anyti	imme	0.80	RW			
P07.13	time constant			me	diatel					
					У					
	Gain adjustment mode	0~3	-	anyti	imme	0	RW			
				me	diatel					
					у					
	0- fixed first set of gain: P07.03 to P07.05									
P07.20	1- first and second sets of	f gain switch	ing							
107.20	2- According to the rigidit	ty level P07.2	28 and tl	ne load i	nertia P	07.29, it	is used in			
	the normal mode.									
	3- Based on the stiffness	class P07.28	and load	d inertia	P07.29,	used for	positioning			
	mode									
	4- Automatically calculate the gain based on the set bandwidth and inertia ratio									
	Second set of speed loop	0~32767	-	anyti	imme	800	RW			
P07.21	proportional gain			me	diatel					
					у					
	Second set of speed loop	0~32767	-	anyti	imme	10	RW			
P07.22	integral gain			me	diatel					
					у					
	Second set of position	0~32767	-	anyti	imme	200	RW			
P07.23	loop proportional gain			me	diatel					
					у					
	Gain switching condition	0~6	-	anyti	imme	0	RW			
				me	diatel					
					у					
	0- IO switching; INFn.41 is valid with a second set of gain									
	1- When the torque com	mand is large	e, switch	to the s	second s	et of gai	ns;When the			
	torque command is gre	eater than (g	ain swite	ching lev	/el P07.2	25 + gain	switching			
	torque command is greater than (gain switching level P07.25 + gain switching time delay P07.26), switch to the second set of gain; when the torque command									
	is less than (P07.25-P07.26), switch back to the first set of gain .									
	 2- Switch to the second set of gain when the speed command is large; When the 									
P07.24	speed command is greater than (P07.25+P07.26), switch to the second set of									
	gain; the speed command is less than (P07.25-P07.26), switch back to the first									
	set of gain.									
	3- When the acceleration command is large, switch to the second set of									
	gains; When the acceleration command is arge, switch to the second set of gains; When the acceleration command is greater than (P07.25+P07.26), switch									
	to the second set of ga		-		-		-,,			
	(P07.25-P07.26), switc									
	4- Switch to the second s			-		ge:Whe	n the sneed			
	error is greater than (P						-			
	-									
	speed error is less than (P07.25-P07.26), switch back to the first set of gain									

	5- Switch to the second set of gain when the position error is large after									
	filtering;Switching to the second set of gain when the position error after									
	filtering is greater than (P07.25+P07.26); the position error after filtering is less									
	than (P07.25 -P07.26), switching back to the first set of gain									
	6- Positioning is completed and switched to the second set of gains. No positioning									
	is completed to switch to the first set of gains.									
	7- Motor phase switching gain; When the motor phase is in the range of (gain									
	switching level ± gain switching time lag), switch to the second set of gain, and									
	the other phases switch to the first set of gain; the motor phase can be viewed									
	through P09.39									
	Gain switching level	0~32767	-	anyti	imme	0	RW			
				me	diatel					
					У					
P07.25	Set the level that satisfies t	he gain swite	ching co	ndition.						
	The generation of the actu	al switching	action is	affected	d by the	two con	ditions of			
	the level and the time lag.	The unit of t	he switc	hing lev	el chang	es accor	ding to the			
	difference of the gain swite	ching conditi	ons.							
	Gain switching time lag	0~32767	-	anyti	imme	0	RW			
				me	diatel					
					у					
P07.26	Set the time lag that satisfies the gain switching condition. The generation of the									
	actual switching action is affected by the two conditions of the level and the time									
	lag. According to the difference of the gain switching conditions, the unit for									
	switching the time lag will	change acco	rdingly.							
	Gain switching time	0~32767	ms	anyti	imme	10	RW			
	constant			me	diatel					
					y					
P07.27	In position control mode, if P07.23 (second position loop gain) is much larger than									
	P07.05 (first position loop	•	•				0			
	switching action is generat									
	Rigid rating	1~31	-	anyti	imme	10	RW			
P07.28				me	diatel					
					y					
	Load inertia, obtained by			anyti	, imme	400	RW			
P07.29	inertia self-learning			me	diatel	100				
107.25				inc	y					
	Zero-speed speed gain	0~3276.7	%	anyti	imme	50.0	RW			
P07.30		0 52/0.7	70	me	diatel	50.0	1.77			
r07.30	attenuation / amplification			me						
		0~22767	%		y immo	100.0	D\\/			
	Zero-speed position gain	0~3276.7	70	anyti	imme	100.0	RW			
P07.31	attenuation / amplification			me	diatel y					

	Zero speed current ga	in 0~3276.7	%	anyti	imme	100.0	RW	
P07.34	attenuation	/		me	diatel			
	amplification				у			
	Zero speed dec	ay 0~32767	rpm	anyti	imme	10	RW	
	threshold			me	diatel			
					у			
P07.32	When the rotational speed is less than this value, the actual active speed loop							
	proportional gain integral gain, position loop proportional gain, and current loop							
	proportional gain integral gain are attenuated/amplified according to P07.30,							
		P07.31, and	P07.34, r	espectiv	vely.			
	Inertia self-learni	ng 0~32767	ms	anyti	imme	500	RW	
P07.33	acceleration a	nd		me	diatel			
	deceleration time				у			
P07.90	Actual speed lo	- qo	-	-	-	-	RO	
107.50	proportional gain							
P07.91	Actual speed lo	- op	-	-	-	-	RO	
F07.51	integral gain							
P07.92	Actual position lo	p -	-	-	-	-	RO	
FU7.32	proportional gain							

8.1.1 Current loop PI gain adjustment

When the current loop proportional gain is too large, the motor will beep, and the Q-axis current will have high-frequency oscillations, often reporting overcurrent faults. As shown below.

When the current loop proportional gain is too small, the motor current response is slow, and the output is insufficient during rapid acceleration and deceleration.

When the current loop integral gain is too large, the Q-axis current is prone to

low-frequency oscillation, and it is easy to report an overcurrent fault during acceleration and deceleration.

When the current loop integral gain is too small, the motor current response is slow, and the output is insufficient during rapid acceleration and deceleration.

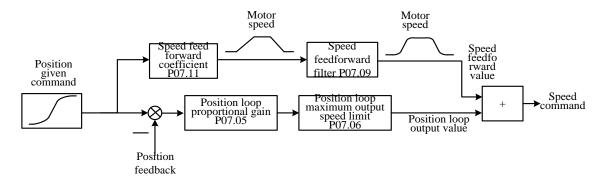
8.1.2 Speed loop PI gain adjustment

When the speed loop proportional gain is too large, the motor is prone to howling, and the Q-axis current is given a high-frequency oscillation.

When the speed loop proportional gain is too small, the motor rigidity is weak and the speed cannot follow.

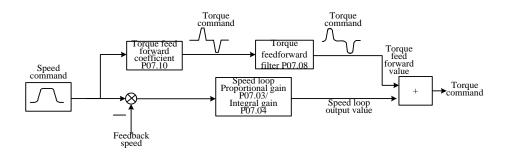
When the integral gain of the speed loop is too large, the rigidity of the motor is enhanced, and the speed is easy to generate low-frequency fluctuation. The specific phenomenon is that after the given position is 0, the motor is reversed back and forth.

When the speed loop integral gain is too small, the motor rigidity is weak and the speed cannot follow.


8.1.3 Position loop P gain adjustment

When the position loop proportional gain is too large, the motor speed is unstable and it is easy to shake.

The position loop proportional gain is too small and the position arrives very slowly.


8.2 Feed forward gain adjustment

8.2.1 Speed feedforward

Speed feedforward refers to the mathematical operation of a given position command to obtain the required speed of the motor, which is directly given to the speed loop. As shown in the figure above, the position command is input to the servo and directly converted to the required speed of the motor. After filtering, it is superimposed on the speed command. Generally, the speed feedforward coefficient is directly set to 50%, and the speed feedforward filter value is set according to the inertia size, and is generally set to 0-20 ms. The maximum output speed limit of the position loop means that the output of the position loop is limited to plus or minus P07.06.

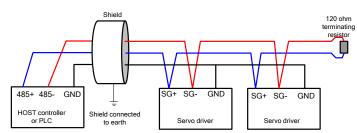
8.2.2 Torque feedforward

Torque feedforward refers to the mathematical operation of a given speed command, combined with the load inertia, to obtain the torque that the motor needs to output, which is directly given to the torque loop. As shown in the figure above, the speed command is input to the servo and directly converted to the torque required by the motor according to the torque feedforward coefficient. After filtering, it is superimposed on the torque command. In general, the torque feedforward coefficient is determined by the load inertia. The larger the load inertia, the larger the value. This value can be obtained by Fn007. Torque feedforward filtering is also determined by the load inertia, which is generally set to 5-20ms.

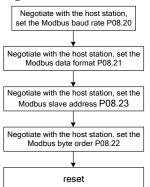
8.3 Filter time adjustment

There are three filtering times related to loop control.

The first is the torque filtering time. Under normal circumstances, the torque filter is set to a low-pass filter (P07.12=0). At this time, the larger the torque filter time constant P07.13, the smoother the torque command, which can reduce the high-frequency noise of the motor and bring The side effect is that it is easy to produce low frequency vibration. Increase this value when the inertia is large.


The second is the speed feedforward filter time. When in the position mode, if the position command pulse frequency is low, and the position command filter parameters P03.06 and P03.07 are both 0, speed feedforward filtering needs to be added. It can reduce the speed pulsation of the position command and reduce the motor noise. The speed feedforward filter time P07.09 is generally set at around 0-20.

The third is the torque feedforward filter time P07.08. When the torque command has too many high frequency components, it needs to be increased. It is generally set at 5-20.


Chapter 9 MODBUS Communication

9.1 Modbus wiring requirements

Please see the figure below for wiring.

9.2 Modbus Parameter setting step

Related parameters are as follows.

Num	Description	Range	unit	Set mom ent	activ e mom ent	defau lt	AC CES S
P08.20	Modbus baud rate	0~3	bps	anyti	imme	1	RW
	0- 4800			me	diatel		
	1- 9600				У		
	2- 19200						
	3- 38400						
P08.21	Modbus data format	0~3	-	anyti	reset	1	RW
	0- No parity, stop bits 2			me	takes		
	1- No parity, stop bits 1				effect		
	2- Even parity, 1 stop bit						
	3- Odd parity, 1 stop bit						
P08.22	Byte order when 32-bit	0~1	-	anyti	imme	1	RW
	address is accessed			me	diatel		
	0- When a 32-bit address is				У		
	accessed; the upper 16 bits are						
	in front.						

	1- When a 32-bit address is accessed, the lower 16 bits are in front.						
P08.23	Modbus slave address	1~255	-	anyti me	imme diatel	1	RW
					У		
P08.24	Modbus fault register	-	-	-	-	-	RO
P08.25	Number of bytes in the transmit FIFO buffer	-	-	-	-	-	RO
P08.27	MODBUS response delay	0~32767	-	anyti	imme	0	RW
				me	diatel		
					У		
P08.28	MODBUS sampling	0~32767	500u	anyti	imme	0	RW
	period delay		S	me	diatel		
					у		

9.3 Modbus supported function code

The servo driver only supports communication in Modbus RTU format. The function codes of the Modbus protocol stack are shown in the following table.

-	
Function code (decimal)	Function description
1	Read bit
2	Read bit
3	Read register
4	Read register
5	Write bit
6	Write 16-bit register
16	Write 32-bit register

9.3.1 Function code 1 or function code 2 (read bit)

The servo provides the following address for reading by the host computer. It should be noted that the bit address of most host controller should be set to "modus bit address+1"; if it is a macro definition communication mode, "modbus bit address" is generally set directly. The meaning of each modbus bit address is as follows.

Modbus bit address	Bit definition
12	Effective state of DO1
13	Effective state of DO2
14	Effective state of DO3
15	Effective state of DO4
16	Effective state of DO5
17	Effective state of DO6
141	OUTFn.001 driver is enabled

	
142	OUTFn.002 speed reaches the given value
143	OUTFn.003 slowdown
144	OUTFn.004 speed
145	OUTFn.005 in zero speed
146	OUTFn.006 speed overrun
147	OUTFn.007 Forward
148	OUTFn.008 Reverse
149	OUTFn.009 fault output
150	OUTFn.010 Positive speed limit in torque mode
151	OUTFn.011Negative speed limit in torque mode
152	OUTFn.012 speed limtting in torque mode
153	OUTFn.013 positioning complete output
154	OUTFn.014 positioning close to output
155	OUTFn.015 homing complete output
156	OUTFn.016 position error is too large output
157	OUTFn.017 interrupts the fixed length to complete the output
158	OUTFn.018 software position limit output
164	OUTFn.024 brake output
165	OUTFn.025 input command is valid
166	OUTFn.026 is always OFF
167	OUTFn.027 is always ON
168	OUTFn.028 torque limit output
169	OUTFn.029 torque arrives
170	OUTFn.030 internal trigger status
171	OUTFn.031 internal counter count arrives
172	OUTFn.032 is consistent in speed
173	OUTFn.033 pulse position command is zero output

The above bits can be read by the read-bit-function in MODBUS, that is, the function code of the MODBUS data frame is set to 1 or 2. The query information for the Modbus master to send the read bit is as follows. The query information specifies the slave address, bit address, and number of bits to read. For example, the host station queries the 0x01 slave address and the 6 bits starting at address 0x01.

Query information contains the domain	example (Hexadecimal)
Slave address	0x01
function code	0x01
the upper 8 bits of the address	0x00
the lower 8 bits of the address	0x01
upper 8 bits of the number of bits	0x00
lower 8 bits of the number of bits	0x06
lower 8 bits of CRC16 check result	0xED
upper 8 bits of CRC16 check result	0XC8

The data field in the Modbus slave response message contains the status of the bit

corresponding to the query address. The data of the low address is placed in the low position, 1 means valid, 0 means invalid.

If the number of bits returned is not a multiple of 8, the remaining bits in the last data byte are all zero-padded, and the byte number field indicates the number of bytes of all data. The result of replying to the reading of the master station is as follows.

Response information contains the domain	Example (hexadecimal)
Slave address	0x01
function code	0x01
Number of bytes	0x01
Data (bits 5-0)	0x00
The lower 8 bits of the CRC16 check result	0x51
The upper 8 bits of the CRC16 check result	0X88

9.3.2 Function code 3 or function code 4 (read register)

All Pxx.yy parameters of the servo driver can be read, and the corresponding modbus register address is xx*100+yy. Most of the host computer's parameter address should be set to "parameter register address +1"; if it is a macro definition communication mode, generally set the "parameter register address". The query information for the Modbus master to send the read register is as follows. The query information specifies the slave address, register address, and number of registers to be read. For example, the master station queries the 0x01 slave address and the two registers whose parameter address starts from 0x01.

Query information contains the domain	Example (hexadecimal)
Slave address	0x01
function code	0x03
The upper 8 bits of the register address	0x00
The lower 8 bits of the register address	0x01
The upper 8 bits of the number of registers	0x00
The lower 8 bits of the number of registers	0x02
The lower 8 bits of the CRC16 check result	0x51
The upper 8 bits of the CRC16 check result	0x88

The servo driver responds to the master read register information as follows.

1 0	
Response information contains the	Example (hexadecimal)
domain	
Slave address	0x01
function code	0x03
Number of bytes	0x04
Data (higher 8 bits of register 1)	0x00
Data (lower 8 bits of register 1)	0x1C
Data (high 8 bits of register 2)	0x0B
Data (lower 8 bits of register 2)	0xB8
The lower 8 bits of the CRC16 check result	0x3C

The upper 8 bits of the CRC16 check result 0xB7

9.3.3 Function code 5 (write bit)

The following bit address in the servo can be written by the host computer. The corresponding definitions are as follows.

0 Write 1 forced D11 is valid 1 effective 1 Write 1 forced D12 is valid 1 effective 2 Write 1 forced D13 is valid 1 effective 3 Write 1 forced D15 is valid 1 effective 4 Write 1 forced D15 is valid 1 effective 5 Write 1 forced D16 is valid 1 effective 6 Write 1 forced D17 is valid 1 effective 7 Write 1 forced D19 is valid 1 effective 8 Write 1 forced D19 is valid 1 effective 9 Write 1 forced D10 is valid 1 effective 41 INFn.01 enabled driver 1 effective 42 INFn.02 reset drive 0->1 effective 43 INFn.03 torque AB selector switch 1 effective 44 INFn.04 torque reverse switch 1 effective 45 INFn.04 forque reverse switch 1 effective 46 INFn.06 reverse torque limit selection 1 effective 47 INFn.07 forward speed limit selection 1 effective 48 INFn.04 orque reverse 1 effective 50 INFn.10 jog torward 1 effective 51 INFn.10 jog torward 1 effective 52 INFn.13 speed stop input 1 effective <	MODBUS bit address	Function	Effective rule
2Write 1 forced DI3 is valid1 effective3Write 1 forced DI4 is valid1 effective4Write 1 forced DI5 is valid1 effective5Write 1 forced DI6 is valid1 effective6Write 1 forced DI7 is valid1 effective7Write 1 forced DI8 is valid1 effective8Write 1 forced DI9 is valid1 effective9Write 1 forced DI9 is valid1 effective41INFn.01 enabled driver1 effective42INFn.02 reset drive0->1 effective43INFn.03 torque AB selector switch1 effective44INFn.04 torque reverse switch1 effective45INFn.05 forward torque limit selection1 effective46INFn.06 reverse torque limit selection1 effective47INFn.07 forward speed limit selection1 effective48INFn.09 jog forward1 effective50INFn.10 jog reverse1 effective51INFn.11 speed given reverse1 effective52INFn.12 main speed AB selection1 effective53INFn.13 speed stop input1 effective54INFn.16 Zero fixed in speed mode1 effective55INFn.16 Zero fixed in speed selector switch 01 effective56INFn.18 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 11 effective60INFn.20 position instruction is forbidden	0	Write 1 forced DI1 is valid	1 effective
3Write 1 forced D14 is valid1 effective4Write 1 forced D15 is valid1 effective5Write 1 forced D16 is valid1 effective6Write 1 forced D18 is valid1 effective7Write 1 forced D19 is valid1 effective8Write 1 forced D19 is valid1 effective9Write 1 forced D10 is valid1 effective41INFn.01 enabled driver1 effective42INFn.02 reset drive0->1 effective43INFn.03 torque AB selector switch1 effective44INFn.04 torque reverse switch1 effective45INFn.05 forward torque limit selection1 effective46INFn.06 reverse torque limit selection1 effective47INFn.07 forward speed limit selection1 effective48INFn.09 jog forward1 effective50INFn.10 jog reverse1 effective51INFn.11 speed given reverse1 effective52INFn.12 main speed AB selection1 effective53INFn.13 speed stop input1 effective54INFn.14 download ARM program reset0->1 effective55INFn.15 clear encoder position counter0->1 effective58INFn.16 Zero fixed in speed selector switch 01 effective59INFn.19 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 21 effective60INFn.20 multi-speed speed selector switch 31 effective	1	Write 1 forced DI2 is valid	1 effective
4Write 1 forced D15 is valid1 effective5Write 1 forced D17 is valid1 effective6Write 1 forced D17 is valid1 effective7Write 1 forced D19 is valid1 effective8Write 1 forced D19 is valid1 effective9Write 1 forced D10 is valid1 effective41INFn.01 enabled driver1 effective42INFn.02 reset drive0->1 effective43INFn.03 torque AB selector switch1 effective44INFn.04 torque reverse switch1 effective45INFn.05 forward torque limit selection1 effective46INFn.06 reverse torque limit selection1 effective47INFn.07 forward speed limit selection1 effective48INFn.09 jog forward1 effective49INFn.10 jog reverse1 effective50INFn.10 jog reverse1 effective51INFn.13 speed given reverse1 effective52INFn.13 speed AB selection1 effective53INFn.14 download ARM program reset0->1 effective54INFn.15 clear encoder position counter0->1 effective55INFn.16 Zero fixed in speed mode1 effective58INFn.18 multi-speed speed selector switch 01 effective59INFn.19 multi-speed speed selector switch 11 effective60INFn.20 multi-speed speed selector switch 21 effective61INFn.21 position instruction is forbidden1 effective	2	Write 1 forced DI3 is valid	1 effective
5Write 1 forced DI6 is valid1 effective6Write 1 forced DI7 is valid1 effective7Write 1 forced DI8 is valid1 effective8Write 1 forced DI9 is valid1 effective9Write 1 forced DI10 is valid1 effective41INFn.01 enabled driver1 effective42INFn.02 reset drive0->1 effective43INFn.03 torque AB selector switch1 effective44INFn.04 torque reverse switch1 effective45INFn.05 forward torque limit selection1 effective46INFn.06 reverse torque limit selection1 effective47INFn.09 jog forward1 effective48INFn.09 jog reverse1 effective50INFn.10 jog reverse1 effective51INFn.13 speed AB selection1 effective52INFn.13 speed AB selection1 effective53INFn.13 speed speed node0->1 effective54INFn.14 download ARM program reset0->1 effective55INFn.15 clear encoder position counter0->1 effective56INFn.16 Zero fixed in speed mode1 effective57INFn.17 multi-speed speed selector switch 01 effective58INFn.18 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 21 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	3	Write 1 forced DI4 is valid	1 effective
6Write 1 forced DI7 is valid1 effective7Write 1 forced DI8 is valid1 effective8Write 1 forced DI9 is valid1 effective9Write 1 forced DI10 is valid1 effective41INFn.01 enabled driver1 effective42INFn.02 reset drive0->1 effective43INFn.03 torque AB selector switch1 effective44INFn.04 torque reverse switch1 effective45INFn.05 forward torque limit selection1 effective46INFn.06 reverse torque limit selection1 effective47INFn.07 forward speed limit selection1 effective48INFn.08 reverse speed limit selection1 effective49INFn.09 jog forward1 effective50INFn.10 jog reverse1 effective51INFn.11 speed given reverse1 effective52INFn.12 main speed AB selection1 effective53INFn.13 speed stop input1 effective54INFn.16 Zero fixed in speed mode1 effective55INFn.16 Zero fixed in speed mode1 effective56INFn.16 Zero fixed in speed selector switch 01 effective58INFn.18 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 21 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	4	Write 1 forced DI5 is valid	1 effective
7Write 1 forced D18 is valid1 effective8Write 1 forced D19 is valid1 effective9Write 1 forced D110 is valid1 effective41INFn.01 enabled driver1 effective42INFn.02 reset drive0->1 effective43INFn.03 torque AB selector switch1 effective44INFn.04 torque reverse switch1 effective45INFn.05 forward torque limit selection1 effective46INFn.06 reverse torque limit selection1 effective47INFn.07 forward speed limit selection1 effective48INFn.09 jog forward1 effective49INFn.09 jog reverse1 effective50INFn.10 jog reverse1 effective51INFn.11 speed given reverse1 effective53INFn.13 speed AB selection1 effective54INFn.14 download ARM program reset0->1 effective55INFn.15 clear encoder position counter0->1 effective56INFn.16 Zero fixed in speed mode1 effective57INFn.18 multi-speed selector switch 01 effective58INFn.19 multi-speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 21 effective60INFn.20 multi-speed speed selector switch 31 effective	5	Write 1 forced DI6 is valid	1 effective
8Write 1 forced DI9 is valid1 effective9Write 1 forced DI10 is valid1 effective41INFn.01 enabled driver1 effective42INFn.02 reset drive0->1 effective43INFn.03 torque AB selector switch1 effective44INFn.04 torque reverse switch1 effective45INFn.05 forward torque limit selection1 effective46INFn.06 reverse torque limit selection1 effective47INFn.07 forward speed limit selection1 effective48INFn.08 reverse speed limit selection1 effective49INFn.09 jog forward1 effective50INFn.10 jog reverse1 effective51INFn.11 speed given reverse1 effective52INFn.12 main speed AB selection1 effective53INFn.13 speed stop input1 effective54INFn.16 Zero fixed in speed mode1 effective55INFn.16 Zero fixed in speed selector switch 01 effective56INFn.17 multi-speed speed selector switch 11 effective58INFn.18 multi-speed speed selector switch 21 effective59INFn.19 multi-speed speed selector switch 11 effective60INFn.21 position instruction is forbidden1 effective	6	Write 1 forced DI7 is valid	1 effective
9Write 1 forced D110 is valid1 effective41INFn.01 enabled driver1 effective42INFn.02 reset drive0->1 effective43INFn.03 torque AB selector switch1 effective44INFn.04 torque reverse switch1 effective45INFn.05 forward torque limit selection1 effective46INFn.06 reverse torque limit selection1 effective47INFn.07 forward speed limit selection1 effective48INFn.09 jog forward1 effective49INFn.09 jog forward1 effective50INFn.10 jog reverse1 effective51INFn.11 speed given reverse1 effective52INFn.12 main speed AB selection1 effective53INFn.13 speed AB selection1 effective54INFn.14 download ARM program reset0->1 effective55INFn.15 clear encoder position counter0->1 effective56INFn.18 multi-speed speed selector switch 01 effective58INFn.18 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 21 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	7	Write 1 forced DI8 is valid	1 effective
41INFn.01 enabled driver1 effective42INFn.02 reset drive0->1 effective43INFn.03 torque AB selector switch1 effective44INFn.04 torque reverse switch1 effective45INFn.05 forward torque limit selection1 effective46INFn.06 reverse torque limit selection1 effective47INFn.07 forward speed limit selection1 effective48INFn.09 jog forward1 effective49INFn.09 jog reverse1 effective50INFn.10 jog reverse1 effective51INFn.11 speed given reverse1 effective52INFn.12 main speed AB selection1 effective53INFn.13 speed stop input1 effective54INFn.14 download ARM program reset0->1 effective55INFn.15 clear encoder position counter0->1 effective58INFn.18 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 21 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	8	Write 1 forced DI9 is valid	1 effective
42INFn.02 reset drive0->1 effective43INFn.03 torque AB selector switch1 effective44INFn.04 torque reverse switch1 effective45INFn.05 forward torque limit selection1 effective46INFn.06 reverse torque limit selection1 effective47INFn.07 forward speed limit selection1 effective48INFn.08 reverse speed limit selection1 effective49INFn.09 jog forward1 effective50INFn.10 jog reverse1 effective51INFn.11 speed given reverse1 effective52INFn.13 speed AB selection1 effective53INFn.14 download ARM program reset0->1 effective54INFn.15 clear encoder position counter0->1 effective55INFn.16 Zero fixed in speed selector switch 01 effective58INFn.19 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 21 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	9	Write 1 forced DI10 is valid	1 effective
43INFn.03 torque AB selector switch1 effective44INFn.04 torque reverse switch1 effective45INFn.05 forward torque limit selection1 effective46INFn.06 reverse torque limit selection1 effective47INFn.07 forward speed limit selection1 effective48INFn.08 reverse speed limit selection1 effective49INFn.09 jog forward1 effective50INFn.10 jog reverse1 effective51INFn.11 speed given reverse1 effective52INFn.12 main speed AB selection1 effective53INFn.13 speed stop input1 effective54INFn.14 download ARM program reset0->1 effective55INFn.15 clear encoder position counter0->1 effective56INFn.16 Zero fixed in speed mode1 effective57INFn.18 multi-speed speed selector switch 11 effective58INFn.19 multi-speed speed selector switch 21 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	41	INFn.01 enabled driver	1 effective
44INFn.04 torque reverse switch1 effective45INFn.05 forward torque limit selection1 effective46INFn.06 reverse torque limit selection1 effective47INFn.07 forward speed limit selection1 effective48INFn.08 reverse speed limit selection1 effective49INFn.09 jog forward1 effective50INFn.10 jog reverse1 effective51INFn.11 speed given reverse1 effective52INFn.12 main speed AB selection1 effective53INFn.13 speed stop input1 effective54INFn.14 download ARM program reset0->1 effective55INFn.15 clear encoder position counter0->1 effective56INFn.16 Zero fixed in speed selector switch 01 effective58INFn.18 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 31 effective60INFn.20 multi-speed speed selector switch 31 effective	42	INFn.02 reset drive	0->1 effective
45INFn.05 forward torque limit selection1 effective46INFn.06 reverse torque limit selection1 effective47INFn.07 forward speed limit selection1 effective48INFn.08 reverse speed limit selection1 effective49INFn.09 jog forward1 effective50INFn.10 jog reverse1 effective51INFn.11 speed given reverse1 effective52INFn.12 main speed AB selection1 effective53INFn.13 speed stop input1 effective54INFn.14 download ARM program reset0->1 effective55INFn.15 clear encoder position counter0->1 effective56INFn.16 Zero fixed in speed mode1 effective57INFn.17 multi-speed speed selector switch 01 effective58INFn.18 multi-speed speed selector switch 11 effective59INFn.20 multi-speed speed selector switch 31 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	43	INFn.03 torque AB selector switch	1 effective
46INFn.06 reverse torque limit selection1 effective47INFn.07 forward speed limit selection1 effective48INFn.08 reverse speed limit selection1 effective49INFn.09 jog forward1 effective50INFn.10 jog reverse1 effective51INFn.11 speed given reverse1 effective52INFn.12 main speed AB selection1 effective53INFn.13 speed stop input1 effective54INFn.14 download ARM program reset0->1 effective55INFn.15 clear encoder position counter0->1 effective56INFn.16 Zero fixed in speed mode1 effective57INFn.18 multi-speed speed selector switch 01 effective58INFn.18 multi-speed speed selector switch 11 effective59INFn.20 multi-speed speed selector switch 31 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	44	INFn.04 torque reverse switch	1 effective
47INFn.07 forward speed limit selection1 effective48INFn.08 reverse speed limit selection1 effective49INFn.09 jog forward1 effective50INFn.10 jog reverse1 effective51INFn.11 speed given reverse1 effective52INFn.12 main speed AB selection1 effective53INFn.13 speed stop input1 effective54INFn.14 download ARM program reset0->1 effective55INFn.15 clear encoder position counter0->1 effective56INFn.16 Zero fixed in speed selector switch 01 effective58INFn.18 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 31 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	45	INFn.05 forward torque limit selection	1 effective
48INFn.08 reverse speed limit selection1 effective49INFn.09 jog forward1 effective50INFn.10 jog reverse1 effective51INFn.11 speed given reverse1 effective52INFn.12 main speed AB selection1 effective53INFn.13 speed stop input1 effective54INFn.14 download ARM program reset0->1 effective55INFn.15 clear encoder position counter0->1 effective56INFn.16 Zero fixed in speed mode1 effective57INFn.17 multi-speed speed selector switch 01 effective58INFn.18 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 31 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	46	INFn.06 reverse torque limit selection	1 effective
49INFn.09jog forward1 effective50INFn.10jog reverse1 effective51INFn.11speed given reverse1 effective52INFn.12main speed AB selection1 effective53INFn.13speed stop input1 effective54INFn.14download ARM program reset0->1 effective55INFn.15clear encoder position counter0->1 effective56INFn.16Zero fixed in speed mode1 effective57INFn.17multi-speed speed selector switch 01 effective58INFn.18multi-speed speed selector switch 11 effective59INFn.19multi-speed speed selector switch 21 effective60INFn.20multi-speed speed selector switch 31 effective61INFn.21position instruction is forbidden1 effective	47	INFn.07 forward speed limit selection	1 effective
50INFn.10 jog reverse1 effective51INFn.11 speed given reverse1 effective52INFn.12 main speed AB selection1 effective53INFn.13 speed stop input1 effective54INFn.14 download ARM program reset0->1 effective55INFn.15 clear encoder position counter0->1 effective56INFn.16 Zero fixed in speed mode1 effective57INFn.17 multi-speed speed selection switch 01 effective58INFn.18 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 31 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	48	INFn.08 reverse speed limit selection	1 effective
51INFn.11 speed given reverse1 effective52INFn.12 main speed AB selection1 effective53INFn.13 speed stop input1 effective54INFn.14 download ARM program reset0->1 effective55INFn.15 clear encoder position counter0->1 effective56INFn.16 Zero fixed in speed mode1 effective57INFn.17 multi-speed speed selection switch 01 effective58INFn.18 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 21 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	49	INFn.09 jog forward	1 effective
52INFn.12 main speed AB selection1 effective53INFn.13 speed stop input1 effective54INFn.13 speed stop input0->1 effective55INFn.14 download ARM program reset0->1 effective55INFn.15 clear encoder position counter0->1 effective56INFn.16 Zero fixed in speed mode1 effective57INFn.17 multi-speed speed selection switch 01 effective58INFn.18 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 21 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	50	INFn.10 jog reverse	1 effective
53INFn.13 speed stop input1 effective54INFn.14 download ARM program reset0->1 effective55INFn.15 clear encoder position counter0->1 effective56INFn.16 Zero fixed in speed mode1 effective57INFn.17 multi-speed speed selection switch 01 effective58INFn.18 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 21 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	51	INFn.11 speed given reverse	1 effective
54INFn.14 download ARM program reset0->1 effective55INFn.15 clear encoder position counter0->1 effective56INFn.16 Zero fixed in speed mode1 effective57INFn.17 multi-speed speed selection switch 01 effective58INFn.18 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 21 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	52	INFn.12 main speed AB selection	1 effective
55INFn.15 clear encoder position counter0->1 effective56INFn.16 Zero fixed in speed mode1 effective57INFn.16 Zero fixed in speed speed selection switch 01 effective58INFn.17 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 21 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	53	INFn.13 speed stop input	1 effective
56INFn.16 Zero fixed in speed mode1 effective57INFn.17 multi-speed speed selection switch 01 effective58INFn.18 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 21 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	54	INFn.14 download ARM program reset	0->1 effective
57INFn.17 multi-speed speed selection switch 01 effective58INFn.18 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 21 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	55	INFn.15 clear encoder position counter	0->1 effective
58INFn.18 multi-speed speed selector switch 11 effective59INFn.19 multi-speed speed selector switch 21 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	56	INFn.16 Zero fixed in speed mode	1 effective
59INFn.19 multi-speed speed selector switch 21 effective60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	57	INFn.17 multi-speed speed selection switch 0	1 effective
60INFn.20 multi-speed speed selector switch 31 effective61INFn.21 position instruction is forbidden1 effective	58	INFn.18 multi-speed speed selector switch 1	1 effective
61 INFn.21 position instruction is forbidden 1 effective	59	INFn.19 multi-speed speed selector switch 2	1 effective
	60	INFn.20 multi-speed speed selector switch 3	1 effective
62 INFn.22 position command reverse 1 effective	61	INFn.21 position instruction is forbidden	1 effective
	62	INFn.22 position command reverse	1 effective

63	INFn.23 pulse command is forbidden	1 effective
64	INFn.24 electronic gear ratio switch 1	1 effective
65	INFn.25 position error clearing	Depend on P03.21
66	INFn.26 execult homing	0->1 effective
67	INFn.27 multi-segment position trigger start and stop signals	Depend on P13.92
68	INFn.28 multi-segment position selection switch 0	1 effective
69	INFn.29 multi- segment position selector switch 1	1 effective
70	INFn.30 multi- segment position selector switch 2	1 effective
71	INFn.31 multi- segment position selector switch 3	1 effective
72	Position direction in INFn.32 multi-segment position mode	1 effective
73	INFn.33 reserved	-
74	INFn.34 home switch input	Depend on homing method
75	XY pulse tracking and multi-segment position switching in INFn.35 position mode	1 effective
76	INFn.36 control mode switch 0	1 effective
77	INFn.37 control mode switch 1	1 effective
78	INFn.38 enables interrupt fixed length function	1 effective
79	INFn.39 lifts the fixed length	1 effective
80	INFn.40 triggers input signal with interrupted fixed length	0->1 effective
81	INFn.41 gain selector switch	1 effective
82	INFn.42 reset fault	1 effective
83	INFn.43 positive limit switch	1 effective
84	INFn.44 negative limit switch	1 effective
85	INFn.45 full closed loop mode open and closed loop switching	1 effective
86	INFn.46 FPGA download program reset	0->1 effective
96	INFn.56 electronic gear ratio switch 2	1 effective
97	INFn.57 motor overheated	1 effective
98	INFn.58 emergency stop input	1 effective
99	INFn.59 internal trigger reset	0->1 effective
100	INFn.60 internal trigger set	0->1 effective
101	INFn.61 internal counter count pulse	0->1 effective
102	INFn.62 internal counter clear	1 effective
103	INFn.63 UP signal in speed UPDOWN mode	1 effective
104	INFn.64 DOWN signal in speed UPDOWN mode	1 effective
107	INFn.67 corrects zero drift of all AI	1->0 effective

The information transmitted by the host station to write the bit data packet includes the slave address, the bit address, and the written data. For example, the master station writes the 0x01 slave address, the bit of the bit address 0x01, which is set to 1.

The host station sends the information contained the domain	Example (hexadecimal)
Slave address	0x01
function code	0x05
The upper 8 bits of the bit address	0x00
The lower 8 bits of the bit address	0x01
High 8 bits of data	0xFF
Lower 8 bits of the data	0x00
The lower 8 bits of the CRC16 check result	0xDD
The upper 8 bits of the CRC16 check result	0xFA

The reply message of the servo driver is as follows.

The domain contained in the servo reply	Example (hexadecimal)
message	
Slave address	0x01
function code	0x05
The upper 8 bits of the bit address	0x00
The lower 8 bits of the bit address	0x01
High 8 bits of data	0xFF
The lower 8 bits of the data	0x00
The lower 8 bits of the CRC16 check	0xDD
result	
The upper 8 bits of the CRC16 check	0xFA
result	

9.3.4 Function code 6 (write single word register)

All Pxx.yy readable and writable parameters of the servo driver can be written by Modbus, and the corresponding parameter register address is xx*100+yy. Most of the host computer's parameter address should be set to "parameter register address +1"; if it is a macro definition communication mode, generally set the "parameter register address". The information sent by the Modbus master to the write word register is as follows. The information specifies the slave address, register address, and register data to be written. For example, the master writes a register with the slave address 0x01 and the internal address 0x02, and the write value is 3000.

The host station sends the information	Example (hexadecimal)
contained the domain	
Slave address	0x01

function code	0x06
The upper 8 bits of the register address	0x00
The lower 8 bits of the register address	0x02
High 8 bits of data	0x0B
Lower 8 bits of the data	0Xb8
The lower 8 bits of the CRC16 check	0x2F
result	
The upper 8 bits of the CRC16 check	0x48
result	

The servo driver responds to the master writing a single register with the following information.

Response information contains fields	Example (hexadecimal)
Slave address	0x01
function code	0x06
The upper 8 bits of the register address	0x00
The lower 8 bits of the register address	0x02
High 8 bits of data	0x0B
The lower 8 bits of the data	0Xb8
The lower 8 bits of the CRC16 check	0x2F
result	
The upper 8 bits of the CRC16 check	0x48
result	

9.3.5 Function code 16 (writable double word register)

All Pxx.yy readable and writable double word parameters of the servo driver can be written by Modbus, and the corresponding parameter register address is xx*100+yy. Most of the host computer's parameter address should be set to "parameter register address +1"; if it is a macro definition communication mode, generally set the "parameter register address". The information sent by the Modbus master to the write double word register is as follows. The information specifies the slave address to be written, the register address, the number of registers, and the number of bytes of data. For example, the master writes a register with the slave address 0x0B, and the write value is 10000.

The host station sends the information contained the	Example (hexadecimal)
domain	
Slave address	0x01
function code	0x10
The upper 8 bits of the register address	0x00
The lower 8 bits of the register address	0x0B
The upper 8 bits of the register address number	0x00
The lower 8 bits of the register address number	0x02

Number of bytes of data	0x04
High 8 bits of data (high/low word)	0X00
The lower 8 bits of the data (high/low word)	0x00
High 8 bits of data (low/high word)	0x27
The lower 8 bits of the data (low/high word)	0x10
The lower 8 bits of the CRC16 check result	0Xa8
The upper 8 bits of the CRC16 check result	0x20

The servo driver responds to the host station writing the double word register as follows:

Response information contains fields	Example (hexadecimal)
Slave address	0x01
function code	0x10
The upper 8 bits of the register address	0x00
The lower 8 bits of the register address	0x0B
The upper 8 bits of the number of registers	0x00
The lower 8 bits of the number of registers	0x02
The lower 8 bits of the CRC16 check result	0X30
The upper 8 bits of the CRC16 check result	0x0A

Note: When writing a double word register, the data in the data field of the master station sending information can be either the high order first or the low order first, depending on the setting of P08.22.

Chapter 10 Parameter list

Parameter group	Function of parameter group
P00 group	Motor and encoder parameters

P01 group	Driver hardware parameters
P02 group	Basic control parameters
P03 group	Position mode parameter
P04 group	Speed mode related parameters
P05 group	Torque mode related parameters
P06 group	DIDO AIAO parameters
P07 group	Loop control parameter
P08 group	Communication parameter
P09 group	Advanced debugging parameters
P10 group	Fault protection parameter
P11 group	Multi-speed parameter
P12 group	Virtual DI DO parameter
P13 group	Multi-segment position parameter

•Set moment and active moment of the parameter

Disable to set: Indicates that the parameter is read-only when driver is enabled, and it can be modified when driver is disabling.

Immediately: Indicates that this parameter can be modified while the machine is running, that is, it can be modified in any state, and it will take effect immediately after the modification is completed.

reset takes effect: Indicates that the driver needs to be reset to take effect after the parameter is modified.

10.1 P00 group parameters - motor and encoder parameters

D00.01	Name	Motor rated current		Set moment	Disable to set	Access	RW	
P00.01	Range	0~3276.7	unit	A	active moment	Immediately	default	6.0
This parameter is password protected.								

	Name	Motor rated speed			Set	Disable to	Access	RW
D00.02					moment	set		
P00.02	Range	1~32767	unit	rpm	active	Immediately	default	3000
					moment			

	Name	Maximum motor speed			Set	Disable to	Access	RW
D00.02				moment	set			
P00.03	Range	1~32767	unit	rpm	active	Immediately	default	3000
					moment			

P00.04	Name	Motor rotation direction	Set	Disable to	Access	RW
1 00.04			moment	set		

Range	0~1	unit	-	active	Immediately	default	1			
				moment						
Setting		direction								
0	The posit	The positive motor speed is defined as the direction in which								
	the mo	the motor rotates clockwise (looking at the motor shaft)								
1	The posit	The positive motor speed is defined as the direction in which								
	the motor	the motor rotates counterclockwise (looking at the motor shaft)								

After setting this parameter, you must relearn the encoder to enable it. Please wire the motor UVW power cable according to the manufacturer's standard, otherwise the motor rotation direction may be reversed.

	Name	Motor pole pair			Set moment	Disable to set	Access	RW
P00.05	Range	1~32767	unit	-	active	Immediately	default	4
					moment			

	Name	;	Motor er	ncod	ler ty	/pe	Set	Disable to	Access	RW
P00.08							moment	set		
P00.08	Range	e	0~6	ur	nit	-	active	Immediately	default	0
							moment			
			Setting			Ν	/lotor encode	er type		
			0				ncremental e			
			1			magaw	va 17 -bit abs			
			2			Nikan	24 -bit absol	ute encoder		
			3				reserved	ł		
			4 Rotary e			ary enc	oder to incre	mental encode	r	
			5	5 Pro			ovincial line incremental encoder			
			б т			magawa	a 23 -bit ab	solute encoder		

	Name		oder hardware r settings		Set moment	Disable to set	Access	RW
P00.09	Range	1~32767	unit	20ns	active moment	Immediately	default	20

	Name	Motor encoder software filter time			Set moment	Disable to	Access	RW
P00.10	Range	0~32767				set reset takes	default	5
					moment	effect		

	Name	Motor ei resolu			Set moment	Disable to set	Access	RW
P00.11	Range	100~ 2147483647	unit	-	active moment	Immediately	default	100 00

	Name		Motor encoder position (encoder unit)			-	Access	RO
P00.13	Range	-	unit	-	active moment	-	default	-

D00 15	Name	Detected encoder resolution			Set moment	-	Access	RO
P00.15	Range	0~32767	unit	-	active	-	default	-
					moment			

	Name	Motor encoder Hall code			Set	_	Access	RO
		value			moment	-	Access	ко
P00.17	P00.17 Range		unit	-	active	-	default	-
					moment			

	Name m		ute value system mode		Set moment	Disable to set	Access	RW
							d a favilt	-
	Range	0-increme	unit	-	active	reset takes	default	0
P00.18		ntal			moment	effect		
		1-						
		absolute						
		value						

	Name	Motor en sampli	coder sp ng perio		Set moment	Disable to set	Access	RW		
	Range	0-7	unit	-	active	reset takes	default	0		
					moment	effect				
	0- incremental 250us, Tamagawa 300us, Nikon 200us;									
P00.19	1- incremental 500us, Tamagawa 360us, Nikon 240us;									
P00.19	2- incremental 750us, Tamagawa 420us, Nikon 280us;									
	3- incremental 1000us, Tamagawa 480us, Nikon 320us;									
	4- incremental 50us, Tamagawa 60us, Nikon 40us;									
	5- incrementa	1 100us , Tama	gawa 120	us , Niko	n 80us;					
	6- incremental 150us, Tamagawa 180us, Nikon 120us;									
	7- incremental 200us, Tamagawa 240us, Nikon 160us									

Name Stator resis			resistanc	e	Set moment	Disable to set	Access	RW
P00.20	Range	0~327.67	unit	Ω	active moment	reset takes effect	default	-

D00 21	Name	D- axis	inductar	ice	Set moment	Disable to set	Access	RW
P00.21	Range	0~327.67	unit	mH	active	reset takes	default	-
					moment	effect		

D00.22	Name Q- axis inductance		Set moment	Disable to set	Access	RW		
P00.22	Range	0~327.67	unit	mH	active	reset takes	default	-
					moment	effect		

	Name	Line back	electro	omotive	Set	Disable to set	Access	RW
D00 22	Ivanic	f	force		moment	Disable to set	Access	IX W
P00.23	Range	0~3276.7	unit	V/krp	active	reset takes	default	-
				m	moment	effect		

	Name	Motor p	eak curr	ent	Set	Disable to set	Access	RW
P00.24 -	Name	perc	entage		moment	Disable to set	Access	17.44
	Range	0~3276.7 unit %		active	reset takes	default	-	
					moment	effect		
This para	This parameter is password protected.							

D00 25	Name	Motor 1	rated to	rque	Set moment	Disable to set	Access	RW
P00.25	Range	0~21474	unit	NM	active	reset takes	default	-
		836.47			moment	effect		

P00.27	Name	Motor 1	rotor in	ertia	Set moment	Disable to set	Access	RW
P00.27	Range	0~21474 836.47	unit	Kgcm	active	reset takes effect	default	-
		030.47		ΞZ	moment	enect		

	Name	Second enc	oder type	e	Set	Disable to	Access	RW
P00.30						set		
	Range	0~2	unit	-	active	Immediately	default	0

	moment
Setting	Motor encoder type
0	Incremental encoder
1	Single-turn absolute encoder
2	Multi-turn absolute encoder

	Name	Second end filter setting		ardware	Set moment	Disable to set	Access	RW
P00.31	Range	1~32767	unit	20ns	active moment	Immediately	default	20

	Name	Second en filter time c		oftware	Set moment	Disable to set	Access	RW
P00.32	Range	0~32767	unit	ms	active	Immediately	default	5
					moment			

D00.22	Name	Second e resolu			Set moment	Disable to set	Access	RW
P00.33	Range	100~ 2147483647	unit	-	active moment	Immediately	default	1000 0

D00.25	Name	Second encoder position (encoder unit)			Set moment	-	Access	RO
P00.35	Range	-	unit	-	active moment	-	default	-

D00 27	Name	Mechanical offset low 3		point	Set moment	-	Access	RO
P00.37	Range	-	unit	-	active moment	-	default	-

P00.39	Name	Mechanical	zero	point	Set		Access	RO
	Ivallie	offset high 32 bits		moment	-	ALLESS	ĸo	
P00.39	Range	-	unit	-	active	-	default	-
					moment			

	Name	Absol	ute	value	Set	Disable to	Access	RW
D00 41	P00.41	system fault mask			moment	set	1100055	
P00.41 -	Range	0~3	unit	-	active moment	Immediately	default	0
Bit 0 of t	he battery ala	rm mask; 1 i	nask bit	cell fai	lure			
P00.42	Name	Motor in	Motor instantaneous		Set	-	Access	RO

	current percentage			moment			
Range	-	unit	%	active moment	-	default	0

P00.43	Name	Motor instantaneous power percentage			Set moment	-	Access	RO
P00.43	Range	-	unit	%	active moment	-	default	0

P00.44	Name Average load rate		Set moment	-	Access	RO		
P00.44	Range	-	unit	%	active moment	-	default	0

D00 45	Name	Maximummotorcurrent percentage in 1s		Set moment	-	Access	RO	
P00.45	Range	-	unit	%	active moment	-	default	0

P00.46	Name	Maximum motor power percentage in 1s			Set moment	-	Access	RO
P00.40	Range	-	unit	%	active moment	-	default	0

	Name	Induction motor stator resistance			Set moment	-	Access	RW
P00.47	Range	0-327.67	unit	ohm	active moment	reset takes effect	default	0

	Name	Induction motor rotor resistance			Set moment	-	Access	RW
P00.48	Range	0-327.67	unit	ohm	active moment	reset takes effect	default	0

	Name	Total leakage inductance of induction motor			Set moment	-	Access	RW
P00.49	Range	0-3276.7	unit	mH	active moment	reset takes effect	default	0

	Name	Induct magnetizin		motor ance	Set moment	-	Access	RW
P00.50	Range	0-3276.7	unit	mH	active moment	reset takes effect	default	0

	Name	Inductio fre	on motor equency	rated	Set moment	-	Access	RW
P00.51	Range	0-3276.7	unit	Hz	active moment	reset takes effect	default	0

D00.52	Name		on motor output torque		Set moment	-	Access	RO
P00.52	Range	0-3276.7	unit	NM	active moment	-	default	0

P00.53	Name		ion motor output power		Set moment	-	Access	RO
P00.35	Range	0-327.67	unit	Kw	active moment	-	default	0

P00.54	Name	Induction motor percentage of magnetizing current, unit is the percentage of motor rated current		Set moment	-	Access	RW	
	Range	0-3276.7			active moment	immedi ately	default	0

P00.70 -	Name		JVW pha	ase	Set moment	Disable to set	Access	RW
P00.70	Range	0~1	unit	-	active moment	Immediately	default	1
		Settin	ıg	Moto	r UVW phas	e sequence		
		0			Positive sequ	lence		
		1			Reverse sequ	uence		
	, •	1 .	1			16.1		

This parameter is password protected and can be obtained by self-learning.

P00.71	Name	Z point offset (encoder	Set	Disable to set	Access	RW
100.71	ivanie	unit)	moment	Disuble to set	1100035	R.O.

	Range	0~32767	unit	-	active moment	Immediately	default	0
The offs	et of the Z po	int from the	magnetic	pole. 7	This paramete	er is password pr	otected.	

D00 72	Name	AB phase se	equence coder	of the	Set moment	Disable to set	Access	RW
P00.72	Range	0~1	unit	-	active moment	Immediately	default	0
					1	C .1		
		Settin	g	AB	phase sequer			
					encoder			
		0			Positive sequ	lence		
		1			Reverse sequ	lence		

This parameter is password protected and can be obtained by self-learning.

P00.73	Name	When the H is 1, the c electri		nding	Set moment	Disable to set	Access	RW		
	Range	0~1023	unit	-	active	Immediately	default	425		
					moment					
This para	This parameter is password protected and can be obtained by self-learning.									

P00.74	Name	When the Hall code value is 2, the corresponding electrical angle		Set moment	Disable to set	Access	RW			
	Range	0~1023	unit	-	active	Immediately	default	85		
					moment					
This para	This parameter is password protected and can be obtained by self-learning.									

P00.75	Name	When the H is 3, the co electri		ding	Set moment	Disable to set	Access	RW		
	Range	0~1023	unit	-	active	Immediately	default	255		
					moment					
This para	This parameter is password protected and can be obtained by self-learning.									

P00.76	Name	When the Hall code value is 4 , the corresponding electrical angle		Set moment	Disable to set	Access	RW				
	Range	0~1023	unit	-	active	Immediately	default	765			
					moment						
This para	This parameter is password protected and can be obtained by self-learning.										

P00.77	Name	When the Hall code value is 5, the corresponding electrical angle		Set moment	Disable to set	Access	RW				
	Range	0~1023	unit	-	active	Immediately	default	595			
					moment						
This para	This parameter is password protected and can be obtained by self-learning.										

This parameter is password protected and can be obtained by self-learning.

P00.78	Name	When the Hall code value is 6, the corresponding electrical angle		Set moment	Disable to set	Access	RW				
	Range	0~1023	unit	-	active	Immediately	default	935			
					moment						
This para	This parameter is password protected and can be obtained by self-learning.										

10.2 P01 group parameters - driver hardware parameters

P01.01	Name	ARM software version		Set moment	-	Access	RO	
P01.01	Range	0~65.535	unit	-	active	-	default	-
					moment			

D01.02	Name	FPGA soft	tware ve	rsion	Set moment	-	Access	RO
P01.02	Range	0~65535	unit	-	active moment	-	default	-

D01.02	Name	Driver rated current 0~3276.7 unit A		Set moment	Disable to set	Access	RW		
P01.03	Range			active	Immediatel	default	6.0		
					moment	у			
This parameter is password protected.									

P01.04	Name	Driver rated current		rrent	Set moment	-	Access	RO
F01.04	Range	0~3276.7	unit	А	active	-	default	-
					moment			

D01.05	Name	U phase cu instantaneou		- Acc		Access	RO	
P01.05	Range	-3276.7~3276.7	unit	А	active moment	-	default	-

D01.06	Name	V phase cu instantaneou			Set moment	-	Access	RO
P01.06	Range	-3276.7~3276.7	unit	А	active	-	default	-
					moment			

D01.07	Name	Driver rated voltage		ge	Set moment	anytime	Access	RW
P01.07	Range	100~32767	unit	V	active	Immediatel	default	220
					moment	У		

D01.09	Name	Bus voltag v	ge monito alue	oring	Set moment	-	Access	RO
P01.08	Range	0~32767	unit	V	active moment	-	default	-
					moment			

	Name Bus vo		ge calibr	ation	Set	anytime	Access	RW
P01.09	Ivallie	fa	actor		moment	anytime	ALLESS	IX VV
P01.09	Range	0~3276.7	unit	%	active	Immediatel	default	100.0
					moment	у		

D01 10	Name	Driver temperature			Set moment	-	Access	RO
P01.10	Range	0~3000	unit	0.1℃	active moment	-	default	-

D01.11	Name	PWM freq	uency so gister	etting	Set moment	Disable to set	Access	RW
P01.11	Range	0~5	unit	-	active	Immediately	default	3
					moment			
		Settin	Setting		Frequence	cy		
		0			1.5K			
		1		2K				
		2		4K				
		3			8K			
		4	4		10K			
This regi	This register is password protected.							

P01.12	Name	IGBT	IGBT dead time	Set moment	Disable to set	Access	RW	
	Range	3~10	3~10 unit us		active	Immediately	default	3

Shenzhen VECTOR Technology Co., Ltd.

				moment		
。]	This register is pas	sword protect	ted			

P01.13	Name	Driver	Driver type			-	Access	RO
P01.15	Range	-	unit	-	active	-	default	0
					moment			

The first two digits represent the driver communication type and the last three digits represent the driver function type.

Communication type is 0, representing general-purpose servo, RS485-Modbus communication;

The communication type is 1, representing the CANopen bus servo with the CiA402 protocol;

The communication type is 2, which represents a general-purpose servo with the CiA301 protocol;

The communication type is 3, which represents the EtherCAT bus servo with the CiA402 protocol;

The function type is 0, which represents a general-purpose servo;

Functions of type 1, the representative general-purpose servo control function with tension.

D01.14	Name	Current sampling filter time			Set moment	Disable to set	Access	RW
P01.14	Range	0~327.67	unit	Ms	active moment	Immediately	default	0.00

P01.15	Name	Driver lev	el numb	er	Set moment	-		Access	RW
101.15	Range	0~32767	unit -		active	-		default	0
					moment				
When th	e factory valu	ie is restored,	the para	meter	s related to the	ne driver lev	vel w	vill be restore	d. The
number a	number and corresponding level are as follow								
C	C structure servo driver class number					E structure servo driver class number			r
	101	400v	400w 220V		1 3A		220V		
	102	750V	750W 220V		2 6A 22		220V		
	103	1.5KV	1.5KW 220V		3	12A 22		220V	
	104	2.2KV	W 220V		4	7A 38		380V	
	105	1.5KV	W 380V		5 12		12A	2A 380V	
	106	2.2KV	W 380V		6 16A		A 380V		
	107	4KW	/ 380V		7		20A 380V		
	108	5.5KV	W 380V		8		27A	380V	
	109	7.5KV	7.5KW 380V						
	110	11KV	11KW 380V						
	111	15KV	15KW 380V						
	112	18KV	V 380V						

113	22KW 380V	
114	30KW 380V	
115	37KW 380V	
116	45KW 380V	
117	55KW 380V	
118	75KW 380V	

D01 20	Name	Phase C cur o	rrent san ffset	npling	Set moment	-	Access	Ro		
P01.30	Range	0~32767	unit	AD	active	-	default	0		
					moment					
The para	The parameter is password protected and automatically calculated upon power on									

The parameter is password protected and automatically calculated upon power-on.

	Name	Phase B cur	rrent san	npling	Set		1 00000	Ro	
P01.31	Inallie	offset			moment	-	Access	KO	
P01.51	Range 0~32767		unit	AD	active	-	default	0	
					moment				
This para	This parameter is password protected.								

	Name	C phase sample valu	current ie	AD	Set moment	-	Access	RO
P01.32	Range	0~32767	unit	AD	active	-	default	-
					moment			

D01 22	Name	B phase sample valu	current ie	AD	Set moment	-	Access	RO
P01.33	Range	0~32767	unit	AD	active moment	-	default	-

	Name	Capacitor	voltage le value		Set moment	-	Access	RO
P01.34	Range	0~32767	unit	AD	active	_	default	-
					moment			

	Name	Bus curren	nt AD sa	mple	Set	_	Access	RO
P01.35		V	alue		moment			_
P01.55	Range	0~32767	unit	AD	active	-	default	-
					moment			

P01.36	Name	Motor ten	nperature le value		Set moment	-	Access	RO
101.50	Range	0~32767	unit	AD	active	-	default	-

		moment		
		moment		

	Name	continuous last restore		-	Set moment	-	Access	RO
P01.37	Range	-	unit	Ms	active	-	default	-
					moment			

D01 20	Name	Dri	ver ID		Set moment	Access	Ro
P01.39	Range		unit	-	active moment	default	0

10.3 P02 group parameters - basic control parameters

D02 0	Name	Driver co	ontrol m	ode	Set momen	anytime	Access	RW		
P02.0	Range	0~6	unit	-	active	Immediat	default	0		
					momen	t ely				
Γ	Setting				Control r	node				
	0				Position r	node				
	1				Speed m	Speed mode				
	2				Torque n	node				
	3	Position/torqu	e mode IO	O switch	ing, select T	orque mode when	INFn.36 is active			
	4	Position/speed	l mode IO	switchi	ng, select sp	eed mode when IN	IFn.36 is active			
	5	Torque/speed	mode IO	switchin	ig, select tor	que mode when IN	Fn.36 is active			
	6		INF	⁷ n.37	INFn.36	Control mode				
			ac	tive	inactive	speed mode				
			ina	ctive	active	Torque mode				
			ac	tive	XX	position mode				

D02.02	N	ame		t Mode o on displa		Set moment	-	Access	RO
P02.02	R	ange	0~2	unit	-	active	-	default	-
						moment			
		S	etting	etting		Control mo	ode		
			0	2			Position mode		
			1	1			Speed mode		
			2	2			ode		

P02.03 Nam	Forward/Reverse prohibited	Set	anytime	Access	RW
------------	----------------------------	-----	---------	--------	----

					moment				
R	ange	0~2	unit	-	active	Immediat	def	ault	0
					moment	ely			
	S	etting		Forward/Reverse prohibited					
		0]	No prohibited				
		1		For	rward prohibited				
		2	Reverse prohibited						

D02.04	Name	Driver status 0~32767 unit			Set moment	-	Access	RO
P02.04	Range			-	active	-	default	-
					moment			
		Setting			Driver stat	tus		
		1			Self test (1	rst)]	
		8		Ready (rdy)				
		16		Emergency Stop (run)				
		32		Emergency Stop (run)				
		64		Re	sponse to Fa	ult (run)]	
		128			Fault (Er.x	xx)		

P02.05	Name	LED displ running	-		Set moment	anytime	Access	RW
P02.03	Range	0~10	unit	-	active	Immediat	default	0
					moment	ely		
		Setting			Display cor	ntent		
		0			Display st	tate		
		1			Display sp	peed		
		2		Displ	ay capacito	or voltage		
		3		Di	splay tempe	erature		
		4			Display cu			
		5		Dis	play DI leve	el value		
		6		Disp	olay DO lev	el value		
		7		A	AI1 voltage	value		
		8		A	AI2 voltage	value		
		9		A	AI3 voltage	value		
		10		Т	orque perce	entage		

D02.07	N	lame	Parameter	write pr	otection	Set moment	anytime	Access	RW
P02.07	R	ange	0~1	unit	-	active	Immediat	default	1
						moment	ely		
		S	etting		Para	neter write s	etting		
			0	Write disabled					
			1	Can be written					

D02.08		Name	Paramete	er save se	election	Set moment	anytime	Access	RW	
P02.08]	Range	0~1	unit	-	active	Immediat	default	0	
						moment	ely			
		S	etting		Parameter save selection					
			0	Save	ver					
			1	Para	st					
			2	The pa	tion					
				are sa	ved to the l	RAM, the po	ower loss is l	ost,		
				the parameters written by the panel are saved to						
				the	EEPROM	, and the po	wer is saved.			

	N	ame	Star	tup optic	on	Set moment	anytime	Ac	cess	RW
P02.09	R	ange	0~3	unit	-	active	reset	de	fault	0
						moment	takes			
							effect			
		Setting		Startup option						
			0	Normal start						
			1	Save all parameters to the U disk before						
				starting						
			1	Update the parameter file in the U disk to the						
			_		servo before starting					
		3		Record waveform data according to the						
				way	eform pro	file in the US	B flash drive	e		

	Name		be 2 stop election	mode	Set moment	anytime	Access	RW
P02.10	Range	0~4	unit	-	active	Immediat	default	0
					moment	ely		

Setting	fault type 2 stop mode selection
0	free to rotate
1	rapid deceleration stop and disable driver
2	slow deceleration stop and disable driver
3	rapid deceleration stop and keep enable driver
4	slow deceleration stop and keep enable driver

P02.11	Name	fai		pe 3 stop election	mode	Set moment	anytime	Access	RW		
P02.11	Range	0~4	0~4		-	active	Immediat	default	0		
						moment	ely				
	Setting	g		fault type 3 stop mode selection							
	0			free to rotate							
	1		rap	rapid deceleration stop and disable driver							
	2		slow deceleration stop and disable driver								
	3		rap	rapid deceleration stop and keep enable driver							
	4		slov	slow deceleration stop and keep enable driver							

P02.12	Name	Ove		vel stop lection	mode	Set moment	anytime	Acce	ess	RW
P02.12	Range	0~4	0~4		-	active	Immediat	defa	ult	0
						moment	ely			
	Setti	ng		Over travel stop mode selection						
	0			free to rotate						
	1		rap	rapid deceleration stop and disable driver						
	2		slo	slow deceleration stop and disable driver						
	3		rap	rapid deceleration stop and keep enable driver						
	4		slo	slow deceleration stop and keep enable driver						

D02 12	N	ame		driver sto selection	lriver stop mode election		anytime	Access	RW
P02.13	R	ange	0~2	unit	-	active	Immediat	default	0
						moment	ely		
		S	etting	Ι	Disable driv	er stop mode			
			0						
			1	rapid c	leceleratio	n stop and	disable driv	er	
			2	slow d	eceleratio	n stop and c	lisable drive	er	

P02.14 Name Emergency stop mode Set anytime Access RW

		S	election		moment				
Range	0~	4	unit	-	active	Immediat	default	0	
					moment	ely			
Setting	3		Emergency stop mode selection						
0			free to rotate						
1		rapi							
2		slow deceleration stop and disable driver							
3		rapid deceleration stop and keep enable driver							
4		slow deceleration stop and keep enable driver							

D02.16	Name	rapid	stop tii	me	Set moment	anytime	Access	RW
P02.16	Range	0~65535	unit	ms	active	Immediat	default	500
					moment	ely		

D02 17	Name	slow	stop tii	ne	Set moment	anytime	Access	RW
P02.17	Range	0~65535	unit	ms	active moment	Immediat ely	default	1000

DOO	20	Name	Servo brakin	ig optic	on	Set moment	anytime	Access	RW	
P02	20	Range	0~3	unit	-	active	Immediately	default	2	
						moment				
	Setting br					aking optio	n			
		0			Nev	ver start the bra	ke			
		1	Start the brake whe	n deceler	ation	and DC bus cap	pacitor voltage is t	oo large		
	2 Start the brake at anytime					he when DC bus capacitor voltage is too large				
		3	Start the brake whe	en regene	rate e	nergy and DC b	ous capacitor volta	ge is too large		

For the 220V drive, when the DC bus voltage is greater than 380VDC, the energy brake circuit is activated;

For 380V drives, when the DC bus voltage is greater than 680VDC, the energy brake circuit is activated.

D02 21	Name Brake resiste		tor resist	ance	Set moment	anytime	Access	RW
P02.21	Range	0~3276.7	unit	Ω	active moment	Immediat ely	default	0

P02.22 Name Brake resistor maximum	Set	anytime	Access	RW]
------------------------------------	-----	---------	--------	----	---

	power			moment			
Range	0~3276.7	unit	KW	active	Immediat	default	0
				moment	ely		

	Name	Braking	resistor	heat	Set	onutino	1 00000	RW			
D02.22	Iname	dissipation coefficient			moment	anythie	anytime Access	κw			
P02.23	Range	0~100	unit	%	active	Immediat	default	50			
					moment	ely					
If se	If set to 100%, it means that the time from the maximum heat loss to 0 is 10s.										

P02.30	Name	Command brake rel- output	1	lay after ommand	Set moment	anytime	Access	RW
	Range	0~32767	unit	ms	active moment	Immediat ely	default	250

	Name	zero speed threshold for			Set	onutimo	1 00000	RW
P02.31	Ivallie		Brake		moment	anytime	Access	Γ.vv
P02.51	Range	0~32767	unit	rpm	active	Immediat	default	30
					moment	ely		

	Name	Enable hold time after brake			Set	onutimo	100000	RW
D02 22	Ivallie	r	elease		moment	anytime	Access	Λ VV
P02.32	Range	0~32767	unit	ms	active	Immediat	default	150
					moment	ely		

P02.33	Nama	Max brake	hold tir	ne after	Set	onutino	1 22255	RW			
	Name	disa	ble drive	er	moment	anytime	Access	κw.			
P02.55	Range	0~32767	unit	ms	active	Immediat	default	500			
					moment	ely					
Max bral	Max brake hold time after disable driver										

P02.35	Name	Driver password			Set moment	anytime	Access	RW
P02.55	Range	0~32767	unit	-	active moment	Immediat ely	default	0

	Name	Self-learn	ning max	ximum	Set	onutino	1 00000	RW			
P02.36	Ivanie	cur	rent limit moment	ΚW							
P02.50	Range	0~100	unit	-	active	Immediat	default	70			
					moment	ely					
Set to ab	Set to about 70% of the ratio of the rated motor current to the rated current of the driver										

D02.05	Name	Internal software counter count value			Set moment	-	Access	RO			
P02.37	Range	0~214748 3647	unit	-	active moment	-	default	-			
This para	This parameter is a two-byte parameter; this value is keep even if power down.										

	Name	Internal so			Set	anytime	Access	RW	
P02.39		arrival value			moment				
P02.39	Range	0~214748	unit	_	active	Immediat	default	0	
		3647	unit	-	moment	ely			
This parameter is a double-byte parameter									

P02.50 -	Name	Instruc	tion reve	ersal	Set moment	anytime	Access	RW		
P02.30	Range	0-7	0-7 unit -		active moment	Immediat ely	default	0		
When the	e 0th bit is va	th bit is valid, the position command is								
When the	Then the 1th bit is valid, the speed command is reversed;									
When the	When the 2th bit is valid, the torque command is reversed;									

10.4 P03 Group parameter - position mode parameter

D02.01	Name	So	ource o	f positio	n cmd	Set moment	anytime	Access	RW
P03.01	Range	0~	-2	unit	-	active	Immediat	default	0
					moment	ely			
	Setting				Sour	ce of position			
	0 pulse command								
	1		multi	-segme	ent positi	on plan			
	2		throu	ıgh an	IO swi	tching pul	lse and a	n internal	
			multi	-segme	ent positi	on plannin	g command	ł	
	3 pulse command add second encoder pulse count								
	4								

P03.02	3.02 Name pulse pattern	Set moment	Disable to set	Access	RW		
	Range	0~4 unit -		active	Immediately	default	2

	moment	
Setting	pulse pattern	
0	0- pulse count & pulse direction positive	
1	1- pulse count & pulse direction negative	
2	2- AB pulse	
3	3- CW+CCW positive	
4	4- CW+CCW negative	

D02.02	Name	he Command pulse hardware filter			Set moment	Disable to set	Access	RW
P03.03	Range	0~32767	unit	20ns	active moment	Immediately	default	50

	Name	Command pulse count			Set		Access	RO
D02.04	Ivallie	value			moment	-	ALLESS	ĸo
P03.04	Range	-2147483647~	unit	-	active	-	default	-
		2147483647			moment			

P03.06	Nama	Position command given			Set	set when	Access	RW
	median filter time constant			moment	stop	ALLESS	IX VV	
P05.00	Range	0~128	unit	ms	active	Immediat	default	0
					moment	ely		

P03.07 Name	Nama	Position command given			Set	set when	Access	RW
	low-pass filter time constant			moment	stop	ALLESS	IX VV	
P05.07	Range	0~32767	unit	ms	active	Immediat	default	20
					moment	ely		

	Name	Electronic gear ratio 1			Set	anytime	Access	RW
D02.09	Ivallie	numerat	or		moment	anytime	ALLESS	IX VV
P03.08	Range	1~2147483647	unit	-	active	Immediat	default	1000
					moment	ely		

	Name	Electronic gear ratio 1			Set	onutimo	Access	RW
D02 10	Ivallie	denomina	ator		moment	anytime	ALLESS	Λ VV
P03.10	Range	1~2147483647	unit	-	active	Immediat	default	1000
					moment	ely		

	Name	Electronic gear ratio 2			Set	anytime	Access	RW	
P03.12	Ivanic	numerat	numerator			anytine	Access	IX VV	
P05.12	Range	1~2147483647	unit	-	active	Immediat	default	1000	
					moment	ely			

	Name	Electronic gea	r ratio 2	2	Set	onutimo	100055	RW
D02 14	Ivallie	denomina	ator		moment	anytime	Access	K VV
P03.14	Range	1~2147483647	unit	-	active	Immediat	default	1000
					moment	ely		

P03.16	Name	electronic switching cons	filter tin		Set moment	anytime	Access	RW
	Range	0~32767	unit	ms	active	Immediate	default	0
					moment	ly		

	Name		Position	error	Set	_	Access	RO
P03.17	i tuille		(0.0001rc	ound)	moment		1100035	Ro
P05.17	Range	-	unit	0.0001rou	active	-	default	-
				nd	moment			

	Name	Maximum posi			Set	anytime	Access	RW
P03.19		threshold (0.00	Olround	1)	moment			
r03.19	Range	0~2147483647	unit		active	Immediate	default	300
	Kange	0*2147403047	um	-	moment	ly	ucrauit	00
When se	t to 0, positio	n error protection	is not pe	erfor	med.			

D02 21	Name	Position e INFn.25	rror clear pattern	signal	Set moment	anytime	А	.ccess	RW
P03.21	Range	0~3	unit	-	active	Immediately	de	efault	0
					moment				
	S	letting	Positi	on error	clear signal	INFn.25 patter	n		
		0	clear pos	ition erro	r when INFn.25	5 is active			
		1	clear po	stion err	or when INFn	.25 from deactive	e to		
			active						
		2	clear pos	ition erro	r when INFn.25	5 is deactive			
		3	clear po	ostion er	ror when INF	n.25 from active	to		
			deactive						

D02 22	Name	Position er	ror clear	option	Set moment	anytime	Access	RW
P03.22	Range	0~6	unit	-	active moment	Immediately	default	0

Setting	Position error clear option
0	clear postion error and speed cmd fored to zero
1	Reserved
2	reserved
3	Reserved
4	Clear the position error while the speed drops to zero in
	a straight line, and the falling time is set by P02.16.
5	Reserved
6	Clear the position error, and the speed will drop to zero
	with the quadratic curve. The fall time is set by P02.16

P03.23	Name	The time to position co is 0			Set moment	anytime	Access	RW
	Range	0~32767	unit	ms	active	Immediately	default	0
					moment			
This para	ameter is used	d with OUTF	n.33。					

D02 21	N	lame	Enable fu	ll closed	loop	Set moment	Disable to set	Access	RW
P03.31	R	ange	0~1	unit	-	active moment	Immediately	default	0
		S	etting		En	able full close	ed loop		
			0		does no	ot enable full	closed loop		
			1		En	able full close	ed loop		

P03.32	١	Name	Full	clos	sed loop	mode	Set moment	anytime	Ac	cess	RW
P05.52	F	Range	0~2		unit	-	active	Immediat	def	ault	0
							moment	ely			
		Set	ting			Full cl	osed loop m	ode			
			0			sem	ni-closed loop	Ċ,			
			1			full	closed loop	;			
			2	Sv	vitch full	-closed ar	nd semi-close	d according	to IO		
IO is inv	alid,	servo ru	ns in sen	ni-cl	osed loo	p, adopts	electronic ge	ar ratio 1; IO) is vali	id, servo	o runs

in full closed loop, adopts electronic gear ratio 2.

	Name	Full close	d loop fe	edback	Set	anvtime	Access	RW
P03.33	Ivanie	р	olarity		moment	anytine	Tiecess	K.
	Range	0~1	unit	-	active	Immediat	default	0

				moment	ely		
Se	etting]	Full closed	l loop feedba	ck polarity		
	0	0- The	values of	he motor end	coder counte	r and	
		the sec	ond encod	ler counter ar	e incremente	ed or	
			decreme	ented simulta	neously		
	1	1- The	value of t	he motor end	coder counte	r are	
		increme	ented and	he second er	ncoder count	er are	
			decreme	ented simulta	neously		

		The number of p	ulses of	the				
	Name	second encoder			Set	anytime	Access	RW
P03.34	Inallie	corresponding to one			moment	anytime	ALLESS	IX VV
F05.54		revolution of the motor						
	Range	1~2147483647 unit -		active	Immediat	default	10000	
					moment	ely		

P03.36	Name Full closed loop position (unit is 0.0001round)				Set moment	anytime	Access	RW
	Range	0~2147483647 unit -			active moment	Immediat ely	default	10000

The full closed loop position error refers to (the count value of the motor encoder - converted to the second encoder value of the motor encoder), which represents the relative slip between the material and the motor.

When this parameter is set to 0, full-closed position error over-protection is not performed.

	Name	Fu	ll closed le	oop position	Set	_	Access	RO	
D02 29	Iname	error			moment		1100035	ĸo	
P03.38	Range	-	unit	0.0001 周	active	-	default	-	
					moment				

	Name	Full closed loo	p positio	on	Set	onutimo	Access	RW	
P03.40	Ivallie	error clearing revolution			moment	anytime	Access	Κw	
F03.40	Range	0~32767	unit	-	active	Immediat	default	20	
					moment	ely			
This valu	ue is valid wh	en in the fully clos	sed loop	state	. When set to	o 0, the full c	losed loop po	osition	
error is n	ot cleared; w	hen set to n, when	the mot	tor ro	tates every n	revolutions,	if the absolu	te	
value of	value of the full closed loop position error is less than P03.36, the full closed loop position error								
will be c	will be cleared.								

D02 41	Nomo	motor encoder speed for	Set		A	DO
P03.41	Name	Full closed loop control	moment	-	Access	KU

ſ	Range	-	unit	clk/5ms	active	-	default	-
					moment			

	Name	Second encoder speed for			Set		Access	RO
P03.42	Inallie	Full closed loop control			moment	-	Access	ĸo
P05.42	Range	-	unit	clk/5ms	active	-	default	-
					moment			

D02	45	Name	Positioni signal ou	•		Set moment	anytime	Access	RW
P03.4	43	Range	0~3	unit	-	active	Immediat	default	0
						moment	ely		
l [e L	Setting	Positioning completion signal output condition						
		0	Output when the position error is less than the positioning						
		⁰ completion threshold, otherwise clear the output;							
	Output whenThe position error is smaller than the positioning							5	
		1	completion	thresh	old and	the speed	command	l in positior	n
			mode P03.9	5 is zero	o, otherw	ise the out	put is clear	red;	
			Output wh	en The	position	error is le	ess than the	e positioning	5
		2	completion	thresh	old and	the filtere	ed speed o	command ir	n
			position mo	de P03.	96 is zero	o, otherwis	e the outpເ	ut is cleared;	
	Output when the position error is less than the positioning							5	
	completion threshold and the speed command in position							1 I	
	mode P03.95 is zero. Clear output when speed command in						n		
			position mo	de P03.	95 is not	zero			

	Name	positioning completion threshold			Set	onutimo	Access	RW
P03.46	Inallie	(unit is 0.0001 round)			moment	anytime	Access	K VV
P05.40	Range 0~32767 unit -		active	Immediat	default	10		
					moment	ely		

D02	17	Name	Positioni outpu	ng close 1t conditi	•	Set moment	anytime	Access	RW	
P03.	.47	Range	0~3	unit	-	active	Immediat	default	0	
						moment	ely			
	2	Setting		Positic	oning close	se signal output condition				
		0	Output whe close thresh					e positioning	5	
		Output whenThe position error is smaller than the positioning close threshold and the speed command in position mode P03.95 is zero, otherwise the output is cleared;								

	Output when The position error is less than the positioning
2	close threshold and the filtered speed command in position
2	
	mode P03.96 is zero, otherwise the output is cleared;
	Output when the position error is less than the positioning
3	close threshold and the speed command in position mode
5	P03.95 is zero. Clear output when speed command in position
	mode P03.95 is not zero

	Name	positioning close threshold			Set	anytime	Access	RW	
D02 49	Ivanic	(unit is 0.0001round)			moment	anytinc	ALLESS	17.44	
P03.48	Range 0~32767 unit -		-	active	Immediat	default	100		
					moment	ely			

P03.49	Name	positioning completion/clo threshold	se	time	Set moment	anytime	Access	RW
	Range	0~32767	unit	ms	active	Immediat	default	10
					moment	ely		
In the po	sition control	l mode, when the	e servo is	runni	ng, the absol	ute value of	the position e	error
P03.17 is	s within the p	ositioning comp	letion/clo	ose thr	eshold, and a	after P03.49 (positioning	
completi	on/close time	e threshold) is ma	aintained	, the s	ervo will be	Output positi	oning	
completi	on/close sign	al						

P03.51	Name	Hom	ing meth	od	Set moment	Disable to set	Access	RW
P05.51	Range	0~99	0~99 unit -		active moment	Immediatel	default	1
					moment	J		

	Name	Homing acceleration and			Set	onutimo	Access	RW
D02 52	Ivallie	decelerat	ion time		moment	anytime	Access	Κw
P03.52	Range 0~65535 unit		unit	ms	active	Immediat	default	500
					moment	ely		

D02 52	Name	First homi	ing speed	đ	Set moment	anytime	Access	RW
P03.53	Range	0~32767	unit	rpm	active moment	Immediat ely	default	500

D02 54	Name	Second hor	ning spe	ed	Set moment	anytime	Access	RW
P03.54	Range	0~32767	unit	rpm	active moment	Immediat ely	default	100

	Name	Homing	g offset		Set moment	anytime	Access	RW
P03.55	Range	-2147483647 ~ 2147483647	unit	cust omiz e unit	active moment	Immediat ely	default	0

D02 57	Name	Zero	point r	ange	Set moment	anytime	Access	RW
P03.57	Range	0~32767	unit	0.0001	active	Immediat	default	5
				周	moment	ely		

D02 72	l	Name	Enable sof	tware ov limit	er travel	Set moment	anytime	Aco	cess	RW
P03.73	F	Range	0~2	unit	-	active	Immediate	defa	ault	0
						moment	ly			
		S	etting	ing Enable s			vel limit			
			0	0 does not ena			ire over tr	avel		
				limit						
			1	enable softwar			nit when po	wer		
				on						
			2	Enable softwar			nit after hon	ning		
				compl	ete					

	Name	Software trave	l limit		Set	anytime	Access	RW
	lower limit		mit		moment	anytime	Alless	K VV
P03.74	Range	-2147483647 ~	unit	_	active	Immediate	default	-1000
		2147483647			moment	ly		0000

	Name	Software trave		pper	Set	anytime	Access	RW
		lin	nıt		moment			
P03.76	Range	-2147483647 ~	unit	-	active moment	Immediate ly	default	1000 0000
		2147483647			moment	19		0000

	Name	Servo puls	e output	source	Set	anytime	Access	RW
P03.78	Ivanic	selection			moment	anytine	ALLISS	IX VV
P05.78	Range	0~2	unit	-	active	Immediately	default	0
					moment			

Setting	Output pulse type
0	0-output motor encoder pulse;
1	1-output pulse command;
2	2-do not output, as input port

P03.79	Name	divisio	n facto	r	Set moment	anytime	Access	RW		
103.79	Range	1~65535	unit	-	Immediately	default	-			
			moment							
If the mo	If the motor type is incremental, this value indicates the number of motor encoder output pulses when the pulse									
output	terminal output	s 1 pulse. If the n	notor is a	n absolut	e value of the e	encoder type, this v	value indicates	the		
number	of pulses outpu	t from the pulse of	output ter	minal wh	en the motor ro	otates one revoluti	on, and the Z-p	ooint		
output port outputs a Z-point pulse. This value is only valid for the motor pulse division, invalid for the command										
	pulse, the	e incremental enco	oder defa	ults to 1;	the absolute en	coder defaults to	10.			

P03.80	N	Jame			ction	Set moment	anytime	Access	RW
P05.80	R	lange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting	Pulse of	utput d	irection			
			0	0-normal output		ut,			
			1	1-inv	erted out	put.			

D02 91	N	lame	Z pulse po	larity sel	ection	Set moment	anytime	Access	RW
P03.81	R	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting	Z pulse	polarity	v selection			
			0	0- 1	postive				
			1	1- ne	gtive				

P03.82	N	Jame	Enale Cubic	speed curv	ve	Set moment	Disable to set	Access	RW
P05.82	R	lange	0~1	unit	-	active moment	Immediately	default	1
		r							
		S	etting	Enale Cu	bic speed	curve			
			0	0- use trapezo			rve		
			1	1- u	se Cubic s	peed curve			

	Name	Actual Position	n (custon	nize	Set		1 00000	RO
	Ivallie	unit)			moment	-	Access	ĸŬ
P03.90		-2147483647				-	default	-
	Range	~	unit	-	active			
		2147483647			moment			

P03.94	Name	Position error	after fil	ter	Set moment	-	Access	RO
P03.94	Range	-32767~32767	unit	clk	active moment	-	default	-

P03.95	Name	Speed comman position	-	ay in	Set moment	-	Access	RO
P05.95	Range	-	unit	rpm	active	-	default	-
					moment			
Speed co	Speed command monitoring in position mode							

	Name	Speed comm	and disp	olay	Set		Access	RO	
P03.96	Indille	after filter in position mode			moment	-	ALLESS	ĸŪ	
P03.90	Range	-	- unit rpm		active	-	default	-	
					moment				
Speed co	mmand displ	ay after filter in	n positio	n mode					

10.5 P04 group parameter - speed mode related parameters

D 04.01	N	Name	Speed con	mmand s	ource	Set moment	anytime	Access	RW	
P04.01	F	Range	0~7	unit	-	active	Immediately	default	0	
						moment				
		S	etting		Spee	ed command	source			
			0	r	main speed A					
			1	a						
			2	INFn.12 switch A/B						
			3		A+B					
			4		P08.17					
			5			eed				
			6	U						
			7		sin wave	9				

P04.02 Name main speed A source	Set	anytime	Access	RW
---------------------------------	-----	---------	--------	----

					moment			
R	ange	0~4	unit	-	active	Immediately	default	0
					moment			
	S	etting	main s	peed A s	ource			
		0	-					
		1	from AI1					
		2	from AI2					
		3	-	from AI	3			
		4	-	from pu	lse frequen	су		

P04.03	Name	Digit settin	ng of m	ain	Set	anytime Access Immediately default	RW		
	spee	ed A		moment	anytime	ALLESS	IX W		
P04.05	Dongo	-32767~327	unit		active	Immodiately	dofault	500	
	Range	67	unit	rpm	moment	mmediatery	derault	500	

P04.04		N	ame	auxiliary	speed B	source	Set moment	anytime	А	ccess	RW
P04.04			ange 0~4		unit	-	active	Immediately	de	efault	0
							moment				
			S	etting	auxilia	ry speed	d B source				
				0	from P04.05						
				1	from AI1						
				2	from A	12					
				3	from A	13					
				4	from pu	ilse freque	ncy				

P04.05	Name	Digital se	etting o	of	Set	anytime	Access	RW
	Ivallie	auxiliary	speed 1	В	moment	anytime	ALLESS	IX VV
P04.03	Danaa	-32767~327		rom	active	Immediately	dafault	500
	Range	67	unit	rpm	moment	Immediately	default	500

P04.06	N	Jame	source of pos	tive speed	limiting	Set moment	anytime	Access	RW
P04.00	R	ange	0~3	unit	-	active moment	Immediately	default	0
		Setting 0			f postive speed	peed limiting limiter A			

1	auxiliary reverse speed limiter B	
2	A/B switch	
3	both A and B are limiter	

D04.07	N	ame	Soure of ma limiter A	ain postiv	ve speed	Set moment	anytime	Access	RW	
P04.07	Range		0~3	unit	-	active moment	Immediately	default	0	
		Setting		Soure of	Soure of main postive speed limiter A					
			0	from P04.08						
			1	fromAI	1					
			2	fromAI2						
			3	fromAI3						

D 04.00	Name	U	Digital value of postive speed limiter A		Set moment	anytime	Access	RW
P04.08	Range	0~32767	unit	rpm	active	Immediatel	default	3000
					moment	У		

D 04.00	P04.09 Name speed		Soure of an speed limit	•	postive	Set moment	anytime	Access	RW	
F04.09			0~3	unit	-	active	Immediately	default	0	
						moment				
		S	etting	Soure of	Soure of auxiliary postive speed limiter B					
			0	fromP04.10						
			1	fromA	.I1					
			2		2					
			3	fromAI	3					

D0.4.10	Name	Digital value of postive speed limiter B			Set moment	anytime	Access	RW
P04.10	Range	0~32767	unit	rpm	active	Immediatel	default	3000
					moment	у		

P04.11	N	lame	source limiting	of	negative	speed	Set moment	anytime	Access	RW
P04.11	R	ange	0~3		unit	-	active moment	Immediately	default	0
	Se		etting 0			-	speed limiting speed limit	er A		

1	auxiliary negative speed limiter B
2	A/B switch
3	both A and B are limiter

D04 12	P04.12 Name S Range		Source of speed	main ne	•	Set moment	anytime	Ac	cess	RW
P04.12			0~3	unit -		active	Immediately	det	fault	0
						moment				
		Setting		Sou	Source of main negative speed limiter A,					
			0			from P04.1	3			
			1			from AI1				
		2				from AI2				
			3			from AI3				

P04.13	Name	Digital v negative			Set moment	anytime	Access	RW
	Range	0~32767	unit	rpm	active	Immediatel	default	3000
					moment	У		

P04.14	N	lame	Source negative B		ıxiliary limiter	Set moment	anytime	Access	RW
	R	ange	0~3	unit	-	active	Immediately	default	0
						moment			
		S	etting	Source B	of auxil	iary negati	ve speed limi	iter	
			0			from P04.1	5		
			1			from AI1			
			2			from AI2			
			3			from AI3			

P04.15	Name	Digital valu negative B		•	Set moment	anytime	Access	RW
	Range	0~32767	unit	rpm	active moment	Immediatel y	default	3000

P04.16	Name	JOG speed	Set moment	anytime	Access	RW	
--------	------	-----------	---------------	---------	--------	----	--

	Range	0~32767	unit	rpm	active	Immediatel	default	20
					moment	У		
Note that	moment y Note that this value will be modified when the test run is jogged, but will not be saved.							

D04 17	Name	ame acceleration ti		e	Set moment	anytime	Access	RW
P04.17	Range	0~32767	unit	ms	active moment	Immediatel v	default	500

D04 19	Name	decelerat	tion time	e	Set moment	anytime	Access	RW
P04.18	Range	0~32767	unit	ms	active moment	Immediatel	default	500
					moment	y		

	Name	Speed command first-order			Set	anytime	Access	RW
P04.20	Ivallie	filtering tin	ne const	tant	moment	anytime	ALLESS	IX VV
P04.20	Range	0~32767	unit	ms	active	Immediatel	default	20
					moment	У		

D04.21	Name	Filtered speed	l value		Set moment	-	Access	RO
P04.21	Range	0~32767	unit	rpm	active moment	-	default	-

D04 22	Name	Speed display	filter ti	me	Set moment	anytime Access		RW
P04.22	Range	0~32767	unit	ms	active moment	Immediatel	default	300
					moment	у		

D04 22	Name	Speed arrival	thresho	ld	Set moment	anytime	anytime Access	
P04.23	Range	0~32767	unit	rpm	active moment	Immediatel y	default	1000

D04.24	Name	Speed consist	ent three	shold	Set moment	anytime	Access	RW
P04.24	Range	0~32767	unit	rpm	active moment	Immediatel v	default	10

P04.25	Name	Zero speed the	reshold		Set moment	anytime	,	
	Range	0~32767	unit	rpm	active	Immediatel	default	5

 				1
		moment	У	

	Name	Zero speed position lock	threshol	ld for	Set moment	anytime	Access	RW
P04.26	Range	0~32767	unit	rpm	active	Immediatel v	default	5

D04 27	Name	Lifting speed	d thresh	old	Set moment	anytime	Access	RW		
P04.27	Range	0~32767	unit	rpm/s	active	Immediatel	default	375		
					moment	У				
When th	e acceleratio	on/deceleration	n is gre	ater than	the thresho	ld, the output	speed/decele	eration		
signal is	l is output, unit: rpm per second.									

10.6 P05 group parameter - torque mode related parameters

P05.01	N	lame	Torque con	nmand so	ource	Set moment	anytime	Access	RW
P03.01	R	ange	0~5	unit	-	active	Immediately	default	0
						moment			
		S	etting	Torque	comman	d source			
			0	main tor					
			1	auxiliary					
			2	INFn.03					
			3	A+B					

D05.02	P05.02 Range		Source of command A	f main	torque	Set moment	anytime	Access	RW	
P03.02			0~3	unit	-	active moment	Immediately	default	0	
	Setting			Source	Source of main torque command A					
			0		from P05.03					
			1			from AI1				
			2			from AI2				
			3	from AI3						

P05.03	3 Name	Digital value of main torque	Set	anvtime	Access	RW
105.05	Ivanie	command A	moment	anytime	1100035	KW.

	Range	-300.0~300.0	unit	%	active	Immediately	default	0.0
					moment			

D05.04	Name		Source of command B	auxiliary	torque	Set moment	anytime	Access	RW
P05.04	R	ange	0~3	unit	-	active	Immediately	default	0
						moment			
		S	etting	Source	of auxilia	ry torque comm	and B		
			0						
			1			from AI1			
		2				from AI2			
			3	from AI3					

	Name	Digital value of	of auxilia	ıry	Set	anytime	Access	RW	
D05.05	Ivanic	torque comr	nand B		moment	anytime	ALLESS	ΛW	
P05.05	Range	-300.0~300.0	unit	%	active	Immediately	default	0.0	
				moment					

P05.10	Ν	Jame	Torque limit method			Set moment	anytime	Access	RW	
P03.10	R	lange	0~1	unit	-	active	Immediately	default	0	
						moment				
		S	Setting T				ethod			
			0	Forward	Forward and reverse limit are from positive limiting					
			1	1 Forward and rever			ely			

D05 11	P05.11 Name		Positive source	torque	limiting	Set moment	anytime	A	ccess	RW
P03.11	R	ange	0~3	unit	-	active	Immediately	de	efault	0
						moment				
	Setting			Positive	Positive torque limiting source					
			0	Forward	Forward Limit A					
			1	Forward	limiter B					
	2			A/B swit						
	3			A and B	A and B are simultaneously limit					

D05 12	Name	Source of limit A	positive	torque	Set moment	anytime	Access	RW
P05.12	Range	0~3	unit	-	active moment	Immediately	default	0

Setting	Source of forward torque limit A
0	from P05.13
1	from AI1
2	from AI2
3	from AI3

D05 12	Name	1	Set value of positive torque limiter A			anytime	Access	RW
P05.13	Range	0~300.0	unit	%	active moment	Immediatel y	default	150.0

D05 14	A Name Positive To Source				imit B	Set moment	anytime	Acce	SS	RW
105.14	P05.14 Range 0~3		unit	-	active moment	Immediately	default		0	
		S	etting	tting Forward Torque I			rce			
			0			from P05.1	5			
			1			from AI1				
			2			from AI2				
			3			from AI3				

	Name	Set value of pos	itive to	que	Set	anytime	Access	RW
D05 15	Ivallie	limiter B			moment	anytime	ALLESS	IX VV
P05.15	Range	0~300.0	unit	%	active	Immediatel	default	150.0
					moment	у		

D05 16	N	lame	Reverse source	torque	limiting	Set moment	anytime	Access	RW	
P05.16		Range 0~3		unit	-	active moment	Immediately	default	0	
		S	etting	Reverse	e torque l	imiting sourc	e			
			0	Reverse	e Limit A					
			1	Reverse	e limit B					
			2	A/B sw	A/B switching					
		3 A and B are si				ultaneously li	mit			

D05 17	Name	Source of limit A	reverse	torque	Set moment	anytime	Access	RW
P05.17	Range	0~3	unit	-	active moment	Immediately	default	0

Setting	Source of reverse torque limit A
0	from P05.18
1	from AI1
2	from AI2
3	from AI3

	Name	Set value of rev	erse tor	que	Set	anytimo	1 00000	RW
DO5 19	Iname	limiter A			moment	anytime	Access	K VV
P05.18	Range	0~300.0	unit	%	active	Immediate	default	150.0
					moment	ly		

P05.19	N	lame	Reverse T S	Forque L	imit B	Set moment	anytime	А	ccess	RW
P05.19	Range 0~3		unit	-	active moment	Immediately	default		0	
		S	etting	tting Reverse			t B Source			
			0			from P05.2				
			1			from AI1				
			2							
			3			from AI3				

D05 20	Name		Set value of reverse torque limiter B			anytime	Access	RW
P05.20	Range	0~300.0	unit	%	active	Immediatel	default	150.0
					moment	У		

P05.25	Name	Time thre mode swi		-	Set moment	anytime	Access	RW		
	Range	0~32767	0~32767 unit 0.25ms			Immediatel	default	10		
					moment	у				
When th	e magnitude	of the spee	d excee	ds the spe	ed limit plus	s the speed lin	nit speed thr	eshold		
(P05.26)	and lasts (P	05.25) ms,	the spee	ed loop is	constructed	to converge th	e speed with	in the		
limit.										

D05 26	Name	Speed limi	t speed	threshold	Set moment	anytime	Access	RW			
P05.26	Range	0~32767	unit	rpm	active	Immediatel	default	30			
					moment	У					
When th	e magnitude	of the spee	he speed exceeds the speed limit plus the speed limit speed thresh								
(P05.26)	(P05.26) and lasts (P05.25) ms, the speed loop is constructed to converge the speed within the										

limit.

P05.27	Name	Time thre mode swi		-	Set moment	anytime	Access	RW
	Range	0~32767	unit	0.25ms	active	Immediatel	default	200
					moment	у		
When th	e servo is ru	nning in the	torque	mode, but	due to the s	peed limit, aft	er constructi	ng the
speed lo	oop, the time	e threshold	for sw	itching fro	om the spee	d mode to th	e torque m	ode is
determin	ed by P05.27	•						

	Name	Name Speed limit low pass filter time parameter				anytime	Access	RW
P05.28	Range	0~32767	unit	ms	active	reset takes	default	500
					moment	effect		
When the	a smaad limi	tia ahamaa	1 4 1 2 2 2 4	and limit	value is low	mana filtanad	The filter t	:

When the speed limit is changed, the speed limit value is low-pass filtered. The filter time is determined by P05.28. The larger the filter time, the slower the speed limit value changes.

Name		Base value for	or torque	e	Set	anutimo	1 00000	RW
P05.31	Ivallie	arriva	ıl		moment	anytime	Access	κw
P05.51	Range	0~300.0	unit	%	active	Immediatel	default	50.0
					moment	у		

	Name	Valid value for	or torqu	e	Set	anytime	Access	RW
P05.32	Name	arriva	ıl		moment	anytine	Access	IX VV
P05.52	Range	0~300.0	unit	%	active	Immediatel	default	10.0
					moment	у		

D05.00	Name	e Invalid value arriva		ue	Set moment	anytime	Access	RW
P05.33	Range	0~300.0	unit	%	active moment	Immediatel y	default	0.0

	Name	Maximum output limit of			Set	anytime	Access	RW
P05.35	I vallie	torque that supp	resses j	itter	moment	anytine	1100035	RW
P05.55	Range	0~10.0	unit	%	active	Immediatel	default	0.0
					moment	у		

	Name	Percentage of	gain th	at	Set	anvtime	Access	RW
P05.36	Ivanie	suppresses	s jitter		moment	anytine	Access	
	Range 0~10.0		unit	%	active	Immediatel	default	0.0

Shenzhen VECTOR Technology Co., Ltd.

VC Servo manual

					moment	у		
	Name	time constant for detect			Set	onutimo	1 00000	RW
	Name	Jitter speed		moment	anytime	Access	ĸw	
P05.37	Range	0~10.0 unit %		active	Immediatel	default	0.0	
					moment	У		
		Jitter with	a period	less th	han this time w	ill be suppressed		

D05 29	Name	detected	d Jitter sp	beed	Set moment	anytime	Access	RO
P05.38	Range	-	unit	Rpm	active	Immediatel	default	-
					moment	У		

	Name	Torque suppresses	output iitter	that	Set moment	anytime	Access	RO
P05.39	Range	-	unit	%	active moment	Immediatel v	default	-

10.7 P06 group parameter -Inputs and Outputs Function

DOC 04	Name		ction cor egister	ntrol	Set moment	anytime	Access	RW
P06.01	Range	0~99	unit	-	active	Immediately	default	1
					moment			
		setting		[OI function			
		0			None			
		1		E	nable servo			
		2	Reset servo					
		3	Torque AB selector					
		4		Torqu	e reverse selec	tor		
		5		Forward	torque limit se	lector		
		6		Reverse	torque limit sel	ector		
		7		Forward	speed limit sel	ector		
		8		Reverse	speed limit sel	ector		
		9			Positive jog			
		10	Reverse jog					
		11	Speed given reverse					
		12	Main speed AB selector					
		13	Speed stop input					
		14		Download	d ARM program	n reset		

15	Clear encoder position counter
16	Zero position fixed in speed mode
17	Multi-speed selector 0
18	Multi-speed selector 1
19	Multi-speed selector 2
20	Multi-speed selector 3
21	Position instruction prohibited
22	Position command reversal
23	Pulse command prohibition
24	Electronic gear ratio selector 1
25	Position error clear
26	Trigger position mode homing
27	Multi-segment position trigger signal
28	Multi-segment position selector 0
29	Multi-segment position selector 1
30	Multi-segment position selector 2
31	Multi-segment position selector 3
32	Position direction in multi-segment position mode
33	Reserved
34	Return home signal input
	XY pulse tracking and multi-segment position
35	switching in position mode
36	Control mode selector 0
37	Control mode selector 1
	Enable detection trigger interrupt fixed length
38	signal INFn.40
39	Uninterrupted fixed length
	Trigger an input signal that interrupts the fixed
40	length
41	First or second set of gain switch
42	Reset fault
43	Position mode positive limit switch
44	Position mode reverse limit switch
45	Open-closed switching in full-closed mode
46	FPGA download program reset
47	Tension compensation direction
48	Tension tracking direction
49	Forced to limit at maximum compensation speed
50	Prohibit roll diameter calculation
51	Change volume
52	Initial roll diameter switch
53	Clear feed length
	1

54	Forced fast tightening
	No tension compensation in closed loop speed
55	mode
56	Electronic gear ratio selector 2
57	Motor overheating
58	Emergency stop input
59	Internal trigger reset
60	Internal trigger set
61	Internal counter count pulse
62	Internal counter clear
63	UPDOWN mode UP signal in speed mode
64	UPDOWN mode DOWN signal in speed mode
65	UPDOWN mode speed hold signal in speed mode
66	Speed stack enable
67	Correct all zero drift of Al
	Tension closed loop speed / torque mode
 68	switching

P06.02 Range	Nama	DI2 function control			Set	anutimo	Access	RW		
	Name	register			moment	anytime	Access	r vv		
	Range	0~99	unit	-	active	Immediately	default	42		
					moment					
For detai	For details on the DI configuration, see P06.01.									

Name P06.03	Nama	DI3 function con			Set	onutino	A				
	register			moment	anytime	Access	RW				
P06.03	Range	0~99	unit	-	active	Immediately	default	0			
					moment						
For detai	For details on the DI configuration, see P06.01.										

Name	Nama	DI4 function control			Set	onutino	A	RW			
	register			moment	anytime	Access	RVV				
P06.04	Range	0~99	unit	-	active	Immediately	default	0			
					moment						
For detai	For details on the DI configuration, see P06.01.										

P06.05	Name	DI5 function control			Set	anutimo	Access	RW			
	Name	re	egister		moment	anytime	κ.vv				
	Range	0~99	unit	-	active	Immediately	default	0			
					moment						
For detai	For details on the DI configuration, see P06.01.										

P06.06 -	Name	DI6 function control			Set	onutino	A		
	Name	re	egister		moment anytime Acces			RW	
	Range	0~99	unit	-	active	Immediately	default	0	
					moment				
For details on the DI configuration, see P06.01.									

	Name	DI7 function control			Set	anytime	Access	RW			
P06.07	Name	re	egister		moment	anytime	ALLESS	ΓVV			
P00.07	Range	0~99	unit	-	active	Immediately	default	0			
					moment						
For detai	For details on the DI configuration, see P06.01.										

	Name	DI8 function control			Set	anytime	Access	RW			
P06.08	Name	re	egister		moment	anytime	ALLESS				
P00.08	Range	0~99	unit	-	active	Immediately	default	0			
					moment						
For detai	For details on the DI configuration, see P06.01.										

P06.09	Name	DI9 function control			Set	anutimo	Access	RW		
	Name	r€	egister		moment	anytime				
P06.09	Range	0~99	unit	-	active	Immediately	default	0		
					moment					
For detai	For details on the DI configuration, see P06.01.									

P06.10	Nama	DI10 fun	DI10 function control			anutima	A					
	Name	re	egister		moment anytime Access			RW				
	Range	0~99 unit -		active	Immediately	default	0					
					moment							
For detai	For details on the DI configuration, see P06.01. This DI is a high speed input DI.											

DOC 12	Name	DI termin	al valid s	status	Set moment	-	Access	RO		
P06.13	Range	0~1023	0~1023 unit -		active	-	default	-		
					moment					
Displaye	Displayed in decimal format, converted to binary format, containing 0-9 digits, low to high									
indicates the state of digital output terminals DI1~DI10, 0=OFF, 1=ON, the 0th bit corresponds to										
DI1,, 9	DI1,, 9 bits correspond to DI10.									

DOC 14	Name	DI foi	rced inpu	ut	Set moment	anytime	Access	RW
P06.14	Range	0~1023	unit	-	active moment	Immediately	default	0

Input in decimal (BCD) format, converted to binary (Binary) is the corresponding DIx input signal. For example: P06.14=42 (BCD)=0000101010 (Binary), indicating DI2, DI4 and DI6 terminals are ON.

P06.15	Name	DI Actual	termina	l level	Set moment	-	Access	RO
P00.15	Range	0~1023	unit	-	active	-	default	-
					moment			
Displaye	d in decimal f	ormat, conve	erted to	binary fo	rmat, contain	ing 0-9 digits, l	ow to high	

indicates the state of digital output terminals DI1~DI10, 0=OFF, 1=ON, the 0th bit corresponds to DI1,..., 9 bits correspond to DI10.

	Name	High sp	eed DI fi	ilter	Set	anutimo	Access	RW
P06.16	Name	conf	iguratior	า	moment	anytime	Access	r vv
P00.10	Range	1~32767	unit	us	active	Immediately	default	10
					moment			
When th	e high-speed	pulse input	termina	l is in the	e peak interfe	rence, the spik	e interferenc	e can
be filtere	ed out by set	ting P06.16.	INFn.34	and INF	n.40 are high	i-speed DI signa	als whose filt	tering
time is d	etermined by	/ P06.16; oth	er input	signals a	re low-speed	l DI signals, and	l the filtering	time

is determined by P06.17.

	Name	Low sp	eed DI fi	ilter	Set	anytime	Access	RW
P06.17	Name	cont	figuratio	n	moment	anytime	ALLESS	L AA
P00.17	Range	1~32767	unit	us	active	Immediately	default	1000
					moment			

P06.21	N	ame	DI1 a	ctive lev	el	Set moment	anytime	Access	RW
P00.21	R	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting			Level type			
			0			Active low			
			1			Active high			

P06.22	N	ame	DI2 a	ctive lev	el	Set moment	anytime	Access	RW
P00.22	R	ange	0~1	unit	-	active moment	Immediately	default	0
						moment			
		S	etting			Level type			
			0			Active low			
			1			Active high			

P06.23	N	lame	DI3 a	ctive lev	el	Set moment	anytime	Access	RW
P00.23	R	ange	0~1	unit	-	active moment	Immediately	default	0
		S	etting			Level type			
			0			Active low			
			1			Active high			

P06.24	Ν	lame	DI4 a	ctive lev	el	Set moment	anytime	Access	RW
P00.24	R	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting			Level type			
			0			Active low			
			1			Active high			

P06.25	Ν	lame	DI5 a	ctive lev	el	Set moment	anytime	Access	RW
PU0.25	R	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting			Level type			
			0			Active low			
			1			Active high			

P06.26	N	ame	DI6 a	ctive lev	el	Set moment	anytime	Access	RW
P00.20	R	ange	0~1	unit	-	active moment	Immediately	default	0
		S	etting			Level type			
			0			Active low			
			1			Active high			

DOC 27	Name	DI7 a	ctive lev	el	Set moment	anytime	Access	RW
P06.27	Range	0~1	unit	-	active moment	Immediately	default	0

setting	Level type
0	Active low
1	Active high

P06.28	N	Name DI8 acti		ctive lev	el	Set moment	anytime	Access	RW
P00.28	R	ange	0~1 unit -		active moment	Immediately	default	0	
		S	etting	1		Level type			
			0	0 1		Active low Active high			

P06.29	Ν	lame	DI9 a	ctive lev	el	Set moment	anytime	Access	RW
P06.29	R	ange	0~1 unit -		active moment	Immediately	default	0	
		S	etting			Level type			
			0	0		Active low			
			1			Active high	l		

P06.30	N	lame	DI9 a	ctive lev	el	Set moment	anytime	Access	RW
P06.30	R	ange	0~1	unit	-	active moment	Immediately	default	0
		S	etting			Level type			
			0			Active low			
			1	1		Active high			

	Name		nd DO2 fu uration re		Set moment	anytime	Access	RW	
P06.40	Range	0~2	unit	-	active	Immediate	default	0	
					moment	ly			
	setting		Function type						
	0	DC	DO1, DO2 function output configured with P06.41, P06.42						
			respectively						
	1 DO1, DO2 output A, B pulse respectively								
	2 DO1 outputs Z point signal, DO2 functions output with								
				P06.	42 configurat	tion			

DOC 44	1	Name	DO1		ction co egister	ntrol	Set moment	anytime	Ac	ccess	RW
P06.41	I	Range	0~99		unit	-	active moment	Immediately	de	fault	9
		sett	ing				DO function		L		
		0)				None				
		1				C	rive is enabling				
		2	-		Speed has arrived						
		3					Speed is falling				
		4					Speed is rising				
		5				Spe	ed is at zero spe	eed			
		6			Speed overrun						
		7	,		Speed forward						
		8			Speed reversal						
		9)		Fault output						
		10	D		Forward speed limit in torque mode						
		11			Ν	legative sp	eed limit in tor	que mode			
		12	2		Speed limit in torque mode						
		13	3	Positioning completion output							
		14	4	Positioning close to the output							
		15	5	return home completed output							
		10	6			Position	error too large	output			
		17	7			Interru	ot fixed length o	output			
		18	8			Soft	ware limit outp	out		-	
		24	4				Brake output			-	
		25	5			Inpu	t command is v	alid		-	
		26	6				Often OFF				
		2	7				Always ON				
		28	8				rque limit outp	ut		-	
		29					Torque arrival			-	
		30				Inte	rnal trigger sta	tus			
		31		Internal counter count arrives							
		32	2	Consistent speed							
		33	3		Ρι	lse positic	on command is a	zero output			

	Nama	DO2 fun	ction co	ntrol	Set	anutimo	Access	RW		
P06.42 -	Name	register			moment	anytime	Access	κνν		
	Range	0~99 unit -		active	Immediately	default	13			
					moment					
For details on the configuration of the DO, see P06.41.										

P06.43 Name DO3 function control	Set	anytime	Access	RW
----------------------------------	-----	---------	--------	----

		register			moment					
	Range	0~99 unit -		active	Immediately	default	0			
					moment					
For details on the configuration of the DO, see P06.41.										

	Name	DO4 fun	ction co	ntrol	Set	anutimo	Accoss	RW		
P06.44 Range	Name	register			moment	anytime	Access	L AA		
	Range	0~99 unit -		active	Immediately	default	0			
					moment					
For details on the configuration of the DO, see P06.41.										

DO5 function control Set anytime RW Name Access register moment P06.45 0~99 Immediately default 0 Range unit active moment For details on the configuration of the DO, see P06.41.

P06.46 Range	Nama	DO function control			Set	anutimo	Access	RW			
	register			moment	anytime	Access	RVV				
	Range	0~99 unit -		active	Immediately	default	0				
					moment						
For details on the configuration of the DO, see P06.41.											

P06.49	Name DO terminal vali			status	Set moment	-	Access	RO			
P00.49	Range	- unit -		active	-	default	-				
					moment						
Displaye	Displayed in decimal format, after conversion to binary format, it contains 0-5 digits. The low to										
high digits indicate the state of digital output terminals DO1~DO6, 0=OFF, 1=ON, and the 0th bit											
correspo	corresponds to DO1,, 5 bits correspond to DO6.										

P06.50 -	Name	DO for	ced outp	out	Set moment	anytime	Access	RW			
P06.50	Range	0~63 unit -		active	Immediately	default	0				
					moment						
When th	When the DO forced output is valid, this parameter is used to set whether the DO function is										
valid. Inp	out in decima	l (BCD) forma	at, conve	rted to b	inary (Binary) is the correspo	onding DOx i	nput			
signal. For example: P06.50=42 (BCD)=101010 (Binary), indicating that DO2, DO4 and DO6 output											
are ON.											

P06.51 Name DO1 active level	Set moment	anytime	Access	RW	
------------------------------	---------------	---------	--------	----	--

R	ange	0~1	unit	-	active moment	Immediately	default	0
	S	etting			Level validit	у		
		0			Active low			
	1							

P06.52	N	ame	DO2 active level		Set moment	anytime	Access	RW	
P00.52	R	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting			Level validit	У		
			0			Active low			
			1	1		Active high			

P06.53	N	lame	DO3 active level		Set moment	anytime	Access	RW	
P00.55	R	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting			Level validit	У		
			0			Active low			
			1	1		Active high			

P06.54	N	ame	DO4 active level		vel	Set moment	anytime	Access	RW
P00.54	Ra	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting			Level validit	У		
			0			Active low			
			1	1		Active high			

	N	lame	DO5 active level		Set moment	anytime	Access	RW	
P06.55	R	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting			Level validit	у		
			0			Active low			
			1	1		Active high			

P06.56 Name D06	active level Set	anytime	Access	RW
-----------------	------------------	---------	--------	----

					moment			
Ra	ange	0~1	unit	-	active	Immediately	default	0
					moment			
	S	etting			Level validit	y		
		0			Active low			
		1			Active high			

	Name	AI1 input voltage			Set moment	-	Access	RO
P06.61	Range	0~10000	unit	mV	active moment	-	default	-

DOC 63	Name	AI2 input	voltage		Set moment	-	Access	RO
P06.62	Range	0~10000	unit	mV	active moment	-	default	-

	Name	AI3 input	AI3 input voltage			-	Access	RO
P06.63	Range	0~10000	unit	mV	active moment	-	default	-

DOC 64	Name Al1 bias				Set moment	anytime	Access	RW
P06.64	Range	-10000~10000	unit	mV	active moment	Immediat ely	default	0

P06.65	Name	Al1 dead zone			Set moment	anytime	Access	RW
P06.65	Range	-5000~5000	unit	mV	active moment	Immediat elv	default	0

Name	Name	Al1 magnification			Set moment	anytime	Access	RW
P00.00	Range	-3276.7~3276 .7	unit	%	active moment	Immediat elv	default	100.0
						1		

	Name	AI1 low pass consta		ne	Set moment	anytime	Access	RW
P06.67	Range	0~32767	unit	ms	active moment	Immediat ely	default	2

P06.68	Name	Al1 zero drift			Set moment	anytime	Access	RW
200.08	Range	-10000~10000	unit	mV	active moment	Immediat ely	default	0

P06.69	Name	AI2 bias			Set moment	anytime	Access	RW
206.69	Range	-10000~10000	unit	mV	active moment	Immediat ely	default	0

P06.70	Name	AI2 dead zone			Set moment	anytime	Access	RW
206.70	Range	0~5000	unit	mV	active moment	Immediat ely	default	0

Name P06.71	Name	AI2 magnification			Set moment	anytime	Access	RW
P00.71	Range	-3276.7~3276	unit	%	active	Immediat	default	100.0
		./			moment	ely		

P06.72	Name	AI2 low pass filter time			Set	anytime	Access	RW
	Name	const	ant		moment	anytime Access		
	Range	0~32767	unit	ms	active	Immediat	default	2
					moment	ely		

P06.73	Name	AI2 zero drift			Set moment	anytime	Access	RW
P06.73	Range	-10000~10000	unit	mV	active moment	Immediat ely	default	0

P06.74	Name	AI3 bias			Set moment	anytime	Access	RW
206.74	Range	-10000~10000	unit	mV	active moment	Immediat ely	default	0

D06 75	Name	AI3 dead zone			Set moment	anytime	Access	RW
P06.75	Range	0~5000	unit	mV	active moment	Immediat ely	default	0

P06.76 Name	AI3 magnification	Set moment	anytime	Access	RW	
-------------	-------------------	---------------	---------	--------	----	--

Range	-3276.7~3276	unit	%	active	Immediat	default	100.0
	.7			moment	ely		

	Name	AI3 low pass consta		ne	Set moment	anytime	Access	RW
P06.77	Range	0~32767	unit	ms	active moment	Immediat ely	default	2

DOC 79	Name	Al3 zero	drift		Set moment	anytime	Access	RW
P06.78	Range	-10000~10000	unit	mV	active moment	Immediat ely	default	0

	N	lame	Autom drift cor	atic ze rection		Set moment	anytime	Ac	cess	RW	
P06.79	R	ange	0~6	unit	-	active	Immediately	de	fault	0	
						moment					
		S	etting	AI a	AI automatically corrects zero drift mode						
			0		Reserved						
			1	Aut	omaticall	y correct Al1	zero drift once				
			2	Aut							
			3	Aut							
			4	Immed	iately co	rrect Al1 Al2	AI3 zero drift or	nce			
			5	Autom	atically c	orrect curren	t sensor zero di	rift			
						once					
			6	C	lear the	correction cu	rrent sensor				
						immediatel	У				

DOC 80	Name	AO1 of	fset		Set moment	anytime	Access	RW
P06.80	Range	-10000~10000	unit	mV	active	Immediat	default	0
					moment	ely		

			moment			
1000.0~1000.0	uni t	%	active moment	Immediat elv	default	100
1	000.0~1000.0	000.0~1000.0 uni t	000.0~1000.0 uni % t	000.0~1000.0 uni % active t moment		

DOC 93	Name	AO2 b	vias		Set moment	anytime	Access	RW
P06.82	Range	-10000~10000	unit	mV	active moment	Immediat ely	default	100

DOC 92	Name	AO2 magnifi	cation	l	Set moment	anytime	Access	RW
P06.83	Range	-1000.0~1000.0	uni t	%	active moment	Immediat ely	default	100

	Name	A01	configurati value	-	ter	Set moment	anytime	Access	RW	
P06.84	Range	-1000	00~10000	unit	-	active moment	Immediately	default	0	
	setting			Configuration type						
	0			Actual speed, 1mv corresponds to 1rpm						
	1		Speed l	Speed loop speed command, 1mv corresponds to 1rpm						
	2		Torque o	Torque command, 1mv corresponds to 0.1% rated torque						
	3		Position e	osition error before filtering, 1mv corresponds to 1 motor						
				encoder pulse						
	4		Position	Position error after filtering, 1mv corresponds to 1 motor						
				encoder pulse						
	5		Feed forv	vard spe	ed, 1	Lmv correspo	nds to 0.1% rate	ed speed		
	6		Positio	on comn	nand	speed, 1mv	corresponds to	1rpm		
	7		Filtered	d positio	n coi	mmand spee	d, 1mv correspo	onds to		
						1rpm				
	8		Instantar	neous va	lue d	of phase A cu	rrent, 1mV corr	responds		
						to 0.1A				
	9		Instantar	Instantaneous value of phase B current, 1mV corresponds						
			to 0.1A							
	10		Torque feedback, 1mv corresponds to 0.1% rated torque							
	10000		Direct output 10V							
	-10000				D	irect output -	10V			

	Name	AO2	configurati value	0	ster	Set moment	anytime	Access	RW
P06.85	Range	-1000)0~10000	unit	-	active moment	Immediately	default	0
	setting				Сс	onfiguration t			
	0			Actual speed, 1mv corresponds to 1rpm					
	1		Speed I	oop spe	ed co	ommand, 1m	o 1rpm		
	2		Torque o	omman	d, 1n	nv correspon	ds to 0.1% rated	d torque	
	3		Position e	error be	fore f	iltering, 1mv	corresponds to	1 motor	
						encoder puls	se		

4	Position error after filtering, 1mv corresponds to 1 motor
	encoder pulse
5	Feed forward speed, 1mv corresponds to 0.1% rated speed
6	Position command speed, 1mv corresponds to 1rpm
7	Filtered position command speed, 1mv corresponds to
	1rpm
8	Instantaneous value of phase A current, 1mV corresponds
	to 0.1A
9	Instantaneous value of phase B current, 1mV corresponds
	to 0.1A
10	Torque feedback, 1mv corresponds to 0.1% rated torque
10000	Direct output 10V
-10000	Direct output -10V

	Name	AD minimum o amplifier ter			Set moment	anytime	Access	RW
P06.86	Range	0~4095	unit	-	active moment	Immediat ely	default	0

P06.87	Name	Internal am tension in maximu	iput AD		Set moment	anytime	Access	RW
	Range	0~4095	unit	-	active moment	Immediate lv	default	4095

	Name	Internal ampli		sion	Set	anytime	Access	RW
		input filte	er time		moment			
P06.88	Range	0~32767	unit	ms	active	Immediat	default	20
					moment	ely		

	Namo	AD value of	inter	nal	Set		Access	
P06.89	Name	amplifier ter	nsion i	nput	moment	-	Access	RO
P00.89	Range	0~4095	unit	-	active	-	default	-
					moment			

	Name	Final AI1 inpu	ıt value	į	Set	_	٨٥٥٥٥٢	RO
DOC 01	Name	percenta	ge		moment	-	Access	ΝŪ
P06.91	Range	-3276.7~3276.7	unit	%	active	-	default	-
					moment			

P06.92	Name	Final AI2 input value	Set	_	Access	RO
F 00.92	Name	percentage	moment		ALLESS	ŇŬ

Range	-3276.7~3276.7	unit	%	active	-	default	-
				moment			

Nam	Name	Final AI3 inpu	ıt value	5	Set	_	Access	RO
DOC 02		percenta	ge		moment			
P06.93	Range	-3276.7~3276.7	unit	%	active	-	default	-
					moment			

10.8 P07 group parameters - loop control parameters

	Nama	Current loo	op propo	ortional	Set	onutino	A	RW
007.01	Name		gain		moment	anytime	Access	KVV
P07.01	Range	0~32767	unit	-	active	Immediately	default	100
					moment			
This valu	e is factory se	et and is not	recomm	ended fo	r modificatio	n.		

P07.02	Name	Current lo	op integr	al gain	Set moment	anytime	Access	RW		
P07.02	Range	0~32767	unit	-	active	Immediately	default	20		
					moment					
This valu	This value is factory set and is not recommended for modification.									

	Name	Name Speed loop proportional gain			Set moment	anytime	Access	RW
P07.03	Range	0~32767	unit	-	active	Immediately	default	600
					moment			

007.04	Name	Speed loo	p integra	al gain	Set moment	anytime	Access	ime Access	
P07.04	Range	0~32767	unit	-	active moment	Immediately	default	50	

	Name	Position loop proportional			Set	anytime	Access	RW
	Name		gain		moment	anytime	ALLESS	
P07.05	Range	0~32767	unit	-	active	Immediately	default	200
					moment			

	Namo	Position loop maximum			Set	anutimo	٨٥٥٥٢	RW
D07.06	Name output speed percentag moment anytime Access							
P07.06	Danga	0~200.0	unit	%	active	Inamadiatak	default	100
	Range	0~300.0	unit		moment	Immediately		.0

	Namo	Output voltage filtering Set				anvtimo	٨٠٢٥٥٢	RW
P07.07	Name	time moment	ALLESS					
P07.07	Range	0~300.0	unit	ms	active	Immediately	default	0
	Nalige	0 300.0	unit	1113	moment	ininediately	uelault	0

	Namo	Name Torque feedforward filter Set anytime					Accoss	RW		
007.09	18 time const	constan	t	moment	anytime	Access	L AA			
P07.08	Range	0~63 unit ms			active	Immediately	default	10		
					moment					
This valu	This value is the angular acceleration filtering time for torque feedforward.									

	Name	Speed fee	dforwar	d filter	Set	anytime	Access	RW
007.00	Name	time	constan	t	moment	anytime	ALLESS	R VV
P07.09	Range	0~63	unit	-	active	Immediately	default	10
					moment			

D07.40	Name	Torque f	feed forv efficient	vard	Set moment	anytime	Access	RW
P07.10	Range	0~32767	unit	-	active moment	Immediately	default	0

	Name	Speed f	eedforw	vard	Set	anutima	Accoss	RW
007 11	Name	COE	efficient		moment	anytime	Access	ΓVV
P07.11	Range	0~300.0	unit	-	active	Immediate	default	50.0
					moment	ly		

P07.12	N	ame	Torque	e filter ty	pe	Set moment	anytime	Access	RW
P07.12	Ra	ange	0~2	unit	-	active	Immediately	default	0
						moment			
		S	tting To			orque filter t	vne		
			ctillig			•			
			0	0 10			ow pass filtering		
			1	1			notch filter		
			2	2					

	Name	Torque low	pass filt	er time	Set	anytime	Accoss	RW
007 12	Marrie	со	nstant		moment	anytime		L AA
P07.13	Range	0~327.67	unit	ms	active	Immediate	default	0.80
					moment	ly		

P07.14	Name	Notch filter 1 notch	Set	anytime	Access	RW

	fre	quency		moment			
Range	0~1000	unit	Hz	active	Immediate	default	200
				moment	ly		

D07.15	Name	Notch filte	r 1 notcł	n depth	Set moment	anytime	Access	RW
P07.15	Range	0~100.0	unit	%	active	Immediate Iv	default	10.0
					moment	iy		

007.10	Name	Notch filte	r 1 notch	n width	Set moment	anytime	Access	RW
P07.16	Range	0~100.0	unit	%	active	Immediate	default	50.0
					moment	ly		

	Name	Notch f	Notch filter 2 notch			anytime	Access	RW
D07 17	Nume	fre	quency		moment	unythic	Access	
P07.17	Range	0~1000	0~1000 unit ms			Immediate	default	0
					moment	ly		

007 19	Name	Notch filte	r 2 notcł	n depth	Set moment	anytime	Access	RW
P07.18	Range	0~100.0	unit	%	active	Immediate	default	50.0
					moment	ly		

Name		Notch filter 2 notch width			Set moment	anytime	Access	RW
P07.19	Range	0~100.0	unit	%	active	Immediate	default	50.0
					moment	ly		

P07.20	Name	Gain adju	stment	mode	Set moment	anytime	Access	RW		
P07.20	Range	0~3	unit	-	active	Immediately	default	0		
					moment					
	setting		Gain adjustment mode							
	0		fixed	first set o	of gain: P07.0					
	1		First	t or secor	nd set of gain					
	2	Automat	ic calcula	ation of a	set of gains	based on stiffne	ess level			
			and load inertia (normal mode)							
	3	Automat	ic calcula	ation of a	set of gains	based on stiffne	ess level			
			and	load ine	rtia (positioni	ing mode)				

P07.21 Name Second set of speed loop Set anytime Access RW
--

	propol	rtional g	ain	moment			
Range	0~32767	unit	-	active	Immediately	default	800
				moment			

	Name	Second set of speed loop			Set	anytime	Access	RW
P07.22	Name	integral gain			moment	anytine	ALLESS	L AA
P07.22	Range	0~32767	unit	-	active	Immediately	default	10
					moment			

	Name	Second set	of positi	on loop	Set	anytime	Access	RW
07 22	Name	propol	rtional g	ain	moment	anytime	ALLESS	
P07.23	Range	0~32767	unit	-	active	Immediately	default	200
					moment			

D07	24	Nam	e	Gain swite	hing cor	ndition	Set moment	anytime	Access	RW	
P07.2	24	Rang	e	0~6	unit	-	active moment	Immediately	default	0	
							moment			-	
	Ŭ	足定值				增益	监切换条件				
		0	10 9	switching; IN	Fn.41 is	valid wit	n a second se	t of gain		_	
			When the torque command is large, switch to the second set of gains;								
			When the torque command is greater than (gain switching level P07.25								
		1	+ gain switching time delay P07.26), switch to the second set of gain; when the torque command is less than (P07.25-P07.26), switch back to								
						and is les	s than (P07.2	5-P07.26), swit	ch back to		
			the first set of gain .								
		Switch to the second set of gain when the speed command is large;									
		2				-		17.25+P07.26), s			
								less than (P07.	25-P07.26),		
				tch back to t		_				_	
					eration	command	l is large, swit	tch to the secor	nd set of		
		_	gaiı					<i></i>	,		
		3					-	an (P07.25+P07	-		
								ation command	l is less		
				-	-		k to the first			-	
						-		ed error is large			
		4				-		+P07.26), switch			
							or is less thar	n (P07.25-P07.2	6), switch		
				k to the first	-				6	_	
						-		ition error is lar	-		
		5						hen the position			
				-	-	-		the position er			
			tilte	ering is less t	han (P07	/.25 -P07	.26), switchin	g back to the fi	rst set of		

	gain
6	Positioning is completed and switched to the second set of gains. No
0	positioning is completed to switch to the first set of gains.
	Motor phase switching gain; When the motor phase is in the range of
7	(gain switching level \pm gain switching time lag), switch to the second set
/	of gain, and the other phases switch to the first set of gain; the motor
	phase can be viewed through P09.39

007.25	Name	Gain sw	itching l	evel	Set moment	anytime	Access	RW
P07.25	Range	0~32767	unit	-	active moment	Immediately	default	0

007.26	Name	Gain swit	ching tin	ne lag	Set moment	anytime	Access	RW
P07.26	Range	0~32767	unit	-	active moment	Immediately	default	0

	Name	Gain sw	itching t	ime	Set	anytime	Access	RW			
P07.27		constant			moment	anytine	Access				
PU7.27	Range	ge 0~32767 unit		ms	active	Immediately	default	10			
					moment						
The two gain switches are smooth switching. This parameter is the smoothing time parameter.											

007.29	Name	Rigi	Rigid rating			anytime	Access	RW		
P07.28	Range	1~31 unit -		active	Immediately	default	10			
					moment					
Set rigid	Set rigid rating.									

P07.29	Name	Load iner	Load inertia coefficient		Set moment	anytime	Access	RW		
P07.29	Range	0~32767 unit -		active	Immediately	default	400			
					moment					
Load ine	Load inertia coefficient									

	Namo	Zero speed speed gain			Set	anytime	Accoss	RW
007 20	Name at		attenuation / amplification			anytime	Access	L AA
P07.30	Range	0~3276.7	0~3276.7 unit %		active	Immediatel	default	50.0
					moment	У		

	Norae	Zero speed position gain			Set	anutinaa	٨٥٥٥٩		
Name		attenuation	n / ampli	fication	moment	anytime	Access	RW	
P07.31	7.31 Range 0~3276.7		unit	%	active	Immediatel	default	100.0	
					moment	У			

P07.32	Name	Zero s	beed deo	cay	Set	anytime	Access	RW		
	Nulle	threshold			moment	anythic	ALLESS			
PU7.52	Range	0~32767	unit	rpm		Immediatel	default	10		
						У				
When th	When the rotational speed rpm is less than this value, the speed loop, position loop, and current									
loop gain are attenuated/amplified according to P07.30, P07.31, and P07.34, respectively.										

P07.33	Inertia self-learningNameacceleration and07.33deceleration time				Set moment	anytime	Access	RW
	Range	0~32767	unit	ms	active moment	Immediately	default	500

P07.34	Name	Zero speed current gain attenuation / amplification		Set moment	anytime	Access	RW	
	Range	0~3276.7	0~3276.7 unit %		active moment	Immediately	default	0.0

P07.3	35	Name	ć	Inertia	self-lear	ning	Set	anytime	Access	RW			
				option		moment							
		Range	0~1 unit %		active	Immediately	default	0					
						moment							
Γ	c	etting		Inertia self-learning option									
-	5	0	۸ı	fter learnir	ng the in			torque feed for	ward coeffici	ant			
-		0	A		ig the in	ei tia, Oi	ily learn the	lorque leeu lor					
			Af	After learning the inertia, a set of gains is automatically calculated based									
		1	on the stiffness setting and the learned inertia coefficient. P07.03										
				P07.04 P07.05									

	Name	Self-tuning vibration			Set	anytime	Access	RW
007.20	Name	threshold	l percent	age	moment	anytime	ALLESS	ĸw
P07.38	Range	0~32767	0~32767 unit %		active	Immediately	default	100
					moment			

	Name	Self-tuning vibration			Set	anvtime	Access	RW
P07.39		amplitude			moment	anytine	7,66635	
	Range	0~32767 unit -		active	Immediately	default	0	

Shenzhen VECTOR Technology Co., Ltd.

VC Servo manual

 1				r
		moment		
				1

Name		9	Torque co n	ompensa node	ation	Set moment	anytime	Access	RW	
P07.5	50	Range	e	0~4 unit -		active	立即有效	default	0	
						moment				
	S	etting		Torque co			mpensation mo			
		0			Comp	ensate f	or a fixed value	P07.53		
		1				Comp	ensation by AI1			
		2		Compensation by AI2						
		3		Compensation by AI3						
		4		Automatio	cally com	npensate	ed by the comp	ensation coeff	icient	

P07.51	Namo	Torque co	mpensa	tion	Set	anytime	Accoss	RW
	Name	filte	er time		moment	anytime	Access	L AA
P07.51	Range	0~32767	unit	ms	active	Immediately	default	10
					moment			

P07.52	Namo	Torque co	mpensa	tion	Set	anytime	Access	RW
	Name	inertia	coefficie	nt	moment	anytime	ALLESS	κνν
P07.52	Range	0~32767	unit	-	active	Immediately	default	0
					moment			

P07.53	Name	Torque co	mpensa	tion	Set	anytime	Access	RW
	Name	fixed value			moment	anytime	Access	
PU7.55	Range	-32767~	unit	-	active	Immediately	default	0
		32767			moment			

	Name	Torque com	pensatio	n gain	Set moment	anytime	Access	RW
P07.54	Range	-32767~ 32767	unit	%	active moment	Immediately	default	100

	Name	Actual speed loop proportional gain			Set	-	Access	RO
P07.90		prope	n tional §	gaill	moment			
107.50	Range	0~32767	unit	-	active	-	default	-
					moment			

	Name	Actual spe	ed loop	integral	Set	-	Access	RO
P07.91			gain		moment		Access	
	Range	0~32767	unit	-	active	-	default	-

		moment		

	Name		position ortional g	•	Set moment	-	Access	RO
P07.92	Range	0~32767	unit	-	active	_	default	-
					moment			

	Name	Torque compensation final value			Set moment	-	Access	RO
P07.93	Range	0~3276.7	unit	-	active	-	default	-
					moment			

D07.05	Name	Recommended current loop proportional gain			Set moment	-	Access	RO
P07.95	Range	0~32767	unit	-	active	-	default	-
					moment			

P07.96	Name	Recommen	ded curi	ent loop	Set	_	Access	RO
	Name	integral gain			moment		ACCCSS	
PU7.96	Range	0~32767	unit	-	active	-	default	-
					moment			

10.9 P08 group parameters - communication parameters

	Name	· ·	Torque communication given			anytime	Access	RW
P08.16	Range	-3276.7~3276.7	unit	-	active	Immediat	default	0.0
					moment	ely		

D09 17	Name	speed communi	cation §	given	Set moment	anytime	Access	RW
P08.17	Range	-32767~32767	unit	-	active moment	Immediat ely	default	0

	Name	position communication given			Set moment	anytime	Access	RW
P08.18	Danga	-2147483647	unit		active	Immediat	dofault	0
	Range	~ 2147483647	unit	-	moment	ely	default	0

P08.20 Name Modbus baud rate	Set	anytime	Access	RW
--	-----	---------	--------	----

					moment			
R	ange	0~3	unit	bps	active	Immediately	default	1
					moment			
	S	etting		l	Modbus 波特	率		
		0			4800			
		1			9600			
		2		19200				
		3			38400			

D09 21	P08.21 Name Modbus d		Modbus da	ta format	t	Set moment	anytime	Access	RW
P08.21	R	Range 0~3		unit	-	active	reset takes	default	1
						moment	effect		
		S	etting		M	odbus data fo	rmat		
			0	No parit	y, stop bits	2			
			1	No parity	y, stop bits	1			
			2	Even par	rity, 1 stop	bit			
			3	Odd pari	ty, 1 stop ł	oit			
This para	This parameter is valid after reset.								

P08.22	Name Byte orde address		er when a		Set moment	anytime	Access	RW		
P06.22	R	Range 0~1		unit	-	active	Immediately	default	1	
						moment				
		S	etting	Byte	order wł	nen 32-bit ado	lress is accessed	1		
			0	When a 32-bit address is accessed, the						
				upper	16 bits a	are in front.				
			1	When	a 32-b	it address i	is accessed, t	he		
				lower	16 bits a	are in front.				

D08 22	P08.23 Modbus slave address				Set moment	anytime	Access	RW
P08.23	Range	1~255	unit	-	active moment	Immediat ely	default	1

D09.24	Name	Modbus fault register			Set moment	-	Access	RO
P08.24	Range	0~32767	unit	-	active moment	-	default	-

D09 25	Name	Number of b transmit FIFO b		the	Set moment	-	Access	RO
P08.25	Range	0~32767	unit	-	active moment	-	default	-

P08.26	N	ame	Rs232	2 baud ra	ite	Set moment	anytime	Access	RW
P08.20	R	ange	0~2 unit bps		active	Immediately	default	2	
						moment			
		S	etting	tting F			ate		
			0			9600			
			1	1					
			2			115200			

D09 27	Name MODBUS response delay			Set moment	anytime	Access	RW	
P08.27	Range	0~32767	unit	-	active	Immediat	default	0
						ely		

P08.28	Name	MODBUS sa delay	ampling	period	Set moment	anytime	Access	RW
	Range	0~5000	unit	500us	active moment	Immediat ely	default	0

P08.29 -	N	ame		onitor port sends		Set	anytime	Access	RW
			the curve or sends the text			moment			
	R	ange	0~1	unit	-	active	Immediately	default	0
						moment			
Setting RS232 monitor port sends the curve or sends									
	Setting		K523	15					
		the text							
	0								
			1	sends the text					

P08.40	Name	CAN baud rate			Set moment	anytime	Access	RW
	Range	125~1000	unit	Kbps	active moment	Immediat ely	default	500

P08.41 Name CAN node id	Set moment	anytime	Access	RW	
-------------------------	---------------	---------	--------	----	--

Range	0~127	unit	-	active	Immediat	default	0
				moment	ely		

10.10 P09 group parameters - advanced debugging parameters

P09.09 Name Motor speed					Set moment	-	Access	RO
P09.09	Range	-	unit	rpm	active moment	-	default	-

D00 16	Name	Z po	Z point index counter			-	Access	RO
P09.16	Range	-	unit	-	active moment	-	default	-

D00 20	Name Speed loop given				Set moment	-	Access	RO
P09.20	Range	-	unit	%0	active moment	-	default	-

D00 21	Name	Spe	ed loop	feedback	Set moment	-	Access	RO
P09.21	Range	-	unit	%0	active moment	-	default	-

D00 25	P09.25 Name D-axis current loop given				Set moment	-	Access	RO
P09.25	Range	-	unit	%0	active moment	-	default	-

D00.26	Name D-axis current loop feedback				Set moment	-	Access	RO
P09.26	Range	-	unit	%0	active moment	-	default	-

D00.20	Name	Q-axi	s curren	t loop given	Set moment	-	Access	RO
P09.30	Range	-	unit	%0	active moment	-	default	-

D 00.21	Name	Q-axis	current	loop feedback	Set moment	-	Access	RO
P09.31	Range	-	unit	%0	active moment	-	default	-

D 00.20	Name RAW PHASE		HASE	Set moment	-	Access	RO	
P09.39	Range	-	unit	-	active moment	-	default	-

10.11 P10 group parameters - fault protection parameters

	Name	Software o	vercurre	ent	Set	anytime	Accoss	RW		
P10.01	Name	threshold		moment	unytine	default 4	ΓVV			
P10.01	Range	0~800.0	unit	%	active	Immediate	default	400.0		
					moment	ly				
When th	/hen the detected current percentage P09.31 is greater than this value, the software overcurrent									
fault is re	fault is reported.									

P10.02	Name	Motor ove	rload va	lue	Set moment	anytime	Access	RW
P10.02	Range	0~3276.7 unit %		active	Immediate	default	100.0	
					moment	ly		
Set the o	Set the overload protection point, which is generally set to the motor rated current / drive rated							e rated
current * 100%.								

	Name	Stall protect	tion curi	rent	Set	anytime	Access	RW	
P10.03	Name	threshold			moment	anytime	ALLESS		
P10.05	Range	0~300.0	unit	%	active	Immediate	default	100	
					moment	ly			
When th	e driver curr	rent percentage P09.31 exceeds this value and the time of P10.04 continue				ntinues,			
and the	speed is less	ed is less than 5 rpm, the jam is faulty. This value is recommended to be set to the					to the		
motor ra	ted current /	drive rated cur	rent * 10	rated current / drive rated current * 100%.					

	Name	Motor Blocke	ed prote	ction	Set	anutimo	Accoss	RW
D10.04	Name	time th	time threshold			anytime	Access	
P10.04	Range	0~65535	unit	ms	active	Immediate	default	800
					moment	ly		

	P10.05	Name	Percentage of speed	Set	anytime	Access	RW
--	--------	------	---------------------	-----	---------	--------	----

					moment			
	Range	0~3276.7	unit	%	active	Immediate	default	150.
					moment	ly		0
When th	e percentage	of the actual sp	peed/rat	ed spee	d is greater t	han the overs	peed percen	tage,
the over	speed fault is	reported.						

D10.06	Name	Drive overh	eat thre	shold	Set moment	anytime	Access	RW
P10.06	Range	0~3276.7	unit	°C	active	Immediate	default	80.0
					moment	ly		

P10.07	Name	Phase loss pro	otection	setting	Set moment	anytime	Access	RW
P10.07	Range	0~32767	unit		active	Immediate	default	0
					moment	ly		
When th	When the 0th bit is 1, the output phase loss protection is enabled. When the 1st bit is 1, the input					e input		

phase loss protection is enabled.

D10.08	Name	Homing	timeou	t	Set moment	anytime	Access	RW
P10.08	Range	0~32767	unit	S	active moment	Immediate ly	default	0

D10.00	N	ame	Power-off position m			Set moment	anytime	Access	RW
P10.09	Ra	ange	0~1	unit	-	active moment	Immediately	default	0
		5	Setting	Powe	er-off mo	У			
			0	Power		oes not reme the motor en	ember the posit	ion	
			1	Pow	er-off me	mory motor	encoder positio	n	

D10 10	Name	Al zero dri	ft thresh	old	Set moment	anytime	Access	RW
P10.10	Range	0~32767	unit	mV	active	Immediate	default	500
					moment	ly		

P10.11	Name	Overload cu	rve sele	ction	Set moment	anytime	Access	RW
P10.11	Range	0~4	unit	-	active moment	Immediate ly	default	0

	Name	Current fai	ult code		Set moment	-	Access	RO
P10.20	Range	0~32767	unit	-	active moment	-	default	-
erro	r code			Fa	ult descriptic	on	<u> </u>	
Er.	.100	Software over-current	, when the		•		software P09.	31 is
		greater than the value			-	-		
		ault can be shielded b	-				• •	
Er.	.101	Hardware overcurrent						
Er.	.102	Overvoltage, fo	or 220V driv	/er, c	vervoltage whe	en bus voltage P0	1.08 is greater	than
		120V.For 380V drivers			-	-	-	
		han 750V.		-		-	-	
Er.	103 Undervoltage, undervoltage when the bus voltage P01.08 is less than the rated voltage					ltage		
		P01.07*1.414*0.7.						
Er.	.104	The current sensor is faulty. It is detected that the current is not 0 before the relay is						
		turned on for the first time.						
Er.	.105	If the encoder fails and the encoder is not connected, the fault is reported.						
Er.	.106	The EEPROM verify fault, and the fault is reported when the value written to the EEPROM					ROM	
		and the value of the read EEPROM are inconsistent.						
Er.	.107	The phase sampling fault is reported when the phase obtained by the HALL switch and the						d the
		phase obtained by the	encoder di	ffer t	oo much.			
Er.	.108	When the FPGA and A	RM commu	inica	tion are faulty,	the fault is report	ed when the va	alues
	,	written and read by th	e ARM are i	incor	nsistent.			
Er.	.109	f the current changes	greatly, the	e fau	It is reported v	when the two san	nples are separ	rated
		oy 50%.						
Er.	.110	Magnetic encoder fail	ıre					
Er.	.111	Current phase sequen	ce learning	failu	re			
Er.	.112	The output is out of pl	nase.					
Er.	.113	Did not scan to Z point	during self	-lear	ning			
Er.	.114	z point offset not foun	d					
Er.	.115	Hall code value learnir	g error					
Er.	.117	The driver overheats	and reports	a d	river overheat	fault when it det	ects that the d	river
		emperature P01.10 is	greater tha	n th	e driver overhe	at threshold P10.0	06.	
Er.	.118	The line-saving encode	er does not	have	a feedback thr	reshold value at po	ower-on.	
Er.	.119	Notor encoder type d	pes not mat	tch				
Er.	.121	RST input phase loss						
Er.	Er.200 When returns to home, the home signal INFn.34 is not assigned.							
Er.	.201	NFn.xx repeated alloc	ation, one i	nput	function bit is	assigned to two o	r more DI	
Er.	.202	Overspeed, when the	speed perc	enta	ge (actual spee	d / rated speed) e	exceeds P10.05	, the
		overspeed is reported.						
Er.	.203	The position error is to	o large. W	hen	the position er	ror P03.17 is great	er than P03.19	and

	P03.19 is not equal to 0, the fault is reported. Note that it is easy to report this fault if the
	position is set to a large filter time.
Er.204	Unassigned interrupt fixed length trigger signal INFn.40
Er.205	No return to home before absolute point motion
Er.206	Motor overload
Er.207	Software limit, after enabling the software limit P03.73, when the encoder position value
	is less than the software limit limit or greater than the software limit limit, report this
	fault.
Er.208	Hardware limit
Er.209	Curve planning failed
Er.210	Excessive tension
Er.211	Breakage failure
Er.212	XY pulse type selection error in tension control mode
Er.213	Full closed loop position error is too large
Er.214	Prohibit positive (reverse) turn
Er.216	Z point signal is unstable
Er.217	RPDO receive timeout
Er.218	Reserved
Er.219	Motor stall
Er.220	Braking resistor overload
Er.221	The forward stroke switch input function bit INFn.43 is not assigned to the entity DI
Er.222	Reverse stroke switch input function bit INFn.44 is not assigned to entity DI
Er.223	Search home error
Er.224	CAN bus state switching error, switching CiA402 state machine when the bus is in
	non-Operation state
Er.225	Unsupported CANopen control mode
Er.226	Absolute value mode lap overflow
Er.227	Absolute encoder battery failure
Er.228	Inertia learning failed, need to reset P07.03 and P07.04
Er.229	When learning the full closed loop parameter, the position value detected by the second
	encoder is too small
Er.231	Bus error
Er.232	Second encoder battery failure
Er.600	Motor overheating
Er.601	DIfunction code is not assigned
Er.602	The AI zero drift is too large. When the AIx zero drift P06.68/P06.73/P06.78 is greater than
	the threshold P10.10, the zero drift is too large.
Er.603	return home timeout, when the zero return time is greater than P10.08, the fault is
	reported.
Er.604	When the absolute encoder is self-learning, the motor rotates in the wrong direction and
2	needs to change the UVW wiring.
Er.605	Absolute encoder battery voltage is too low, need to replace the new battery when the
L1.005	Associate encoder buttery voltage is too low, need to replace the new battery when the

	drive is powered on	
Er.606	The second encoder battery voltage is too low, you need to replace the new battery when	
	the drive is powered on.	
Er.607	Inertia learning fails, need to increase P07.33 and then learn	

	Name	Fault code for	selected	хk	Set	anutimo	Accoss	RW
P10.21	Name	times of f	ailure		moment	anytime	Access	LAA
P10.21	Range	1~5	unit	-	active	Immediate	default	5
					moment	ly		

	Name	Fault code for	selected	хk	Set		Accoss	RO
010 22	Name	times of f	times of failure		moment	-	Access	NO
P10.22	Range	0~32767	unit	-	active	-	default	-
					moment			

	Name	Time of selecte	d x time	es of	Set	_	Access	RO
D10 22	Name	failur	e		moment	_	ALLESS	NO
P10.23	Range	0~32767	unit	min	active	-	default	-
					moment			

D10.24	Name	Name Motor speed of x times selected	ies	Set moment	-	Access	RO	
P10.24	Range	-32767~32767	unit	rpm	active	-	default	-
					moment			

540.25	Name	Motor currer selecte	it rms va ed fault	lue at	Set moment	-	Access	RO
P10.25	Range	0~3276.7	unit	А	active moment	-	default	-

	Name	Motor V-pha	se curre	nt at	Set		Access	RO
D10.2C	Name	selecte	d fault		moment	-	ALLESS	κU
P10.26	Range	-3276.7~3276.7	unit	А	active	-	default	-
					moment			

P10.27	Name	motor current	nstantaneous value of W-phase motor current for selected x faults 3276.7~3276.7 unit A				Access	RO
	Range	-3276.7~3276.7	unit	A	active moment	-	default	-

P10.28 Name Bus voltage for selected x faults	Set	-	Access	RO
---	-----	---	--------	----

				moment			
Range	0~32767	unit	V	active	-	default	-
				moment			

D10.20	Name	Drive temperatu fai	ure for so ults	elected x	Set moment	-	Access	RO
P10.29	Range	0~3276.7	unit	°C	active moment	-	default	-

D10 20	Name	Entity DI statu times c	is of sele of failure		Set moment	-	Access	RO
P10.30	Range	-	unit	-	active moment	-	default	-

D10 21	Name	Entity DO state times c	us of sel of failure		Set moment	-	Access	RO
P10.31	Range	-	unit	-	active moment	-	default	-

010.33	Name	Hardware faul	Hardware fault count value				Access	RO
P10.32	Range	0~32767	unit	-	active moment	-	default	-

P10.33	Name	Fault sl	nielding		Set moment	anytime	Access	RW								
P10.55	Range	0~65535	unit	-	active	Immediate	default	12								
					moment	ly										
BITO Shie	eld Overload	BIT1 Shield Soft	ware O	vercurre	nt BIT2 Shiel	d Phase Fault	BIT3 Shield	Current								
Change	Change Large BIT4 Shield Hardware Overcurrent BIT5 Shield Speed Change Large BIT6 Shield Z															
Point Unstable BIT7 Shield SYNC Loss BIT8 Shield Current Sensor Fault BIT9 Shield Undervoltage																
BIT10 Sh	ield Encoder	malfunction						BIT10 Shield Encoder malfunction								

Name	Nama	Hardware failure time			Set	antimo	Accord			
	threshold			moment	anytime	Access	RW			
P10.54	Range	0~32767	2767 unit 20ns		active	Immediate	default	250		
					moment	ly				
After the	After the IGBT fault exceeds this time, the fault is reported.									

D11.01	N	ame	Multi-speed	1 mode		Set moment	Disable to set	Access	RW
P11.01	R	ange	0~2	unit	-	active	Immediately	default	0
						moment			
		S	etting	Multi-spe	ed mo	ode			
			0	0- si	ngle-r	un stop			
			1	1-cy	cle rui	n			
			2	2 2- IO sw					

10.12 P11 group parameters - multi-speed parameters

D11.02)2		nber of s nents	of speed	Set moment	anytime	Access	RW
P11.02	Range	1~16	unit	-	active	Immediate	default	16
					moment	ly		

P11.03	N	ame	Running	time unit	t	Set moment	anytime	Access	RW
P11.05	R	ange	0~1	unit	-	active	Immediately	default	1
						moment			
		S	etting]	Running time	unit		
			0			ms			
			1			S			

D11.04	Name	Accelerat	Acceleration time 1		Set moment	anytime	Access	RW
P11.04	Range	0~65535	unit	ms	active	Immediate	default	500
					moment	ly		

D11.05	Name	Decelerat	tion time	e 1	Set moment	anytime	Access	RW
P11.05	Range	0~65535	unit	ms	active	Immediate	default	500
					moment	ly		

D11.06	Name	Accelerat	ion time	e 2	Set moment	anytime	Access	RW
P11.06	Range	0~65535	unit	ms	active	Immediate	default	500
					moment	ly		

P11.07 Name	Deceleration time 2	Set moment	anytime	Access	RW	
-------------	---------------------	---------------	---------	--------	----	--

Range	0~65535	unit	ms	active	Immediate	default	500
				moment	ly		

D11.09	Name Acceleration time 3		Set moment	anytime	Access	RW		
P11.08	Range	0~65535	unit	ms	active moment	Immediate ly	default	500

D11.00	Name	Decelerat	tion time	: 3	Set moment	anytime	Access	RW
P11.09	Range	0~65535	unit	ms	active	Immediate	default	500
					moment	ly		

D11 10	Name Acceleration time 4			Set moment	anytime	Access	RW	
P11.10	Range	0~65535	unit	ms	active moment	Immediate ly	default	500

D11 11	Name Deceleration time 4		Set moment	anytime	Access	RW		
P11.11 -	Range	0~65535	unit	ms	active moment	Immediate ly	default	500

D11 12	Name The 1st speed command			Set moment	anytime	Access	RW	
P11.12	Range	-32767~32767	unit	rpm	active	Immediate	default	0
					moment	ly		

	Name	The 1st speed c	omman	d run	Set	anytime	Access	RW
P11.13	Ivallie	time			moment	anytime	ALLESS	IX VV
P11.15	Range	0~32767	unit	-	active	Immediate	default	10
					moment	ly		
This para	parameter unit is set by P11.03.							

P11.14	Name	The first spo and dece set			Set moment	anytime	Access	RW
	Range	0~4	0~4 unit -		active moment	Immediate ly	default	0

Setting	acceleration and deceleration time selection
0	Use acceleration/deceleration time P04.17 P04.18
1	Use acceleration/deceleration time 1
2	Using acceleration/deceleration time 2
3	Using acceleration/deceleration time 3
4	Using acceleration/deceleration time 4

D11 15	Name	The 2nd speed c	comman	ıd	Set moment	anytime	Access	RW
P11.15	Range	-32767~32767	unit	rpm	active moment	Immediate	default	0
					moment	19		

	Name	The 2nd speed c	The 2nd speed command run			anytime	Access	RW
D11 16	Ivallie	time			moment	allytille	ALLESS	Κw
P11.16	Range	0~32767	unit	-	active	Immediate	default	10
					moment	ly		
This para	parameter unit is set by P11.03.							

D11.17	Name	The second		eed accele	eration and	Set moment	anytime	Access	RW	
P11.17	Range	0~4	1	unit	-	active	Immediate	default	0	
						moment	ly			
	Setti	ng	The se	cond speed	acceleration ar	d deceleration tir	ne selection			
	0		0-Use	0-Use acceleration/deceleration time P04.17 P04.18						
	1		1- Use	acceleration	cceleration/deceleration time 1					
	2		2- Usi	ng accelerati	ion/deceleratio	n time 2				
	3		3- Usi	ng accelerati	ion/deceleratio	n time 3				
	4		4- Usi	ng accelerati	ion/deceleratio	n time 4				

D11 10	Name	The 3rd speed	l comm	and	Set moment	anytime	Access	RW
P11.18	Range	-32767~32767	unit	rpm	active	Immediate	default	0
					moment	ly		

	Nama	Third speed co	mmand	run	Set	anutima	1 00000	RW		
D11 10	Name	time	•		moment	anytime	Access	ĸw		
P11.19	Range	0~32767	unit	-	active	Immediate	default	10		
					moment	ly				
This parameter unit is set by P11.03.										

P11.20	Name	The Third speed acceleration	Set	anytime	Access	RW	
--------	------	------------------------------	-----	---------	--------	----	--

	and dec		on time		moment				
Range	0~4		unit	-	active	Immediate	default	0	
					moment	ly			
Setti	ng	g acceleration and				time selectior	ı		
0		Use	Use acceleration/deceleration time P04.17						
		P04.							
1		Use	acceler	ation/de	celeration t	time 1			
2		Usin	g accel	eration/c	leceleratio	n time 2			
3		Usin	g accel	eration/c	leceleratio	n time 3			
4		Usin	g accel	eration/c	leceleratio	n time 4			

D11 21	Name	The 4th speed	l comma	and	Set moment	anytime	Access	RW
P11.21	Range	-32767~32767	unit	rpm	active moment	Immediate ly	default	0

	Name	The 4th speed co	ommanc	l run	Set	anytime	Access	RW		
D11 22	Ivallie	time	•		moment	allytille	Access	Κw		
P11.22	Range	0~32767 unit -			active	Immediate	default	10		
					moment	ly				
This parameter unit is set by P11.03.										

D11.22	Name		speed acceleration and action time selection			Set moment	anytime	Ac	cess	RW
P11.23	Range	0~4		unit	-	active	Immediate	def	ault	0
						moment	ly			
	Set	ting	ng acceleration and d				time selectior	ı		
		0	U	se accele						
		1	Use acceleration/deceleration time 1							
		2		Use	acceleratio	on/decelerati	on time 2			
		3		Use acceleration/deceleration time 3						
		4	Use acceleration/deceleration time 4							

D11 24	Name	The 5th speed	l comma	and	Set moment	anytime	Access	RW
P11.24	Range	-32767~32767	unit	rpm	active moment	Immediate ly	default	0

P11 25	Name	The5th speed command run	Set	anvtime	Access	RW
1 11.23	i vuille	time	moment	unytime	1100035	ICV.

	Range	0~32767	unit	-	active	Immediate	default	10	
					moment	ly			
This parameter unit is set by P11.03.									

D11.26	Name		-	l accelera n time se	ation and lection	Set moment	anytime	Access	RW	
P11.26	Range	0~4	ļ	unit	-	active moment	Immediate ly	default	0	
							Ty			
	Setti	ng	g acceleration and d				time selectior	1		
	0		U	Use acceleration/deceleration time P04.17 P04.18						
	1			Use	acceleratio	on/decelerati	on time 1			
	2			Use	acceleratio	on/decelerati	on time 2			
	3		Use accelerati				on time 3			
	4			Use	acceleratio	on/decelerati	on time 4			

D11 27	Name The6th speed command			Set moment	anytime	Access	RW	
P11.27	Range	-32767~32767	unit	rpm	active	Immediate	default	0
					moment	тy		

P11.28 Name Range	Nama	The 6th speed co	ommand	l run	Set	anytime	Access	RW		
	time	•		moment	anytime	ALLESS	IX W			
	Range	0~32767	unit	-	active	Immediate	default	10		
					moment	ly				
This parameter unit is set by P11 03										

This parameter	unit is set by P11.03.	

D11 20	Name		•	l acceler n time se	ation and lection	Set moment	anytime	Acces	s	RW
P11.29	Range	0~4	ŀ	unit	-	active	Immediate	defau	lt	0
						moment	ly			
	Setti	ng		acceleration and deceleration time selection						
	0		Use acceleration/deceleration time P04.17 P04.18							
	1		Use acceleration/deceleration time 1							
	2			Use	acceleratio	on/decelerati	on time 2			
	3			Use	acceleratio	on/decelerati	on time 3			
	4			Use	acceleratio	on/decelerati	on time 4			

D11 20	Name	The 7th speed	l comm	and	Set moment	anytime	Access	RW
P11.30	Range	-32767~32767	unit	rpm	active	Immediate	default	0
					moment	ly		

	Name	The 7th speed co	ommanc	l run	Set	anutima	1 22255	DW	
D11 21	Iname	time	•		moment	anytime	Access	RW	
P11.31	Range	0~32767	unit	-	active	Immediate	default	10	
					moment	ly			
This para	ameter unit is	set by P11.03.							

D11 22	Name		•	l accelera n time se	ation and lection	Set moment	anytime	Access	RW	
P11.32	Range	0~	4	unit	-	active	Immediate	default	0	
						moment	ly			
	Settin	g		acceleration and deceleration time selection						
	0		U	Use acceleration/deceleration time P04.17 P04.18						
	1			Use acceleration/deceleration time 1						
	2			Use	acceleratio	on/decelerati	on time 2			
	3			Use	acceleratio	on/decelerati	on time 3			
	4			Use	acceleratio	on/decelerati	on time 4			

P11.33	Name	The 8th speed	l comma	and	Set moment	anytime	Access	RW
P11.55	Range	-32767~32767	unit	rpm	active moment	Immediate ly	default	0

	Name	The 8th speed co	ommand	l run	Set	anutima	A 22255	DW	
D11 24	Ivanic	time	•		moment	anytime	Access	RW	
P11.34	Range	0~32767	unit	-	active	Immediate	default	10	
					moment	ly			
This para	ameter unit is	set by P11.03.							

P11.35	Name		•	l accelera n time se	ation and lection	Set moment	anytime	Access	RW	
P11.55	Range	0~	-4	unit	-	active	Immediate	default	0	
						moment	ly			
	Setting	g		acceleration and deceleration time selection						
	0		U	Use acceleration/deceleration time P04.17 P04.18						
	1		Use acceleration/deceleration time 1							
	2			Use	acceleratio	on/decelerati	on time 2			
	3			Use acceleration/deceleration time 3						
	4			Use	acceleratio	on/decelerati	on time 4			

P11.36NameThe 9th speed commandSetanytimeAccessRW

				moment			
Range	-32767~32767	unit	rpm	active	Immediate	default	0
				moment	ly		

	Name	The 9th speed co	ommand	l run	Set	anytime	Access	RW	
P11.37	i tullio	time	; m		moment	ungtime	1100055	1.11	
P11.57	Range	0~32767	unit	-	active	Immediate	default	10	
					moment	ly			
This para	ameter unit is	set by P11.03.							

D11 29	Name		•	l acceler n time se	ation and lection	Set moment	anytime	Acce	ess	RW
P11.38	Range	0~4		unit	-	active	Immediate	defa	ult	0
						moment	ly			
	Setti	ng		acceleration and deceleration time selection						
	0		Use acceleration/deceleration time P04.17 P04.18							
	1		Use acceleration/deceleration time 1							
	2			Use	acceleratio	on/decelerati	on time 2			
	3			Use acceleration/deceleration time 3						
	4			Use	acceleratio	on/decelerati	on time 4			

D11.00	Name	The 10th spee	d comm	nand	Set moment	anytime	Access	RW
P11.39	Range	-32767~32767	unit	rpm	active	Immediate	default	0
					moment	ly		

	Name	The 10th speed of time		ıd run	Set moment	anytime	Access	RW
P11.40	Range	0~32767	unit	-	active	Immediate	default	10
This para	ameter unit is	set by P11.03.。			moment	ly		

P11.41	Name		-	ed accele on time se	eration and election	Set moment	anytime	Acce	SS	RW
P11.41	Range	0~4		unit	-	active	Immediat	defau	ılt	0
						moment	ely			
	Sett	ing		acceleration and deceleration time selection						
	0		τ	Use acceleration/deceleration time P04.17 P04.18						
	1			Use acceleration/deceleration time 1						
	2			Use	e acceleratio	n/deceleratio	n time 2			
	3			Use	e acceleratio	n/deceleratio	n time 3			

4	Use acceleration/deceleration time 4	

D11 42	Name The 11th speed command					anytime	Access	RW
P11.42	Range	-32767~32767	unit	rpm	active	Immediate	default	0
					moment	ly		

P11.43	Name	The 11th speed of time		nd run	Set moment	anytime	Access	RW		
	Range	0~32767	unit	-	active	Immediate	default	10		
					moment	ly				
This parameter unit is set by P11.03.										

D11 44	Name		-	ed accele on time so	eration and election	Set moment	anytime	Access	RW	
P11.44	Range	0~	4	unit	-	active	Immediat	default	0	
						moment	ely			
	Settir	ng		acceleration and deceleration time selection						
	0		I	Use acceleration/deceleration time P04.17 P04.18						
	1			Use acceleration/deceleration time 1						
	2			Use	e acceleratio	n/deceleratio	n time 2			
	3			Use	e acceleratio	n/deceleratio	n time 3			
	4			Use	e acceleratio	n/deceleratio	n time 4			

D11.45	Name	The 12th speed	d comm	and	Set moment	anytime	Access	RW
P11.45	Range	-32767~32767	unit	rpm	active	Immediate	default	0
					moment	ly		

P11.46	Name	The 12th speed of time		nd run	Set moment	anytime	Access	RW		
	Range	0~32767	unit	-	active	Immediate	default	10		
					moment	ly				
This parameter unit is set by P11.03.										

P11.47 Name The 12th speed acceleration and	Set	anytime	Access	RW
---	-----	---------	--------	----

	dec	eleratio	on time se	election	moment				
Range	0~	4	unit	-	active	Immediat	default	0	
					moment	ely			
Settin	g		accele	ration and d	leceleration ti	me selection			
0		I	Use acceleration/deceleration time P04.17 P04.18						
1			Use acceleration/deceleration time 1						
2			Use acceleration/deceleration time 2						
3	3 Use accelerat				n/deceleratio	n time 3			
4			Use	e acceleratio	n/deceleratio	n time 4			

D11 49	Name	The 13th speed	d comm	and	Set moment	anytime	Access	RW
P11.48	Range	-32767~32767	unit	rpm	active	Immediate	default	0
					moment	ly		

D 11 40	Name	The 13th speed of time		ıd run	Set moment	anytime	Access	RW			
P11.49	Range	0~32767	unit	-	active	Immediate	default	10			
					moment	ly					
This para	This parameter unit is set by P11.03.										

D11.50	Name		-	eration time selection moment		anytime	Access	RW		
P11.50	Range	0~-	4	unit	-	active	Immediat	default	0	
						moment	ely			
	Settin	ıg		accele	ration and d	leceleration ti	me selection			
	0		I	Use accel	18					
	1			Use	e acceleratio	n/deceleratio	n time 1			
	2			Use	e acceleratio	n/deceleratio	n time 2			
	3			Use	e acceleratio	n/deceleratio	n time 3			
	4		Use acceleration/deceleration time 4							

D11 51	Name The 14th speed command			Set moment	anytime	Access	RW	
P11.51	Range	-32767~32767	unit	rpm	active	Immediate	default	0
					moment	ly		

P11.52	Name	1	The 14th speed command time			anytime	Access	RW
F11.32	Range	0~32767	unit	-	active	Immediate	default	10
					moment	ly		

This parameter unit is set by P11.03.

D11.52	Name		h speed acceleration and eration time selection			Set moment	anytime	Acce	ess	RW
P11.53	Range	0~4		unit	-	active	Immediat	defa	ult	0
					moment	ely				
	Setti	acceleration and d			leceleration ti	me selection				
	0		I	Use acceleration/deceleration time P04.17 P04.18						
	1			Use	e acceleratio	n/deceleratio	n time 1			
	2			Use	e acceleratio	n/deceleratio	n time 2			
	3			Use	e acceleratio	n/deceleratio	n time 3			
	4			Use	e acceleratio	n/deceleratio	n time 4			

D11 54	Name	The 15th spee	d comm	and	Set moment	anytime	Access	RW
P11.54	Range	-32767~32767	unit	rpm	active	Immediate	default	0
					moment	ly		

	Name	The 15th speed of	commar	nd run	Set	anytime	Access	RW
P11.55	Tunic	time			moment	unytime	1100035	K W
F11.55	Range	0~32767	unit	-	active	Immediate	default	10
					moment	ly		
This parameter unit is set by P11.03.								

D11.50	Name		1	ed accele on time so	eration and	Set moment	anytime	Access	RW	
P11.56	Range	0~	-4	unit	-	active	Immediat	default	0	
						moment	ely			
	Setting	g		accele	ration and d	leceleration ti	me selection			
	0		τ	Use acce	leration/dec	eleration time	e P04.17 P04.	18		
	1			Use	e acceleratio	n/deceleratio	n time 1			
	2			Use	e acceleratio	n/deceleratio	n time 2			
	3									
	4		Use acceleration/deceleration time 4							

D11 57	Name	The 16th speed command			Set moment	anytime	Access	RW
P11.57	Range	-32767~32767	unit	rpm	active	Immediate	default	0
					moment	ly		

	Name	The 16th speed of time		nd run	Set moment	anytime	Access	RW	
P11.58	P11.58 Range	0~32767	unit	-	active moment	ve Immediate default			
This para	ameter unit is	set by P11.03			moment	19			

D11 50	Name		speed acceleration time s		Set moment	anytime	Acc	ess	RW	
P11.59	Range	0~4	unit	-	active moment	Immediat ely	defa	ult	0	
	Sett	ting	accele	eration and c	leceleration ti	me selection				
	()	Use acce	Use acceleration/deceleration time P04.17 P04.18						
	1	l	Us	Use acceleration/deceleration time 1						
	2	2	Us	Use acceleration/deceleration time 2						
	3	3	Us	e acceleratio	n/deceleratio	n time 3				
	۷	ŀ	Us	e acceleratio	on/deceleratio	n time 4				

10.13 P12 group parameters - virtual DI DO parameters

		VDI1	functio	n	Set	onutino	A	RW		
P12.01		configura	ation reg	gister	moment	anytime	Access	r vv		
P12.01	Range	0~99	unit	-	active	Immediately	default	0		
	nunge				moment					
The spec	The specific function of the VDI port is the same as the DI port function. See P06.01 for details.									

P12.02	Name	VDI2	functio	n	Set	anutimo	Access	RW		
	Name	configuration register			moment	anytime	Access			
	Range	0~99 unit -		active	Immediately	default	0			
					moment					
The specific function of the VDI port is the same as the DI port function. See P06.01 for details.										

Name	Nama	VDI3	functio	n	Set	anutimo	Access	RW			
	configuration register			moment	anytime	Access					
P12.05	Range	0~99	unit	-	active	Immediately	default	0			
					moment						
The spec	The specific function of the VDI port is the same as the DI port function. See P06.01 for details.										

	Nama	VDI4	VDI4 function Set anytime	anutimo	Accors	RW		
D12.04	P12.04		configuration register			anytime	Access	T.VV
P12.04	Range	0~99	unit	-	active	Immediately	default	0
					moment			

The specific function of the VDI port is the same as the DI port function. See P06.01 for details.

	Name	-	functio		Set	anytime	Access	RW		
P12.05		configura	ation reg	gister	moment	,				
P12.05	Range	0~99	unit	-	active	Immediately	default	0		
					moment					
The specific function of the VDI port is the same as the DI port function. See P06.01 for details.										

P12.06 Range	Nama	VDI6	functio	n	Set	a nutina a	A	RW			
	Name	configuration register			moment	anytime	Access				
	Range	0~99 unit -		active	Immediately	default	0				
					moment						
The spec	The specific function of the VDI port is the same as the DI port function. See P06.01 for details.										

	Name P12.07	VDI7	functio	n	Set	Access	RW			
D12.07		configuration register			moment	anytime	Access	RVV		
P12.07	Range	0~99	unit	-	active	Immediately	default	0		
					moment					
The specific function of the VDI port is the same as the DI port function. See P06.01 for details.										

	Nama	VDI8	functio	n	Set	anutima	A	RW		
012.09	Name P12.08	configuration register			moment	anytime	Access	ΓVV		
P12.08	Range	0~99	unit	-	active	Immediately	default	0		
					moment					
The specific function of the VDI port is the same as the DI port function. See P06.01 for details.										

	Name	-	functio		Set	anytime	Access	RW		
D12.00		configura	ation reg	gister	moment					
P12.09	Range	0~99 unit -		active	Immediately	default	0			
					moment					
The specific function of the VDI port is the same as the DI port function. See P06.01 for details.										

The specific function of the VDI port is the same as the DI port function. See P06.01 for details.

P12.10 Range	Nama	VDI10) functio	n	Set	anutimo	Access	RW		
	Name	configura	ation reg	gister	moment	anytime	Access	L AA		
	0~99 unit -		active	Immediately	default	0				
					moment					
The specific function of the VDI port is the same as the DI port function. See P06.01 for details.										

	Nama	VDI1	1 functio	n	Set	anutimo	Access	RW
P12.11 Name		configuration register			moment	anytime	Access	RVV
P12.11	Range	0~99	unit	-	active	Immediately	default	0
					moment			

The specific function of the VDI port is the same as the DI port function. See P06.01 for details.

	Name	VDI12	2 functio	n	Set	anytime	Access	RW		
D12 12	P12.12 Range	configura	ation reg	gister	moment	unytine	ACCC33			
P12.12		0~99	unit	-	active	Immediately	default	0		
					moment					
The specific function of the VDI port is the same as the DI port function. See P06.01 for details.										

P12.13 Range	Nama	VDI13	3 functio	n	Set	onutino	A				
	configuration register			moment	anytime	Access	RW				
	Range	0~99 unit -		active	Immediately	default	0				
					moment						
The spec	The specific function of the VDI port is the same as the DI port function. See P06.01 for details.										

	Nama	VDI14	4 functio	n	Set	anutima	A	RW
012 14	Name	configuration register		moment	anytime	Access	ĸw	
P12.14	Range	0~99 unit -		active	Immediately	default	0	
					moment			
The spec	ific function	of the VDI port is the same as t		the DI port fu	unction. See PO	5.01 for deta	ils.	

	Nama	VDI15	5 functio	n	Set	anutima	A	
P12.15	Name	configuration register			moment	anytime	Access	RW
P12.15	Range	0~99 unit -		active	Immediately	default	0	
					moment			
The spec	ific function	of the VDI po	rt is the	same as	the DI port fu	unction. See PO	5.01 for detai	ils.

	Name	VDI16	5 functio	n	Set	anutimo	Access	RW
P12.16	Name	configuration register		moment	anytime	Access	κνν	
P12.10	Range	0~99	0~99 unit -		active	Immediately	default	0
					moment			
The spec	ific function	of the VDI po	rt is the	same as	the DI port fu	unction. See PO	5.01 for deta	ils.

	Nama	VDI20) functio	n	Set	anutima	A	RW
P12.17	Name	configuration register		moment	anytime	Access	r vv	
P12.17	Range	0~99 unit -		active	Immediately	default	0	
					moment			
The spec	ific function	of the VDI po	ort is the	same as	the DI port fu	unction. See PO	5.01 for detai	ils.

	Name	VDI21 function		Set	anytime	Accoss	RW	
P12.18	Name	configur	ation reg	gister	moment	anytime	Access	LAA
P12.10	Range	0~99	unit	-	active	Immediately	default	0
					moment			

The specific function of the VDI port is the same as the DI port function. See P06.01 for details.

012.10	Name	Monitor valu virtual DI21.	ue of vii	rtual DI20 and	Set moment	-	Access	RO
P12.19	Range	-	unit	-	active moment	-	default	-

	Name	Virtual DI1-	Virtual DI1-virtual DI16 input			anutimo	Accors	RW
012.20	Name	value setting register			moment	anytime	Access	
P12.20	Range	0~65535	unit	-	active	Immediat	default	0
					moment	ely		

D12 21	N	lame	VDI1	level typ	e	Set moment	anytime	Access	RW
P12.21	R	ange	0~1	unit	-	active moment	Immediately	default	0
		S	etting			Level type			
			0		Wri	te 1 is always	s valid		
			1		Va	lid on rising (edge		

P12.22	N	ame	Virtual [DI2 level	type	Set moment	anytime	Access	RW
P12.22	Ra	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting			Level type			
			0		Wri	te 1 is always	s valid		
			1		Va	lid on rising (edge		

P12.23	N	lame	Virtual [DI3 level	type	Set moment	anytime	Access	RW
P12.25	R	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting			Level type			
			0		Wri	te 1 is always	s valid		
			1		Va	lid on rising (edge		

012.24	Name	Virtual [DI4 level	type	Set moment	anytime	Access	RW
P12.24	Range	0~1	unit	-	active moment	Immediately	default	0

setting	Level type
0	Write 1 is always valid
1	Valid on rising edge

P12.25	N	ame	Virtual DI5 level type			Set moment	anytime	Access	RW
P12.25	Ra	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting			Level type			
			0		Wri	te 1 is always	s valid		
			1		Va	lid on rising o	edge		

P12.26	N	ame	Virtual DI6 level type			Set moment	anytime	Access	RW
P12.20	R	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting			Level type			
			0	Write 1 is always valid					
			1		Va	lid on rising (edge		

P12.27	N	ame	Virtual DI7 level type			Set moment	anytime	Access	RW
P12.27	Ra	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting			Level type			
			0		Wri	te 1 is always	s valid		
			1		Va	lid on rising (edge		

012.29	N	ame	Virtual DI8 level type			Set moment	anytime	Access	RW
P12.28	Ra	ange	nge 0~1 unit -		active	Immediately	default	0	
						moment			
		S	etting			Level type			
			0		Wri	te 1 is always	s valid		
			1		Va	lid on rising (edge		

P12.29	Name	Virtual [019 level	type	Set moment	anytime	Access	RW
	Range	0~1 unit -		-	active	Immediately	default	0

	moment	
setting	Level type	
0	Write 1 is always valid	
1	Valid on rising edge	

P12.30	N	lame	Virtual DI10 level type			Set moment	anytime	Access	RW
P12.50	R	ange	0~1	unit	-	active moment	Immediately	default	0
						moment			
		S	etting	Level type					
			0		Wri	te 1 is always	s valid		
			1		Va	lid on rising (edge		

D12 21	N	lame	Virtual DI11 level type			Set moment	anytime	Access	RW
P12.31	Range 0~1		0~1	unit	-	active moment	Immediately	default	0
		S	etting			1			
			0		Wri	te 1 is always	s valid		
			1		Va	lid on rising	edge		

012.22	N	lame	Virtual DI12 level type			Set moment	anytime	Access	RW
P12.32	R	ange	0~1	unit - active		active	Immediately	default	0
						moment			
		S	etting						
			0	Write 1 is always valid					
			1		Va	lid on rising o	edge		

P12.33	N	ame	Virtual DI13 level type			Set moment	anytime	Access	RW
P12.55	Ra	ange	nge 0~1 unit - activ		active	Immediately	default	0	
						moment			
		S	etting			Level type			
			0	Write 1 is always valid					
			1		Va	lid on rising (edge		

					moment			
Ra	ange	0~1	unit	-	active	Immediately	default	0
					moment			
	setting							
		0						
		1	Valid on rising edge					

D12.25	Ν	lame	Virtual D	I15 leve	l type	Set moment	anytime	Access	RW
P12.35	Range 0~1		unit	-	active	Immediately	default	0	
						moment			
		S	etting	Level type					
			0						
			1	1 Va			edge		

D12.26	N	lame	Virtual D	I16 leve	type	Set moment	anytime	Access	RW
P12.30	P12.36 Range 0		0~1	unit	-	active moment	Immediately	default	0
						Level type	I		
		S	etting						
			0	Write 1 is always valid					
			1	1 Va			edge		

D12 27	N	ame	Virtual D	I20 level	type	Set moment	anytime	Access	RW
P12.37	Ra	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting						
			0	Write 1 is always valid					
			1	1 Va		lid on rising (

P12.38	Ν	lame	Virtual D	I21 level	l type	Set moment	anytime	Access	RW
P12.56	R	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting	Level type					
			0						
			1	1 Va			edge		

P12.41 -	Name	VDO1 c	onfigura	tion	Set	anutimo	Access	RW		
		register			moment	anytime	ALLESS	κ.vv		
	Range	0~99 unit -			active	Immediately	default	0		
					moment					
Set the DO function corresponding to VDO1. The VDO specific function is the same as the										
physical	physical DO function.									

	Name	VDO2 c	onfigura	tion	Set	anytime	Access	RW	
P12.42		register			moment	anytime	ALLESS	ΓVV	
P12.42	Range	0~99 unit -			active	Immediately	default	0	
					moment				
Set the DO function corresponding to VDO1. The VDO specific function is the same as the									
physical	DO function.								

P12.43	Name	VDO3 c	onfigura	tion	Set	anytime	Access	RW		
	Name	register			moment	anytime	ALLESS			
	Range	0~99 unit -			active	Immediately	default	0		
					moment					
Set the DO function corresponding to VDO1. The VDO specific function is the same as the										
physical	physical DO function.									

P12.44 -	Name	VDO4 c	onfigura	tion	Set	onutino	A	RW
	Name	register			moment	anytime	Access	κ.vv
	Range	0~99 unit -			active	Immediately	default	0
					moment			
Set the DO function corresponding to VDO1. The VDO specific function is the same as the								

physical DO function.

P12.45 Range	Name	VDO5 configuration			Set	anytime	Access	RW
	re	egister		moment	unytime	ALLESS	1.00	
	Range	0~99	unit	-	active	Immediately	default	0
					moment			

Set the DO function corresponding to VDO1. The VDO specific function is the same as the physical DO function.

	Name		onfigura	tion	Set	anytime	Access	RW		
P12.46		register			moment					
P12.40	Range	0~99 unit -			active	Immediately	default	0		
					moment					
Set the DO function corresponding to VDO1. The VDO specific function is the same as the										
physical	physical DO function.									

	Name	VDO7 c	onfigura	tion	Set	anytime	Access	RW		
D12 47	Name	register			moment	anytime	ALLESS			
P12.47	Range	0~99 unit -			active	Immediately	default	0		
					moment					
Set the DO function corresponding to VDO1. The VDO specific function is the same as the										
physical	physical DO function.									

	Name	VDO8 c	onfigura	tion	Set	anytime	Access	RW	
P12.48	Hume	register			moment	anytine	AUCSS	11.00	
r12.40	Range	0~99 unit -			active	Immediately	default	0	
					moment				
Set the DO function corresponding to VDO1. The VDO specific function is the same as the									
physical	DO function.								

	Name	VDO9 c	onfigura	tion	Set	anytime	Access	RW	
D12.40	P12.49	register			moment	anytime	ALLESS		
P12.49	Range	0~99	unit	-	active	Immediately	default	0	
					moment				
Set the D	OO function c	orresponding	g to VDO	1. The VI	DO specific fu	nction is the sa	me as the		
physical	physical DO function.								

	Nama	VDO10 0	configura	ation	Set	onutino	A	RW	
D12 E0	Name 12.50	re	egister		moment	anytime	Access	ĸvv	
P12.50	Range	0~99	9 unit -		active	Immediately	default	0	
					moment				
Set the DO function corresponding to VDO1. The VDO specific function is the same as the									

physical DO function.

	Namo	VD011 (configura	ation	Set	anytime	Accoss	RW
D12 E1	P12.51 Name	register			moment	anytime	Access	ΓVV
P12.51	Range	0~99	unit	-	active	Immediately	default	0
					moment			

Set the DO function corresponding to VDO1. The VDO specific function is the same as the physical DO function.

	Name	VD012 0	configura	ation	Set	anytime	Access	RW		
D12 E2	12.52	register			moment	anytine	AUC33			
P12.52	Range	0~99	unit	-	active	Immediately	default	0		
					moment					
Set the D	O function c	orresponding	presponding to VDO1. The VDO specific function is the sam							
physical	physical DO function.									

	Name	VDO13 (configura	ation	Set	anutimo	Access	RW		
D12 E2	P12.53	register			moment	anytime	ALLESS			
P12.53	Range	0~99	unit -		active	Immediately	default	0		
					moment					
Set the D	O function c	orresponding	g to VDO	1. The VI	DO specific fu	nction is the sa	me as the			
physical	physical DO function.									

	Name	VDO14 0	VDO14 configuration			anytime	Access	RW	
P12.54	register			moment	anytime	ALLESS	1.00		
P12.54	Range	0~99	unit	-	active	Immediately	default	0	
					moment				
Set the D	O function c	orresponding	responding to VDO1. The V			nction is the sa	me as the		
physical	physical DO function.								

	Name	VD015 c	configura	ation	Set	anutimo	Access	RW	
D12 55	P12.55	register			moment	anytime	ALLESS		
P12.55	Range	0~99	unit	-	active	Immediately	default	0	
					moment				
Set the D	OO function c	orresponding	responding to VDO1. The VD		DO specific fu	nction is the sa	me as the		
physical	physical DO function.								

	Nama	VDO16 (configura	ation	Set	onutino	A	RW	
D12 EC	Name P12.56	re	egister		moment	anytime	Access	RVV	
P12.50	12.56 Range	0~99	ə unit -		active	Immediately	default	0	
					moment				
Set the DO function corresponding to VDO1. The VDO specific function is the same as the									

physical DO function.

	Namo	VDO20 (configura	ation	Set	anytime	Accoss	RW
D12 F7	Name P12.57	register			moment	anytime	Access	L AA
P12.57	Range	0~99	unit	-	active	Immediately	default	0
					moment			

Set the DO function corresponding to VDO1. The VDO specific function is the same as the physical DO function.

	Name	VDO21 0	configura	ation	Set	anytime	Access	RW	
D12 E0	12.58	register			moment	anytine	100000		
P12.56	Range	0~99	unit	-	active	Immediately	default	0	
					moment				
Set the D	O function c	ction corresponding to VDO1. The VDO specific function is the same as t					me as the		
physical	physical DO function.								

D12 50	Name Output level of virtual DO20 D02				Set moment	-	Access	RO
P12.59	Range	0~3	unit	-	active moment	-	default	-

	Namo	Virtual D	01-D016	5 output	Set	anytime	Access	RW
D12 C0	Name		level		moment	anytime	ALLESS	L AA
P12.60	Range	0~65535	unit	-	active	Immediat	default	0
					moment	ely		

D12 C1	Ν	lame	Active leve	l of virtu	al DO1	Set moment	anytime	Access	RW
P12.61	R	Range 0~1		unit	-	active	Immediately	default	0
						moment			
		S	etting						
			0	Output 1 when valid					
			1		Ou	itput 0 when	valid		

D12 62	N	ame	Active leve	l of virtu	ial DO2	Set moment	anytime	Access	RW
P12.62	R	Range 0~1		unit	-	active moment	Immediately	default	0
		S	etting			Level type			
			0		Ou	tput 1 when	valid		
			1		Ou	tput 0 when	valid		

P12.63	N	lame	Active leve	l of virtu	al DO3	Set moment	anytime	Access	RW
P12.03	R	ange 0~1		unit	-	active moment	Immediately	default	0
		S	etting			Level type			
			0		Ou	tput 1 when	valid		
			1		Ou	itput 0 when	valid		

P12.64	Name	Active leve	Active level of virtual DO4			anytime	Access	RW
P12.04	Range	0~1	unit	-	active moment	Immediately	default	0

setting	Level type
0	Output 1 when valid
1	Output 0 when valid

P12.65	N	ame	Active leve	l of virtu	al DO5	Set moment	anytime	Access	RW	
P12.05	Ra	ange	0~1	unit	-	active	Immediately	default	0	
		S	etting			Level type				
			0		Output 1 when valid					
			1		Ou	tput 0 when	valid			

P12.66	١	lame	Active leve	l of virtu	al DO6	Set moment	anytime	Access	RW
P12.00	R	lange	0~1	unit	-	active	Immediately	default	0
		S	etting			Level type			
			0		Ou	tput 1 when	valid		
			1				valid		

P12.67	N	ame	Active leve	l of virtu	al DO7	Set moment	anytime	Access	RW
P12.07	Ra	ange	0~1	unit	-	active	Immediately	default	0
		S	etting			Level type			
			0		Ou	tput 1 when	valid		
			1				valid		

D12 69	N	ame	Active leve	Active level of virtual DO8			anytime	Access	RW
P12.68	R	ange	0~1	unit	-	active	Immediately	default	0
		S	etting	ing					
			0		Ou	itput 1 when	valid		
			1				valid		

P12.69	Name	Active leve	l of virtu	al DO9	Set moment	anytime	Access	RW
	Range	0~1	unit	-	active	Immediately	default	0

	moment	
setting	Level type	
0	Output 1 when valid	
1	Output 0 when valid	

012.70	N	lame	Active level	of virtu	al DO10	Set moment	anytime	Access	RW
P12.70	Range 0~1		unit	-	active	Immediately	default	0	
		S	etting			Level type			
			0		Output 1 when valid				
			1		Ou	itput 0 when	valid		

P12.71	Ν	lame	Active level	of virtua	al DO11	Set moment	anytime	Access	RW
P12./1	R	ange	0~1	unit	-	active moment	Immediately	default	0
	-								
		S	etting			Level type			
			0	Output 1 when valid					
			1		Output 0 when valid				

010 70	Ν	lame	Active level	of virtu	al DO12	Set moment	anytime	Access	RW
P12.72	R	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting			Level type			
			0		Output 1 when valid				
			1	Output 0 when valid					

012 72	N	ame	Active level	of virtu	al DO13	Set moment	anytime	Access	RW
P12.73	R	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting	Level type					
		0		Output 1 when valid					
			1	Output 0 when valid					

P12.74	Name	Active level of virtual DO14	Set moment	anytime	Access	RW	
--------	------	------------------------------	---------------	---------	--------	----	--

R	ange	0~1	unit	-	active moment	Immediately	default	0
	S	etting						
	0							
		1		Ou	itput 0 when	valid		

P12.75	N	ame	Active level	of virtu	al DO15	Set moment	anytime	Access	RW
P12.75	Ra	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	setting			Level type			
			0		Output 1 when valid				
			1	Output 0 when valid					

P12.76	Ν	lame	Active level	of virtua	al DO16	Set moment	anytime	Access	RW	
P12.70	R	ange	0~1	unit	-	active	Immediately	default	0	
						moment				
		S	setting			Level type				
			0		Output 1 when valid					
			1 Ou			itput 0 when	valid			

012 77	N	lame	Active level	of virtua	al DO20	Set moment	anytime	Access	RW
P12.77	R	ange	0~1	unit	-	active	Immediately	default	0
						moment			
		S	etting			Level type			
			0		Output 1 when valid				
			1		Output 0 when valid				

D12 79	N	lame	Active level	of virtua	al DO21	Set moment	anytime	Access	RW	
P12.78	R	ange	0~1	unit	-	active moment	Immediately	default	0	
		S	etting		Level type					
			0		Output 1 when valid					
			1 Ou			itput 0 when	valid			

P12.79 Name Whether the virtual	Set	anytime	Access	RW
---------------------------------	-----	---------	--------	----

		DI1-DI16 in	put valu	e register	moment			
		P12.20 is powered on is						
		cleared.						
Ra	Range 0~1		unit	-	active	Immediate	default	1
					moment	ly		
	setting							
		0	Virtual	nen				
		1	Virtual DI input value P12.20, clear at					
					power-on			

10.14 P13 group parameters - multi-segment position parameters

	N	lame	Multi-seg	ment pos	sition	Set	Disable to	Ac	cess	RW
P13.01			mode			moment	set			
P15.01	R	ange	0~2	unit	-	active	Immediately	def	fault	0
						moment				
		S	etting	Multi-segment position working mode						
			0	Stop after a single run						
			1	Cycle op	eration					
			2	DI swite	hing op	eration, read th	ne values of INI	Fn.31,		
				INFn.30	, INFn.29	9, INFn.28 as th	ne segment numbe	r.		

	Name	Total number of segments			Set	anytime	Access	RW
D12.02					moment			
P13.02	Range	1~16	unit	-	active	Immediately	default	16
					moment			

	N	lame	Idle waiting	g time un	time unit Set anyti		anytime	Access	RW
P13.03						moment			
P13.05	R	ange	0~1	unit	-	active	Immediately	default	1
						moment			
		S	etting	Idle wa	iting tir	ne unit			
			0			ms			
			1			S			

P13.04	Name	remainder method	proc	essing	Set moment	anytime	Access	RW
	Range	0~1	unit	-	active	Immediately	default	0

	moment		
Setting	remainder processing method]	
0	Re-jump to the first position command to run		
1	From the last stop section		

When the multi-segment position function is resumed, the segment number of the start segment is set

	N	lame	Absolute	e or relat	ive	Set	anytime	Access	RW
P13.05			position co	mmand setting		moment			
P15.05	R	ange	0~1	unit	-	active	Immediately	default	1
						moment			
		S	etting			•	on command set	ting	
			0	Absolute comm					
			1	relative	comma	and			

D12 10	Name Number of position commands in the first posi- segment 13.10 Image: Command Science of Commands Science of C		Set moment	anytime	Access	RW		
P15.10	Range	-2147483647 ~ 2147483647	unit	custo mize unit	active moment	Immediat ely	default	100 00

	Name	Speed of fir	Speed of first position			anytime	Access	RW
P13.12		segm	ent		moment			
P15.12	Range	0~32767	unit	rpm	active	Immediat	default	500
	Range		um	ipiii	moment	ely	ucraun	500

	Name	acceleration to position s			Set moment	anytime	Access	RW
P13.13	Range	0~65535	unit	ms	active moment	Immediat ely	default	500

	Name	idle time of segment	first po	osition	Set moment	anytime	Access	RW	
P13.14	Range	0~32767	unit	-	active moment	Immediat ely	default	1	
unit of th	unit of this parameter depend on P13.03°								

P13.15	Name	Number of position commands in the second position segment	Set moment	anytime	Access	RW	
--------	------	--	---------------	---------	--------	----	--

Range	-2147483647 ~	unit	custo mize	active	Immediat	default	100
	2147483647		unit	moment	ely		00

	Name	Speed of second position			Set	anytime	Access	RW
P13.17	1 (01110	segm	ent		moment	ung enne	1100000	
F15.17	Range	0~32767	unit	rpm	active	Immediat	default	500
	ixunge		unit	1 PIII	moment	ely	acraunt	500

P13.18	Name	acceleration tin	ne of sec	ond	Set	anytime	Access	RW
	Tunic	position segment			moment	unytime	1100035	K.
P13.18	Danaa	0~65535			active	Immediat	default	500
	Range		unit	ms	moment	ely		500

P13.19 -	Name	idle time of se	cond po	osition	Set	anytime	Access	RW	
	1.0000	segment			moment	unjunio	100035		
	Range	0~32767	unit	-	active moment	Immediat ely	default	1	
unit of this parameter depend on P13.03.									

	Name	The 3rd positi	on com	mands	Set moment	anytime	Access	RW
P13.20 -2147		-2147483647		custo	active	Immediat		100
	Range	~	unit	mize		ely	default	00
		2147483647		unit	moment			00

P13.22 -	Name	The 3th speed			Set moment	anytime	Access	RW
P15.22	Range	0~32767	unit	rpm	active moment	Immediat ely	default	500

P13.23	Name	The 3th acceleration/deceleration time		Set moment	anytime	Access	RW	
	Range	0~65535	unit	ms	active moment	Immediat ely	default	500

P13.24	Name	The 3th idle time			Set moment	anytime	Access	RW
P15.24	Range	0~32767	unit	-	active moment	Immediat ely	default	1
unit of th	unit of this parameter depend on P13.03.							

	Name	The 4th positi	on com	mands	Set moment	anytime	Access	RW
P13.25 -21474		-2147483647		custo	active	Immediat		100
	Range	~	unit	mize	moment	ely	default	00
		2147483647		unit				00

D12 27	P13.27 Name The 4th speed			Set moment	anytime	Access	RW	
P15.27	Range	0~32767	unit	rpm	active moment	Immediat ely	default	500

P13.28	Name	The 4th acceleration/deceleration time		Set moment	anytime	Access	RW	
	Range	0~65535	unit	ms	active moment	Immediat ely	default	500

P13.29	Name	The 4th idle time			Set moment	anytime	Access	RW
P15.29	Range	0~32767	unit	-	active moment	Immediat ely	default	1
unit of th	unit of this parameter depend on P13.03.							

	Name	The 5th positi	on com	mands	Set moment	anytime	Access	RW
P13.30	P13.30 -214748 Range ~	-2147483647 ~	unit	custo mize	active	active Immediat moment ely default	default	100
	0	2147483647		unit	moment			00

P13.32	Name	The 5th speed			Set moment	anytime	Access	RW
P15.52	Range	0~32767	unit	rpm	active moment	Immediat ely	default	500

P13.33	Name	The acceleration/o tim	decelera	tion	Set moment	anytime	Access	RW
	Range	0~65535	unit	ms	active moment	Immediat ely	default	500

P13.34 Name The 5th idle time	Set	anytime	Access	RW
-----------------------------------	-----	---------	--------	----

					moment				
	Range	0~32767	unit	-	active moment	Immediat ely	default	1	
unit of this parameter depend on P13.03.									

	Name	The 6th positi	on com	mands	Set moment	anytime	Access	RW
P13.35		-2147483647		custo	active	Immediat		100
	Range	~	unit	mize	moment	ely	default	00
		2147483647		unit	moment	CIY		00

P13.37	Name	The 6th	speed		Set moment	anytime	Access	RW
F15.57	Range	0~32767	unit	rpm	active moment	Immediat ely	default	500

P13.38	Name	The 6th acceleration/deceleration time		Set moment	anytime	Access	RW	
	Range	0~65535	unit	ms	active moment	Immediat ely	default	500

D12 20	Name	The 6th i	dle time		Set moment	anytime	Access	RW
P13.39	Range	0~32767	unit	-	active moment	Immediat ely	default	1
unit of th	unit of this parameter depend on P13.03.							

	Name	The 7th positi	on com	mands	Set moment	anytime	Access	RW
P13.40		-2147483647		custo	active	Immediat		100
	Range	~	unit	mize			default	00
		2147483647		unit	moment	ely		00

D12 42	Name	The 7th	The 7th speed			anytime	Access	RW
P13.42	Range	0~32767	unit	rpm	active moment	Immediat ely	default	500

P13.43	Name	The 7th acceleration/deceleration time	Set moment	anytime	Access	RW	
--------	------	--	---------------	---------	--------	----	--

	Range	0~65535	unit	ms	active moment	Immediat ely	default	500
--	-------	---------	------	----	------------------	-----------------	---------	-----

D12 44	Name	Name The 7th idle time		Set moment	anytime	Access	RW			
P13.44	Range	0~32767	unit	-	active moment	Immediat ely	default	1		
unit of this parameter depend on P13.03.										

	Name	The 8th positi	on com	mands	Set moment	anytime	Access	RW
P13.45		-2147483647		custo	active	Immediat		100
	Range	~	unit	mize	moment	ely	default	00
	2147483647		unit	moment	eiy		00	

D12 47	Name	The 8th speed		Set moment	anytime	Access	RW	
P13.47	Range	0~32767	unit	rpm	active moment	Immediat ely	default	500

P13.48	Name	The 8th acceleration/deceleration time		Set moment	anytime	Access	RW	
	Range	0~65535	unit	ms	active moment	Immediat ely	default	500

D12 40	Name	The 8th idle time		Set moment	anytime	Access	RW	
P13.49	Range	0~32767	unit	-	active moment	Immediat ely	default	1
unit of this parameter depend on P13.03.								

	Name	The 9th position	on comr	nands	Set moment	anytime	Access	RW
P13.50		-2147483647		custo	active	Immediat		100
Range		~	unit	mize			default	00
		2147483647		unit	moment	ely		00

D12.52	Name	The 9th speed			Set moment	anytime	Access	RW
P13.52	Range	0~32767	unit	rpm	active moment	Immediat ely	default	500

P13.53	Name	The 9th acceleration/deceleration time		Set moment	anytime	Access	RW	
	Range	0~65535	unit	ms	active moment	Immediat ely	default	500

P13.54	Name	The 9th idle time		Set moment	anytime	Access	RW	
F15.34	Range	0~32767	unit	-	active moment	Immediat ely	default	1
unit of this parameter depend on P13.03.								

	Name	The 10th posit	ion com	nmands	Set moment	anytime	Access	RW
P13.55		-2147483647		custo	a ativa	Immediat		100
	Range	~	unit	mize	active	Immediat	default	100
	2147483647		unit	moment	ely		00	

D12 57	Name	The 10th speed			Set moment	anytime	Access	RW
P13.57	Range	0~32767	unit	rpm	active moment	Immediat ely	default	500

P13.58	Name	The 10th acceleration/deceleration time		Set moment	anytime	Access	RW	
	Range	0~65535	unit	ms	active moment	Immediat ely	default	500

D12 50	P13.59 Name The 10th idle		idle time	e	Set moment	anytime	Access	RW
P15.39	Range	0~32767	unit	-	active moment	Immediat ely	default	1
unit of this parameter depend on P13.03.								

	Name	The 11th posit	ion com	mands	Set moment	anytime	Access	RW
P13.60	13.60 -2147483647			custo	active	Immediat		100
	Range	~	unit	mize			default	00
		2147483647		unit	moment	ely		00

D12.62	Name	The 11th speed		Set moment	anytime	Access	RW	
P13.62	Range	0~32767	unit	rpm	active moment	Immediat ely	default	500

P13.63	Name	acceleration/o	The 11th acceleration/deceleration time		Set moment	anytime	Access	RW
	Range	0~65535	unit	ms	active moment	Immediat ely	default	500

P13.64	Name	The 11th idle time			Set moment	anytime	Access	RW		
P15.04	Range	0~32767	unit	-	active moment	Immediat ely	default	1		
unit of th	unit of this parameter depend on P13.03.									

	Name	The 12th posit	tion com	mands	Set moment	anytime	Access	RW
P13.65		-2147483647		custo	active	Immediat		100
	Range	~	unit	mize			default	00
		2147483647		unit	moment	ely		00

P13.67	Name	The 12th speed		Set moment	anytime	Access	RW	
P15.07	Range	0~32767	unit	rpm	active moment	Immediat ely	default	500

P13.68	Name	acceleration/o	The 12th acceleration/deceleration time		Set moment	anytime	Access	RW
	Range	0~65535	unit	ms	active moment	Immediat ely	default	500

P13.69	Name	The 12th idle time			Set moment	anytime	Access	RW		
P15.09	Range	0~32767	unit	-	active moment	Immediat ely	default	1		
unit of th	unit of this parameter depend on P13.03.									

P13.70 Name The 13th position commands	Set moment	anytime	Access	RW	
--	---------------	---------	--------	----	--

Range	-2147483647 ~	unit	custo mize	active	Immediat	default	100
	2147483647		unit	moment	ely		00

D12 72	Name	The 13th speed		Set moment	anytime	Access	RW	
P13.72	Range	0~32767	unit	rpm	active moment	Immediat ely	default	500

P13.73	Name	The 13th acceleration/deceleration time		Set moment	anytime	Access	RW	
	Range	0~65535	unit	ms	active moment	Immediat ely	default	500

P13.74	Name	The 13th idle time			Set moment	anytime	Access	RW	
F15.74	Range	0~32767	unit	-	active moment	Immediat ely	default	1	
unit of this parameter depend on P13.03.									

	Name	The 14th posit	tion com	mands	Set moment	anytime	Access	RW
P13.75		-2147483647 cu			a ativa	Immediat		100
	Range	~	unit	mize	active	Immediat	default	100
	2147483647			unit	moment	ely		00

D12 77	Name	The 14th speed			Set moment	anytime	Access	RW
P13.77	Range	0~32767	unit	rpm	active moment	Immediat ely	default	500

P13.78	Name	The 14th acceleration/deceleration time 0~65535 unit ms		Set moment	anytime	Access	RW
	Range			active moment	Immediat ely	default	500

D12 70	Name The 14th idle time				Set moment	anytime	Access	RW
P13.79	Range	0~32767	unit	-	active moment	Immediat ely	default	1

unit of this parameter depend on $P13.03_{\,\circ}$

	Name	The 15th posit	tion com	mands	Set moment	anytime	Access	RW
P13.80		-2147483647		custo	active	Immediat ely	default	100
	Range	~	unit	mize	moment			
		2147483647		unit				00

P13.82	Name	The 15th speed		Set moment	anytime	Access	RW		
F15.62	Range	0~32767	unit	rpm	active moment	Immediat ely	default	500	

P13.83	Name	acceleration/o	$ \begin{array}{c} \text{The 15th} \\ \text{acceleration/deceleration} \\ \hline \text{time} \\ \hline 0 \sim 65535 \\ \text{unit} \\ \text{ms} \\ \end{array} $		Set moment	anytime	Access	RW
	Range	0~65535			active moment	Immediat ely	default	500

P13.84	Name	The 15th idle time			Set moment	anytime	Access	RW
P13.64	Range	0~32767	unit	-	active moment	Immediat ely	default	1
unit of this parameter depend on P13.03.								

	Name	The 16th posit	ion com	nmands	Set moment	anytime	Access	RW
P13.85		-2147483647		custo	active	Immediat		100
	Range	~	unit	mize			default	00
	2147483647			unit	moment	ely		00

D12.97	Name The 16th speed			Set moment	anytime	Access	RW	
P13.87	Range	0~32767	unit	rpm	active moment	Immediat ely	default	500

P13.88	Name	The 16th acceleration/deceleration time			Set moment	anytime	Access	RW
	Range	0~65535 unit ms		active moment	Immediat ely	default	500	

P13.89	Name	The 16th i	idle time	e	Set moment	anytime	Access	RW	
	Range	0~32767	unit	-	active moment	Immediat ely	default	1	
unit of this parameter depend on P13.03.									

P13.90	Name	The 1st Decel	eration	time	Set moment	anytime	Access	RW
	Range	0~65535	unit	ms	active moment	Immediat ely	default	500

P13.91	Name	The 2nd Deceleration time			Set moment	anytime	Access	RW
	Range	0~65535	unit	ms	active moment	Immediat ely	default	500

D12.02	Name		0	gment position 1 trigger signal type		Set moment	anytime	Access	RW
P13.92	Range	0~1		unit	-	active	Immediate	default	1
						moment	ly		
	Setti	Setting acceleration an				l deceleration	time selection	1	
	0	INFn.27 rising edge triggers start multi-segment position;							
		falling edge triggers stop running multi-segment position						sition	
	1	INFn.27 rising edge trigger start multi-segment position,							
		falling edge does not work							