

VEC-VA motion controller Programming Manual

VAMM101E

WWW.szvector.com

Copyright Statement

Shenzhen Vector Technology Co., Ltd.

All rights reserved

Shenzhen Vector Technology Co., Ltd. (the following referred to Vector company) reserves the right, without prior notice, the right to modify this manual and the product specifications and other documents.

Vector company does not assume any direct, indirect, incidental or consequential damages or liabilities resulting from the use of this manual or the improper use of this product.

Vector company has patents, copyrights and other intellectual property rights in this product and its software. This product and its related parts may not be copied, manufactured, processed or used directly or indirectly without authorization.

Foreword

Thank you for purchasing VA motion controller! VA motion-controlled PLC is the company developeDA high-performance general-purpose controller with an integrated function motion controller and PLC controller. This programming manual movement control described VA type PLC and motion control software use. Please read carefully before using the user understand the VA motion control PLC type of use.

safety warning

Note of warning, in order to avoid injury to the operator and other personnel, to prevent damage to the machine.

■ The following "Danger" and "Warning" symbol is in accordance with the degree of risk that the accident marked.

It Indicates a potentially hazardous situation that, if not avoided, will result in death or serious injury.

Danger

It indicates a potentially hazardous situation that, if not avoided, will result in minor or moderate injury, or material damage.

warning

This symbol indicates a prohibiteDAction.

This symbol indicates that the operatioNShould be noted.

General Safety Summary

Please review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it. To avoid potential danger, follow the instructions to use the product in detail. Use a power cord that meets national standards. Properly connecteDAnd disconnected. The electrical wiring is correct before the control requirements, the power up sequence requires the user to control the opening movement, the servo drive is turned on, power-off sequence for the first servo drive off, the motion controller off (refer to VADetails motion controller hardware specification Chapter IX of this manual or quick start wiring instructions)

When a suspected fault do not operate and if you suspect the product is damaged. Please have a qualified service person check it.

To not operate in a wet / moist environment.

The set of the set of

F Keep the products surface clean and dry.

Prevent electrostatic damage. Electrostatic discharge (ESD) may cause the motion controller and its attachment elements in damage. To prevent ESD, Be careful of control member, do not touch the controller components. Do not place the controller on the surface of static electricity may be generated. Transport and storage controllers in protective static bags or containers.

Product's range of applications

VA motion controller has a wide range of applications in traditional mechanical numerical control industry, but also plays an irreplaceable role in the emerging

manufacturing electronics manufacturing and information products.

table of Contents

		8
II FEATURES OF THE SOFTWARE AND HARDWARE REQUIREMENTS		10
2.1 Basic Knowledge Required		
2.2 MULTIPROG Express5.51 Features		
2.3 COMPUTER HARDWARE REQUIREMENTS		
2.4 MULTIPROG EXPRESS5.51 SUPPORT		10
III PLC WORKING PRINCIPLE		12
3.1 PLC Executing the Program Written by the User		
3.2 PLC DATA ACCESS		
3.3 PLC SAVE DATA	14	
IV DATA TYPES		17
4.1 BASIC DATA TYPES		
4.2 Generic Data Type		
4.3 User-defined data types		
4.4 CONSTANT DATA REPRESENTATION		
V SOFTWARE INSTALLATION AND INTRODUCTION		21
5.1 MULTIPROG SOFTWARE INSTALLATION AND STARTUP		
5.2 Processor type software installation		
5.3 programming model with standard IEC61131-3		
5.4 MULTIPROG PROGRAMMING INTERFACE PRESENTATION		
5.4.1 Introduction partition function		
5.4.2 hardware	29	
5 . 4 .3 Project		
VI MULTIPROG PROGRAMMING LANGUAGE		34
6 .1 VARIABLE WORKSHEET		
6 .2 IL INSTRUCTION LIST PROGRAMMING LANGUAGE		
6 .2.1 Creating an IL program		
6 .2.2 IL statement	40	
6.2.3 of IL operator		
6 .3 ST structured text programming language	42	
6 .3.1 create aNST program	42	
6 .3.2 ST statement		
6.3.3 ST expression	45	
6 .4 FBD Function Block Diagram language programming	47	
6 . 4 .1 Create an FBD program		
6 .4.2 EN and ENO Description		
6 .4.3 Creating a User Library		
6 .5 THE LD LADDER LOGIC PROGRAMMING LANGUAGE		
6 .5.1 Create a LD Program		
6 .5.2 in LD created in a FB		
6 .6 SFC Sequential Function Chart Programming Language	61	

6 .6.1 Creating a SFC program	61	
6 .6.2 Creating SFC network	61	
6 .6.3 SFC action qualifier		
M WORKS TO CREATE AND CONFIGURE		
7 .1 CREATING PROJECTS	70	
7 .2 Simulation Communication Parameters	74	
7 .3 Physical Communication Parameters	75	
7 .4 IO CONFIGURATION	79	
7 .5 Write Ladder Code		
7. 6 PRODUCTION AND COMPILATION OF PROJECTS		
7. 7. Program download to PLC / simulation		
VIII ONLINE DEBUGGING AND MONITORING PROCEDURES		
8 .1 FORCE AND COVERAGE	90	
8 .2 VARIABLE MONITOR WINDOW		
8 .3 Cross reference window		
8 .4 LOGIC ANALYZER	93	
8.6 BREAKPOINT DEBUGGING		
IX QUICK START		
9.1 software and motion controller establishes a connection (Ethernet po	rt communication) 98	
9.2 CONTROL CONTROL BY SENDING THE ANALOG SERVO MOTION (UNIAXIAL START	and stop) 101	
9.2 CONTROL CONTROL BY SENDING THE ANALOG SERVO MOTION (UNIAXIAL START9.3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT	,	
	TON)112	
9.3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9.4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO	TION)112 D - AXIS MOTION) 121	
9.3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9.4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS	TION)112 D - AXIS MOTION) 121	
9.3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9.4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS	TION)112 D -AXIS MOTION) 121	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9 .4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS 1 0.1 FUNCTION 10.1.1 ABS (absolute value instruction)	TION)112 D -AXIS MOTION) 121	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9 .4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS 1 0.1 FUNCTION 10.1.1 ABS (absolute value instruction) 10.1.2 ACOS (anti-cosine instruction) 	TION)112 D -AXIS MOTION) 121 	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9 .4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS 1 0.1 FUNCTION 10.1.1 ABS (absolute value instruction) 10.1.2 ACOS (anti-cosine instruction) 10.1.3 ADD (Additional Instruction) 	TION)	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9 .4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS	TION)	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9 .4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS	TION)	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9 .4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS	TION)	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9 .4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS	TION)	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9 .4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS	TION)	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9 .4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS 1 0.1 FUNCTION 10.1.1 ABS (absolute value instruction) 10.1.2 ACOS (anti-cosine instruction) 10.1.3 ADD (Additional Instruction) 10.1.4 ADD_T_T (Time Addition Instruction) 10.1.5 AND (Logic and Instruction) 10.1.6 ASIN (anti-sinusoidal command) 10.1.7 ATAN (Arc Tangent Command) 10.1.8 COS (cosine command) 10.1.9 DIV (Division Instruction) 	TION)	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9 .4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS 1 0.1 FUNCTION 10.1.1 ABS (absolute value instruction) 10.1.2 ACOS (anti-cosine instruction) 10.1.3 ADD (Additional Instruction) 10.1.4 ADD_T_T (Time Addition Instruction) 10.1.5 AND (Logic and Instruction) 10.1.6 ASIN (anti-sinusoidal command) 10.1.7 ATAN (Arc Tangent Command) 10.1.8 COS (cosine command) 10.1.9 DIV (Division Instruction) 10.1.10 DIV_T_AI (division (time divided by an integer) instruction) 	TION)	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9 .4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS	TION)	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9 .4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS	TION)	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9 .4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS	TION)	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9 .4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS 1 0.1 FUNCTION 10.1.1 ABS (absolute value instruction) 10.1.2 ACOS (anti-cosine instruction) 10.1.3 ADD (Additional Instruction) 10.1.4 ADD_T_T (Time Addition Instruction) 10.1.5 AND (Logic and Instruction) 10.1.6 ASIN (anti-sinusoidal command) 10.1.7 ATAN (Arc Tangent Command) 10.1.8 COS (cosine command) 10.1.9 DIV (Division Instruction) 10.1.10 DIV_T_AI (division (time divided by an integer) instruction) 10.1.12 DIV_T_ R (division (time divided by real number) instruction) 10.1.13 EQ (equal to the instruction) 10.1.14 EXP (exponential function instruction of natural number e) 	TION)	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9 .4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS	TION)	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9 .4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS. 1 0.1 FUNCTION. 10.1.1 ABS (absolute value instruction). 10.1.2 ACOS (anti-cosine instruction). 10.1.3 ADD (Additional Instruction). 10.1.4 ADD_T_T (Time Addition Instruction). 10.1.5 AND (Logic and Instruction). 10.1.6 ASIN (anti-sinusoidal command). 10.1.7 ATAN (Arc Tangent Command). 10.1.8 COS (cosine command). 10.1.9 DIV (Division Instruction). 10.1.10 DIV_T_AI (division (time divided by an integer) instruction). 10.1.12 DIV_T_R (division (time divided by real number) instruction). 10.1.13 EQ (equal to the instruction). 10.1.14 EXP (exponential function instruction of natural number e)	TION)	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9 .4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS	TION)	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9 .4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS	TION)	
 9 .3 CONTROLLER PULSING MOTIONSERVO CONTROL (ENCODER DRIVENSERVO OPERAT 9.4 CONTROLLER CANOPEN THROUGH INQUIRY MODE CONTROL SERVO MOTION (TWO X LOGIC INSTRUCTIONS	TION)	

10.1.21 LOG (Logarithmic Instruction)	153
10.1.22 LT (less than instruction)	153
10.1.23 MAX (Maximum Instruction)	154
10.1.24 MIN (minimum instruction)	155
10.1.25 MOD (modulo instruction)	156
10.1.26 MOVE (Assignment Command)	157
10.1.27 MUL (Multiplication Directive)	
10.1.28 MUL_T_AI (multiplication (time multiplied by integer) instruction)	
10.1.29 MUL_T_AN (multiplication (time multiplied by integer, real) instructions)	
10.1.30 MUL_T_R (multiplication (time multiplied by real number) instruction)	
10.1.31 NE (not equal to the instruction)	
10.1.32 NOT (logical non-instruction)	
10.1.33 OR (Logic or Instruction)	
10.1.34 ROL (loop left shift instruction)	
10.1.35 ROR (cyclic right shift instruction)	
10.1.36 SEL (Selection Command)	
10.1.37 SHL (left shift instruction)	
10.1.38 SHR (right shift instruction)	
10.1.39 SIN (sinusoidal command)	
10.1.40 SQRT (square root instruction)	
10.1.41 SUB (Subtraction Instruction)	
10.1.42 SUB_T_T (Time Subtraction Instruction)	
10.1.43 TAN (tangential command)	
10.1. 44 XO R (Logical XOR instruction)	
1 0.2 FUNCTION BLOCK	
10.2.1 CTD (Decrement Counter Instruction)	
10.2.2 CTU (Incremental Counter Instruction)	
10.2.3 CTUD (increasing or decreasing bidirectional counter command)	
10.2.4 F_TRIG (falling edge detection command)	
10.2.5 R_TRIG (rising edge detection instruction)	
10.2.6 RS (RS Trigger Instruction)	
10.2.7 SR (SR Trigger Instruction)	
10.2.8 TOF (Delayed Off Timer Instruction)	
1 0.2.9 TON (delay-on timer command)	
10.2.10 TP (pulse command)	
1 0.3 TYPE CONVERSION FU	188
10.3.1 Conversion of BYTE type BCD data	190
10.3.2 Conversion of WORD type BCD data	191
10.3.3 Conversion of DWOR D -type BCD data	192
10.3.4 Conversion of BCD type data	193
10.3.5 Conversion of BOOL type data	193
10.3.6 Conversion of BYTE type data	195
10.3.7 Conversion of WORD Data	196
10.3.8 Conversion of DWOR D -type data	197
10.3.9 Conversion of SINT data	199
10.3.10 Conversion of INT data	200
10.3.11 Conversion of DINT type data	202
10.3.12 Conversion of USINT type data	204

10.3.13 Conversion of UINT type data	
10.3.14 Conversion of UDINT type data	207
10.3.15 Conversion of REAL type data	
10.3.16 Conversion of LREAL type data	211
10.3.17 TRUNC decimal rounding	213
10.3.18 Conversion of TIME type data	215
1 0.4 String FU	
10.4.1 CONCAT (Merge String)	
10.4.2 INSERT (insert string)	
10.4.3 DELETE (copies except string)	
10.4.4 REPLACE (replace string)	
10.4.5 LEN (string length)	
10.4.6 LIMIT_STRING (set string limit)	
10.4.7 FIND (FinDA character that appears in a string)	
10.4.8 MAX_STRING (take a larger string)	
10.4.9 MIN_STRING (take a smaller string)	
10.4.10 LEFT (Remove the last few characters of the string)	
10.4.11 MID (Remove several characters in a string)	
10.4.12 RIGHT (remove the rightmost characters of the string)	
10.4.13 SEL_STRING (binary selection of strings)	
10.4.14 GT_STRIN (string is greater than)	
10.4.15 GE_STRING (string is greater than or equal to)	231
10.4.16 EQ_STRING (string equals)	232
10.4.17 NE_STRING (string is not equal)	
10.4.18 LE_STRING (string is less than or equal to)	
10.4.19 LT_STRING (string is less than)	235
10.4.20 STRING_TO_* (converts strings to other types)	236
10.4.21 *_TO_STRING (other types are converted to strings)	
1 0.5 Bit operation function BIT_UTIL	
10.5.1 BIT_TEST (Read bit value instruction in bit string)	240
10.5.2 GET_ CHAR (Remove the character instruction in the string)	241
10.5.3 GET_LSB (Remove the lower 8 -bit instruction in the bit string)	242
10.5.4 GET_MSB (Remove the high 8 -bit instruction in the bit string)	
10.5.5 I_BIT_IN* (Invert the single bit in the bit string)	
10.5.6 PARITY_* (parity instruction for bit string)	
10.5.7 R _BIT_IN_* (instruction of a single position 0 in a bit string)	
10.5.8 S_BIT_IN_* (1 instruction in a single bit in the bit string)	
10.5.9 SET_LSB (Write instructions to the lower 8 bits in the bit string)	
10.5.10 SET_MSB (the high bit string 8 write digit command)	
10.5.11 STRING_TO_BUFFER (copy string to buffer instruction)	
10.5.12 SWAP (swapping high byte and low byte instructions)	
10.5.12 SWAF (swapping righ byte and low byte instructions)	
10.6 .1 BUF type conversion to other types	
10.6.2 Other types are converted to BUF type	
10.6.3 CLR_ERROR_CATALOG (except for the complete error directory)	
10.6.4 CLR_OUT (Set the output of the I/O image to 0 pointer)	
10.6.5 COLD_RESTART (PLC cold start)	
10.6.6 CONTINUE (continue running the program)	257

10.6.7 DERIVAT (differential)	
10.6.8 EVENT_TASK (trigger event)	
10.6.9 FPID	
10.6.10 GET_ERROR (details of errors obtained in the error directory)	
10.6.11 GET_ERROR_CATALOG (information about the current content obtained 261	l in the error directory)
10.6.12 GET_SYM (search for the symbolic name of the PDD variable)	
10.6.13 HOT_RESTART (PLC Hot Start)	
10.6.14 IMEMCPY (data replication)	
10.6.15 INTEGRAL (integration)	
10.6.16 MEMCPY (Data Copy Instruction)	
10.6.17 MEMSET (DatADistribution)	
10.6.18 PLC_STOP (PLC stop)	
10.6.19 RD_*_BY_SYM (Read the value of the PDD variable)	
10.6.20 WR_*_BY_SYM (write the value of the PDD variable)	
10.6.21 RTC_S (Read PLC Clock)	
10.6.22 WARM_RESTART (PLC Warm Start)	
XI MOTION COMMANDS	
11.1 Insert FB_FU_LIB (motion control firmware library)	
11.1.1 Features	
11.1.2 Adding firmware library	
11.2 MOTION COMMANDS	
11.2.1 Motion Control Library Classification	
11.2.2 Movement instruction list	
11.3 Basics of motion control instructions	
11.3.1 Command modes of motion controller	
11.3.2 movement control	
11.3.3 MC_AXIS_REF (axis parameter setting)	
11.3.4 sports instruction constitutes	
11.3.5 Analog offset adjustment	
11.3.6 state machine	
11.3.7 BufferMode Features	
11.4 Uniaxial Instruction	
11.4.1 MC_Power (ENABLE command)	
11.4.2 MC_MoveVelocity (speed command)	
11.4.3 MC_MoveRelative (relative displacement instruction)	
11.4.4 MC_MoveAdditive (additional displacement instruction)	
11.4.5 MC_MoveAbsolute (absolute displacement instructions)	
11.4.6 MC_MoveSuperimposed (additional displacement instruction)	
11.4.7 MC_HaltSuperimposed (Pause additional displacement)	
11.4.8 MC_Home (zero return instruction)	
11.4.9 MC_SetOverride (overshoot speed command)	
11.4.10 MC_Stop (stop command)	
11.4.11 MC_Halt (pause command)	
11.4.11 MC_SpecialMoveAbsolute (special absolute displacement instructions)	
11.4.12 MC_ReadActualPosition (real position instruction read)	
11.4.13 MC_ReadActualVelocity (read real-time speed)	

11.4.14 MC_ReadMotionState (read axis motion command)	368
11.4.15 MC_ReadStatus (Read axis state)	371
11.4.16 MC_SetPosition (position setting instruction)	377
11.4.17 MC_Phasing (shift spindle command)	383
11.4.18 MC_TouchProbe (position capture command)	386
11.4.19 MC_AbortTrigger (position capture interrupt instruction)	390
11.4.20 NS_MC_Jog (jog command)	392
11.4.21 NS_MC_StopByPos (position designated mode stop command)	397
11.4.22 NS_MC_ReadParameter (read command parameter)	400
11.5 MULTIAXIAL INSTRUCTION	405
MasterValueSource Description:	405
11.5.1 MC_GearIn (electronic gear coupling instructions)	405
11.5.2 MC_GearOut (electronic gear disengaged instruction)	413
11.5.3 MC_CombineAxes (double spindle gears combined instruction)	417
11.5.4 peeling electronic cam Profile	426
11.5.5 peeling function of the system configuration	427
11.5.6 Peeling process parameters	428
11.5.7 peeling function control characteristics	429
11.5.8 peeling Features	430
11.5.9 NS_MC_RotaryCutIn (peeling instruction)	433
11.5.10 NS_MC_SpecialCamin (special cam instruction)	441
11.5.11 NS_MC_SpecialCombineAxes (special double joint spindle gear command)	449
11.5.12 MC_CamIn (electronic cam associated instruction)	458
11.5.13 MC_CamOut (electronic cam departing instruction)	477
11.5.14 MC_CamWritePoint (cam point information write command)	480
11.5.15 MC_CamReadPoint (cam point information reading instruction)	482
11.5.16 MC_CamSet (changes to take effect cam point instructions)	485
11.5.17 MC_ReadTappetStatus (read status command plurality of lifters points)	487
11.5.18 MC_ReadTappetValue (single read command tappet point information)	490
11.5.19 MC_WriteTappetValue (edit point information tappet instruction)	493
11.6 Special instructions	495
11.6.1 NS_CC_ADC (AD instruction)	495
11.6.2 NS_CC_DAC (DA instruction)	499
11.6.3 EX_ADC (AD extended instruction)	502
11.6.4 EX_DAC (DA expansion module)	504
11.6.5 NS_CC_NOoutput (prohibition command output QXX)	506
11.6.6 NS_CC_Counter (High-Speed Counter)	507
11.6.7 NS_CC_CNTI (high-speed counter interrupt instruction)	518
11.6.8 NS_CC_CNT_Out (comparison output instruction section)	524
11.6.9 NS_CC_DI_Counter (DI-speed count instruction)	528
11.6.10 NS_CC_EXTI (DI interrupt instruction)	535
11.6.11 NS_CC_ReadPulseVelocity (read-axis pulse rate controlled)	542
11.6.12 MC_PID (PID instruction)	545
11.6.13 RTC_S (special register clock)	547
11.7 G CODE INSTRUCTIONS	548
G code input format	548
11.7.1 NC_GroupEnable (ENABLE command axis group)	
11.7.2 NC_MoveLiner (linear interpolation)	551

VA Motion Controller Programming Manual	
11.7.3 NC_MoveCircula (circular interpolation)557	
11.7.4 NC_CartesianCoordinate (Cartesian robot command)	
XII COMMUNICATION SETTINGS	
12.1 MOTION CONTROLLER AND HMI COMMUNICATION	
12.1.1 motion controller and human-machine wiring shown below	
12.1.2 HMI and motion controller communication format	
12.1.3 motion controller and human-machine communication address correspondence address	570
12.2 Change the type of expansion module	
12.2.1 Automatic recognition of expansion types	
12.2.2 Manual selection of expansion type	
APPENDIX I PROGRAMMING CONSIDERATIONS	574
APPENDIX II ASCII CODE TABLE	575
APPENDIX III HOMING MODE DESCRIPTION	578
APPENDIX IV CANOPEN INSTRUCTIONS	
1. CANOPEN COMMUNICATION CONNECTION	
1.1 Description Motion Controller Connection Ports	
1.2 CANopen communication port pin definitions	
1.3 CANopen communication port LAN	
1.4 CANopen communication port communication speed and communication distance593	
2. CANOPEN PROTOCOL BASICS	
2.1 Network management (NMT)594	
2.2 Service data (SDO)594	
2.3 Process data (PDO)	
3. Software Features	
3.1 Bus Initialization Configuration Module	
3.2 Motion Control Module621	
4. Example Configuration	
4.1 Motion Control Shaft Arranged623	
4.2 tension control shaft arranged	
5. Key Considerations	
APPENDIX V REGISTER DESCRIPTION	631
APPENDIX VI ERROR CODES	634
APPENDIX \mathbb{W} DIFFERENCE BETWEEN ECONOMY AND MP MODEL VA CONTROLLERS	639
1. The use of pulses	
2. Use of analogue quantities	
3. Expanding the use of IO	
4. Difference between hardware axis port pulse control	
5. The difference between high-speed counters	
6. Use of special function blocks	

I MULTIPROG Overview

MULTIPROG is universal PLC programming system for control applications in large-scale development, it is widely used in machinery manufacturing, automotive and process automation industry. The tool is based on Microsoft's COM / DCOM technology architecture, Suitable for XP, Vista, win 7, win8 and win10 Windows operating systems. Its engineering structures fully compliant with IEC61131-3 standard, supports standard which defines five programming languages anDAllows users to customize database and data structures, and supports third-party development tools. System (ProConOS eCLR) running the programming tool and KW-Software can be launched either supporting the use, can also be applied to existing control systems, and can be unified configuration, programmeDAnd downloaded programs to multiple distributed controllers PLC .

MULTIPROG provides a wealth of operational commanDAnDAn excellent man-machine interface, drag and drop support, full keyboard operation. It provides online monitoring variables, mandatory and coverage feature that allows the program to set breakpoints and single-step debugging. And it comes with a logic analyzer, the recording can be easily input and output waveforms. For special occasions, provided the source code protection and non-stop online download function. For programmers habits of different countries, provids multi-language support, including variable names.

II Features of the Software and Hardware

Requirements

The manual describes how to use the programming software--MULTIPROG Express5.51. Users can write your own programs on the Vector motion controller according to this manual.

2.1 Basic Knowledge Required

Users who are familiar with this manual need to have general knowledge of automation technology, understand the Windows operating system, and have read the "Vector VA Motion Controller Programming Manual".

2.2 MULTIPROG Express5.51 Features

- Support IEC61131-3 programming languages --FBD, LD, IL, ST and SFC.
- Clear project structure, intuitive programming language.
- Support cross-compilation between FBD, LDAnd IL. Support mixed programming.
- Multi-user programming, shorten the project programming time.
- Guide, cross references and other resources can be efficiently programmed.
- Compatible version can be centrally managed.

2.3 Computer Hardware Requirements

device	lowest	recommend	
CPU	500MHz	1GHz	
RAM	256MB	1GB	
hard disk	500MB	1GB	
Monitor	1024×768	1024 × 768	
operating	WindowsXP Pro, 2000, Vista, Win7, Win8, Win10, IE5.0 above		
communicati	TCP / IP, RS232		

2.4 MULTIPROG Express5.51 Support

content	Quantity
Project node in the tree	8000
Configuration / Resource engineering tree	1/1
Each instance of the program resources	1000
Each resource tasks	1

Each task program instances	500
Each global variables POU / local variables	1 5000/1 5000
The library contains	32
The number of POU a project (including multiple	2000
A project supported by the I / O count	256 Byte
I / O group	200

III PLC Working Principle

3.1 PLC Executing the Program Written by the User

Users download the program to the PLC and run PLC. The motion controller can cycle through the user's program. The program is not executed when the CPU is stopped. Each time the PLC executes the user's program, it is calleDA scan cycle, and the following work will be performed in one scan cycle:

A] Read Input: digital, analog input signals read into the input mapping area.

B] Execution program: executing a user's instruction and the intermediate, the final data stored in the various memory areas.

C] Processing any communications requests: to monitor communications.

D] CPU self-diagnosis: Check the firmware, the program memory working condition.

E] Write output: the stored data is copied to the physical output point in the output of the mapping area.

Note: If you want to implement a periodic task when you execute a program at regular intervals, instead of using a timer to trigger a periodic pulse in the cyclic scan task, the former should be accurate.

3.2 PLC Data Access

1) The users' data can be stored in different memory cells of the PLC, each cell has a unique address. The following table lists the different sizes of data that can be represented range of values;

Numerical	Boolean (X)	Byte (B)	Word (W)	Double word (DW)	
Unsigned integer	0-1	0 to 255	0-65535	0-4294967295	
Signed integer	-	-128 to 127	-32768 to +32767	-2147483648 to +2147483647	
32-bit floating point	-	-	-	+ 1.175495E-38 to 34,022,823 -1.175495E-38 to 34,022,823	

2) For data access, you must specify the address, the address starts with %, followed by the location prefix, the size prefix, and the byte address with an integer. The decimal point "." is added to the integer to indicate the bit. For example, %IX0.0 means the input mapping area is 0. The 0th bit of the byte, the following table is the address characteristics of the data.

No.	Prefix		definition	Conventions Data
				Types
1		Ι	Input mapping area	
2	Location	Q	Output mapping area	
3	prefix	М	Intermediate	
			variables mapping area	
4		Х	Place	BOOL
5	T1	В	Byte (8 bits)	BYTE
6	The size	W	Word (16 bits)	WORD
7	prefixes	D	Double word (32)	DWORD
8		L	Long (64-bit)	LREAL

Examples of variable address

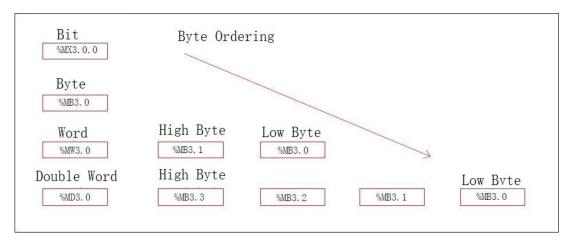
DI / DO bit input and output operations:

%IX0.0 represents the 0th bit in the 0th byte of the digital input mapping area, indicating the definition of the input terminal DI0 in the motion controller;

%IX0.7 represents the 0th bit in the 1st byte in the digital input mapping area, which means that the input terminal DI7 in the motion controller is defined;

%QX0.0 represents the 0th bit in the 0th byte in the digital output mapping area, indicating the definition of the input terminal DO0 in the motion controller;

%QX1.0 represents the 0th bit in the 1st byte in the digital output mapping area, indicating the definition of the input terminal DO10 in the motion controller;


DI/DO input and output byte operations:

%IB0 represents the 8-bit status in the 0th byte of the digital input mapping area, indicating the input terminals DI0~DI7 in the motion controller;

3) Relationship between the motion controller address

In order to facilitate data exchange with peripherals (such as: human-machine, drive, other controllers), the motion controller opens the 10,000-byte address of %MB3.0000~%MB3.9999 to communicate with peripherals, of which %MB3.2000 ~%MB3.3000 is the data address saved by power-down. Users need to pay attention to the fact that the data exchanged with the peripherals does not need to fill in the %MB3.XXXX address, just fill in the variable name and select the correct data type to automatically assign the address.

The address relationship between bytes, words, and double words is ADouble word containing two words, or four bytes, below %MX3.0.0, %MB3.0, %MW3.0, and %MD3.0 For example, the address relationship and data arrangement between bytes, words, and double words are shown in the following figure:

For example, if a hexadecimal number 16#1234 is stored in %MW3.0, then 16#34 exists in %MB3.0, and 16#12 is stored in %MB3.1. If the bit operation in the program affects the byte, worDAnd double word of the bit, the reverse is also true.

Example of a variable address

%MX3.0.0 represents the 0th bit of the 0th byte in the intermediate variable area;

%MB3.0 represents the 0th byte in the intermediate variable area;

%MW3.0 represents the 0th word in the intermediate variable area;

%MD3.4 represents 1 double word starting from the 4th byte in the intermediate variable area

Note: (The 5.3 version of 1 byte can only define 1 bit, such as %MX3.0.0, (indicating that one byte has been occupied), the user can no longer use %MX3.0.1~%MX3.0.7, if you need to define One bit, the user needs to start with %MX3.1.0.)

The PLC supports the input of constant values. The constants can be binary numbers, decimal numbers, hexadecimal numbers, strings, ASCII codes or real numbers. The input format is shown in the table below.

Number System	Format	For example
Binary	2#	2 # 001
Decimal		67
Hex	16 #	16 # AC43
String	· · ·	'VECTOR'
ASCII code	ASCII value	16 # 30
Real	REAL #	REAL # 3.1415926

3.3 PLC Save Data

1) First, let's take a look at the approximate workings of the motion controller's internal memory. The internal memory of the motion controller is divided into two types: RAM random access memory and ferroelectric permanent memory. We all know that the data of the RAM memory must be maintained by the power supply. When the power supply of the memory chip is interrupted, the data stored therein does not exist anymore. The RAM memory is mainly useDAs a real-time access space for the program and program data of the motion controller program. The ferroelectric memory is a charged rewritable memory, and its data can be stored for a long time

under complete power-off. The motion controller loads the downloaded program, the data to be saved (optional), and the resource configuration (optional) into the RAM storage area each time the program is downloaded, and the CPU automatically copies it to the ferroelectric memory. In order to achieve permanent preservation. During the use of the motion controller, the PLC will restore the program and resource configuration from the ferroelectric memory area to the RAM memory area each time the power is turned on.

The way of Motion controller saving program data while power off;

1) variable initial values stored data

When programming, fill in the corresponding initial value under the variable "initial value". When the motion controller is powered on again, the variable saves the initial value data as shown in the figure below;

Variable Properties		×
Name: Count1 Data Type: DINT Usage: VAR Initial value: 5000 VO address: Description:	Definition scope Local Global Local Variable Groups: Clobal Variable Groups: Physical Hardware Physical Hardware Resource System Variables	OK Cancel Help
PDD OPC Hidden Initvalue as default	Show all variables of worksheets	

2) Variable is set to save the data

When programming, users caNSelect the variable that needs to keep the data after power off. Under the variable attribute "Usage", check "RETAIN" to indicate that the variable can keep the current value of the variable before the power is turned off after the motion controller is powered off value. Generally, it is used when not communicating with peripherals. (Users need to pay attention to the "RETAIN" when the variable is checked. No natural number can be filled in the "initial value". Otherwise, the value of the variable is still the data of the initial value after repowering, instead of The data modified before power down) as shown.

Variable Properties		×
Name: Count1 Data Type: DINT Usage: VAR VAR RETAIN Initial value: //O address: Description:	Definition scope Local Global Local Variable Groups: ① Default Global Variable Groups: Global Variable Groups: Physical Hardware 中一 Resource 中一 Resource	OK Cancel Help
PDD OPC Hidden Initvalue as default	Show all variables of worksheets	

NOTE: The difference between the two is the "variable initial value save data", when the motion controller on again, only the initial value of this variable is maintained even when the program is running value of this variable is modified; and "variable set to save data "is data that variable before remain off.

3) Special power-dowNSave data address

In order to facilitate data exchange with peripherals, the %MB3.2000~%MB3.3000 data address is saved by power-down. The user does not neeDAny settings, just fill in the address to achieve, especially pay attention to the variable hook. "RETAIN", otherwise the compiler can't pass. (For more details oNSpecial registers, please refer to: <u>Annex V Register Description</u>)

IV Data Types

4.1 Basic Data Types

The program includes two parts: code and data. The code can be any one of five programming languages: IL, ST, FBD, LD, SFC, or a combination of several languages. The data is divided into three types: basic data type, derived data. Types and user-defined data types, data must exist in the form of variables, the data type determines the format of the variable, the number of bits, the initial value of the range of possible values.

type of data	description	Bit length	range	The default initial value
BOOL	Boolean	1	0 or 1 (ture / falase)	0
SINT	Short integer	8	-128 to +127	0
INT	Integer	16	-32768 to +32767	0
DINT	DINT	32	-2147483648 to +2147483647	0
USINT	Unsigned short	8	0 to 255	0
UINT	Unsigned int	16	0-65535	0
UDINT	Unsigned double integer	32	0-4294967295	0
REAL	Real	32	-3.402823466 E + 38 to -1.175494351 E-38 and +1.175494351 E-38 to +3.402823466 E + 38 NOTE: scientific notation of decimal 7	0.0
LREAL	Long Real	64	-11.798E + 308 to -2.225 E-308 as well as + 2.225E-308 to +1.798 E + 308	0.0
TIME	Time	32	0 to 4294967295 ms	T # 0S
BYTE	Byte	8	0 to 255 (16 # 0016 # FF)	0
WORD	Word	16	0 Dao 65535 (16 # 00 16 # FF)	0

Declared in the basic data type

DWORD	Double Word	22	0 to 4294967295 (16 #	0
DWORD	Double word	32	0016 # FFFFFFFF)	0

4.2 Generic Data Type

The generic data type is to group the basic data types hierarchically, with ANY as the prefix of the data type. For example, ANY_INT indicates that all integer data including SINT, INT, DINT, USINT, UINT, and UDINT are included. If the input or output of a function block is connected to ANYINT, it means that this function block can handle variables of integer data such as SINT, INT, DINT, USINT, UINT and UDINT.

Generic data types are organizeDAs follows:

		ANY			
ANY	_NUM	ANY_BIT	STRING	TIME	
ANY_REAL	ANY_INT	BOOL			
		BYTE			
REAL	SINT	WORD			
LREAL	USINT	DWORD			
	INT				
	UINT				
	DINT				
	UDINT				

4.3 User-defined data types

User-defined data types must be inserted into the user-defined data type in the project "data type", which must be done with the "TYPE ...END_TYPE" declaration block. The middle part of the declaration block is the defined derivative data, and the derived data type can be the structure, or an array.

♦ Array

An array is a collection of single data type objects. Like a basic data, it has a unique name. A single object is not named, but the user can access it through its position in the array. An example of an array is as follows:

TYPE graph: ARRAY [0 ... 23] OF INT; END_TYPE Note: the lowest byte array ARRAY graph is graph [0] ◆ structure

A structure is a collection of objects of different data types. Like a basic data, it has a unique name. A member of a structure is a basic data type or an array type, or it can be another structure,

or nested. An example of declaring a structure is as follows:

TYPE machine: STRUCT x_pos: INT; y_pos: INT; depth: INT; rp: INT; END_STRUCT; END_TYPE ◆ String

A string is a finite sequence of multiple characters. Each character occupies one byte. The data type of the string is STRING. When a string is declared, its length is set in parentheses after the data type, anDA string is declared example as follows:

TYPE STRING10: STRING (10); END_TYPE

In this example, the length of the string is 10, i.e. STRING10 is a string containing 10 characters. 1 is the shortest string length, the longest string length of 32,766.

type of data	description	Bit length	Examples representation
BOOL	Boolean	1	BOOL # 0
SINT	Short integer	8	SINT # - 128
INT	Integer	16	INT # -32768
DINT	DINT	32	DINT # -2147483648
USINT	Unsigned short	8	US INT # 255
UINT	Unsigned int	16	UINT # 65535
UDINT	Unsigned double	32	UDINT # 4294967295
	integer		
REAL	Real	32	REAL # 3.1415629
LREAL	Long Real	64	LREAL # 3.1415629
TIME	time	32	T # 10MS, T # 10S, T # 10M,
			T # 10H, T # 10D, T # 1D_10H
DATE	date	~	D # 2011-07-24
TIME OF DATE	time		TOD # 15: 23: 4555
TIME and DATE	Date and time		ADT # 2011-07-24 15: 23: 4555
BYTE	byte	8	BYTE # 16 # FF
WORD	word	16	WORD # 16 # FFFF)
DWORD	Double	32	DWORD # 16 # FFFFFFFF)

4.4 constant data representation

	Word	
STRING	String	'VECTOR'

V Software Installation and Introduction

Thanks to MULTIPROG excellent man-machine interface, just a few easy steps to create a project. This section describes how to install the software MULTIPROG description, all the software interface to the end-use configuration MULTIPROG introduced.

5.1 MULTIPROG software installation and startup

1) Decompress the installation file of MULTIPROG. The "X" and "Y" in the folder name are numbers. After decompression, a file named "MULTIPROGX.XXBuildYYY" will be generated, indicating the version number of the installation package. Open the folder, which will appear as shown

ARM_LE_GCC3_eCLR_forMP5.50_Delivery_20160726	Processor 14:49	文件夹
MP_551_EXPRESS_B396	2010/4/10 14.50	TTHEST
	Programming s 2019/4/22 11:30	文件夹
📧 双击我自动安装.exe	2019/4/10 14:53	应用程序

2) Double click to open "双击我自动安装" as shown

ARM_LE_GCC3_eCLR_forMP5.50_Delivery_20160726	2019/4/10 14:49	文件夹
MP_551_EXPRESS_B396	2019/4/10 14:50	文件夹
■ 固件库	2019/4/22 11:30	文件夹
■ 双击我自动安装.exe ← double click	2019/4/10 14:53	应用程序

3) In the pop-up dialog box, check "I accpet......" as shown.

Please read the following license agreement carefully		•
Important note:		^
BY INSTALLING, COPYING OR OTHERWISE USING THIS SOF		-
PRODUCT, YOU AGREE TO THE FOLLOWING TERMS. IF YOU D AGREE WITH THESE TERMS, PLEASE DO NOT INSTALL THIS SOF	TWARE	
PRODUCT BUT RETURN THE SOFTWARE AND ALL ACCOMP. MATERIAL, INCLUDING PRINTED MATERIAL AND PACKING, WIT		
DAYS TO RECEIVE A FULL REIMBURSEMENT. IF YOU PURCHA	SE OR	
	NSE OR	
DAYS TO RECEIVE A FULL REIMBURSEMENT. IF YOU PURCHA HAVE PURCHASED THE SOFTWARE PRODUCT BY MEANS OF DOW INSTEAD OF RETURNING THE SOFTWARE THE DOWNLOAD SHO DISCONTINUED AND ALL DATA WHICH HAVE ALREADY	NSE OR	
DAYS TO RECEIVE A FULL REIMBURSEMENT. IF YOU PURCHA HAVE PURCHASED THE SOFTWARE PRODUCT BY MEANS OF DOW INSTEAD OF RETURNING THE SOFTWARE THE DOWNLOAD SHOP	NLOAD,	

4) Select the installation path, the user can choose it, here choose the default, click "Next" as shown

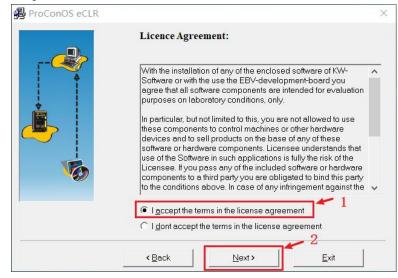
Destination Folder			
Click Next to install to the defa	ault folder or click Change to	choose another.	
Install MULTIPROG 5.51 Express	s Ruild 206 to:		
1	5 Build 390 (0.		
C:\Program Files (x86)\PHOEN	ITY CONTACT Software/MILL	TPROC 5 51 Evore	es Build 396
C. (Hogrann Files (X00) (FHOEN	IIX CONTACT Software(MDE	TROG 5.51 Expre	55 build 3901
Change			
Change		2	

5) Click the Install, then wait for the completion of the installation, the installation process may take some time, as shown.

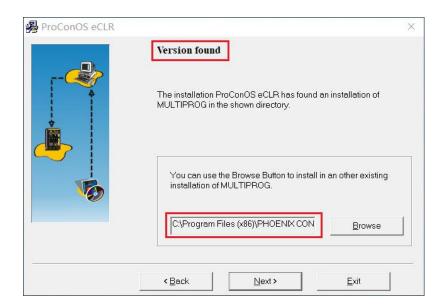
Ready to install MULTIPROG S	5.51 Express Bu	ild 396	-
Click Install to begin the installation. settings. Click Cancel to exit the wize		or change any of yo	ur installation

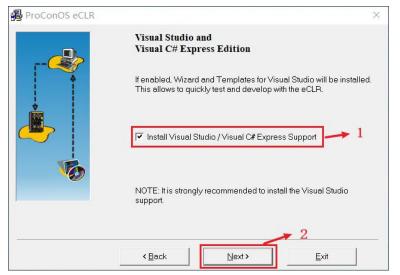
6) Click "Finish" to complete the installation of the MULTIPROG programming software as shown.

🕷 MULTIPROG 5.51 Express	s Build 396 Setup – 🗆 🗙				
	Completed the MULTIPROG 5.51 Express Build 396 Setup Wizard Click the Finish button to exit the Setup Wizard.				
	Back Finish Cancel				


7) Double-click the icon icon to start MULTIPROG. If the icon does not appear on your desktop, you can also use the "Start Menu" \rightarrow "program" \rightarrow "PHOENIX CONTACT Software" \rightarrow "MULTIPROG 5.51 Express" to start.

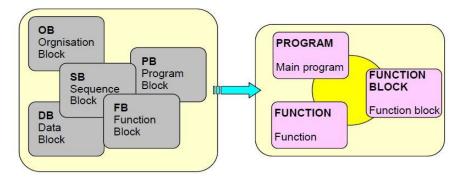
5.2 Processor type software installation


1) After installing the mmmm software, continue to install the processor type software. When the installation dialog appears, click "Next" as shown

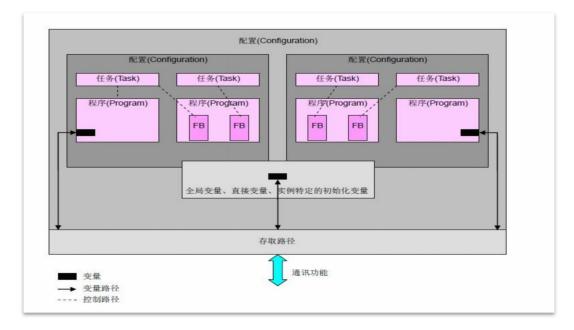

2) Select "I accept", click on "Next" as shown.

3) Select the installation path, here select the default, display "Version found", click "Next" as shown in the figure (special attention; the processor type software must be consistent with the installation path of the MULTIPROG programming software, the processor type software defaults with the installation The installation path of MULTIPROG programming software is the same, no need to change. If "Version not found" is displayed, the installation path needs to be changed to be the same as the installation path of MULTIPROG programming software.

4) Select "Istall Visual Studio ..." click "Next" as shown.

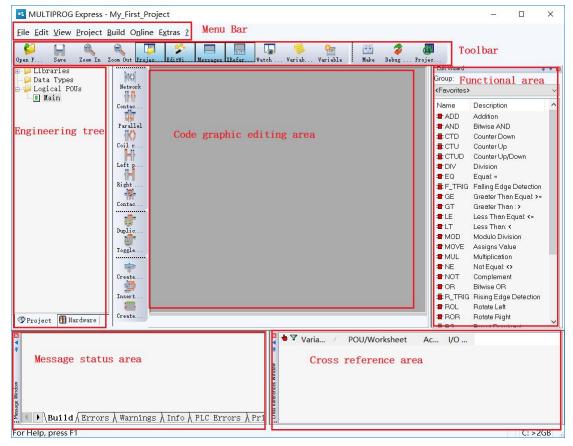

5) Click the "Install" installation, the installation process will take some time, as shown.

ProConOS eCLR		\times
	Ready to install	
	You are now ready to install ProConOS Embedded CLR. Press the install button to start the installation or the back button to reenter the installation information.	
e	<back exit<="" install="" td=""><td></td></back>	


6) After installation is complete, restart the computer, the processor type of software and programming software will builDA relationship.

5.3 programming model with standard IEC61131-3

1) The MULTIPROG programming software used by the VA motion controller has a programming language and program structure in accordance with the IEC 61131-3 programming system. In IEC 61131-3, the establishment of programs and projects is done in the Program Organization Unit (POU). The unit POU consists of three parts: PROGRAM, FUNCTIONBLOCK and FUNCTION. It replaces the five functional blocks OB, PB, DB, SB and FB of the traditional PLC programming language. More efficient and more concise as shown.



2) IEC 61131-3 programming software model is represented by a hierarchical structure, as shown below, the software model describes the relationship between the various parts, including the configuration, resource, task, program organization unit, global variables, I / O configuration, etc. . Programming process can program a complex program, or divided into a number of small modules can also be simultaneously downloaDA plurality of separate programs, running, or the program into a plurality of tasks to perform, improve the modularity and operational procedures efficiency as shown.

5.4 MULTIPROG programming interface presentation

After opening MULTIPROG, you canSee that it has only one main boundary. According to the function, it is divided into different areas, as shown.

5.4.1 Introduction partition function

(1) The toolbar area contains commands for code editing and debugging special functions;

(2) The engineering tree is used to display the structure of the project and the configuration properties of the hardware; the project tree includes two parts, "hardware" and "engineering", which respectively correspond to the hardware and software parts of the established project.

(3) The code graphic editing area is used to edit text or graphic code in the editing state, and is used to display the value of the variable and the running state of the program in the debugging mode;

(4) The message status area is used to display various information when creating a project, online debugging, and running a program;

(5) Cross reference area, you caNSee the current status anDAddress of the variable;

(6) Variable monitoring window, there may be a lot of variables in the large engineering project, you can add the variables you need to monitor, so that you can quickly view the current state of the variables, and facilitate user debugging;

5.4.2 hardware

Open the project has been established, on the left side of the "Project Tree "window, click the "Hardware "tab, you caNSee the "physical hardware ", "physical hardware "can display the software model of the structure, the user can view each of the layers, settings.

(1) Physical hardware

The "physical hardware " tree can reflect the program structure conforming to IEC 61131-3. It is the entire configuration file of the entire project and is responsible for managing its next layer - " configuration " . Currently, the MULTIPROG Express version only supports one " configuration " . Insert multiple configurations, but you can delete " Configuration " or copy a " Configuration " from another project .

(2) Configuration

"Configuration " is the first layer in the software model. The next layer of " physical hardware " is equivalent to the programmable controller system and is responsible for managing its next layer of " resources " . Currently, the MULTIPROG Express version only supports one " Resources " , you cannot insert multiple resources, but you can delete " resources " or copy a " resource " from another project . The type of programmable controller can be viewed by right-clicking " Configuration " to select the attribute . It is " eCLR " in the PLC type drop-down list in the PLC/ Processing tab and cannot be changed.

(3) Resources

" Resources " is the second layer in the software model. In the next layer of

" configuration ", it is equivalent to the processor of the programmable controller, responsible for managing its next layer - "Tasks ", "Globales_Variables ", " $I/O_Configuration$ ", all three cannot be deleted. The type of processor can be selected by right-clicking on "Resources ", selecting Properties, and selecting "ARM_LE GCC3 " in the Processor Type drop-down list in the PLC/ Processing tab. When no PLC is connected, it is optional, "eCLR Simulation" "Processor settings can be viewed by right-clicking on "Resources " and selecting "Settings ". You caNSee the communication protocol, IP address, processor version, etc. of the programmable controller.

(4) Tasks

1) " Tasks " is the third layer in the software model. In the next layer of " Resources ", multiple tasks can be inserted under " Tasks ", which can be cyclically scanned

or cycled. If the inserted task is For periodic scans, different scan cycles and priorities can be set, which is the multi-tasking feature of MULTIPROG.

2) When creating a project, MULTIPROG automatically declares a " Tasks " and the first task in this directory. Users can right-click " Tasks " to insert a new task, or copy a task from another project, insert The task type defaults to " DEFAULT ", which is a cyclic scan. You can also select " CYCLIC " , which is a periodic scan. After selecting " CYCLIC " , you need to set the time and " interval, priority monitoring timing. Right-click Task " and select "Properties" and "Settings" in the pop-up dialog box to view the type and scan period of the modified task .

3) After inserting the new " task ", right-click the newly inserted task name, select " Program Instance " to specify the program instance name and instance type, and the instance type is the program inserted in the POU (PROGRAM).

In a project, only one task of type DEFAULT is allowed. Others default to CYCLIC type tasks; under one task, multiple program instances can be inserted, and the execution order of multiple program instances is executed in the order in which they appear under the task

(5) Global Variables - global variables

"Global_Variables" is the third layer in the software model. In the next layer of "Resources", it is juxtaposed with "Tasks". Global_Variables cannot be copieDAnd pasted. The global variable is a variable table, including system variables provided by MULTIPROG and user-created variables. User-created variables will only appear in this table if they are specifieDAs VAR_GLOBAL.

(6) IO Configuration - IO configuration

" IO_Configuration " is the third layer in the software model. Next to " Resources ", alongside "Tasks " and "Globa . I_Variables ", IO_Configuration cannot be copied or pasted. Double-click " IO_Configuration " open the I / O configuration dialog, which is used to edit I / O configuration worksheet, including the INPUT (input), the OUTPUT (output),

VARCONF property settings, the user simply set the INPUT, the OUTPUT to In INPUT, there is the name of INPUT, the default " IN ", the task to which it belongs, the logical start address, the driver parameters of the board /IO module. In the driver parameters, the user needs to specify the driver name. The default is DUMMYIO., the user needs to be changed to " KWIO ".

For the configuration procedure, see " 7 .4 IO configuration."

5.4.3 Project

The project consists of three parts: library, data type, and logical POU, which form a complete and powerful program.

(1) Library

1) The library provides function blocks, functions, programs, and data types. After inserting a library, the user can use the functions and function blocks in the library as if they were IEC function blocks. Right click on " Library " to insert " User Library " and " Firmware Library ". These two libraries are not required, and users should choose to insert according to the needs of their own programs. Library users are other projects created by the user, the user library file extension name * .mwto firmware library function is a special function, function block, requires the user to insert a separate work process, firmware library file name extension * .fwl,

The following example shows how to insert a firmware library.

1> Right click on the "Library" in the project tree window, select "Insert" and select "Firmware Library" as shown

∎ <u>F</u> ile <u>E</u>	dit <u>V</u> ie	w <u>P</u> roje	ct <u>B</u> uil	d O <u>n</u> li	ne E <u>x</u> tras	<u>?</u>	
6 Open P	H Save	Zoom In	Zoom Ou	it Projec	. EditWi.	Messages XRe	
🖯 🏳 Lib	raries					1	
- Û	Da <u>P</u> aste Ctrl+V			🔈 User Library			
			<u>F</u> irmware Library				
	Prop	er <mark>ti</mark> es		.c	12	· Pid_	
			Par	allel		· Pid_	
			Coil	0		12	

2> In the pop-up " Include Library" window, open the "FB_FU_LIB " folder (you need to copy the folder to the default directory before this operation), then click the file "FB_FU_LIB.FWL ", then click Including, as shown in the figure, the firmware library insertion can be completed.

包含库					3
查找范围(I):	📕 FW_LIB		v 🧿 🤌 🖾 •		
*	名称 BIT_UTIL	^	修改日期 2019/3/12 10:43	类型 文件夹	
快速访问	FB_FU_LIB		2019/3/12 10:43	文件夹	
桌 一 库 此电脑	ProConOS		2019/3/12 10:44	文件夹	
	<				
	文件名(N):			~ [包括(C)
	×11-11 (10) ·				

(2) Data type

1) If a user to define their own data types (eg : arrays, structures, etc.), these data types must be in the "data type "declaration. Right-click "Data Type ", select Insert "Data Type ",

specify the name of the data type worksheet, double-click the generated data type work order, enter the editing area, type the following characters as shown

example:

```
1 TYPE
2 DATA1:ARRAY [1..100] OF INT;
3 END_TYPE
4
```

Above code defines a containing 100 th the IN T are array variables, array name DATAI .

(3) Logical POU

1) The program organization unit POU is a language element of the PLC program. They contain the programCode is the most small, independent software units. The name of the POU must be unique within the project. The right-click "Logical POU " can be inserted into the following three program organization units :

- A:] program (PROGRAM)
- B:] function block (FUNCTION BLOCK)
- C: \mathbb{I} function (FUNCTION)

2) Each POU consists of two different parts : the variable work order and the code ontology, which are all variables that appear in the POU in the variable worksheet . A POU

code works with single-user IL, ST, FBD, the LD, the SFC five programming languages are written one, where IL is an instruction list programming language (Instruction List) ST is a structured text programming language (Structured the Text); FBD is a functional block diagram programming language (function block Diagram), the LD is the ladder programming language (Relay ladder Logic Diagram); the SFC is a sequential function programming language (the sequential function the Chart).

□ function

"Function ", abbreviateDAs FU, is a program organization unit POU with multiple inputs and one output. Similar to functions in high-level programming languages, the return value of "function " can be simple data types such as BOOL, IN T, etc. "function " internal can call another "function ", but can not be called "functional blocks " or " program " does not allow recursive call. When declaring a " function, you must declare input and output variables, intermediate variables, and external variables in the variable worksheet of this "function ".

List of features supported by MULTIPROG :

Type conversion function	Such as : IN_TO_REAL
Numerical function	Such as : ABS and LOG
StandarDArithmetic function	Such as : ADDAnd MUL
Bit string function	Such as : ANDAnd SHL
Selection and comparison function	Such as : SEL and GE

String function	Such as : RIGHT and INSER T
Time data type function	Such as SUB with TIME data type

□ • function block

" Function block ", abbreviateDAs the FB, is a program with multiple inputs and multiple outputs organizational units the POU, " functional blocks " can call another internal

" function block " or " function " , but can not be called " program " , Recursive calls are not allowed. All " function blocks, " (IEC defined, library library FB and user-defined FB) can be easily inserted into the user's " function block " or " program " . When declaring a " function block " , you must declare input and output variables, intermediate variables, and external variables in the variable worksheet of this " function block " .

List of function blocks supported by MULTIPROG :

Bistable element,	Such as SR and RS
Edge detection function block	Such as : R_RIG and F_TRIG
counter	Such as : CTU and CTD
Timer function block	Such as : TON and TOF

program

A " program " is a combination of prograMCode that contains functions and function blocks. The behavior and use of a " program " is similar to a function block. It can have input and output parameters, can have internal storage, but does not allow recursive calls. When creating a project, MULTIPROG automatically declares a " program " . When a new " program " is declared , MULTIPROG also generates a variable worksheet for the " program " (double-click the newly declared program, then click on the variable work order) this variable may enter worksheet program) , and load it into tasks first task in the directory, this can cut and paste into another application tasks. As describeDAbove, in the Tasks \rightarrow insertion program instance at a task to be input program name and type instances, this program is a program instance type \rightarrow ·logic POU inserted under the " program " , so that, in a plurality of tasks can be inserted Multiple program instance type, that is, a program instance type can be executed in multiple tasks. The " program " must be linked to the task.

VI MULTIPROG Programming Language

MULTIPROG supports IL, ST, FBD, LD, SFC five programming languages, of which IL and S T belong to the text programming language, FBD, LDAnd SFC belong to the graphic programming language. A program with independent functions is divided into code part and data part. The code is written in one or several languages of IL, ST, FBD, LD, SFC, and the data is declared in the variable work order. This chapter describes how to declare variables and how to program them in these five programming languages.

- [1] IL is an abbreviation of the Instruction List;
- $\llbracket 2 \rrbracket$ ST is an abbreviation of Structured Text structured text;
- [3] FBD is an abbreviation of Function Block Diagram function chart;
- $\llbracket 4 \rrbracket$ LD is an abbreviation of Ladder Diagram ladder diagram;
- $\llbracket 5 \rrbracket$ SFC is SequentialFunction Chart is an abbreviation of sequential function chart;

In a graphics-like programming language, programs are scanned from top to bottom and left to right. In a text-based programming language, programs are scanned from top to bottom.

6.1 Variable Worksheet

IL, ST, FBD, LD, SFC Five programming languages need to declare variables in the variable worksheet corresponding to each program organization unit POU. The user selects the program, function or function block in the POU directory in the project tree, clicks the menu. Variable work order on the bar, enter the variable work order, select the first line as follows, select the additional variable, MULTIPROG automatically insert ADefault variable, (you can also create a variable set, fill in the name with the name plus #; such as m#; fill iNStart and stop addresses and select data types, click OK to create multiple variables) as shown

	Name	Туре	Usage	Description	Address	Init	Retain	P	O
1	□ Default								
2	MC_AXIS_REF_1	MC_AXIS	VAR						
3	Axis0	USINT	VAR			0			
4	ControlMode	INT	VAR			0			
5	Moter_Max_V	DINT	VAR			3000			

The name column is the name of the variable, the default NewVarl, the user can modify the variable name, the variable name must start with a letter, can contain letters, numbers and underscores; the type column is the data type, the user can directly type the user name, or select through the drop-down menu The usage bar, which indicates the scope of the inserted variable :

. 1 > insertion procedure, only VAR and VAR the EXTERNAL two options, VAR represents the internal variables, var_EX T ERNAL represents an external variable ;

2 For the inserted function, there are only two options VA R and VAR_INPUT, VAR for internal variables and VAR_INPUT for input variables ;

3 For inserted function blocks, there are VAR, VAR_EXTERNAL, VARIN_OUT, VAR_ INPUT and VAR _OUTPUT, VAR for internal variables, VAR_EXTERNAL for external variables, VAR_IN OUT for input and output variables ;

 \wedge Description column : is the text description input by the user ; the address bar is the input, output, and intermediate variables of the variable ;

▲ • address bar : indicate the address of the variable ;

 \wedge initial value column : In the PLC program, the first time the variable is used, the initial value indicated here will be used ;

 \wedge Hold column : In the case of PLC power failure, the value of this variable is still saved, after the warm start, the last value of the variable will be used ;

 \land •PDD column : Indicates that the variable has been written to the process datADirectory (PDD) , and is checked only when the user accesses the variable name corresponding to an address on the PLC .

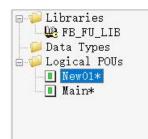
 \wedge •OPC column : indicates variable has written OPC server file, only when the user wishes via OPC only access the variable client check on it.

FBD, LDAnd SFC programming language compile time course, the variables may be inserted in the editing area, the variable is inserteDAfter the variable is automatically included in the worksheet. VAR_INPU T represents the input variable and VAR_OUTPUT represents the output variable.

6.2 IL Instruction List Programming Language

The basic statement of the instruction list programming language is the instruction list, which is an underlying language that uses machine-oriented operators and is relatively easy to convert to machine code of a programmable controller. Because of the lack of effective tools, the instruction list programming language is suitable for small The control program is not suitable for large and complex control tasks.

6.2.1 Creating an IL program


Using IL programming, the user can type code in the editing area to the instruction input directly or in the "Edit Wizard " in drag refers to the editing area. The following is an example of writing an A+B=OUT (* addition *) program to illustrate the creation of an IL programming project :

1 > Create a project

2 >Right-click the "Logical POU " in the project tree to insert the "Program" pop-up dialog box, enter " IL_Test " in the dialog box, select IL in the language bar , and click OK as shown .

Insert			X
Name:		ОК	
New01 Type	Language	Cancel	
 Program Function Function Block Action Transition Step Worksheet 	IL OST OSFC OFBD OLD OFFLD OVAR Odata Types Obescription	Help	
Datatype of return value (r	eturn value shall be ass	igned to the function name):	
PLC type:		Processor type:	
<independent></independent>	~	<independent></independent>	\sim

3> After completion of the step, there is a program in the project tree POU one of IL _ the Test , as shown .

4 > Double-click " logic POU under" of IL _Test , theNSelect Edit Wizard region "all FU and the FB " functions and function blocks all appear as shown .

Edit Wizard		+ 🔻 🖾
Group:		
<favorites< th=""><th>></th><th>~</th></favorites<>	>	~
Name	Description	
ADD 🗗	Addition	
🛨 AND	Bitwise AND	
茸 CTD	Counter Down	
重 CTU	Counter Up	
重 CTUD	Counter Up/Down	
📲 DIV	Division	

5> Double-click " the ADD module", or dragging " the ADD module" into the editor, " the ADD module" function can occur in the editing area, as shown.

1	LD	(*	IN1	as	ANY_NU	JM *)
2	ADD				ANY_NU	
3	ST	(*	Resi	ult.	as ANY	K_NUM ∗)
4						

6> The figures were changed to the green portion of the font A, B , and OUT (the user himself caNSelect the variable name, not necessarily the IN and OUT), as shown .

LD	A	
ADE	B	
ST	OUT	

7> Click "Variable Work Order" on the menu bar to declare three variables A, B and OUT with type INT. After the usage is VA R (local variable), return to IL programming interface as shown.

	Name	Туре	Usage
1	Default		
2	A	INT	VAR
3	В	INT	VAR
4	OUT	INT	VAR

8> click "Create" no error, click "download", and then click the "debugging", as shown .

9> Click the variable work table, use the mouse to select the three operands, right-select "Add to watch window", the user can debug and online monitoring variables such as drawing shown .

	Value	Type	Instance
A 0)	INT	Configuration. Resource. Task. new001. A
B 0)	INT	Configuration. Resource. Task. new001. B
0 TUO)	INT	Configuration. Resource. Task. new001. OUT

10> are double tap monitoring window A and B variables were assigned 4 and 5 , and then click the cover, as shown .

ce/Overwrite			Breakpoint
	A		Set
alue 1			Reset
			Resetall
		2	Valuedisplay
Force	Resetforce	Overwrite	 Standard Decimal
Rese	t force list		O Hexadecimal O Binary
			REAL values
			Width: Precision:
			3 7
			☐ IEEE Format

11> in the editing area can be displayed on the left view window state variable values, as shown . .

Variable	Value	Type	Instance
A	4	INT	Configuration. Resource. Task. new001. A
В	0	INT	Configuration. Resource. Task. new001. B
OUT	4	INT	Configuration. Resource. Task. new001.0UT

6.2.2 IL statement

In the editing area of the instruction list language IL, the statements of the IL programming language can be written line by line, each statement occupies one line, and the front (non-editing area) of each line of the statement is a line number, and each line of the instruction is without a semicolon.

Line number	OperatioNSymbol / instruction	Operand	(**)
1 N.	IL operator or instruction	Operatorscanhave0,1orconstantvariables,orinstructionparameter tables	Comment

The format of the IL statement is as follows :

The IL statement distinguishes the parts in different colors : the operator / function is blue, the operand is black, and the comment is green.

Instruction example : Take the ADD instruction as an example to further explain

Find the suMCode of IN and IN2 as follows :

LD IN (*IN1 as ANY_ NUM*)

ADD IN2 (*IN2 as ANY_NUM*)

ST OUT (* result as ANY_ NUM*)

LD is an operator. The variable IN after LD is an operand. The function of LD is to load the following operand IN into the accumulator . ADD is the addition instruction. After adding the value, the result is loaded into the accumulator ; behind ST The variable OUT is also an operand, which is used to assign the data in the accumulator to the subsequent operands ; the green font part is a comment, prompting the user to declare a variable as an operand, and the data type is AN Y_NUM . Table shows the user declares a variable as an operand, the data type of ANY NUM.

6.2.3 of IL operator

IL programming language in addition to the instructioNSet of instructions is available, to IEC 61131-3 standards following 24 Species instruction as standard instructions.

Operator	Modifier	Operand	Description
LD	N	ANY	Load the following operands
			into the accumulator
ST	N	ANY	Assign the data in the accumulator

			to the subsequent operands
S		BOOL	Operand set 1
R		BOOL	Complex operand 0
AND	N, (ANY_BIT	Logic and
&	N, (ANY _ BIT	Logic and
OR	N, (ANY_BIT	Logical or
XOR	N, (ANY _ BIT	Logical XOR
NOT	(ANY_BIT	Logical negation
ADD	(ANY_NUM	plus
SUB	(ANY_NUM	Less
MUL	(ANY_NUM	Multiply
DIV	(ANY_NUM	except
MOD	(ANY_INT	Molding
GT	(ANY_NUM, ANY_BIT	Compare, greater than, >
GE	(ANY_NUM, ANY_BIT	Comparison, greater than or
			equal to, >=
EQ	(ANY_NUM, ANY_BIT	Compare, equal, =
NE	(ANY_N UM, ANY_BIT	Comparison, not equal, <>
LE	(ANY_NUM, ANY_BIT	Comparison, less than or
			equal to <=
LT	(ANY_NUM, ANY_BIT	Comparison, less than <
JMP	C, N	LABAL	Jump to the instruction at the label
CAL	C, N	NAME	Call function block
RET	C, N		Return from the called
			function, function block
)			End of delay

Note :

 $1\!\!>$ The modifier N indicates that the inverse operation is performed, such as ANDN, which indicates that the operand is inverted ;

2> modifier C means that it is executed only when the current operation result is true, such as :

LD IN1	
AND IN2	
ST OUT1	
JMPC M2	// Execute jump when M2 is true
M2:	
LD IN3	
ST OUT2	

6.3 ST structured text programming language

Structured text programming language S T is a high level language, similar to the Pascal programming language, it does not use low-level machine-oriented operators, but using a similar date statements often language to describe control commands, sophisticateDAlgorithms can be described. A structured text language prograMConsists of statements consisting of expressions and keywords with the following characteristics :

 \bullet •There is no jump statement, and the conditional statement is used to implement the branch of the program ;

◆•Each statement ends with a semicolon "; ";

• with (**) add comments to the program, comments can not be nested, such as (*(**)*);

••Need to declare input, output, internal, external, global variables in the variable worksheet corresponding to the POU;

6.3.1 create aNST program

Using ST language programming, the user can type a statement in the editing area, or drag and drop the command directly into the editing area in the "Edit Wizard ", and then type the operanDAnd the ending character "; " below with an A*B=OUT (multiplication) program as an example ST programmed pass procedure :

1> Create a project

2> Right Project tree " series of the POU ", select Insert a program, pop-up dialog box, type the program name in the dialog box, in this case ST_Text, select the language bar ST, click " OK " as shown.

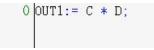
Insert		:
Name:		ОК
new002		
Туре	Language	Cancel
Program	OL ⊚ST	Help
O Function	O SFC O FBD	
O Action O Transition	OLD OFFLD	Use Reserve
⊖ Step	OVAR	Mode
○ Worksheet	O Data Type: O Description	◯ Insert ◉ Append
Datatype of return value (re	eturn value shall be as:	igned to the function name):
PLC type:		Processor type:
<independent></independent>	~	<independent></independent>

3> there is a project tree in the new procedure the POU, as shown.

```
    Libraries
    Data Types
    Logical POUs
    new002*
    new001
    Untitled
```

4> Double -click " logic the POU " under " ST_Text " , theNSelect Edit Wizard region " all FU and the FB " , anDAll functions appears function can block, as shown.

Edit Wizard		7 🖬
Group:		
<favorites< th=""><th>•</th><th>~</th></favorites<>	•	~
Name	Description	
ADD 🕈	Addition	
🖶 AND	Bitwise AND	
💼 CTD	Counter Down	
茸 CTU	Counter Up	
🔹 CTUD	Counter Up/Down	
T DIV	Division	


5 Double-click " MUL ", or dragging MUL into the editor, MUL function appears in the editing area, as shown.

```
1 (* Result as ANY_NUM *) := (* IN1 as ANY_NUM *) * (* IN2 as ANY_NUM *);
2 |
```

6> The figures were changed to green font part OUT and C and D; (user himself caNSelect the variable name, not necessarily the IN and OUT), as shown.

	1 00	UT1:= C * D;	
2	Name	Туре	Usage
1	🗆 Default		
2	С	INT	VAR
3	D	INT	VAR
4	OUT1	INT	VAR

7> Click " Make ", and "Download", then click " Debug Switch ", you caNSee the current result on the left side of the edit interface, as shown

8> selected with the mouse are three operands, the right choice to add to the Watch window, the monitor window as shown.

Variable	Value	Type	Instance	
C	0	INT	Configuration. Resource. Task. new002. C	
D	0	INT	Configuration. Resource. Task. new002. D	
OUT1	0	INT	Configuration. Resource. Task. new002. OUT1	

9 > Double-click the C and D variables in the watch window , write 5 and 3 respectively , and then click "Overwrite" as shown.

rce/Overwrite		Breakpoint
	С	Set
/alue		Reset
5		Resetall
Force Rese	et force Overwrite	Valuedisplay
Reset force list		 ○ Hexadecimal ○ Binary REAL values Width: Precision: 3 7 ☑ IEEE Format

10> in the editor window can be displayeDAnd the monitor variable state value, as shown.

Variable	Value	Type	Instance
C	5	INT	Configuration. Resource. Task. new002. C
D	3	INT	Configuration. Resource. Task. new002. D
OUT1	15	INT	Configuration. Resource. Task. new002. OUT1

At this point, a complete simple ST program is completed.

6.3.2 ST statement

In the ST programming language, a prograMConsists of statements, and statements consist of expressions and keywords. In the editing area of the structured text programming

language ST, the statements of the ST programming language can be written line by line, each statement ends with a semicolon, and multiple statements can occupy one line, and the front (non-editing area) of each line of statements is one Line number. Such as an assignment statement, which consists of a variable, an assignment keyword, anDAn expression, which is used to assign the result of the expression to the operation.

Assign the variable to the left of the keyword :

Variable name : = expression ;

The data types on both sides of the assignment keyword must be the same.

6.3.3 ST expression

An expression consists of an operanDAnDAn operator, and the operand can be ADirect quantity, a variable, or a function name. The operators that can be useDAre as follows :

Operator	Example	Example	description	priority
		value		
()	(2+3)*(4+5)	45	brackets	Most high
**	3.0**4	81.0	Power operation	
-	- 10	- 10	Find the opposite	
NOT	NOT TRUE	False	Bitwise negation	
*	10*3	30	Multiplication	
/	6/2	3	Division operation	
MOD	17 MOD 10	7	Modulo operation	
+	2+3	5	Addition	
-	4-2	2	Subtraction	
< , > , <= , >=	4>12	False	Comparison	
=	T#26h 二 T#1 d2h	True	equal	
<>	8 <>16	True	not equal	
& , AND	TRUE&FALSE	False	Boolean	
XOR	TRUE XOR FALSE	True	Boolean or	
OR	TRUE	True	Boolean or	lowest
	OR FALSE			

The operators that can be useDAre as follows

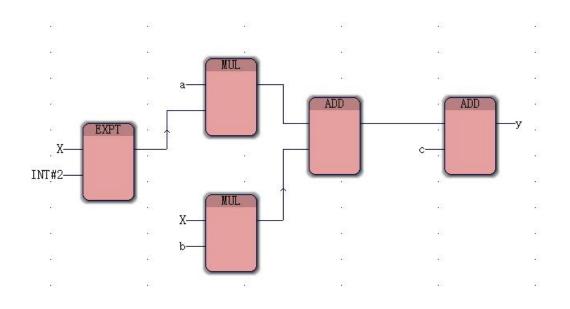
Description	Keyword	Example	description
Assignment	:=	OUT:=IN	Assign IN to OUT
operator			
return	RETURN	RETURN;	Exit the called function, function
			block or program and return to the
			statement that called it.

aalaat	15		W/han the evenession
select	IF	IF a b THEN	When the expression
		c:=1;	' a <b '="" ,="" a<="" after="" execute="" if="" is="" td="" true="">
		ELSIF a=b	statement after THEN (with a semicolon
		THEN c:=2;	as the boundary), otherwise the
		ELSE c:=3;	statement after THEN is not executed ,
		END_IF:	and continue to judge ELSIF or ELSE .
	CASE	CASE f OF	According to CASE value of the
		1:a:=3;	expression after the keyword, a group of
		2: a:=4;	statements. The variable or expression
		3: a:=2;	' f ' must be an INT data type.
		ELSE	
		a:=0;	
		END_CASE;	
cycle	FOR	FOR a:=1 TO	The variable ' a ' starts at 1 , and the
		10 BY 3 DO	statements of FOR and END_FOR are
		f[a] :=b;	executed repeatedly . For
		END_FOR;	each execution, a increases
			by 3 and ends with 10 . All values
			must have an ANY_INT data type.
	WHILE	WHILE b>1	When the value of the
		DO	expression `b>1 ' is TRUE , the statements
		b:=b/2;	of WHILE and END_WHILE are executed
		END_WHILE;	repeatedly until the value
			of 'b>1 ' is FALSE .
	REPEAT	REPEAT	The statements
		a:=a*b;	of REPEAT and END_REPEAT are executed
		UNTIL	repeatedly until the value of the
		a <10000	expression ' a<10000 ' is TRUE .
		END_REPEAT;	-
End of cycle	EXIT	FOR a:=1 TO	An exit statement can be used to
		2 DO	abort the execution of a loop statement.
		IF flag THEN	1
		EXIT;	
		END IF	
		SUM:=	
		SUM+a	
		END_FOR	
End of	•		Dutting it after the statement
	;		Putting it after the statement indicates the end of the statement, or it
statement			
			can exist separately.

ST language common keywords

6.4 FBD Function Block Diagram language programming

The function block diagram programming language is derived from the field of signal processing. It is the basis of the IEC 61499 standard. A function block diagram programming language prograMConnects various function blocks. The elements of the programming language are functions, function blocks and connectionNSymbols.


6.4.1 Create an FBD program

1) creates a Ge new post-project, right- project tree " logic of the POU " , choose Insert \rightarrow program, the pop-up dialog box, type the program name FBD_Test , select the type and programming languages, as shownure

Name:		ОК
new003		
Туре	Language	Cancel
 Program Function Function Block Action Transition 	OIL OST OSFC ●FBD OLD OFFLD	Help
○ Step ○ Worksheet	OVAR O Data Types O Description	Mode Insert Append
Datatype of return value (re	eturn value shall be assigned t	o the function name):
		¥.
PLC type:	Proce	ssortype:

2) Create a tree project FBD_Test , in editing wizard were founDADD, MUL and EXPT function blocks, will they drag FBD_TesT the editing area, we use them to complete a one dollar function quadratic function ;

 $y=ax^{2}+bx+c$, the established FBD program is shown

3) The function block EXPT completes the square operation of x , the function block MUL completes the multiplication of a and X $_2$, the other MUL completes the multiplication of b and x , the function block ADD completes the addition of ax $_2$ and bx and c , click " produce " Then "bottom" , then click " debug switch " , add the variables a, b, c, x, y to the watch window, assign the variables a, b, c, x to 3.0, 4.0, 6.0,2.0. Respectively , the program automatically calculates the result of ax $_2 + bx + c = y$, as shown

Variable	Value	Type	Instance
X	2. 0000000E+000	LREAL	Configuration. Resource. Task. new003. X
a	3.0000000E+000	LREAL	Configuration. Resource. Task. new003. a
b	4.0000000E+000	LREAL	Configuration. Resource. Task. new003. b
C	6.000000E+000	LREAL	Configuration. Resource. Task. new003. c
y	2.6000000E+001	LREAL	Configuration. Resource. Task. new003. y

	\Watch 1	Watch 2	Watch 3/	Watch 4)	Watch 5	Watch 6	Watch 7	\Watch 8)
--	----------	---------	----------	-----------	---------	---------	---------	------------

In FBD, there is no need to create additional variables in the variable worksheet, so after inserting the variables and double-clicking the variables, they appear in the variable worksheet. The FBD function block diagram programming language is similar to the LD ladder diagram programming language.

At this point, the completion of a FBD language programming.

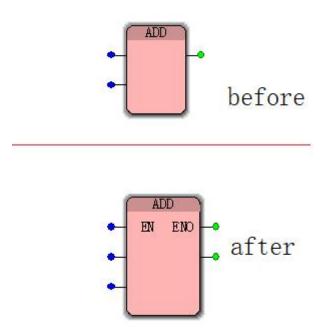
6.4.2 EN and ENO Description

1: The difference between the logic instruction with EN and ENO and without EN and ENO;

(1) When the user uses an instruction with EN and ENO, if the parameter value of the EN pin

is FALSE (0), the function defined by the instruction will not be executed, and the output value of the output pin of the instruction will not be refreshed. Conversely, if the EN pin parameter value defined by the instruction is TRUE (1), the function defined by the instruction will be executeDAnd the value of the instruction output pin will be refreshed.

(2) ENO pin output and the EN input pins consistent, ΕN pin is TRUE, ENO piNSimultaneously becomes TRUE; EN pin is FALSE, ENO piNSimultaneously becoming FALSE. When the instruction is a function block (FB), if the function block (FB) is executed, EN changes from TRUE to FALSE , the function block (FB) continues to execute, but the value of the output block of the function block (FB) does not Was refreshed.


2: How to set logic instructions with EN and ENO without EN and ENO

(1) Put the mouse under the programming interface, the menu bar will automatically add the "Object" menu, click -> " Object " -> Select " Insert Block with EN/ENO ", and later from the "Edit Wizard" The function module that is dragged out will be self- EN/ENO ; when the function is not used, the above operation can be repeated. The following figure illustrates

Q	Step/Transition	F8
oom Out		Alt+F8
	Simultaneous / Alternative Divergence	Ctrl+F8
	☑ Insert SFC Branch	Ctrl+B
		F5
	🖘 Connector/Jump	
	∗◇ Ret <u>u</u> rn	
	I ext(Comment)	
	K Contact Network	F6
	H Contact <u>R</u> ight	F7
	K Coil Right	
	₩ Contact <u>L</u> eft	Alt+F7
	u Contact Belo <u>w</u>	Ctrl+F7
	仰 Co <u>n</u> tact Above	
	H Powerrail Right	
	H Powerra <u>i</u> l Left	Ctrl+R
	៉ Insert LD Br <u>a</u> nch	Ctrl+T
	桥 Toggle Contact/Coil Properties	Shift+F7
	Duplicate FP	Ctrl+F5
_	Toggle FP Negation	Shift+F5
	Insert Blocks with EN/ENO	
-	Update Blocks with fixed FPs	
	LUse Partial Routing	
	L Connect Objects Ctrl	l+Sh <mark>if</mark> t+C

(2) The function block without EN/ENO has been called . If you want to increase the EN/ENO function, the mouse selects the programming interface. At this time, the menu bar will automatically add the "Object" menu, click -> "Object" -> select "insert with EN / ENO blocks", and theNSelect the need to add EN / ENO functional blocks, right -> select >

- update the FB / FU (E), this time with a function block are automatically added ENO EN / pin . As shown below

6.4.3 Creating a User Library

User library function: Generally, the user library is built into a function block by encapsulating it into a function block. In other projects, the same specific function is also required. The user can directly call the packaged function block without rewriting it. Shorten the program development cycle and facilitate the modular management of the program.

Create user library and call steps

1. Creating a Project User Reference (Chapter 3 3.3 <u>Creating a Project</u>) will not be repeated here.

2. In the project tree select -> Logic POU-> Right -> insert -> Function Block (E), then pop up a "Insert" dialog box, name will be inserted into the block. (This case is named My_First_FBD), select the programming language (this case is selecteDAs LD language) Click -> OK, a function block named "My_First_FBD" will be created under the logical PUO file, as shown.

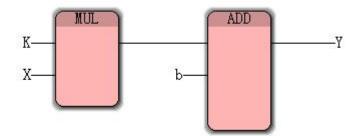
- 💭 Libraries 👔				
Data Types	2	Insert		6 ×
n Insert	Program	Name:		ок
□ r Paste Ctrl+ □ r □ t S Properties	V ST Eunction	My_First_FBD		
📋 🛛 🔁 P <u>r</u> operties		Туре	Language	Cancel
		O Program	OL	Help
	5 5 5 5	Function Generation	O.SEC b ● FBD	
	5) 	O Action	OLD OFFLD	Use Reserve
	8 8 8 8	O Step	O VAR O Data Types	Mode O Insert
	a. a.		ODescription	 Append
	<	Datatype of return value (ret	um value shall be assigned to	the function name):
	5 S	PLC type:	Proces	sortype:
		<independent></independent>	 <indep< li=""> </indep<>	endent> ~
	5 5			

3. Delete the block under POU logic, only keep the function block named My_First_FBDAnd select the block to be deleted -> right click -> delete , as shown below

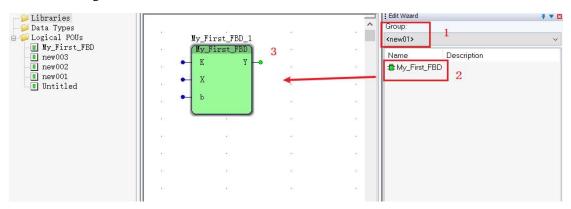
My_	Insert	
new new	<u>D</u> elete	Delete
] new	⊳ <u>C</u> ut	Ctrl+X
] Unt	Copy	Ctrl+C
r	🖹 <u>P</u> aste	Ctrl+V
	Convert LD to Fix	ed Format LD
	Properties	

4. Delete the configuration information under hardware, click -> Hardware -> Select Configuration -> Right -> Check -> Delete to retain only the physical hardware as shown below

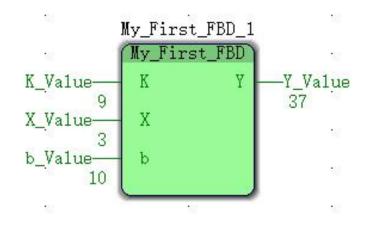
5. After the completion, the "Engineering" and "Hardware" under the project tree are as shown below.


Libraries Data Types Logical POUs My_First_FED*	Physical Hardware	
Project Hardware	🕼 Project 🔢 Hardware	

6 . After completing the above operation, start programming and packaging of the function block.


Example: Encapsulating a one-on-one function instruction;

Call a multiply instruction, an addition instruction, and theNSet the four variable names to K, X, b, Y, and select the data type as INT (in this case, select the INT type). Three variables in the K, X, b usage. Select the variable of type VAR_INPUT and Y to select VAR_OUTPUT. Click "Make" after completion without error warning. Click Save and close the project. At this point, programming and packaging are all completed. As shown below (special reminder: package


function block variables use internal variables as much as possible to improve the use of the package block)

7. Find the user library in the group and find the function block of the above package, as shown in the figure.

8 : Under the main project of the project, drag the My_First_FBD function block to the main program and set the variable name for it. The data type is INT type and the usage is internal variable (VAR). Click "Make" after compiling without error message, click "Download", then click " Cold Start ", select to open " Debug Switch ", online assignment variable K_Value =9, X_Value =3, b_Value = 10 final output result Y_Value =37. As shown in the following figure (from the color can distinguish the user library and firmware library, pink for the firmware library, blue for the user library, green for the functional blocks packaged under this project)

At this point a user library package and call has been completed.

Special Note:

The called user library "double-click" function block can view the internal programming content, but does not allow modification or adding new functions.

6.5 the LD Ladder Logic programming language

The ladder programming language is one of the oldest programming languages. The ladder diagram is derived from the logic control diagram of the electrical system. The logic diagram uses relays, contacts, coils and logic diagrams to represent the logical relationship between them. Ladder programming language graphical elements may be employed there ladder chart network, power rail, connecting wires, contacts, coils , function and other function blocks, the data type can be BOOL, BYTE, WORD , and DWORD .

6.5.1 Create a LD Program

1> After creating a project, right- project tree " logic of the POU ", choose Insert \rightarrow program, the pop-up dialog box, type the program name LD_Test, select the type and programming languages, as Figure 8-25 shown

Insert		×
Name:		ОК
new004		Ormed
Туре	Language	Cancel
Program	OL	Help
O Function	OST	
O Function Block	O SFC O FBD	
OAction		Use Reserve
O Transition	OFFLD	
⊖ Step	OVAR	Mode
O Worksheet	O Data Type:	
	ODescription	
Datatype of return value (n	eturn value shall be as:	igned to the function name):
		~
PLC type:		Processor type:
<independent></independent>	~	<independent> ~</independent>

2> Click the editing area of the MULTIPROG programming software, then click " " on the toolbar on the left side of the editing area .

3> A simple network with a ladder diagram appears in the editing area. On the left is the left

power rail 001 anDA normally open contact C000. On the right is a coil C001 and the right power rail as shown.

4> Double-click the normally open contacts C000, contact may / Coil Properties dialog box, the I / O to the address field, enter % IX0.0, represents PLC of the machine ADigital input channel, click " OK ", shown in FIG.

×

Contact / Coil Properties

Name:	Definition scope	ОК
C000 ~	Local Global	Cancel
Data Type:	Local Variable Groups:	
BOOL ~	Default 🗸	Help
Jsage:	Global Variable Groups:	
VAR_GLOBAL VAR_GLOBAL VAR_GLOBAL	🖃 🥬 Physical Hardware	
nitial value:	ia	
	System Variables	
/O address:		
%IX0.1		
Description:		
Hidden	Show all variables of worksheets	
PDD OPC Initvalue as default	Superative and anables of worksheets	
0-1-120-1		
Contact / Coil		
	e: -	

5> double -click ladder coil C001 , contact may / Coil Properties dialog box, the I / O address field, enter % QX0.0 , represents PLC a first digital output channels of the machine, click " OK " as in FIG. FIG .

Name:	Definition scope	ОК
C001	Local O Global	Cancel
Data Type:	Local Variable Groups:	
BOOL ~	Default	Help
Usage:	Global Variable Groups:	
	🖃 🤛 Physical Hardware	
initial value:	Configuration	
/O address:		
%QX0.1		
Description:		
□PDD □OPC □Hidden	Show all variables of worksheets	
Intivatue as uetau		
E mitvalue as delau		
Contact / Coil		

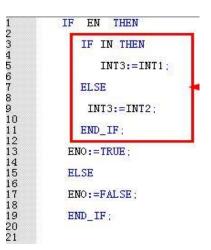
6> In LD, there is no need to create additional variables in the variable worksheet. Therefore, after inserting a ladder network and double-clicking the contacts and coils respectively, these two variables appear in the variable worksheet. You can insert a variable by right- clicking in the editing area and selecting "Variable (V)". This inserted variable must be connected to the function block pin. In the above figure, the variable working range (usage) of C000 and C001 is set to VAR GLOBAL, indicating that these two variables are global variables and can be used in other programs in this project.

At this point, a complete LD program is completed. When the contact connected to the first digital input channel % I X 0.0 is closed, the coil connected to the first digital output channel % Q X 0.0 is turned on.

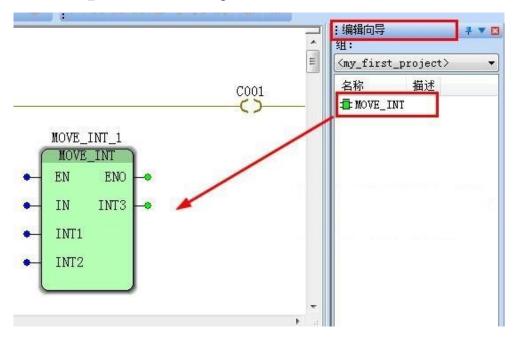
6.5.2 in LD created in a FB

Use LD programming, sometimes neeDA special function block, and editing wizard is

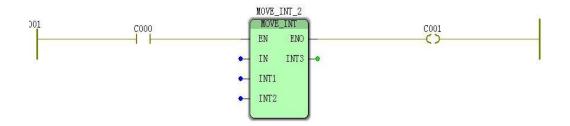
not integrated , in which case the user may LD create the users own function blocks, the following explains how LD create one of the MOVE block. Right-click on the created LD program name in the project tree and select Insert \rightarrow function block as shown


Data Types Logical POUs 2	
new Insert Ny_l Paste Ctrl+V new ≅ Properties	Program Eunction Function Block
new001 Untitled	_

Pop up ADialog box, you want to create in this dialog box FB name, and used to develop

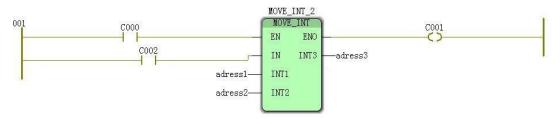

the type of programming language, here are the MOVE _INT , function blocks and ST , click OK, then enter the ST language programming of Figure Shown .

Insert		4	×
Name:		ОК	
Type	Language	Cancel	
OProgram OFunction 2	3 ⊖⊫ ⊚st	Help	
 Function Block Action Transition Step 	O SFC O FBD O LD O FFLD	Use Reserve	
O Worksheet	O Data Type: O Description	⊖ Insert	
Datatype of return value (r PLC type:		igned to the function name):	
		Processor type:	
<independent> ~</independent>		<independent></independent>	```


The MOVE function block created by has input pins EN, IN, INT1, INT2 with output pins ENO, and INT3 . This function block is used in the LD prograMCreated earlier . Using ST create the same program, to establish a first variable worksheet MOVE_INT variables used in the function block comprises a variable name, data type, pin functions return after completing ST programming interface for programming as follows as FIG illustrated

When finished, click " production " compiled by back LD editing area, in the editor wizard creates MOVE_INT function block drag LD edit area as in FIG illustrated

Connection of the following figure made by this MOVE_INT function block is as shown



 \square •Example: Controlling the start and stop of ADevice, it has two working modes, the contact " C000 " controls the start stop, and the contact " C002 " controls the operation

mode (such as different speed operation).

Equipment : C000 is started for " TRUE " device and " FALSE " is stopped C002 is " FALSE " operating mode selection " adress2 " C002 is " TRUE " operating mode selection " adress1 " ADress3 is used to monitor the current operating mode;

The final ladder diagram is shown

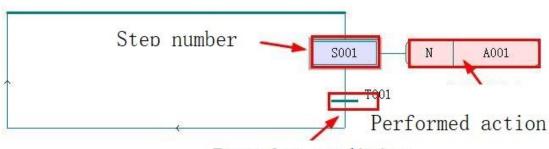
6.6 SFC Sequential Function Chart Programming Language

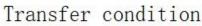
The SFC Sequential Function Chart programming language divides a complex control program into several small tasks, each of which is executed sequentially. In the SFC sequential function chart programming language, each small task is calleDA "step". The relationship between "step" and "step" is called "conversion". Each "step" carries an action, "step"., "Conversion " and "Action " are connected by "wiring ". A "step " can be associated with multiple actions. An action consists of an action body anDAn action qualifier that describes how the action is associated with the step. When the SFC step becomes active, the associateDAction is executeDAccording to the action qualifier. Actions can be either a Boolean variable or an IL, ST, LD, FBD program (called 'details'). The conversion represents the case where processing continues through the next step. If a transition becomes TRUE, the previous step is executeDAgain and the next step becomes active. The conversion can be either a Boolean variable or ADirectly connected Boolean expression written in FBD or LD. You can also edit the code to be executed in another programCalled Detail.

The collection of connected objects is calleDANSFC network. ANSFC network must have an initial step, which is the first step to be executed when the SFC POU is called . Parallel branches (executing synchronously) or selecting branches can be inserted within the SFC network .

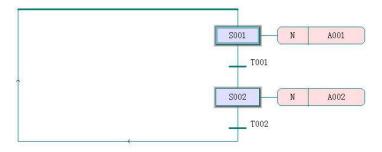
6.6.1 Creating a SFC program

Below we create a control program for traffic lights.

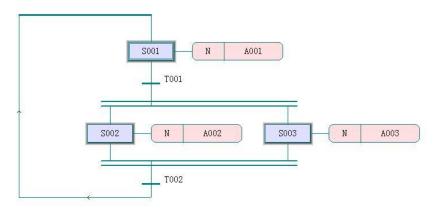

6.6.2 Creating SFC network

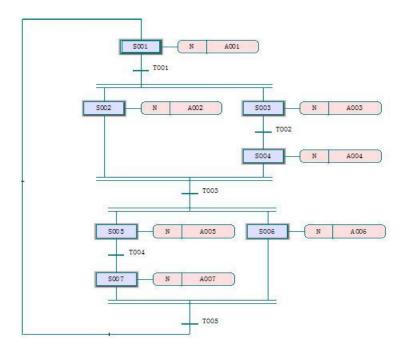

(1) Create a new project. During the creation process, the program language is SFC and the program name is TrafficLight.

Entering TrafficLight edit area, and then click on the left side of the editing area, " to create a step switch sequence " as shown.



(2) appears in the editing area a SFC of " step " S 001, "action" A001, "conversion" T001 as shown.




(3) In the above figure, each "step", "conversion" and "action" have unique names. Then, click "convert" TOO 1 in the above figure, and then click "create step conversioNSequence". in the following step adds a "step "SOO 2, as shown.

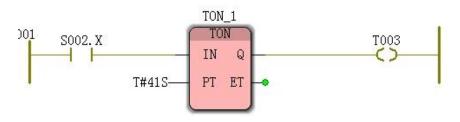
(4) Click " Step " S002, then click " Insert SFC Branch ", then insert a branch on the right side of " Step " S002, the branch has a " Step " S002, as shown

♦•Repeat the operation described on the final traffic light SFC function diagram as shown

At this point, aNSFC network is created, in which S001 is the initial step, the user can use the initialization data, such as the counter to clear the initial value and other operations, and then according to the requirements of the "step", "conversion" to write code and The setting of the property.

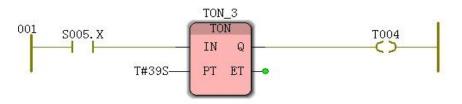
1) Conversion condition : Double-click " Convert " T 001 and select LD programming language in the pop-up dialog box.

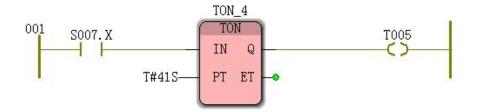
插入		
名称(近): [T001	<u>确</u> 定 取消	
类型		RKYH
 程序(£) 功能(四) 功能块(面) 动作 转換 SFC步 工作単 	○IL ○IC ○IC ○IC ○IC ○IC ○IC ○IC ○IC ○IC ○IC	#fbb (E)
近回信的繁褐类型(2): PLC类型(Y): 《独立>	(2) 並描(C) 地理報 (文) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	


2) Click OK to enter the programming of T001 , insert a network in the editing area, and double-click the variable name of C001 . The variable name of the coil is changed to T001 , as shown below.


This conversion condition is to start the SFC program because " step " S001 is the starting step

and is always 1. When the global variable C000 is set to 1, "convert" T0 01 is 1, and "step" S002 and S003 are activated.


3) Double-click " Convert " T00 3 to select the LD programming language. This conversion condition is used for timing. When " Step " S00 2 is activated for 41 seconds, " Convert " T00 3 is set to 1 to activate "Step". S005 and S006 are inserted into the following program.


4) Double-click "Convert" T002. When the LD programming language is selected, this conversion condition is used for timing. When "Step" S00 3 is activated, it starts timing. When the timing reaches 39 seconds, "Convert" T00 2 is set to 1, and "Step" is activated. S004 insert the following program

5) Double-click " Convert " T004 , select the LD programming language, insert the following program , this conversion condition is used for timing. When " Step " S00 5 is activated for 3 9 seconds, " Convert " T0 04 is set to 1 , and enter " Step " S00 7

6) Double-click "Convert" T00 5 to select the LD programming language and insert the following program . This conversion condition is used for timing. When " Step " S00 6 is activated for 41 seconds, " Convert " T0 05 is set to 1, and then jump to " Step " . " S001, so repeated.

At this point, the conversion conditions of the SFC are programmed.

action

The " action " A001 name to initialize;

The " action " A 002 name was changed to the north and south _ red light ;

The "action " A 003 name to something _ a green light ;

The " action " A 004 name to something _ yellow ;

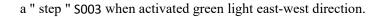
The " action " A 00 5 name to something _ a red light ;

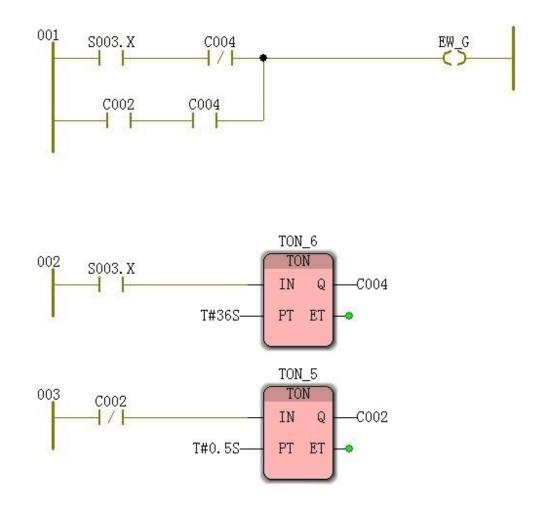
The " action " A 00 6 name was changed to the north and south _ green light ;

The " action " A 00 7 name was changed to the north and south _ yellow ;

1) Double-click "Step" S001. In the "SFC Step" dialog box that pops up, you can name "Step" and type selection. Here, select "Initial Step".

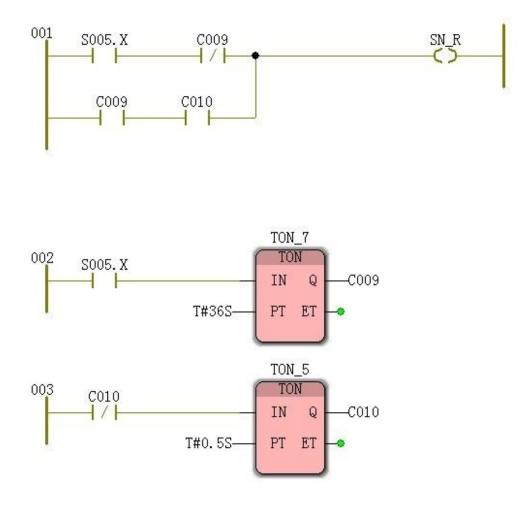
2) Double-click "Action" A001 in the "Action Properties" pop-up, select "Details", initialize the A001 name .


3) After the completion, the "action" name at this time is "initialization". The color changes from pink to green. Double-click "initialize" again. In the pop-up "insert" box, select the programming language. Select the LD language here, click "OK". ", a blank LD programming interface pops up. The user can write the initial "action" code here; select blank here.


4) Repeat steps 2~3 to modify the name of each action of A001~A007;

5) Double-click " North-South _ Red Light " to enter the programming of 'North-North _ Red Light' action , insert the following program in the editing area, where the I/O address of the coil SN_R is : $%Q \times 0.0$, indicating " step " S002 is activated when north and south The direction is red.

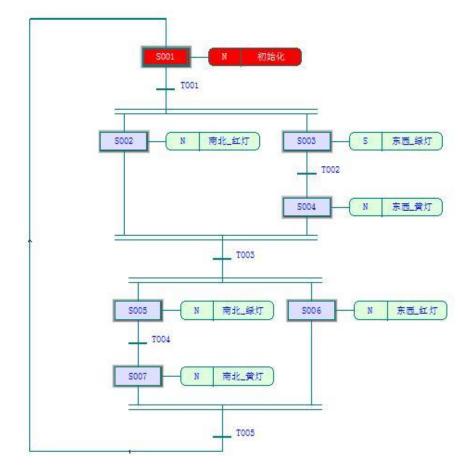
6) Double-click the " stuff _ green ' enter' things _ green ' operation programming, the coil insertion procedure in the editing area EW_G the I / O address : % Q X- 0.1 , represents



7) Double-click the " stuff _ yellow " enter 'things _ yellow' operation programming, the insertion procedure in the editing area, the coil EW_Y the I / O address : % Q X- 0.2, represents a " step " S004 activation things Directional Brightness Yellow light.

8) Double-click " North-South _ Green Light " to enter the programming of "North-South _ Green Light " action . Insert the program in the editing area . The I/O address of the coil SN_G is : %Q X 0. 3 , which means " Step " S005 is activated when the north-south direction is green. Light up.

9) Double-click the " north-south _ yellow " enter "north-south _ yellow ' operation programming, the insertion procedure in the editing area, the coil SN_Y the I / O address : % Q X- of 0. The . 4 , represents a " step " S00 . 7 activated The north and south lights are yellow.


10) Double-click the " stuff _ red " enter 'things _ red' action programmed, the following procedure is inserted in the edit area wherein the coil EW_R the I / O address : % Q X- 0.5 , represents a " step " S00 . 6 is activated The east and west lights are red.

At this point, a complete traffic light control program is completed, click " Make ", after

downloading to the PLC without error prompt , click the "Cold Start" program to start working. This program is the automatic control of the traffic lights at the simulated traffic intersection, that is, when the red light is bright in the north-south direction, it is kept for 4 1 second; the east-west direction is green, it is kept for 3 6 seconds, then it flashes for 3 seconds, then the yellow light is on for 2 seconds. The entire period is 41 seconds;

The final simulation effect is shown in the figure.

6.6.3 SFC action qualifier

The SFC action includes an action qualifier anDAn action body. The action qualifier describes how the action is associated with the step. The following action qualifiers are available.

Qualifier	description	Features
N	do not save	As long as the step is active, the action code body is
		executed or the Boolean variable is set.
R	Beyond reset	The action code body is no longer executed or the
		Boolean variable is reset. The action must be set before using
		the 'S 'qualifier.

S	Set (save)	Execute the action code ontology or set the Boolean variable. This (set) state is saved once the (associated) step becomes active. This set state can only be explicitly reset by associating the action to ADifferent step by using the 'R' qualifier.
L	Time-limited	As long as the step is active, the action code body is executed or the Boolean variable is set, but the duration can be kept for at most a period of time.
D	Delayed	After the set delay time elapses, the action code body is executed or the Boolean variable is set. As long as the step is active, the action remains active. If the time when the step is active is shorter than the set delay time, the action does not become active.
Р	pulse	WheNStep one becomes active, the action code body executes an operation cycle, or a Boolean variable sets an operation cycle.
SD	Save and delay	After the step is activated, when the set delay time elapses, the action code body is executed or the Boolean variable is saveDAnd set, even if the step becomes inactive again. This action will remain active until it is reset. If the time when the step is active is shorter than the set delay time, the action will become active anyway.
DS	Delay and save	After the step is activated, when the set delay time elapses, the action code body is executed or saved.
SL	Save and time limit	As long as the step is active, execute the action code ontology or set and save the Boolean variable in a fixed time interval. If the time when the step is active is shorter than the question at that time, the action will be active in the interval at any time. If the action is reset at this time, the action will immediately become inactive.

VII Works to Create and Configure

7.1 Creating projects

1) In this section we provide step-by-step instructions for developing, editing, and running a ladder (LD) sample program using MULTIPROG software. The development of the program is divided into several stages.

Make use project wizard will guide you through creating new projects, where the user must define the name and path, programming languages, as well as the use of project PLC type.

(1) Click "File " "New Project ";

(2) Enter "My_first_Project " in the "Project Name" box of the wizard window , as shownure 6-1; according to the project naming rules, the project name and path must not contaiNSpaces or special characters, "Project Path" input The box indicates the path saved by the project. In the initial state, the default path is set by the user. After completion, click the " $\neg \pm$ " button.

Х

Project Wizard (Step 1 of 6)

	The Project Wizard will help you to create a new project.
Constant Sector Se	You can press Back at any time to change your selections. Project Name:
白- 📾 MyConfiguration 白- 💼 MyResource	My_first_project_
E Tasks Globals IO_Config	Project Path:
16	C:\Users\Public\Documents\MULTIPROG\Projects

* Note : Special characters cannot be included in the project name and path, otherwise the project cannot be created successfully.

(3) The second step of the project wizard dialog box is shown in the figure. Name the first POU " Main ", select "Ladder (LD)" for the programming language, and click "Next"

Project Wizard	(Step 2 of 6)
----------------	---------------

	Please choose the Name and Language of the initial program Program Organisation Unit (POU).
Project Libraries Data Types Logical POUs MyPtogram MyConfiguration MyResource MyResource Tasks Globals Io_Conlig	Name of POU: Main Language O Instruction List (IL) O Structured Text (ST) O Sequence Flow Chart (SFC) O Function Block Diagram (FBD) © Ladder (LD) O Fixed Format Ladder (FFLD)

Х

(4) The third step of the project wizard is to determine the name and type of the configuration. The dialog box is shown in the figure. Fill in the name of the configuration in the "Name" input box, here keep the default "Configuration". In the Type list box, select the PLC type as eCLR and click Next. (Note! The software selects " eCLR " by default, so when you create a new project, it automatically jumps to the fourth step of the next project wizard)

Project Libraries Data Types Logical POUs MyProgram MyProgram MyProgram MyProgram MyProgram Comparison MyProgram MyProgra	请选择配置的名称和类型。 配置描述所连接PLC的特性。 配置 名称 (M): 配置 类型 (T):

(5) The fourth step of the project wizard is to select the "resources" to be used . The dialog box is as shown in the figure. "Name" to keep the default "resource (Resource) ", list box, select the "Type" " ARM_LE_GCC3 " (real PLC), (if it is using MULTIPROG owNSimulation PLC simulation , select " eCLR_Simulation ", click " Next step" continues.)

Project	Wizard	(Step	4 of 6)
---------	--------	-------	---------

	Please choose	the Resource Name and the Resource Type.
Project Libraries Logical POUs Logical POUs MyProgram Prysical Hardware MyResource MyResource Tasks	The Resource Resource Name:	describes the characteristics of the processsor type of the PLC.
Globals IO_Conlig	Туре:	ARM_LE_GCC3 ~

Х

Note: Different type selections represent different hardware platforms, because at the time of engineering, the system generates hardware-specific machine code based on the type of resource.

(6) The fifth step of the wizard is to specify the name and type of the task. The dialog box is as shown. Here still keep the default name "task (Task) ", type selection for the "CYCLIC", click "Next."

Project Project Data Types Data Updat Data Updat Data Updat Data Updat Data Updat	name and type in which your predefined POU is running.
— — Libraries — — Data Types — — — Logical POUs	
B-① MyProgram Physical Hardware D-≧ MyConfiguration D-≦ MyResource Name: Task	
Tasks Globals U_Config Type: CYC	

(7) The last step, in the dialog box popped up by the wizard , summarizes the previous settings, project name, project path, POU name, PLC type configuration, processor type, task type , as shown.

	Project Description	
	Project name:	My_first_project_
	Project Path:	C:\Users\Public\Documents\MULTIPROG\Project
Project Libraries Data Types		
 Logical POUs MyProgram 	POU name:	Main
😑 🚞 Physical Hardware	POU language:	Ladder (LD)
= ─ MyConfiguration = ─ ─ MyResource ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Configuration name:	Configuration
Globals	PLC type:	eCLR
	Resource name:	Resource
	Processor type:	ARM_LE_GCC3
	Task name:	Task
	Task type:	CYCLIC

(8) If no error is prompted, click "Finish", you can See the new generation of the project tree in the project tree window. as the picture shows. The "Logical POU" node is part of the algorithm implementation, and the "physical hardware" is associated with the actual controller type and settings.

🖃 🧊 Libraries
- 🙀 FB_FU_LIB
— 📁 Data Types
😑 🤛 Logical POUs
Main
New engineering tree

7.2 Simulation Communication Parameters

1) After the installation is complete, open the already completed projects, simulate communicationSettings (provided that the "resources" (<code>Resource</code>) Select " <code>eCLR_Simulation</code> ") , under the "Project Tree Window", right-click the "resources" to select "Set " shown in FIG.

1 D-W lasks	<u>D</u> elete	Delete
	<u>cut</u>	Ctrl+X
- 🏠 Global_ 	🗗 С <u>о</u> ру	Ctrl+C
	🐚 <u>P</u> aste	Ctrl+V
	Create <u>G</u> lobal Variables Update External <u>V</u> ariable	
	Create <u>B</u> ootproject	
	🔜 P <u>r</u> operties	
	🕻 <u>S</u> ettings	
2		and the second se

2) In the pop-up " eCLR_Simulation Resource Settings" window, select "Simulation 1" or " Simulation 2" under "Type "; under "Create Settings", select the emulation processor version model, here select " eCLR_3.0.2 "; click" OK ", again re-click" Create "button, no error program will prompt to download the simulation of PLC in.

Resource settings for eCLR_Simulation ×
Communication Type: 2 Simulation 1 ~
Version Build settings: 1 eCLR Simulation (Core: 3.0.8) Update Build settings behavior: Automatic Update Ask before Update No Update No Update
Online Update Interval: 10 ms (Range 060000) Compiler Options
Stack check ☐ Array boundary check ☐ Optimized Code 3 OK Cancel Help

7.3 Physical Communication Parameters

1) After the motion controller is connected to the power-on communication line, set the communication parameters of the PC and the controller . Under the "Project Tree Window", right-click "Resources" and select "Properties" as shown in the figure.

🖃 📁 Physical Hardware		
🖕 📁 配置 : eCLR		
🚊 🥦 Resource : eCLR_Sim	ulation*	
1 Tasks	'Resource'	×
🔲 Main : Main 🏹 🕞 Global_Variables	Name Plc/Processor Attributes Security	
IO_Configuration	2	
	3 Processor Type:	
	ARM_LE_GCC3	
	4	
	确定 取消 应用(A) 帮助	

(Note ! "In the newly established Project Wizard PLC processor type" is selected, processor type, select the "simulation eCLR_Simulation "; physical PLC processor type selection " ARM_LE_GCC3 "; for this kind of simulation engineering projects and engineering Switch between projects)

2) Right-click "Resources" under "Project Tree Window" and select "Settings" in the pop-up " ARM_LE_GCC3 Resource Settings" window to set:

Select " TCP /IP " under the communication "Type ";

Set the IP address under the "Parameter" of the communication to "192.168.1.123-p41100"

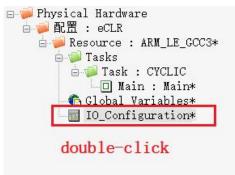
Resource settings for	or ARM_LE_GCC3	×
Communication Type: Parameter:	TCP/IP 192.168.1.123	~
Version Build settings:	eCLR (Core: 3.0.8)	~
Update Build setting O Automatic Up	odate	
Online Update Interval:	10 ms (Range 060000)	
Compiler Options	ary check	
	ОК	Cancel Help

Confirm the port of the PC , and set the network attribute of the $P\ C$ port. The IP address is: " $1\ 92\ .\ 168\ .\ 1\ .\ 122\ "$, as shown.

以太网 属性 路 共享	× Internet 协议版本 4 (TCP/IPv4) 属性
连接时使用: Intel(R) Ethernet Connection I219-LM	常规 如果网络支持此功能,则可以获取自动指派的 IP 设置。否则,你需要从网络 系统管理员处获得适当的 IP 设置。
配置(C) 此连接使用下列项目(O): 図 ■ Microsoft 网络客户端 ^	○自动获得 IP 地址(O) 更改 ● 使用下面的 IP 地址(S):
 ※ Microsoft 网络的文件和打印机共享 ※ QoS 数据句计划程序 1 ■ Internet 协议版本4 (TCP/IPv4) ■ Microsoft 网络道配器多路传送器协议 ● Microsoft LLDP 协议驱动程序 	IP 地址(I): 192.168.1.122 子网摘码(U): 255.255.0 默认网关(D):
 ☑ Internet 协议版本 6 (TCP/IPv6) ☑ ● 链路层拓扑发现响应程序 	○ 自动获得 DNS 服务器地址(B) ● 使用下面的 DNS 服务器地址(E):
安装(N)< 卸载(U) 属性(R) 描述 2 传输控制协议/Internet 协议。该协议是默认的广域网络协议,用 于在不同的相互连接的网络上通信。	首选 DNS 服务器(P): ・ ・ 备用 DNS 服务器(A): ・ ・
	□退出时验证设置(L) 高级(V)
确定取消	确定 取消

Establishing Setting Select "version ECLR (Core.3.0. 8)", as shown.

Build settings:	eCLR (Core: 3.0.8)	~
Update Build settir	gs beha∨ior:	
OAutomatic	Jpdate	
Ask before	Update	
⊖ No Update		


When finished, click "OK" again to re-click "Create" button; the program no error message before downloading to a real PLC in .

7.4 IO Configuration

When the program is executed, the controller receives the signal from the field device through I/O and sends the control command to the field device. Therefore, the user must specify the logical start address. The driver name is the driver that specifies the I/O. Otherwise, the compiler will appear. " The address of the I/O variable 'xxx ' does not match any of the I/O groups! " error message.

The following I/O driver settings are made;

1 , double-click " IO_Configuration " open the I / O configuration dialog, which is used to edit I / O configuration of the worksheet, as shown.

2 , Double-emergence " the I / O Configuration " dialog box , select " the INPUT " click "Add" shown in FIG.

/O Configuratio	n					
UT OUTPUT V	ARCONF					
/O Group	Δ.	Board / I/O Module	Range	Task	Comment	
						>
		Add	Propert		Delete	Description
			确定	取消	应用(A)	帮助

3 , In the name fill " the IN ' according to the actual needs of the I / O edit the Configuration example: We want to define the existing group 16Byte input points, the " length " field, enter 16 , represents the input address bits : BO-BI5 with 16 input bytes . as the picture shows

ame: 1 In		ОК
ask: Task		~ Cancel
_ogical addresses	1	Description
Start address:	%IB 0	
Length:	2 16	
End address:	%IB 15	
Data configuration		
Retain		
Refresh	Device	
) by task	Oriver	
Omanual	OMemory	
oard / 10 Module:		4
iEace IO		Driver Parameter
lser defined Input		
3		

4, click < driver parameters >, " in the driver name" was changed to " KWIO " shown in FIG.

Driver name:	KWIO	ОК
Parameter 1:	0	Cancel
Parameter 2:	0	Description
Parameter 3:	0	
Parameter 4:	0	
Datatype:	~	

5, repeating the above steps for the same output terminal of the set , select " the OUTPUT ", "name" click "Add" to the output " OUT ", the logical address "length" was changed to 16, and the "driver name "Modify to " KWIO " and click "OK" to complete the I/O driver setup .

Note: I/O settings are required each time the user creates a new project .

O Group	Board / I/O Module	Range	Task	Comment	

7.5 Write Ladder Code

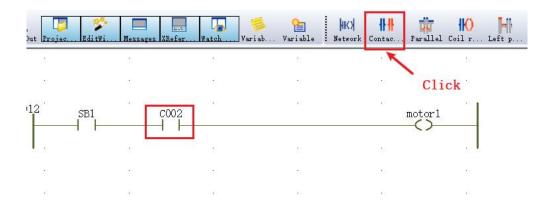
7 .5.1 Insert New Network

1) Double-click the project tree " main " project name, A blank editing window; click " network", the occurrence region editing a ladder FIG network, the left side is a normally open contact, variable The right side of the name C000 is a coil with the variable name C001.

🤪 📙 🍕 🤅 Open F Save Zoom In Zoo	a Iroje	EditWi	Messages	XRefer Watch Variab) Variable	HKX HH Network Contac	Parallel Coil r Left p.	H. Right 1
⊟ 🤛 Libraries — 🤬 FB_FU_LIB			69	10	-9	2	<u> </u>	~
Data Types	2		13	10	17		35	
I Hoin	012	ç000	10	10	N	11	C001	
1								
		3						
			12	•ve	1.5	2.1		
			0		1	12	17	
	8		+		-0		0	
	2		N. 11	12	12	8	8	
	10		10	100	12	57	25	
	8			xii	28	12	32	
	8		\$1)	10	e	0	69 69	
	8		18	20	10	8	8	
	10			10	82	58	21	
	52		28	22.5 200	12	05	22	<u> </u>
	<							> .i
Project 🖪 Hardware	●代码:.							

7 .5.2 modify variables of the property

1) Double-click the normally open contact " C000 " , appears contacts / Coil Properties dialog box, the I / O address (S) field, enter % IX0.0 , represents PLC a first digital input channel of the machine, a single click " OK " , as in FIG illustrated


1 Name:	Definition scope	3 ок
SB1	Cocal O Global Local Variable Groups:	Cancel
Data Type: BOOL	Default	Help
Jsage:	Global Variable Groups:	
VAR ✓ □ R Initial value: <u>70 address:</u> %K0.0 Description:	ETAIN B- Physical Hardware	
PDD OPC Hidden	as default	

2) Double-coil ladder C001, contact may / Coil Properties dialog box, the 1 / O address (S) field, the input field % QX0.0 represents , represents PLC a first digital output channel of the machine, Click "OK " as shown

Contact / Coil Properties		3 ×
Name: 1 motor1 ✓ Data Type: BOOL ✓ BOOL ✓ ✓ Usage: ✓ □ RETAIN Initial value: ✓ □ RETAIN I/O address: 2 ✓ %QX0.0 ✓ ✓	Definition scope ● Local Global Local Variable Groups: ■ Default Global Variable Groups: ■ Physical Hardware ■ Resource ■ Resource ■ System Variables	Cancel Help
PDD OPC Hidden Initvalue as default Contact / Coil O Contact O Coil Type:	Show all variables of worksheets	

7 .5.3 Insert new contacts

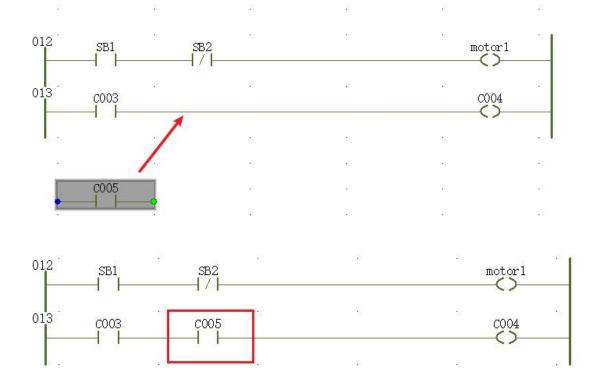
1) Click " SBI ", iNSelected cases, the contact click on the toolbar as shown, i.e. " SBI " inserted normally open contact CO2 , as shown;

2) Double-click " C002 " Modify contacts its properties shown in FIG.

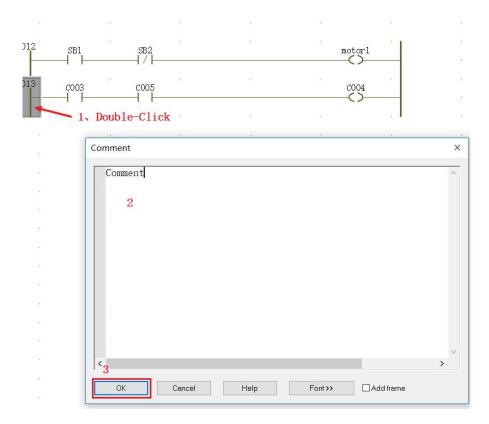
Name: 1	Definition scope	
SB2	Local O Global	ОК
Data Type:	Local Variable Groups:	Cancel
BOOL	Default 🗸	Help
Jsage:	Global Variable Groups:	
VAR Initial value: D address: 2%IX0.1 Description:	□Physical Hardware □	
PDD OPC Hidden	Show all variables of worksheets	
Contact / Coil	3	
Contact	e: <mark>-//- ~</mark>	

Similarly, the normally closed contact of the thermal relay is inserted:

7 .5.4 inserting a second LD network


1) Move the cursor to the bottom of the existing network, a single click Tools "Network" button to insert a new network , as shown.

7.5.5 line drawing anDAnnotation connection


1) Connect the lines

MULTIPROG software, provides a convenient drag and drop feature, click on the toolbar contacts " ", appears a new "normally open contact", double-click the new contact to modify its properties, and then to drag contacts black nodes can occur on the network to be connected, as shown.

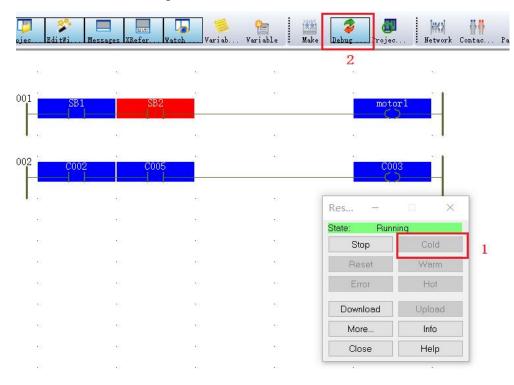
2) ladder diagraMComments

Double-click the left busbar label of the network and fill in the prograMComments in the pop-up "Comment" dialog box so that you can understand it later.

7.6 Production and compilation of projects

1) click Compile " made after" informatioNStatus area no error prompts carried out under a step simulatioNStage, if prompted, double-click on the "wrong" in the message area prompts, the software automatically jump to the wrong place, modify the finished Then click "Make", until the informatioNStatus area has no error prompt, then "Download", as shown

MULTIPROG Express - My_First_Project - [代码:Main] - 上目 Edit View Project Build Online Extras 2 1 シー File Edit View Project Build Online Extras 2 1 シー File Edit View Project Build Online Extras 2 1 シー File Edit View Project Build Online Extras 2 1 シー File Edit View Project Build Online Extras 2 1 レー File Edit View Project Build Online Extras 2 1 レー File Edit View Project Build Online Extras 2 1 レー File Edit View Project Build Online Extras 2 1 レー File Edit View Project Build Online Extras 2 1 レー File Edit View Project Build Online Extras 2 1 Depen P Save Zoom In Zoom Out Project Rdittin Messages NRefer Variable Wariab Wariab P Libbraries Network Conte		- ×
Popen P. Save Zoom In Zoom Out Projec. Edit Massages XBefer Watch Variab. Variable Make ebug Projec Network Conta		
Donn P Save Zoom In Zoom Out Projec. Editäi Messages KRefer. Watch. Variab Variable Make Jebug Projec Network Conta) 👘 c Parall	
		el Coil r
W2 FE_FU_LIB Data Types Oll2 SB1 SB2 motor1 (*Comment*)	^	Group:
		書) 書) 書)
		1111 1111 1111
		1211 1211
		1871 1871 1871
		1871 1871 1871
		:∎1 :∎1
	~	1201 1201 1201
【♥ Project 們 Hardware ● 代码	ь, К	
Collecting POUs used by RESOURCE 'Res Generating specific Code for Collecting Specific Code for Collecting Specific Code for Concernations specific Code for Code for Concernations specific Code for Code f	ksheet	Ac
0 Error(s), 0 Warning(s) 0,4	54 C:	>2GB


The engineering project created so far is basically completed .

7. 7. Program download to PLC / simulation

1) In the communication After setting, click the Toolbar " Project control dialog window ", pop-up to "Resources" panel, click download, the already completed projects downloaded to the emulator on the device, downloading process there download progress, as shown.

/ariab Variable	Make Debug	. Projec	Networl
]		1.15
23	Res –		×
10	State: Stop	l.	
	Stop	Cold	
*1	Reset	Warm	
10	Error	Hot	
2	Download	Upload	1
	More	Info	
20	Close	Help	

2) After the program "Download" is completed, click the "Cold Start" program on the resource panel to run, and the status display "Run" indicates that the user program is continuously looping; the user can debug online, monitor the status of the variable, click "Debugging on " on the toolbar, Screen effect during simulation, as shown.

87

□ • panel function introduction

 \bullet •cold start : indicates that the PLC starts executing the program from the initial state, anDAll variables are defined initial values at the start time;

 \bullet ·Warm start : Indicates that the hold type variable in the program maintains the state at the last stop, and the other variables are the initial state.

◆•Tip: Click the "Stop" button in the "Run" state to pause the operation of the PLC. All the variables in the program will remain at the moment before the stop. At this time, the "warm start" button is available. Click this button to continue the program. run.

♦ :: It is used to choose whether to save the program downloaded by the user (after the VA motion controller is powered off). Before the user program is installed, you need to click the "More" pop-up window to check the box as "Guided Project Permanent Station". Leave" and then click "Close" as shown in the figure (Note : If unchecked, the PLC will not be able to run the last downloaded program after power-on, that is, the motion controller does not save the last downloading program. Need to reinstall the program)

Outions		
Options		
Permanent as Bootpro	ject 1	
Include Sources		
Include User-Librar	ries	
Include Page-Layou	uts	
Include Backend-Co	ode	
		ad Changes
	ode e violations during Downlo	ad Changes
Always allow real-time		ad Changes
		ad Changes
Always allow real-time		ad Changes Delete
Always allow real-time	e violations during Downlo	

◆ Info: It is used to view the PLC running status, the bytes occupied by the program memory, the current scanning period setting, etc.; as shown

Info Dialog

Resource POUs Force Settings Version PLC: eCLR2. 2 for uCOS II 2. 2. 0. 20760 Firmware: 1.0 Application -Project: My_First_Project— Resource: Resource Build date: 8/7/2019 9:36:40 AM Configuration: Configuration Bootproject: 预送预弯5月12号改 Source on PLC: No PLC _____ Memory PLC state: Stop Program: 2,000,000 Bytes; 1,973,660 Bytes free (99%) Froore: None Data: 2,000,004 Bytes; 1,998,772 Bytes free (100%) Errors: None Data: 2,000,004 Bytes; 1,998,772 Bytes free (100%) Timer resolution: 1000 Hs Retain: 992 Bytes; 992 Bytes free (100%) Default task cycle: 0 ms CPU load: 0.0% Variables forced: No Logic Analyzer: Inactive Breakpoints -🗹 Reset breakpoints Close Help

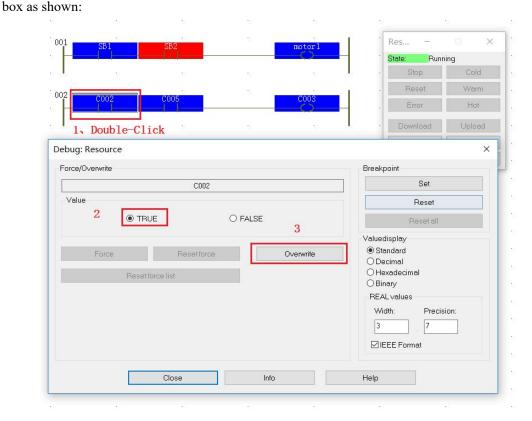
×

Note: When an abnormality occurs during PLC operation (for example, the divisor is zero), the PLC will automatically stop, and the "Status" will be displayeDAs "Error" and the background color will be red. The "Error Button" becomes available at this time. Clicking this button causes the cause of the error to be displayed in the "PLC Error" tab of the MULTIPROG message window.

VIII Online Debugging and Monitoring Procedures

8.1 force and coverage

In online mode, you can " force " or " overwrite " variables. In both cases, a new value is assigned to the corresponding variable.

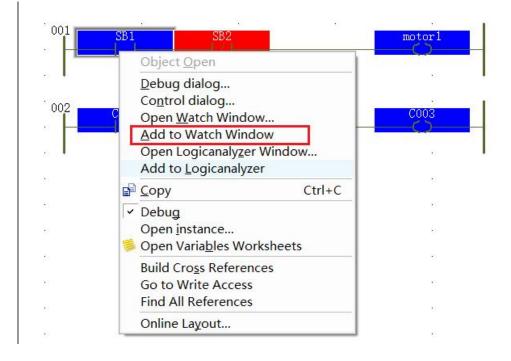

> Force: Assign a value to a variable (usually a contact or coil) . This value will remain until the reset is forced.

Solverride: A value is temporarily assigned to a variable by the user. This value will remain until the program overwrites the value with the original value in the next program loop. The necessary steps to force and override a variable are almost identical. When the PLC is running, be careful to force or override the variables. Forcing and overriding variables means executing the PLC program with forced or overwritten variable values.

Use "force and override"

1 ≻To ensure that work orders in online mode. Otherwise, press the toolbar " Debug on / off' icon:

2 Double-click "Variables" in the program to display the "Debug: Resources "dialog



3 Select the radio button "TRUE" and click on the "Force" result, the variable will be forced to "ON" and will be highlighted in red on the online work order.

8.2 variable monitor window

The Variable Watch window is a powerful tool that allows users to easily insert different variables into a list and observe their runtime behavior. Once a variable is added to the watch window, its current value can be monitored without having to open the corresponding work order. Users can focus on debugging and observing the variables that need to change . If this is not the case, please work

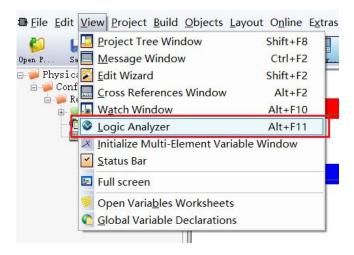
Single switch to the online mode, by pressing it to " Debug on / off " FIG subscript to. Right-click inside the work order and select " Open Watch Window " from the upper and lower menus or click the watch window button on the toolbar , in the ladder diagram, or in the variable worksheet, select the variable to be monitored right click "Add to Watch window" as shown

/ariable	Value	Type	Instance
SB1	FALSE	BOOL	Configuration. Resource. Task. main. SB1
SB2	FALSE	BOOL	Configuration. Resource. Task. main. SB2
motor1	FALSE	BOOL	Configuration. Resource. Task. main. motor1
C002	FALSE	BOOL	Configuration. Resource. Task. main. C002
C005	FALSE	BOOL	Configuration. Resource. Task. main. C005
C003	FALSE	BOOL	Configuration. Resource. Task. main. C003
<			

8.3 Cross reference window

1) Cross-reference list contains all the variables used in the current project, power can block, jump, numerals and connectors. This tool for debugging and fault isolation particularly helpful, click on the toolbar " Cross Reference Window " icon to open the cross-reference window as shown below.

D 🕼 🖶 🖄 🛸 🖻 🐚 🕪 🔍 🔍 🖵 🗖 🗖 🖉 🗆 ≶ 🔳

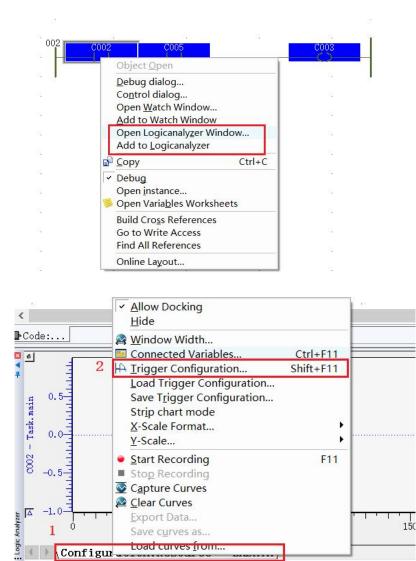

2) Place the cursor in the cross-reference window and right- click on the window background to open its context menu. Select the " establishment of cross-reference " menu item will create a cross-reference list, as shown.

	🖕 <u>安量</u> /	POU/工作单	访问	命令	I/O地址	全局;
4	notor1	main.mainV			%QX0.0	
	motor2	main.main	写	-()-	%QX0.1	Ξ
	motor2	main.main	读	- -	%QX0.1	
	motor2	main.main	读	- / -	%QX0.1	
all.	notor2	main.mainV			%QX0.1	
	PLC_ERRORS	配置.资源.Global_Varia			%MD1	配置。
8	PLC_MAX_ERRO	配置.资源.Global_Varia			%MD1	配置。
~~	•	I				+

3) Double-clicking on a variable in the cross-reference window will open the worksheet that uses this variable and highlight it. Also, if you mark a variable in the work order, the corresponding variable in the cross-reference window will also be marked. The cross-reference list contains all the variables, function blocks, jumps, labels, and connectors used in the current project. This tool is especially helpful for debugging and error isolation.

8.4 logic analyzer

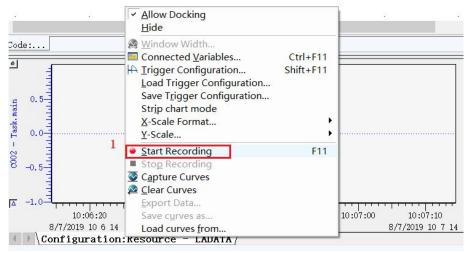
1) The logic analyzer can monitor the trend change of multiple analog quantities (such as temperature, liquid level, pressure, etc.), and caNSet the sampling time, which is convenient for users to debug. Select "Logic Analyzer" on the toolbar and pop up under the software. Logic Analyzer" as shown


2) Before using the logic analyzer, the user needs to change the attribute names of "configuration", "resource" and "task" under the "physical hardware" of the project tree to English name or pinyin. No Chinese characters can be used. The analyzer is set as shown below, as shown

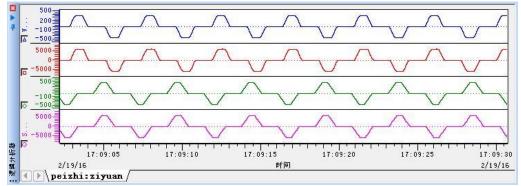
3) In the "Debug On / Off" opeNState , right click to add the " variables " to be monitoreDAnd select "Add to Logic Analyzer ". At this time, the "Logic Analyzer" displays tick marks of different colors, indicating that the user has added more different variables, the playing out of window lower left following settings

Configur

1



4) In the pop up "trigger Configuration" "check" continuous recording , and click " OK ", shown in FIG.


Continuous recording Sampling max recording period:	22 days 18 hrs 8 min 0 sec 0 ms	
		~
2. variable	ssk.main.C002	~
Data collection		
Synchronous with task: Number of recorded cycles b	Task ~	
2		
	max recording period: Trigger conditions 1. variable: Te Operator: EC 2. variable Te Data collection © Synchronous with task: Number of recorded cycles b	max. recording period: 22 days 18 hrs 8 min 0 sec 0 ms Trigger conditions 1. variable: 1. variable: Task.main.C002 Operator: EQ 2. variable Task.main.C002 Data collection Synchronous with task: Image: Synchronous with task: Task.main.C002 Number of recorded cycles before transmission (2.200): 50

5) After completing the above settings, " right click " the logic analyzer name , click " Start

Record " as shown

6) Note that when you click " Start Recording ", try not to perform other operations. Otherwise, the communication will not be smooth or crash. If you want to perform other operations, stop the recorder first and then perform other operations. The final monitoring result is as follows: The figure shows. To stop monitoring, repeat the fifth operation and select "Stop Recording".

8.6 breakpoint debugging

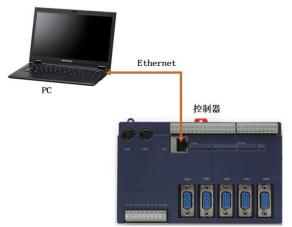
1) Like other high-level language development tools, MULTIPROG supports setting breakpoints for PLC programs for debugging programs. After setting a breakpoint, there are two ways to debug the program: single step and trace.

> Single step: The PLC executes the next instruction of the current instruction. If it is a function or a function block call, it will execute the complete call process to get the result.

▷ Tracking: The PLC executes the next instruction. If it encounters a user-defined function or a function block call, it will open the corresponding code body. The tracking process executes only one instruction at a time.

1 Turn on the debug mode;

2 Double-click the "SB1" variable in the code worksheet and click the "Settings" button in the "Debug : Resources" dialog box ; in the online worksheet, "SB1" is highlighted in orange as shown in the figure. The status of the project control dialog box will also change to "Pause [Debug] ", the background is orange, and the button will be programmeDAnd debuggeDAccordingly, as shown in the figure;


	urce						
orce/Overwr	ite				Break	point	
		SB1				Set	
Value						Reset	
	TRUE	Ē	○ FALSE			Reset all	
For	rce Reset for	Reset force rce list Close		Overwrite	St O De O He O Bit RE Wi 3	AL values	ísion:
	12	14	52	50	W	12	
001	SB1	SB2	12	motor1	,	Res –	
	SB1	SB2	N N	motor1		Res –	[Debug]
	SB1	SB2		motor1	n ei	Res –	
	SB1		1) 12 12 12			Res – State: Halt	[Debug] Go Step
-	SB1	SB2		motor1		Res – State: Halt Restart	(Debug) Go
	SB1		1) 12 13 14 14 14 14 14			Res – State: Halt Restart Reset	[Debug] Go Step Trace
	SB1					Res – State: Halt Restart Reset Error	[Debug] Go Step

2) MULTIPROG supports two standard communication methods, one is serial port and the other is Ethernet based on T CP/IP mode. To facilitate programming and debugging by programmers, MULTIPROG has two built-in analog controllers, "Simulation 1 " and "Simulation 2 ", which are all applications running on the same system as MULTIPROG. Note : If you run the simulation controller operating system is non-real-time, the simulation can only be used for functional verification prograMCan not be used to test real-time "to establish the setting" is used to define the IEC code is compiled downloaded to the controller The set of library definition files of the machine code executed in the machine may have different machine code generated by different versions, so it is generally necessary to select the latest version of the "Create Settings" file. "Online update", "interval" refers to the use of MULTIPROG the Debug mode, the value of the internal variable in the controller MULTIPROG bounDAnd the upper display update cycle.

IX Quick Start

9 .1 software and motion controller establishes a connection (Ethernet port communication)

1 : Communication connection diagram

2 : Engineering communication configuration

After the project is created, the communication is quickly configureDAs follows. (Reference: 7.1 create projects, 7.3 physical communication parameters,

<u>7.4 IO conf</u>	iguration)		
Physical Hardware Gonfiguration Resource :	: eCLR			Resource settings for ARM_LE_GCC3 X
2 Tashs	Insert Delete		Delete Ctrl+X	Communication Type: 4 TCP/IP ~
- C Global_V: - IO_Confi:		al Variables from Extern	Ctrl+C Ctrl+V	Parameter: 5 192.168.1.123-p41100
		rna <mark>l <u>V</u>ariables from Glo</mark>		Version
	 P <u>r</u> operties	broject		Build settings: 6 eCLR (Core: 3.0.8)
3	🛿 <u>S</u> ettings			Update Build settings behavior:
°		x		O Automatic Update
				O No Update
		e s		Online Update
				Interval: 10 ms (Range 060000)
				Compiler Options
		r		Stack check Array boundary check
				Optimized Code
		¥		7
1				OK. Cancel Help
1	_	_ <		
Project 🖪 Hardware		₽Code:		

Step 1: After the project is created, select "Hardware" in the project tree ;

Step 2: Select " Resource : ARM_LEGCC3 " right-click;

Step 3: Settings ;

Step 4: communication type: select " TCP / IP ";

Step 5 : IP address " 192.168.1.123-p41100 " (The IP address on the controller is not allowed to be fixed) ;

Step 6: Version establishment: Select eCLR (Core.3.0.8);

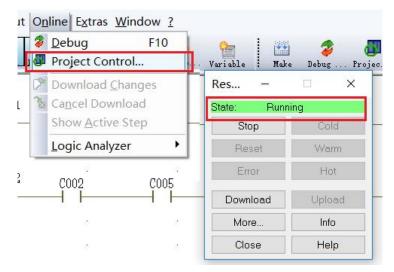
Step7: Click "OK" .

PC computer settings as shown below

Internet 协议版本 4 (TCP/IPv4) 履	<u>武性</u> 1
常规	
如果网络支持此功能,则可以获 系统管理员处获得适当的 IP 设置	^使 取自动指派的 IP 设置。否则,你需要从网络 置。
○ 自动获得 IP 地址(O)	
● 使用下面的 IP 地址(S):	2
IP 地址(I):	192 . 168 . 1 . 122
子网掩码(U):	255 . 255 . 255 . 0
默认网关(D):	
○ 自动获得 DNS 服务器地址	(B)
● 使用下面的 DNS 服务器地	址(E):
首选 DNS 服务器(P):	219 . 222 . 191 . 8
备用 DNS 服务器(A):	129.250.35.250
□退出时验证设置(L)	3 高级(V)
	确定 取消

Settings on your computer:

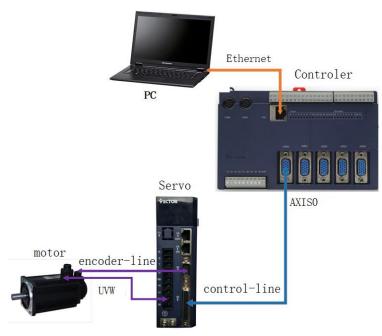
Step1: Click -> Start -> ControlPanel -> Network and Internet -> Network - >Connection "Local Area Connection" -> Properties -> Double-click " Internet Protocol Version 4 (TCP/IPV4)";


Step 2: Select "Use the following IP address (S)", $\;$ Enter IP be: 192.168.1.122 Subnet Mask: 255.255.255.0 ;

Step3: click "OK" .

3 : Check if the configuration is successful

After completing the above steps, click "Project Control Dialog", the "Resources" dialog box will pop up , the status is displayed .


Show "Run", indicating successful communicationSettings, whether the status display "Timeout", then check the PC port number is consistent with that software, as shown below .

9 .2 control control by sending the

analog servo motion (uniaxial start and stop)

1 : Communication and control connection diagram

According to the above system , the servo motor is controlled to start, run and stop by the motion controller.

2: Set the servo drive parameters

Wikoda VC type servo drive parameter setting (Please contact our staff for VB servo drive parameter setting method)

Function number	Numerical value	description
P0 2 . 01	1	Speed control mode
P 04 . 01	0	Speed is derived from the maiNSpeeDA
P 04 . 02	1	The maiNSpeeDA is derived from the
		analog AI 1
P 06 . 01	1	The DI 1 function register function is set to:
		enable drive

3 : control wire connection method

Wei Keda VC type servo drive is the CN . 3 portions pin definitions

Pin	signal	description	
37	OA+		16
38	OA-	Encoder signal amplification	
39	OB+	output	1 31
40	OB-		

12	AGND	Analog ground
14	AI1	Analog input
twenty	DI1	Servo DI1 input
four		
10,26	+ 24 V	External DC24V power
9,25	СОМ	supply , for servo DI , DO work
		use , Remarks: 25 , 26 feet
		for NPN / PNP Jumper choose
		to use

Wilcoda motion controller AXIS port part pin definition

Pin	signal	description		
6	A+		Ô	
7	A-			
8	B+	Encoder signal input		
9	В-			
5	AO+	Modulus output	US 13	
10	AGND	Analog ground		

Control line connections are as follows

Servo (CN3)			Controler(AXISO)	
37	OA+		6	A+
38	OA-		7	A-
39	OB+		8	B+
40	OB-		9	В-
12	AGND	⊲⊳	10	AGND
14	AI1		5	AO
26	+24Vjumper			
27	SW-DI			
9	COM	⊲⊳	0V	External
10	+24V		+24V	External
24	DI1	⊲⊳	Q0	Control external terminal output

Description :

1, in order to pass control of the motion controller Q 0 output, to control the servo drive is enabled , need to servo drive external DC24V power to servo DI power (if the servo internal selection is enabled, there is no need then Q 0 and DI 1);

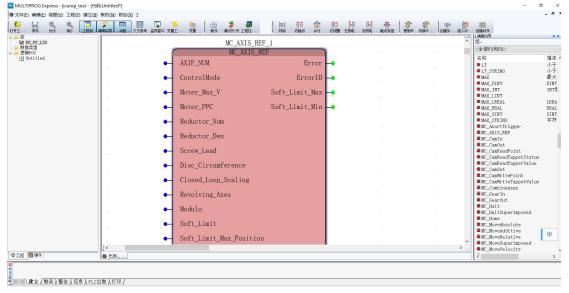
2 , DIx signal type (NPN/PNP) selection : SW-DI (27 feet) and +24V (26 feet) are shorted

to NPN;

3, in order to reduce interference, the differential signal ($OA + \rightarrow \cdot A +$) and ($OA - \rightarrow \cdot A -$), (the $OB + \rightarrow \cdot B +$) and ($OB - \rightarrow \cdot B -$) are connected with the twisted pair, the total of the housing.

4: PrograMCreation configuration and debugging

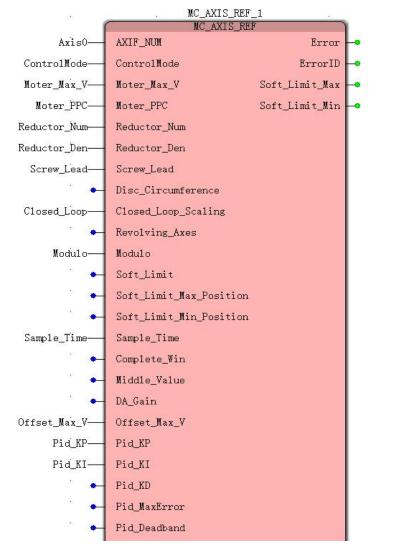
□•known


In the PC after a successful communication with the motion controller, set up the system, servo parameter setting is completed, the next start programming control servo motor run and stop; the default user before programming have read " Di Shiyi Zhang motion command " includes: <u>11.1 insert FB_FU_LIB motion control library</u> , <u>11.</u> The 2 movement instruction , <u>11.3 motion instructions basics</u> and <u>. 1 . 1 . . 4 uniaxially instructions</u>.

(1) Project creation and configuration

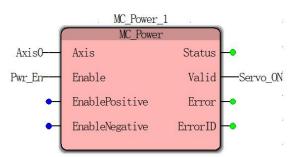
Reference "on Qi Zhang works of creation and configuration." Follow the steps to complete : 7 .1 create projects \rightarrow ·7 .3 physical communication parameters \rightarrow ·7 . 4 IO configuration, which will not be repeated herein.

(2) Writing a program


Step 1: Enter the programming interface, select the " MC _ AXIS_REF " block in the FB_FU_LI motion control library , hold down the left mouse button and drag to the programming interface, then let go, the module's properties will pop up, you need to name the module. Generally keep the default, click "OK", as shown below;

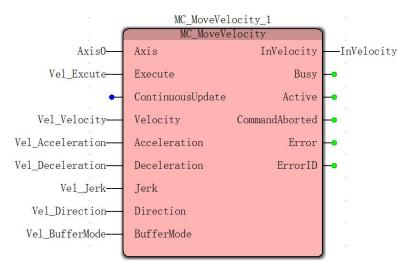
Step 2: Double-click the module input pin (blue dot), and the "Variable Properties" box will pop up to define the variable name, data type, usage, initial value, etc., as shown in the figure (here the axis AXISO is useDAs the control). Axis);

•• MULTIPROG Express - jicunqi test - [代码	:Untitled*]			- 6	x c
■ 文件(E) 编辑(E) 视图(V) 工程(P) 建立(B) 及	时象(Q) 布局(L) 联机(N) 附加(X) 窗口(W)	2			- ē ×
	۵ 🚛 🔜 🛸	Image:		右援題 左段电 古段电 論与失型 「編編局与 组. 《全部PTU和PB> 名称 金衣 王 T 王 L 王	■ U IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
◆工程 個 硬件	名称(N): AXISO 数据类型(D): USINT 用法(U): VAR □ RETAIN 引值(I): 0 I/O地址(S): 描述(E):	定义范围 ○局部(L) 全局(G) 局部支量担(V). ✓ 伊 Default 全局支量担(A). ● 和理硬件 ● 配置 ● デ resource 上層 System Variables	I	WT WT KAL KAL KAL MA NT RING サイTrigger S_REF UN NeadPoint ReadTappetStatus ReadTappetValue Set WriteTappetValue bbineAxes rIn urout	IREA REAL SINT 字符
3 ▲ > \ 建立 {错误 } 警告 } 信息 } PLC出	□PDD □ OPC □ 隐藏(X) □ 初值作为默认	□ 显示工作单的所有变量(₩) 直. □ 按组名排序			
交叉参考窗口				44,123	C: >2GB


The user caNSimply fill out the default parameters axis parameters can not be set needs to be added, according to the reference function <u>11.3.3 MC_AXIS_REF (axis parameter set)</u>, After completion of the examples herein, as the FIG illustrated ;

Variable name anDAttribute

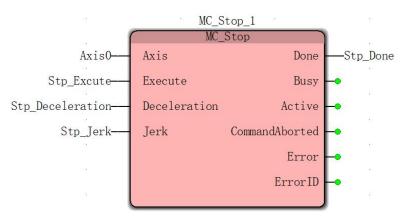
variable name	type of data	Initial value
MC_AXIS_REF_1	MC_AXIS_REF	
Axis0	USINT	0
ControlMode	INT	0
Moter_Max_V	DINT	3000
Moter_PPC	DINT	10000
Reductor_Num	LREAL	1.0
Reductor_Den	LREAL	1.0
Screw_Lead	LREAL	60.0
Closed_Loop	LREAL	1.0
Modulo	LREAL	3 60.0
Sample_Time	WORD	20
Offset_Max_V	DINT	200
Pid_KP	DINT	80
Pid_KI	DINT	0


The third step: similarly add the " MC_Power " commanDAs follows, enable the motion controller, and control the enable of the servo drive through Se rv o _ON (1/O address : %QX0.0) output, refer to <u>11.4.1 MC_Power (enable command</u>);

Variable	name	anDAttribute

variable name	type of data	Initial value	address
MC_Power_1	MC_Power		
Axis0	USINT	0	
Pwr_En	BOOL		
Servo_ON	BOOL		%QX0.0

The fourth step: similarly add " MC_MoveVelocity " (speed command module), used to control the servo motor to run at the set speed, refer to 11.4.2 MC_MoveVelocity (speed command);



Variable name anDAttribute

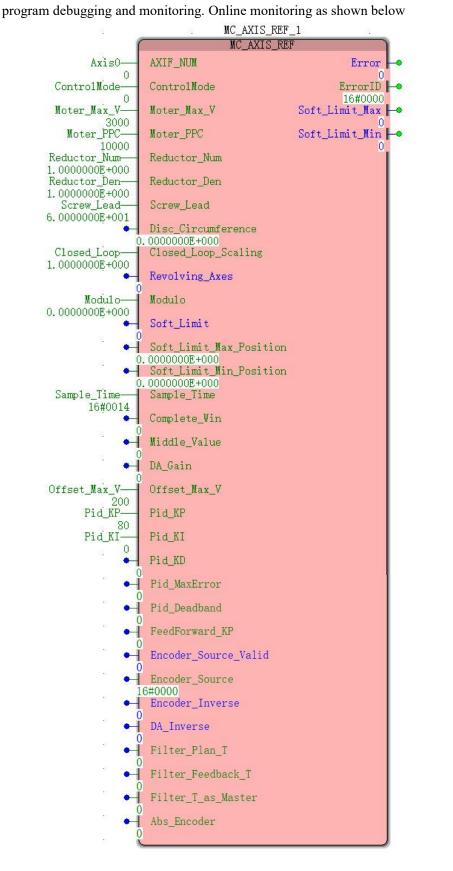
variable name	type of data	Initial value
MC_MoveVelocity_1	MC_MoveVelocity	
Axis0	USINT	0
Vel_Excute	BOOL	
Vel_Velocity	LREAL	5 00.0
Vel_Acceleration	LREAL	1000.0
Vel_Deceleration	LREAL	1000.0
Vel_Jerk	LREAL	1000.0

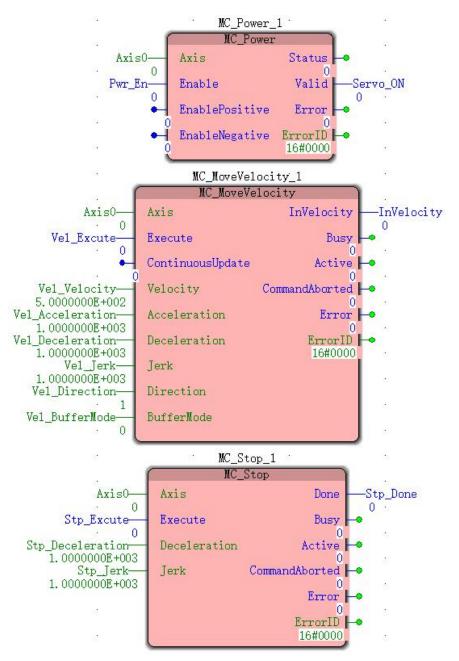
Vel_Direction	INT	1
Vel_BufferMode	INT	0
InVelocity	BOOL	

Step 5 : Add " MC_Stop " (stop command). After the module is executed, the servo motor starts to decelerate and stop. Refer to 1.1.4.10 MC (stop command);

Variable name anDAttribute

variable name	type of data	Initial value
MC_Stop_1	MC_Stop	
Stp_Excute	BOOL	
Stp_Deceleration	LREAL	1000.0
Stp_Jerk	LREAL	1000.0
Stp_Done	BOOL	

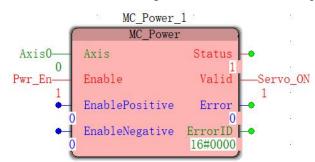

At this point, the programming is complete.


Step 6: Make a bottom-loading project. In the toolbar click on the make, the confirmation process is correct, click download programs, then click on cold start, after a cold start is successful, the status is displayeDAs a running state.

制作调试开	/关 工程控		Res.		
res –	□ ×		State	e: Runn	ing
状态: 停止	- 0			Stop	Cold
4A33- 停止 停止(S)	冷启(0)	4		Reset	Warm
复位(R)	暖启(₩)			Error	Hot
错误(E)君和	热启(T)		D	ownload	Upload
下装(D)	上传(U)			More	Info
更多(M)	信息(1)			Close	Help
关闭(C)	帮助(H)			01036	i ieip

Step 7: Program debugging. Single- click online icon Debug ...

on the toolbar can

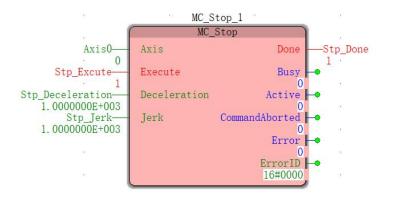


Debug 1 : Double-click the input function bit Pwr_ En to pop up the debug: Resource interface, select the value of the variable Ture , then click overwrite, Pwr_ En will change from False to Ture , as shown in the figure ;

	Pwr_En		
值 1 ● TRU	-	O FALSE	
强制(O)	复位强制(E)		覆盖(₩)

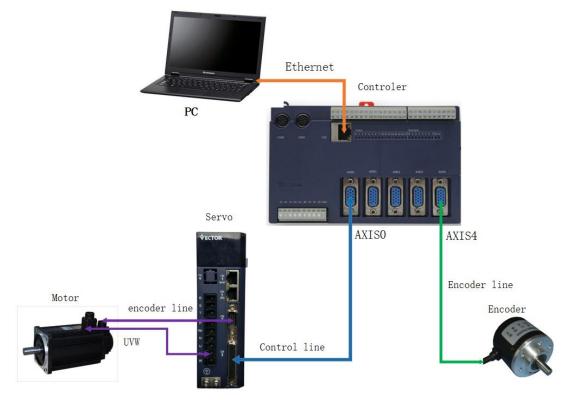
WheNServo _ON changes from False to True, it indicates that axis 0 is enabled successfully,

and the servo is enableDAt the same time through the motion controller output.


Debug 2 : Similarly, double-click Vel_ Excute to change its value from False to Ture . The controller starts sending analog commands to the servo. The motor starts to accelerate in the positive direction . When InVelocity changes from False to True , the speed reaches the preset. Value $5\ 00.0$;

2	MC_MoveVel	ocity_1	5
	MC_MoveVe	locity	
Axis0	Axis	InVelocity	InVelocity
Vel_Excute	Execute	Busy	•
-	ContinuousUpdate	Active	•
Vel_Velocity 5.0000000E+002 Vel_Acceleration 1.0000000E+003 Vel_Deceleration 1.0000000E+003 Vel_Jerk 1.0000000E+003 Vel_Direction 1 Vel_BufferMode 0	Velocity Acceleration Deceleration Jerk Direction BufferMode	CommandAborted 0 Error 0 ErrorID 16#0000	

Commissioning 3 : Double-click Vel_Velocity , in the pop-up debug window reassigned $1\ 000\ .\ 0$, click on the cover, and then re-trigger a Vel_Excute the update rate , the motor speed will follow the preset acceleration and deceleration of $5\ 00\ .\ 0$ accelerated to $1\ 000\ .\ 0$;


利/覆盖		
	Vel_Velocity	
ă		
1000.0		
1000.0	2	

Debug 4 : Double-click Stp _Excute to change its value from False to Ture . The motor will decelerate according to the preset deceleration until it stops. WheNStp _Done changes from False to True , it stops.

9 .3 controller pulsing motioNServo control (encoder driveNServo operation)

1: Communication and control connection diagram

According to the above system, the control servo motor runs an electronic gear following the spindle (encoder);

2: Set the servo drive parameters

Wikoda VC type servo drive parameter setting (Please contact our staff for VB servo drive parameter setting method)

Function number	Numerical value	description
PO 2.01	0	Position control mode
P 03 . 01	0	Position command is derived from external
		pulse
P 03 . 02	2	Command pulse form is AB pulse
P 06 . 01	1	The DI 1 function register function is set to:
		enable drive

3 : Control line and encoder line connection

Wei Keda VC type servo drive is the CN . 3 portions pin definitions

Pin	signal	description	
31	Х+		
3 2	Х-	Dulas signal import	
33	Y+	Pulse signal input	16
3 4	Y -		
37	OA+		1 31
38	OA-	Encoder signal	
39	OB+	amplification output	
40	OB-		15 44
twenty four	DI1	Servo DI1 input	
10,26	+ 24 V	External DC24V power	
9,25	СОМ	supply , for DI , DO work	
		use , Remarks: 25 , 26 feet	
		for NPN / PNP Jumper	
		choose to use	

Wilcoda motion controller AXIS port part pin definition

Pin	signal	description	
1	X+		
2	X -	Pulse signal output	
3	Y +		
4	Y -		
6	A+		000
7	A-	Encodor signal input	000
8	В+	Encoder signal input	0 15
9	В-		
13	+5	DC 5V output	
15	GND	GND	

Encoder piNSection definition

Pin	signal	description	
1	AO+		
2	AO-	Encoder	A THE DOLLARS
3	BO+	signal outputs an	14 grov
4	BO-		
5	+5V	5V input	
6	GND	GND	

Control line connection

Ser	vo (CN3)	Contro	oler(AXISO)
31	X+	1	X+
32	Х-	2	X-
33	Y+	3	Y+
34	Y-	4	Y-
37	OA+	6	A+
38	OA-	7	A-
39	OB+	8	B+
40	OB-	9	B-
26	+24V jumper		
27	SW-DI		
9	COM	0V	External
10	+24V	+24V	External
24	DI1	Q0	Control external terminal output

Encoder cable connection

enco	der		encoder 1	line(AXIS4)
1	OA+		6	A+
2	OA-		7	A-
3	OB+		8	B+
4	OB-	↓	9	В-
5	5V+	_⊲⊳	13	5V+
6	GND	_⊲⊳	15	GND

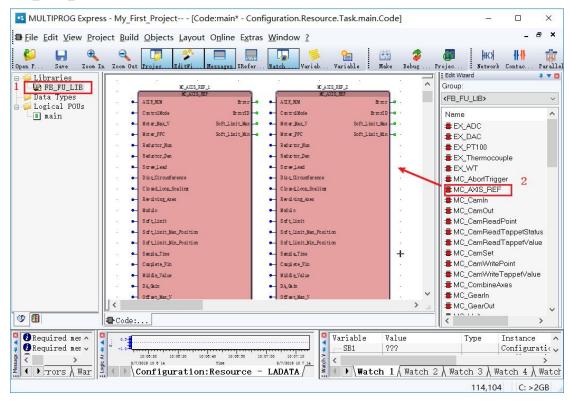
Description :

1. In order to control the servo driver enable by controlling the output of the motion controller Q 0, it is necessary to supply ADC24V power supply to the servo driver to supply power to the servo DI;

2 , DIx signal type ($\mathsf{NPN/PNP}$) selection : SW-DI (27 feet) and +24V (26 feet) are shorted to NPN ;

3. In order to reduce the interference, the differential signals ($OA+ \rightarrow A+$) and ($OA- \rightarrow A-$), ($OB+ \rightarrow B+$) and ($OB- \rightarrow B-$) and XY pulse signals are respectively connected by twisted pairs, and the outer casing is grounded.

4 : PrograMCreation and debugging Notice


After the above PC and the motion controller communicate successfully, the system is set up, the servo parameter setting is completed, the next step is to start programming to control the servo motor to run and stop; before the programming, the default user has read the "Chapter 11 Motion Command" including: <u>11.1 insert FB_FU_LIB motion control library</u>, <u>11. The 2 motion commands</u>, <u>11.3 motion instructions basics</u> and <u>.1.1.4 uniaxially instructions</u>.

(1) Project creation and configuration

Reference "on Qi Zhang works of creation and configuration." Follow the steps to complete : 7 .1 create projects \rightarrow ·7 .3 physical communication parameters \rightarrow ·7 . 4 IO configuration, which will not be repeated herein.

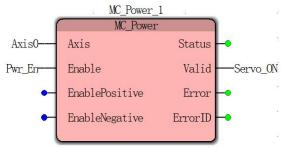
(2) Writing a program

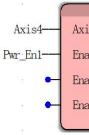
Step 1: Enter the programming interface, select the " MC _ AXIS_REF " block in the FB_FU_LIB motion control library , hold down the left mouse button and drag to the programming interface, then let go, the module's properties will pop up, you need to name the module. in general keep the default, click "OK", as shown, insert two "FIG the MC _ AXIS_REF- 'block ;

Step 2: Double-click the module input pin (blue dot), and the "Variable Properties" box will pop up to define the variable name, data type, usage, initial value, etc., as shown in the figure ;

MUI TIPROG Exe	oress - My First Proje	ct [Code:main* - C	onfiguration.Resou	rce.Task.main.Co	ode]		- 0	×
	Project Build Object		9	- contrabilitina interest	, doj		_	в×
💋 🔒 🤇	om In Zoom Out Project		. 😱 ≶	. Variable Mal		-	K) III twork Contac	. Parallel
E- Libraries LW: FB_FU_LIB Data Types E- Logical POUs main	Double-Click		C_AXIS_REF_1 MC_AXIS_REF	Error		Group: <fb_fu_lib Name</fb_fu_lib 		* * ¤
	Variable Properties					×		
	Name: Axis0 Data Type: USINT Usage:	×	Definition scope Local Local Variable Gr Default Global Variable G		×	OK Cancel Help	couple igger EF t adPoint	
	VAR Initial value: 0 V/O address: 		B-₩Physical F B-₩Configu B-₩Res L∰ \$	ration			adTappetSt adTappetVa t itePoint iteTappetVa eAxes	alue
Project Hardw							n Instanc Configu	
- sbess		Hidden	Show all variab	les of worksheets				>
ž. () rrors ∧ War		Initvalue as default	Sort by group n	ame			Watch 4	∧ Watch

The user caNSimply fill in the parameters that are not allowed by the axis parameters. You can add settings according to the function requirements. Refer to <u>11.3.3 MC_AXIS_REF (Axis</u> <u>Parameter Setting</u>). After the example is added, the following figure is shown;


	MC_AXIS_REF			. 3	MC_AXIS_REF		
Axis0	MC_AXIS_RE	f Error	-	Axis4—	AXIF_NUM	r Error	Ļ
ControlMode	Contro1Mode	ErrorID	•	Contro1Mode1	ControlNode	ErrorID	ŀ
Moter_Max_V	Moter_Max_V	Soft_Limit_Max	•	Moter_Max_V1	Moter_Max_V	Soft_Limit_Max	┝
Moter_PPC	Moter_PPC	Soft_Limit_Min	•	Moter_PPC1	Moter_PPC	Soft_Limit_Min	┝
Reductor_Num	Reductor_Num			Reductor_Num1	Reductor_Num		
Reductor_Den	Reductor_Den			Reductor_Den1	Reductor_Den		
Screw_Lead	Screw_Lead			Screw_Lead1	Screw_Lead		
1 ()	Disc_Circumference			· •	Disc_Circumference		
Closed_Loop	Closed_Loop_Scaling			Closed_Loop1	Closed_Loop_Scaling		
· · · · •	Revolving_Axes			• •	Revolving_Axes		
Modulo	Modulo			Modulo1	Modulo		
· · · · ·	Soft_Limit			· •	Soft_Limit		
· · · · ·	Soft_Limit_Max_Position			• •	Soft_Limit_Max_Position		
· · · · ·	Soft_Limit_Min_Position			· •	Soft_Limit_Min_Position		
Sample_Time	Sample_Time			Sample_Time1—	Sample_Time		
· · · · ·	Complete_Win			· •	Complete_Win		
· · · · ·	Middle_Value			. 🔶	Middle_Value		
· · · · ·	DA_Gain			. 🔶	DA_Gain		
Offset_Max_V	Offset_Max_V			Offset_Max_V1	Offset_Max_V		
Pid_KP	Pid_KP			Pid_KP1	Pid_KP		
Pid_KI	Pid_KI			Pid_KI1	Pid_KI		
1 (4	Pid_KD			•	Pid_KD		


Variable name anDAttribute

variable name	type of data	Initial value
	116	

MC_AXIS_REF_1	MC_AXIS_REF	
Axis0	USINT	0
ControlMode	INT	1
Moter_Max_V	DINT	3000
Moter_PPC	DINT	10000
Reductor_Num	LREAL	1.0
Reductor_Den	LREAL	1.0
Screw_Lead	LREAL	60.0
Closed_Loop	LREAL	1.0
Modulo	LREAL	3 60.0
Sample_Time	WORD	20
Offset_Max_V	DINT	200
Pid_KP	DINT	80
Pid_KI	DINT	0
MC_AXIS_REF_2	MC_AXIS_REF	
Axis4	USINT	4
ControlMode1	INT	1
Moter_Max_V1	DINT	3000
Moter_PPC1	DINT	10000
Reductor_Num1	LREAL	1.0
Reductor_Den1	LREAL	1.0
Screw_Lead1	LREAL	60.0
Closed_Loop1	LREAL	1.0
Modulo1	LREAL	3 60.0
Sample_Time1	WORD	20
Offset_Max_V1	DINT	200
Pid_KP1	DINT	80
Pid_KI1	DINT	0

Step3: Add Similarly two " the MC_Power " instruction as to enable the motion controller, while servo axis (the AXIS 0) by Se RV O_ON, the (the I / O Address: % QX0.0) output control causes the servo drive <u>Yes</u>, refer to <u>11.4.1 MC_Power (Enable Command</u>);

Variable name anDAttribute

VA Motion Controller Programming Manual

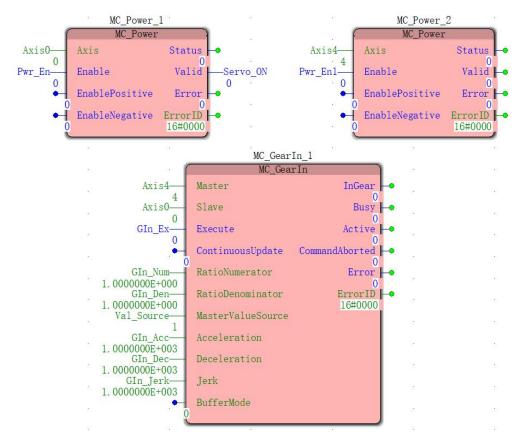
variable name	type of data	Initial value	address
MC_Power_1	MC_Power		
Axis0	USINT	0	
Pwr_En	BOOL		
Servo_ON	BOOL		%QX0.0
MC_Power_ 2	MC_Power		
Axis 4	USINT	4	
Pwr_En 1	BOOL		

Step4: similarly add " MC_ GearIn " (electronic gear coupling command), used to control the servo follower encoder axis electronic gear movement , reference 1 1.4.2 MC GearIn (electronic gear coupling command);

MC GearIn 1						
	MC_Gea	_	1			
Axis4	Master	InGear	ŀ			
Axis0	Slave	Busy	ŀ			
GIn_Ex	Execute	Active	ŀ			
· · ·	ContinuousUpdate	CommandAborted	ŀ			
GIn_Num	RatioNumerator	Error	ŀ			
GIn_Den	RatioDenominator	ErrorID	ŀ			
Val_Source	MasterValueSource					
GIn_Acc	Acceleration					
GIn_Dec	Deceleration					
GIn_Jerk	Jerk					
•	BufferMode					

Variable name anDAttribute

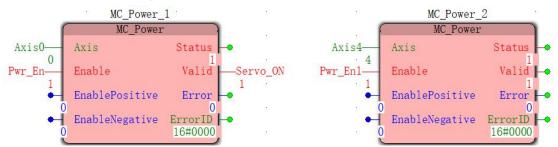
variable name	type of data	Initial value
MC_GearIn_1	MC_GearIn	
A xis4	U SINT	4
A xis0	U SINT	0
GIn_Ex	BOOL	
GIn_Num	LREAL	1.0
GIn_Den	LREAL	1.0
Val_Source	INT	1
GIn_Acc	LREAL	1000.0
GIn_Dec	LREAL	1000.0
GIn_Jerk	LREAL	1000.0

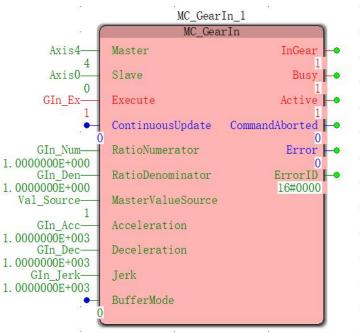

At this point, the programming is complete.

Step5: making Bottoms project. Click on the toolbar to confirm that the program is correct, click on the download program, and then click on the cold start. After the cold start is successful,

the status is displayeDAs the running status.

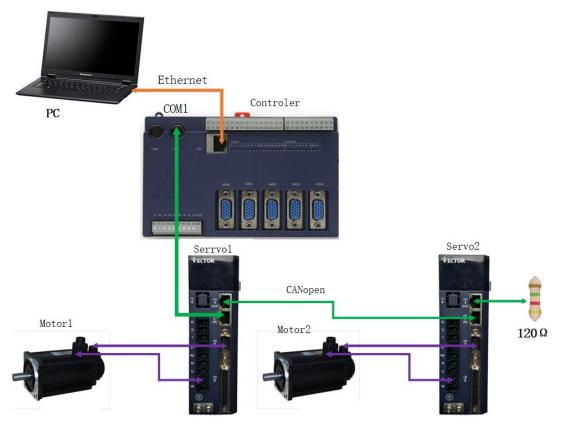
riable	Res – – × State: Stop Cold Stop Cold Reset Warm Error Hot		12			
	•		18		15	
	Res –	×			19. Al	
ę	State: Stop	4		Res –		
	Stop	Cold	5	State: Runi	ning	
3	Reset	Warm		Stop	Cold	
	Error	Hot		Reset	Warm	
	Download	Upload		Error	Hot	
	More	Info		Download	Upload	
	Close	Help		More	Info	


Step6: debugging. Single- click online icon on the toolbar can program debugging and monitoring , monitoring online as shown below ;


Debugging 1 : Double-click input function bit Pwr_ En , pop-up commissioning: Resource interface, variable values select Ture , then click on the cover, Pwr_ En will False become Ture ; the same token the Pwr_ En1 value becomes Ture ;

ue	Pwr_En	
1	TRUE O FA	LSE
Force	Resetforce	Overwrite
Res	set force list	

WheNServo _ON, the a False becomes Ture, the motion controller describeDAxes is enabled successful, and by Q 0 output while allowing the servo enabled;



Debug 2 : Similarly, double-click G In_Ex to change its value from False to True , so that controller A XISO anDAXIS 4 establish electronic gear relationship, AXIS 4 is the main axis, AXIS 0 is the slave axis, and the gear ratio is 1:1;

Commissioning 3 : At this point, turn the spindle (encoder) and the slave axis (servo axis) will follow the spindle in accordance with the 1: 1 electronic gear ratio.

9 .4 controller CANopen through inquiry mode control servo motion (two -axis motion)

1: Communication and control connection diagram

According to the above system, the motion controller controls the operation of the servo motor through the CANopen communication mode, the motor 1 moves the speed command, and the motor 2 takes the relative displacement command.

2	:	Set	the	servo	drive	parameters
---	---	-----	-----	-------	-------	------------

Wikota CANopeNServo drive 1 parameter setting

F	unction	Numerical	description
numbe	r	value	
P	08.40	80 0	CAN baud rate
Р	08.41	1	CAN node number

Servo drive 2 parameter setting

Function	Numerical	description
number	value	
P0 8 . 40	80 0	CAN baud rate
P 08 . 41	2	CAN node number

3 : CANopen network communication line connection

Pin	signal	description	
1	CANH	High signal of CAN bus	
2	CANL	Low signal of CAN bus	k, ≡∞
3	GND	Power ground	

Wei Keda the CAN Open type servo drive is the CN . 1 part of the pin definitions

Wikoda motion controller COM 1 port part pin definition

Pin	signal	description	
6	CANL	Low signal of CAN bus	$\begin{pmatrix} 8 & 7 & 6 \\ 0 & 0 & 0 \\ 5 & 4 & 3 \end{pmatrix}$
7	CANH	High signal of CAN bus	
8	GND	Power ground	

CANopen network communication line connection

Contr	Controler (COM1)			S	ervol (CN1)
6	CANL		⊳	1	CANL
7	CANH		>	2	CANH
8	GND		>	3	GND

Servol (CN1)			Sei	rvo2 (CN1)
1	CANL	<≻	1	CANL
2	CANH		2	CANH
3	GND]⊲⊳[3	GND

Se	rvo2 (CN1)	
1	CANL	
2	CANH	⊃ 120Ω ⊲⊃ resistance
3	GND	

Description :

. 1 , The CANopen next communication mode, the program uses the MC _Power (Enable command) to make the same time to the module, via the communication will enable the servo driver, so no additional access points to control the servo drive output enable ;

2 , In order to enhance CANopeNStability of communication, CANopen terminal needs to access the network bus 120 [Omega] terminal resistor.

4 : PrograMCreation and debugging

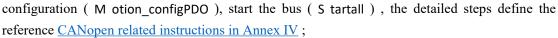
Notice

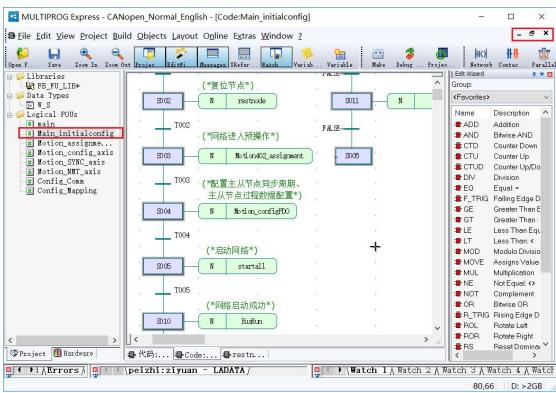
After the above PC and the motion controller communicate successfully, the system is set up, the servo parameter setting is completed, the next step is to start programming to control the servo motor to run and stop; before the programming, the default user has read "Chapter 11 Motion Command" includes: <u>11.1 insert FB_FU_LIB motion control library</u>, <u>11. The 2 motion commands</u>, <u>11.3 motion instructions basics</u> and <u>1.1.1.4 uniaxial instruction</u>."

(1) Project creation and configuration

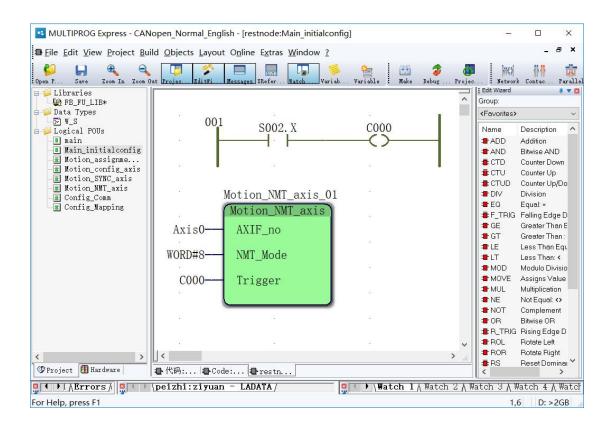
For the convenience of use, our company has equipped the user with a template project for CANopen communication configuration. Users can go to the official website to downloaDAnd directly program on the basis of the template project. (The template default configuration of a shaft, can be configured up . 1 . 6 axes, may be addeDAs required in the configuration template)

Once you have downloaded the template, extract the open, in the following figure, the reference to <u>Chapter VII of the creation and configuration of the project</u> to complete the PC to communicate with the motion controller, and reference <u>11.1 insert FB_FU_LIB motion control</u> <u>library</u> complete adding a library, which will not be repeated herein.

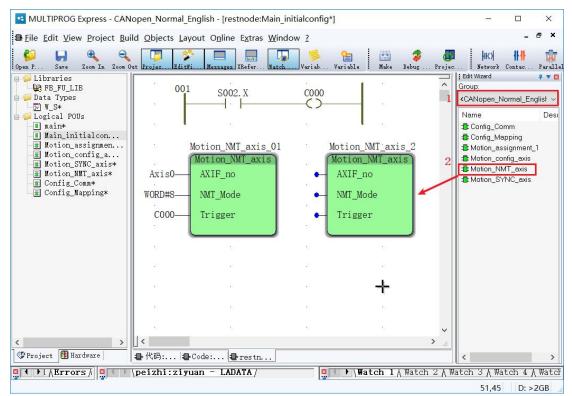

MULTIPROG Express - CAN	😬 MULTIPROG Express - CANopen_Normal_Single01 - [代码:main*]						
<mark>∎F</mark> ile <u>E</u> dit <u>V</u> iew <u>P</u> roject <u>B</u> u	ild <u>O</u> bjects <u>L</u> ayout (D <u>n</u> line E <u>x</u> tras <u>W</u> indo	ow <u>?</u>				- 8 ×
💋 📙 🕀 🤤	Dut Projec. EditWi. M	XRefer Watch	Variab Variable	Make Debug Pro	jec	HK) Network Con	tac Parallel
Libraries Libraries BFFU_LIB* Data Types				mber of CANopen	*) ^	Edit Wizard Group:	‡ ▼ 🖾
Bata Types □ I Y S	BaudRate	—Com_BaudRate	MainSite	Com_MainSite	Contract,	<favorites?< td=""><td>~</td></favorites?<>	~
🗄 🤛 Logical POUs	10	8	97 1	<u>t</u> 1		Name	Descript ^
- Main - Main_initialconfig	81			50		ADD AND	Addition Bitwise /
Motion_assignme Motion_config_axis	11	2	8.	10		I III CTD IIII CTU	Counter Counter
- I Motion_SYNC_axis - I Motion_NMT_axis - I Config_Comm			<i>2</i>	13		ECTUD DIV	Counter Division
Config_Mapping	10	×	64	20		₽ EQ	Equal: =
	11	10	22	25		F_TRIG	Falling E Greater
		2	32	25		I a GT I a LE	Greater Less Th
			82	12		₽ LT	Less Th
		+	3.5	22		MOD MOVE	Modulo Assigns
			-			H MUL	Multiplic
						I NE	Not Equ
< >	1	12	54 		>	T NOT	Complei Bitwise (
Project Hardware	□ 、 ■代码:				, di		
Library C:\Progra		outons 4000ns 5000ns buration - LADATA	Variabl Posl	e Value 777 atch 1 (Watch 2)	Ty \ Watch	peiz	tance zhi.ziyuan. > 14∖Watch
						51,50	D: >2GB


Note: The template default CANopen master station number is 1 8 and the CAN bus baud rate is 8 00 (corresponding to the CAN bus baud rate set by the servo driver P 08.40), which can be modified by modifying the initial value of the BaudRate .

(2) node configuration


Step 1: Since the template configures one axis by default (node number is 1), and two axes are used in this case, we need to manually adDAnother axis in the configuration template (node number is set to 2). Double-click "Main _initialconfig " under "Logical POU " in the project tree to open the configuration flow program of CANopen communication (you can close the window management button in the upper right corner when you need to close), as shown below.

The maiNSteps of the configuration can be seen in the figure: master-slave node reset (R estnode), master-slave node enters pre-operation mode (Motion 402 _ assignment), configures master-slave node synchronization cycle and master-slave node process data



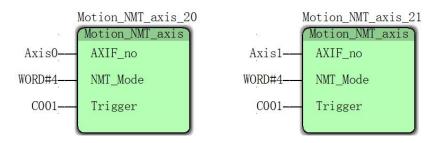
Step 2: Double-click the " R & It estnode ", to open the reset node process, there can be seen through the process module after the second package "M otion_NMT_axis ", as shown below, which defines the reference position input function <u>Annex IV . 4 . . 1 . 2 Main Reset</u> from the node, the initial value of axis number Axis 0 is 0, which is used to <u>reset</u> the master station under CAN open network and node 1 (node number = axis number + 1). Therefore, we need to adDAnother module., resetting node 2;

Step 3: In the user-defined library, find the "M otion_NMT_axis" block, hold down the left mouse button and drag it to the programming interface, then let go, then the module's properties will pop up, you need to name the module, generally keep the default., click "OK", as shown below;

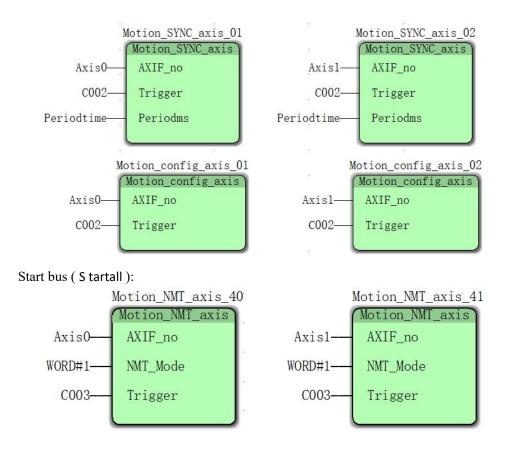
Step 4: Double-click the module input pin (blue dot), and the "Variable Properties" box will

pop up to define the variable name and data.

Type, usage, the initial value and the like; input pin bit fill in the following FIGS., Except that ADifferent number axis (axis number of fill at the Axis 1, the initial value is 1, the representative node 2), the remaining variable fill the axis 0 same ;


<u>م</u>	Motion_NMT_	axis_01	94 19		Motio	on_NMT_axis_02	
	Motion_NMT	axis	82		Mot	ion_NMT_axis	
AxisO	AXIF_no			Axis1	AXII	F_no	
WORD#8	NMT_Mode		8. 	WORD#8	NMT_	Mode	
C000	Trigger		 	<u>C000</u>	Trig	ger	
·	<u> </u>		2.4				
variable name		typ	e of data			Initial value	
Motion_NMT	_axis_02	Motion_NMT_axis					
Axis 1		USI	NT			1	
W ORD#8							
C000		BO	OL				

After filling in, click to close the window, pop up the dialog box to save it, select "Yes", as shown below, the reset node configuration (r esetnode) process of node 2 has been completed;


MULTIPROG Express			
Save cha	anges to restnode	.GB?	
	1		

Step 5: After completing the reset node process, return to "Main _initialconfig " and repeat steps 2, 3, and 4 to complete the remaining configuration for node 2, including : master-slave node enters pre-operation mode (Motion 402 _ assignment), configuration Master-slave node synchronization cycle and master-slave process data configuration ((Motion_configPDO)), start bus (S tartall). The added modules have the same axis number (Axis 1), and the remaining variables are filled in the same way as axis 0;

Pre-operation mode (Motion 402 _ assignment):

Configure the master-slave node synchronization period (M otion_configPDO):

Step 6: After completing all the process configuration, click on the production and confirm that it is correct. At this point, the CANopen communication configuration of node 2 (Axis 1) has been completed;

Step 7: Double-click the project tree "logic POU under" "the main ", return to the main program interface, you can write a program to start the movement .

(3) Writing a program

Step1: entering the "main " programming interface, in FB_FU_LI selected motion control library " the MC _ AXIS_REF- " die block, hold the left mouse drag to the programming interface, and then let go, the module will pop The properties requires the module name, generally keep the default, click "OK", as shown, insert two " the MC _ AXIS_REF- " die block ;

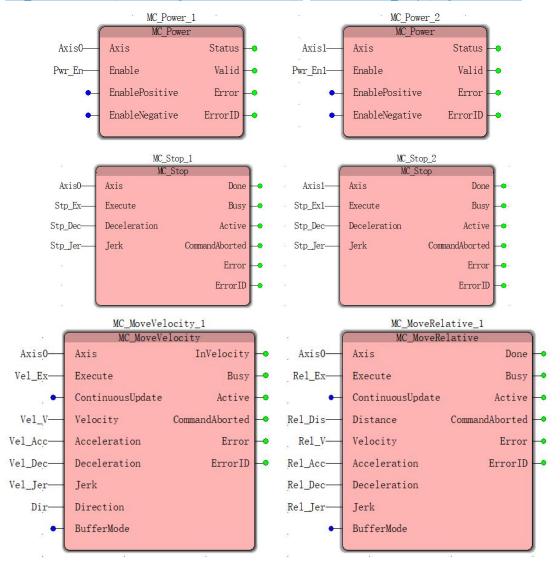
•• MULTIPROG Express - CANopen Normal English - [代码:main*]		пх
MOLTPROG Express - CANopen_Normal_English - [1049:main^]	0.00	
➡ File Edit View Project Build Objects Layout Online Extras Window ?		_ & ×
🗳 🔒 🔍 📮 🌮 🗖 🖩 🗔 ≶ 🤮 🕮 🎓	📳 ика	11 tir
:Open P Save Zoom In Zoom Out Projso EditWi Massages XRefer Watch Variab Variable : Make Debug Fro	ojec : Network Co	ntac Paralle. 🛃 🔻 🖪
	Group:	- Lined
Data Types BaudRate Com BaudRate MainSite banber	1 (FB FU LIB)	~
W_S MC_AXIS_REF_1 MC_AXIS_REF_2	-	
Logical POUs	Name	^
	EX_ADC	
	EX_DAC	
	■ EX_PT100	
The Motion SYNC axis*	EX_Thermoo	ouple
The Motion_NMT_axis* Reductor_Num Reductor_Num	2 # EX_WT	
Coning_comm*	MC ADDITING	
Config_Mapping* Screw_Lead Screw_Lead	T MC_ANI3_RL	<u> </u>
Disc_Circumfarence Disc_Circumfarence	MC CamOut	
Closed_Loop_Scaling Closed_Loop_Scaling	MC CamRea	dPoint
 Revolving_Axes Revolving_Axes 	MC_CamRea	
◆ Modulo ◆ Modulo	MC_CamRea	
- Soft Limit - Soft Limit	MC CamSet	
 Soft Limit Max Position Soft Limit Max Position 	■ MC_CamWrit	ePoint
← Soft_Limit_Min_Position ← Soft_Limit_Min_Position	■ MC_CamWrit	eTappetVa
- Sample Time - Sample Time	MC_Combine	Axes
Complete Win	📕 🖶 MC_Gearln	
← Middle Value ← Middle Value	💼 MC_GearOut	
- DA Gain	MC_Halt	
	MC_HaltSupe	erimposed
	MC_Home	
♥ Project 個 Hardware 【●代码:●Code:	MC MoveAb	solute >
UNABRIONS	∧Watch 3∧Watc	h 4 ∧ Watch
	57,61	D: >2GB

Step 2: Double-click the module input pin (blue dot), then pop up the "Variable Properties" box, define the variable name, data type, usage, initial value, etc. After filling out, click OK, as shown in the figure ;

MULTIPROG Express - CANopen_Normal_English - [代码:main*]			
Eile Edit View Project Build Objects Layout Online Extras Wi	ndow ?		- 8 ×
Open P. Swe Zoom In Zoom Out Frajec EditWi Mastages Refor Wat Ibbraries BaudRate Com_BaudRate Com_BaudRate Com_BaudRate Com_BaudRate Wat Mathematical components MC_AXIS_REF_1 Imain initial con Main initial con Main initial con Variable Properties MC_AXIS_REF Imain wint Main initial con Name: Name: Name: Imain voi on_Stigme Data Type: USINT USINT Usage: VAR_GLOBAL PRETAIN Initial value: 0 VO address: Description:	Image: Second	e I Edit Wizard Group: <fb_fu_lib> Name ■ EX_ADC X OK Cancel Help</fb_fu_lib>	Contex Paralle
Correction of the second	Show all variables of worksheets		h 4 ∧ Watch D: >2GB

The user caNSimply fill in the parameters that are not allowed by the axis parameters. You can add settings according to the function requirements. Refer to <u>11.3.3 MC_AXIS_REF (Axis</u>

	MC_AXIS_REF_1		ч а	MC_AXIS_REF_2
AxisO—	MC_AXIS_REF AXIF_NUM Error	L	Axis1—	MC_AXIS_REF
ControlMode-	ControlMode ErrorID	L.	ControlMode1	ControlMode ErrorID -•
Moter_Max_V	Moter_Max_V Soft_Limit_Max	L.	Moter_Max_V1	Moter_Max_V Soft_Limit_Max
Moter_PPC	Moter_PPC Soft_Limit_Min	L.	Moter_PPC1	Moter_PPC Soft_Limit_Min -
Reductor_Num	Reductor_Num		Reductor_Num1	Reductor_Num
Reductor_Den	Reductor_Den		Reductor_Den1	Reductor_Den
Screw_Lead	Screw_Lead		Screw_Lead1	Screw_Lead
•	Disc_Circumference		· · · ·	Disc_Circumference
Closed_Loop	Closed_Loop_Scaling		Closed_Loop1	Closed_Loop_Scaling
•	Revolving_Axes		•	Revolving_Axes
Modulo-	Modulo		Modulo1	Modulo
· •	Soft_Limit		· ·	Soft_Limit
•	Soft_Limit_Max_Position		•	Soft_Limit_Max_Position
•	Soft_Limit_Min_Position		÷	Soft_Limit_Min_Position
Sample_Time	Sample_Time		Sample_Time1	Sample_Time
•	Complete_Win) 	Complete_Win
•	Middle_Value		•	Middle_Value
•	DA_Gain		· · ·	DA_Gain
Offset_Max_V	Offset_Max_V		Offset_Max_V1	Offset_Max_V


<u>Parameter Setting</u>). After the example is added, the following figure is shown;

Variable name anDAttribute

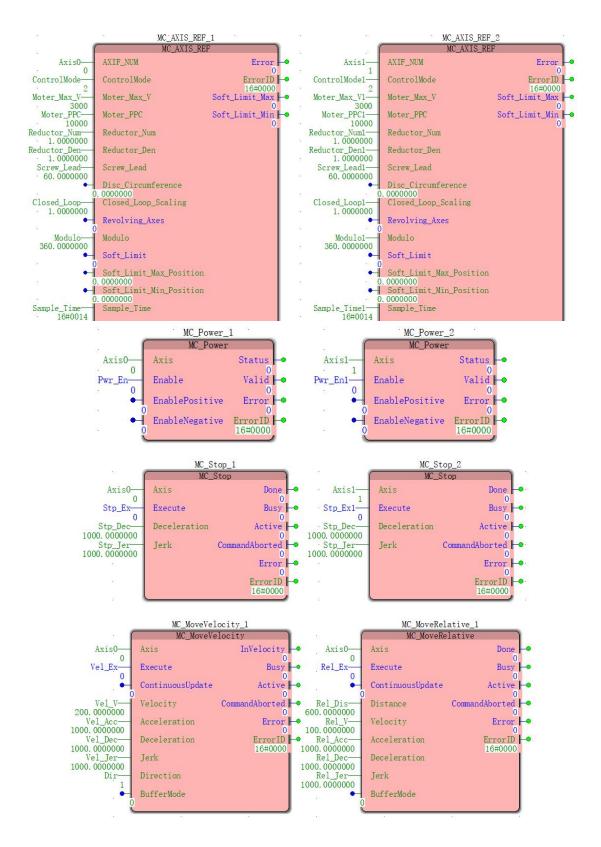
variable name	type of data	Initial value
MC_AXIS_REF_1	MC_AXIS_REF	
Axis0	USINT	0
ControlMode	INT	2
Moter_Max_V	DINT	3000
Moter_PPC	DINT	10000
Reductor_Num	LREAL	1.0
Reductor_Den	LREAL	1.0
Screw_Lead	LREAL	60.0
Closed_Loop	LREAL	1.0
Modulo	LREAL	3 60.0
Sample_Time	WORD	20
Offset_Max_V	DINT	200
MC_AXIS_REF_2	MC_AXIS_REF	
Axis 1	USINT	1
ControlMode 1	INT	2
Moter_Max_V 1	DINT	3000
Moter_PPC 1	DINT	10000
Reductor_Num1	LREAL	1.0
Reductor_Den1	LREAL	1.0
Screw_Lead 1	LREAL	60.0
Closed_Loop 1	LREAL	1.0

Modulo 1	LREAL	3 60.0
Sample_Time 1	WORD	20
Offset_Max_V 1	DINT	200

Step3: the manner describeDAbove, were added two " the MC _Power " module, two " MC_ the Stop " module, a " the MC _MoveVelocity " module, a " the MC _MoveRelative " module, variable names and their properties as shown below , the reference <u>1 1.4.1</u> <u>MC_Power (Enable Command)</u>, <u>1 1 . 4 . 2 MC_MoveVelocity (speed command)</u>, <u>1 1.4.3</u> <u>MC_MoveRelative (relative displacement command)</u>, <u>1 1 . 4 . 10 MC_Stop (stop command)</u>;

Variable name anDAttribute

variable name	type of data	Initial value
MC_Power_1	MC_Power	
Pwr_En	BOOL	
MC_Power_2	MC_Power	
Pwr_En1	BOOL	
MC_Stop_1	MC_Stop	

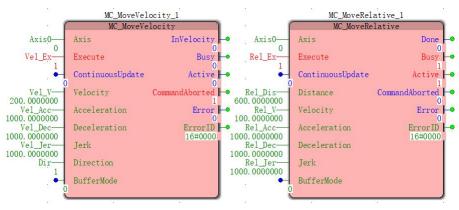

Stp_Ex	BOOL	
Stp_Dec	LREAL	1000.0
Stp_Jer	LREAL	1000.0
MC_Stop_2	MC_Stop	
Stp_Ex1	BOOL	
MC_MoveVelocity_1	MC_MoveVelocity	
Vel_Ex	BOOL	
Vel_V	LREAL	200.0
Vel_Acc	LREAL	1000.0
Vel_Dec	LREAL	1000.0
Vel_Jer	LREAL	1000.0
Dir	INT	1
MC_MoveRelative_1	MC_MoveRelative	
Rel_Ex	BOOL	
Rel_Dis	LREAL	600.0
Rel_V	LREAL	100.0
Rel_Acc	LREAL	1000.0
Rel_Dec	LREAL	1000.0
Rel_Jer	LREAL	1000.0
	*	•

At this point, the programming is complete.

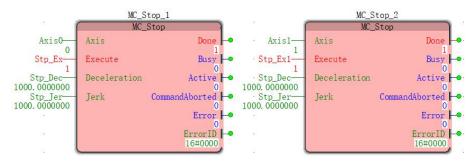
Step4: making the bottom-loading project. Click on the toolbar to make sure the program is correct, click on the download program, and then click on the cold start. After the cold start is successful, the status is displayeDAs the running status.

riabl	e Make Debi	2 Projec		8	
Г		100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	(B	82 23	10
	Res	×			
	State: Stop	4		Res	
	Stop	Cold	5	State: Run	ning
	Reset	Warm		Stop	Cold
	Error	Hot	:	Reset	Warm
3	Download	Upload		Error	Hot
	More	Info		Download	Upload
	Close	Help	10	More	Info
L				Close	Help

Step 5: program debugging. Single- click online ic $\operatorname{gram}_{\mathcal{H}/\mathcal{H}}$ on the toolbar can program debugging and monitoring. Online monitoring as shown below


Debugging 1 : Double-click input function bit Pwr_ En , pop-up commissioning: Resource interface, variable values select Ture , then click on the cover, Pwr_ En will False become Ture ; the same token the Pwr_ En1 value becomes Ture ;

	Pwr_En		
∕alue	FWI_CI		
1	_		
• TR	UE	○ FALSE	
		2	
Force	Resetforce		Overwrite
Reset	force list		


When the Val id is changed from False to Ture, the motion controller axis is successfully enabled, and the servo is enabled simultaneously by communication, as shown in the figure;

10	MC_Power_	1		MC_Power_	2
	MC_Power			MC_Power	
Axis0	Axis	Status -•	Axis1	Axis	Status -•
Pwr_En	Enable	Valid 🕂	Pwr_En1	Enable	Valid -
•	EnablePositive	Error		EnablePositive	Error
•	EnableNegative	ErrorID 16#0000		EnableNegative	ErrorID 16#0000

Commissioning 2 : Similarly, each double-click Vel of the _ex , Rel _ex , so that the value False becomes Ture , the controller will control the A XIS 0 at the speed of walking speed mode is set, the Axis . 1 will be set according to the displacement amount and speed of Take the relative displacement mode as shown ;

Debug 3 : At this point, double-click Stp _Ex to change its value from False to True , and the controller will control Axis 0 anDAxis 1 to decelerate according to the set deceleration until it stops , as shown .

X Logic Instructions

The PLC instruction encapsulates the program block, each instruction can complete certain logic and operation operations, and the instructionSet is a collection of PLC instructions. In the MULTIPROG programming, for programming convenience, these instructions are assigned to several different functional areas (or libraries). These function blocks can be listed separately in the editing wizard in MULTIPROG. This chapter will follow these differences. The division of the functional area (or library), the following instructions are introduced

≥ •1 : Function

≥ •2 : Function block

≥.'3 : Type conversion FU

≥ 4 : String FU

≥ •5 : Bit manipulation function BIT_UTIL

▷ •6 : P roConO S function

Note :

In the instruction description of the IL programming language, the LDAnd ST operators are often used, and their use is as follows :

The LD IN (* the LD represents the variable IN chargeDAccumulateDAdder *)

The ABS (* the ABS represents the accumulated value of an absolute value, sending the results accumulateDAdder *)

ST OUT (* ST represents the accumulated value is assigned to the variable OUT *)

In the instructioNSpecification of the ST programming language, " := " is an assignment operator.

1 0.1 function

A function is a program organization unit POU with multiple input parameters and one output parameter . They do not have any internal memory. Calling a function with the same value always returns the same result. The return value is a single variable, or a multi-element variable such as an array or structure. The abbreviation for function is FU.

The following functions can be used during MULTIPROG programming

- ▲ type conversion function
- \blacktriangle numerical function
- \blacktriangle arithmetic operation function
- ▲ Bit Boolean function
- ▲ bit string function
- ▲ Select computing function
- ▲ Comparative computing function
- ▲ string function

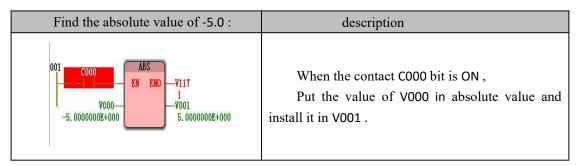
Instructions contained in the function (in the Edit Wizard, select " Features " from the drop-down list)

1 /		1	1
name	name	name	name
ABS	DIV_T_R	MAX	ROL
ACOS	EQ	MIN	ROR
ADD	EXP	MOD	SEL
ADD_T_T	EXPT	MOVE	SHL
AND	GE	MUL	SHR
ASIN	GT	MUL_T_AI	SIN
ATAN	LE	MUL_T_AN	SORT
COS	LIMIT	MUL_T_R	SUB
DIV	LN	NE	SUB_T_T
DIV_T_AI	LOG	NOT	TAN
DIV_T_AN	LT	OR	XOR
DIV_T_AI	LOG	NOT	TAN

In the following LDAnd FBD instruction description, only when the input pin EN is 1 when the command is active , when the instruction is executed successfully, the output pin ENO set to 1, otherwise the pin ENO set 0

10.1.1 ABS (absolute value instruction)

IL programming language	LD, FBD programming language	
Function: ABS instruction is used to find the absolute value of negative number		
LD IN	ABS	
ABS	← EN ENO →	

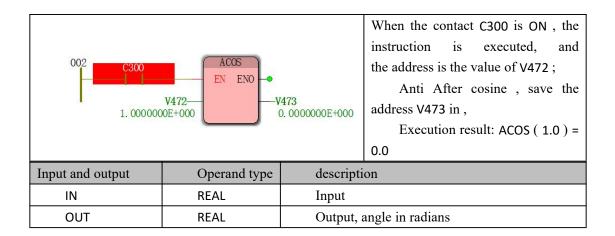

ST OUT		
ST	programming	
language		
OUT:=AE	3S (IN)	
Note : IL	Note : IL, ST language programming needs to insert variables IN and OUT or use constants	

the current POU variable worksheet

数据 Data type processed by ABS instruction

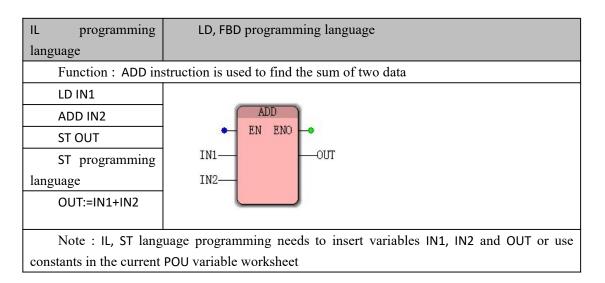
Input and output	Operand type	description
IN	ANY_NUM	Input
OUT	ANY_NUM	Output

program demonstration



10.1.2 ACOS (anti-cosine instruction)

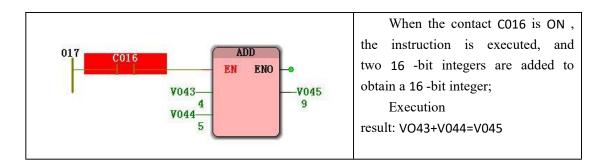
IL	programming	LD, FBD programming language	
langu	lage		
]	Function : ACOS instruction is used to find the inverse cosine of the input value		
	LD IN	ACOS	
	ACOS	• EN ENO •	
	ST OUT	IN-OUT	
	ST programming		
langu	lage		
	OUT:=ACOS (IN)		
]	Note : IL, ST language programming needs to insert variables IN and OUT or use		
const	constants in the current POU variable worksheet		


> ACOS instruction processing data types

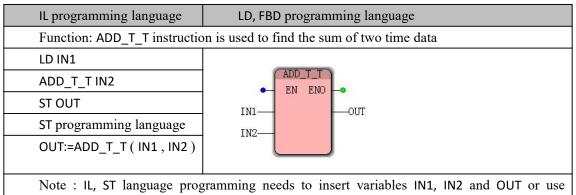
Find the inverse cosine of 1.0 :	description
---	-------------

program demonstration

10.1.3 ADD (Additional Instruction)



Data type processed by ADD instruction


Input and output	Operand type	description
IN1	ANY_NUM	Addend
IN2	ANY_NUM	Addend
OUT	ANY_NUM	And: OUT=IN1+IN2

program demonstration

Find the value of the integer 4 plus 5	description

10.1.4 ADD_T_T (Time Addition Instruction)

constants in the current POU variable worksheet

> ADD_T_T instruction processing data types

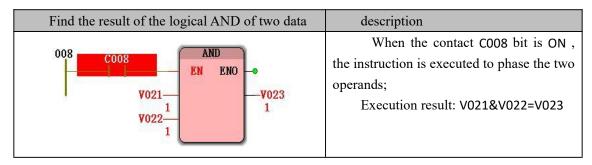
	1	8 71
Input and output	type of data	description
IN1	TIME	Addend
IN2	TIME	Addend
OUT	TIME	And, OUT=IN1+IN2

program demonstration

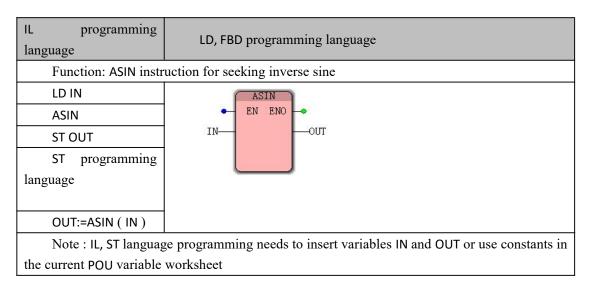
Find the value of T#1s+T#50ms	description
002 C001 V002 0.050 V004 1.050 V004 1.050	When C001 is ON , the instruction is executed, and the time data types are added to be added; Execution result: V002+V003=V004

10.1.5 AND (Logic and Instruction)

IL prog	ramming	LD, FBD programming language	
language			
Function:	Function: AND instruction is used for the logical AND operation of two data		
LD IN1			


	AND IN2
	ST OUT
ST	programming
lan	guage
	OUT:=IN1&IN2
	Note · II ST langua

Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use constants in the current POU variable worksheet


Data type processed	by AND mistraction	
Input and output	Operand type	description
IN1	ANY_BIT	Data 1
IN 2	ANY_BIT	Data 2
	ANY_BIT	Result :
		IN1=0 , IN2=0, OUT=0;
OUT		IN1=0 , IN2=1, OUT=0;
		IN1=1, IN2=0, OUT=0;
		IN1=1, IN2=1, OUT=1;

Data type processed by AND instruction

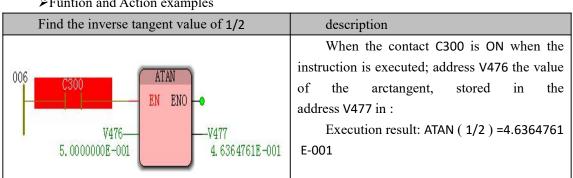
program demonstration

10.1.6 ASIN (anti-sinusoidal command)

Input and output	type of data	description
IN	REAL	Input
OUT	REAL	Output, angle in radians

> ASIN instruction processing data types

program demonstration

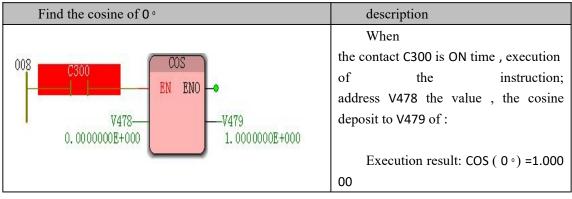

Find the inverse sine of 1.0	description
004 C301 EN ENO V474 1. 0000000E+000 V475 1. 5707963E+000	When the contact C301 is ON when this instruction is executed, the address V474 the value of anti after sine , is stored in address V475 in : Execution result: ASIN (1.0) =1.570 7 9763

10.1.7 ATAN (Arc Tangent Command)

IL programming language	LD, FBD programming language				
Function: ATAN instruction	Function: ATAN instruction is used to find the inverse tangent				
LD IN					
ATAN	ATAN EN ENO				
ST OUT					
ST programming					
language					
OUT:=ATAN (IN)					
Note : IL, ST language programming needs to insert variables IN and OUT or use					
constants in the current POU variable worksheet					

> ATAN instruction processing data type

Input and output	type of data	description
IN	REAL	Input
OUT	REAL	Output, angle in radians


10.1.8 COS (cosine command)

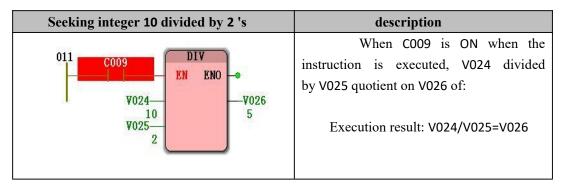
IL programming	LD, FBD programming language		
language			
Function: OS comm	and is used to find the cosine of the input value		
LD IN			
COS	• EN ENO		
ST OUT			
ST programming	INOUT		
language			
OUT:=COS (IN)			
Note : IL, ST language programming needs to insert variables IN and OUT or use constants in			
the current POU variable worksheet			

≻Data type processed by	COS instruction
JI I J	

Input	and	type of data	description
output			
IN		REAL	Input, the angle is expressed in radians
OUT		REAL	Output

➢ Function and Action examples

10.1.9 DIV (Division Instruction)


IL	programming	LD, FBD programming language	
langu	age		
]	Function: DIV inst	ruction for division operation	
I	LD IN1		
[DIV IN2	DIV	
9	ST OUT	• EN ENO •	

ST programming		
language		
OUT:=IN1/IN		
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use		
constants in the current POU variable worksheet		

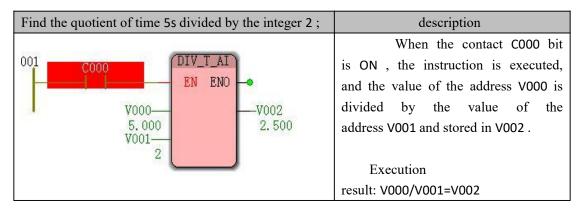
Data type processed by DIV instruction

Input and output	Operand type	description
IN1	ANY_NUM	Divisor
IN2	ANY_NUM	divisor
OUT	ANY_NUM	Business

program demonstration

10.1.10 DIV_T_AI (division (time divided by an

integer) instruction)


IL programming language	LD, FBD programming language	
Function: DIV_T_AI instruction is used to divide time by integer operation		
LD IN1	(DIV_T_AI)	
DIV_T_AI IN2	• EN ENO •	
ST OUT	IN1OUT	
ST programming language		
OUT:=DIV_T_AI (IN1 , IN2)	IN2—	
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use		
constants in the current POU variable worksheet		

DIV	T_AI	instruction	processing	data type
-----	------	-------------	------------	-----------

Input and type of data description

output		
IN1	TIME	Divisor
IN2	ANY_INT	divisor
OUT	TIME	Business

program demonstration

10.1.11 DIV_T_AN (division (time divided by an integer, a

real number) command)

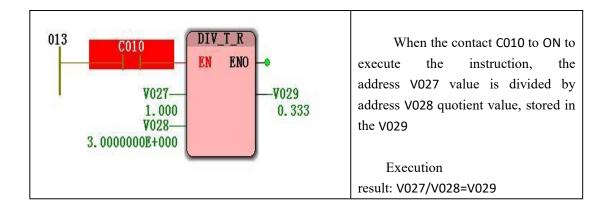
IL programming language	LD, FBD programming language	
Function: DIV_T_AN instruction is used to divide time by integer or real operation		
LD IN1		
DIV_T_AN IN2	DIV_T_AN	
ST OUT	• EN ENO	
ST programming language	IN1OUT	
OUT:=DIV_T_AN (IN1, IN2)	IN2	
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use		
constants in the current POU variable worksheet		

Input and output	Operand type	description
IN1	TIME	Divisor
IN2	ANY_NUM	divisor
OUT	TIME	Business

program demonstration

Find the quotient of time 2s divided by the integer 2;	description
002 C001 V003 2.000 V004 2.0000000E+000 V004 2.0000000E+000	When the contact C001 to the ON, execution of the instruction, the address V003 value by dividing the address V004 provider, stored in the V005 address; Execution result: V003/V004=V005

10.1.12 DIV_T_ R (division (time divided by real


number) instruction)

IL	programming	LD, FBD programming language
language		
Function: The DIV_T_R instruction is used to divide the time by the real number operation.		
LD IN1		(DIV_T_R)
DIV TR IN2		• EN ENO •
ST OUT		IN1OUT
ST program	nming language	IN2
OUT:=DIV_	T_R(IN1,IN2)]]
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use		
constants in the current POU variable worksheet		

b div_t _R instruction processing data types

Input and	Operand type	description
output		
IN1	TIME	Divisor
IN2	REAL	divisor
OUT	TIME	Business

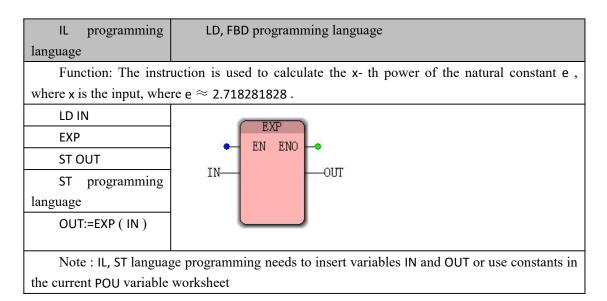
Find the time 1s divided by the number of floating	description
point 3.0 :	

10.1.13 EQ (equal to the instruction)

IL programming	LD, FBD programming language	
language		
Function: EQ comma	nd is used to judge whether two numbers are equal	
LD IN1	EQ	
EO IN2	• EN ENO	
ST OUT	IN1—OUT	
ST programming	IN2	
language		
OUT:=IN1=IN2		
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use		
constants in the current POU variable worksheet		

	Data type processed by EQ instruction			
	Input	and	Operand type	description
ou	ıtput			
	IN1		ELEMENTARY	Data 1
	IN2		ELEMENTARY	Data 2
	OUT		BOOL	Output
				The two numbers are equal and TRUE;
				The two numbers are not equal
				anDAre FALSE

Data type processed by	EQ instruction
------------------------	----------------


program demonstration

Compare the values	in the two addresses;	description
1	,	1

020 C019 V051 V051 V052 12 V052 12	When the contact C019 is ON , the instruction is executed; the magnitudes of the values of the two addresses V051 and V052 are compared , and if they are equal, V053 outputs 1 .
--	---

10.1.14 EXP (exponential function instruction of natural

number e)

Data type processed by the EXP instruction

Input and output	Operand type	description
IN	REAL	index
OUT	REAL	The results, E of IN power

Find the value of e ² :	description
014 C011 EN ENO V030 2. 0000000E+000 V031 7. 3890561E+000	When the contact C011 is ON , the instruction is executed, wherein the value in the address V030 is the power of X ;
	Execution result: The value of $e^{v_{030}}$ is stored in V031;

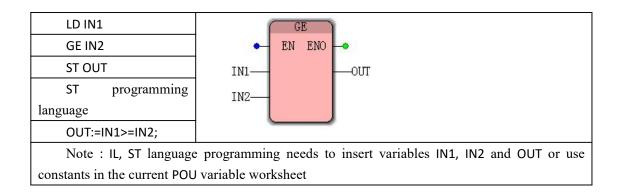
10.1.15 EXPT of (a power of (X to Y -th

power) instruction)

IL programming language	LD, FBD programming language		
Function: The EXPT instru	action is used to calculate the Y power of X, where X is the first input		
and Y is the second input.			
LD IN1	EXPT		
EXP IN2	• EN ENO		
ST OUT			
ST programming			
language	IN2—		
OUT:=EXPT(IN1,IN2)			
Note : IL, ST language programming needs to insert variables IN and OUT or use constants in			

the current POU variable worksheet

EXPT of instruction processing data types


	Input and output	Operand type	description
	IN1	ANY_REAL	Cardinal number
	IN2	ANY_NUM	index
	OUT	REAL	As a result, the IN2 power of IN1

≻Funtion and action examples

Find the value of the 2nd power of 3 :	description
021 C020 EXPT EN ENO V076- 3. 0000000E+000 V077- 2. 0000000E+000	When the contact C020 is ON , the instruction is executed, with V076 as the base, V077 is the index, and the result of the operation exists V056;
	Result of execution: V076 v077=V056

10.1.16 GE (greater than or equal to the command)

IL	programming	LD, FBD programming language		
language				
Function: GE instruction for comparing two values, when the first input is greater than or				
equal to the first time two, the output is 1, the other is 0.				

数据 Data type processed by GE instruction

Input and output	type of data	description
IN1	ANY	First input
IN2	ANY	Second input
OUT	BOOL	As a result, when IN1 >= IN2, OUT is 1

program demonstration

Compare the size of the two V010 and V011 addresses:	description
V011 addresses. 005 C004 EN ENO V010 5. 0000000E+000 V011 4. 0000000E+000	When the contact C004 is 0N , the instruction is executed; the value of the V010 value and the V011 value are compared; when the value in the V010 address is greater than or equal to V011, the output V012 is 1; Execution result: V010>V011=V012=1

10.1.17 GT (greater than instruction)

IL	programming	LD, FBD programming language			
language					
Function	Function: The GT instruction is used to compare the size of two values. When the first input is				
greater than	greater than the second, the output is 1 and the others are 0.				
LD IN1		(CT)			
GT IN2		EN ENO			

ST OU	Т
ST	programming
language	
OUT:=	IN1>IN2
Note	· II ST language

Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use constants in the current POU variable worksheet

Data type processed by GT instruction

Input and output	type of data	description
IN1	ANY	First input
IN2	ANY	Second input
OUT	BOOL	As a result, when IN1 > IN2 , OUT is 1

program demonstration

	Compare	the	size	of	description
th	e two V010 and V	/011 address	es:		
	003	V006- V007-4	ND - V008 0		When the contact C002 is ON , the instruction is executed. When the value of the address V006 is greater than the value of the address V007 , V008 is V 006.

10.1.18 LE (less than or equal to the instruction)

IL programmin	g LD, FBD program	LD, FBD programming language		
language				
Function: The LE i	nstruction is used to com	pare the size of two values. When the first input		
is less than or equal to	he second one, the output	t is 1 and the others are 0.		
LD IN1				
LE IN2	• EN E	NO 🗕		
ST OUT	IN1—	оит		
ST programmin	g _{IN2}			
language				
OUT:=IN1<=IN2				
Note : IL, ST lang	uage programming need	ls to insert variables IN1, IN2 and OUT or use		
constants in the current	POU variable worksheet			
►Data type processed by LE instruction				
Input and output	type of data	description		
IN1	ANY	First input		

IN2	ANY	Second input
OUT	BOOL	result
		When IN1<=IN2, OUT is 1
		When IN1>IN2 , OUT is 0;

≻program demonstration

Compare V480 and V481 in value	description
010 V480 1.000000E+000 V481 5.000000E+000 V481 1	When the contact C300 is ON , the instruction is executed; When the address V480 is smaller than the address V481 the value , V482 output is 1 : When the address V480 is a value greater than equal to the address V481 the value , V482 output is 0 : Execution result: 1.0<5.0 output 1

10.1.19 LIMIT (limit selection instruction)

IL programming language	LD, FBD programming language			
Function: The LIMIT instruction is used to limit the input value to the interval determined				
by the maximum and minimum va	lues.			
LD IN1				
LIMIT IN , IN2				
ST OUT				
ST programming language	• IN			
OUT:= LIMIT (IN1 , IN,				
IN2)	• MX			

Note : IL, ST language programming needs to insert variables IN, IN1, IN2 and OUT or use constants in the current POU variable worksheet

>LIMIT instruction processing data type

Input	and	Operand type	description
output			
IN1		ANY_INT	Minimum value
IN		ANY_INT	input value
IN2		ANY_INT	Maximum
OUT		ANY	output value
			When IN1 <= (the
			IN) <= IN2 when , OUT = the IN;
			When IN <in1 ,="" out="IN1;</td"></in1>
			When IN>IN2, OUT=IN2;

Selected	from	the	selection	description
number output	5-9 betwe	en integ	ger	
	₩483 ₩484 ₩485 7 ₩485 9	LIMIT EN ENO MUN IN MX	▼486 7	When the contact C300 is ON when performing the instruct ion ; Input value IN in the MN ~ MX between output IN , When IN is greater than equal to MX when the output MX; When IN is less than equal to MN output MN: Execution result: 5<7 <9 output 1

10.1.20 LN (Natural Logarithmic Instruction)

IL programming	LD, FBD programming language			
language				
Function: The LN instruction is used to calculate the natural logarithm of the input.				
LD IN				
LN	• EN ENO			
ST OUT				
ST programming				
language				
OUT:=LN (IN)				
Note : IL, ST language programming needs to insert variables IN and OUT or use constants in				
the current POU variable worksheet				

>Data type processed by LN instruction

Input and output	type of data	description
IN	REAL	input value
OUT	REAL	Result, OUT = LOG e IN

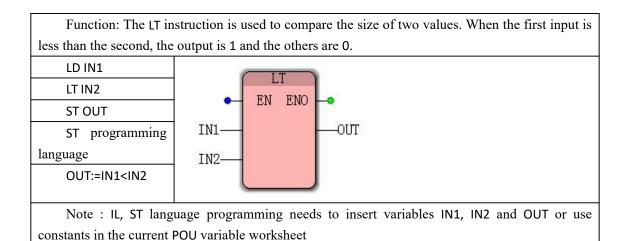
Seeking to \log_{e^2} is the value of	description
8 8	1

016	LN EN ENO	When the contact C300 is ON when this instruction is executed, where V 487 is the index;
¥487— 2.0000000E+000		Execution of Results : $\log_{\epsilon}^{2} = 6.9314718E-001$

10.1.21 LOG (Logarithmic Instruction)

IL programming	LD, FBD programming language	
language		
Function: The LOG of	command is used to calculate the base 10 logarithm of the input.	
LD IN		
LOG	• EN ENO	
ST OUT		
ST programming	IN1OUT	
language		
OUT:=LOG (IN)		
Note : IL, ST language programming needs to insert variables IN and OUT or use constants in		
the current POU variable worksheet		

►Data type processed by LOG instruction


Input and output	Type of data	description
IN	REAL	input value
OUT	REAL	As a result, OUT = LOG10IN=Ig (IN)

≻Funtion and Action examples

On the logging log 10 ¹⁰⁰ Value	description
018 V489 V489 1.0000000E+002 V490 2.000000E+000	When the contact C300 is ON when performing the instruction; Where the value of address V489 is an index Execution result: log 10 100 = 2.0

10.1.22 LT (less than instruction)

IL programming	LD, FBD programming language
language	

>Data type processed by LI instruction				
Input output	and	Operand type	description	
IN1		ANY	First input	
IN2		ANY	Second input	
			Result :	
OU T	OU T BOOL	BOOL	When $IN1 < IN2$, OUT is 1;	
			When IN1 >= IN2 , OUT is 0;	

>Data type processed by LT instruction

≻Funtion and Action examples

Comparative V491 (10.0)	description
and V492 (100.0) of the value	
021 C300 V491 V491 1.0000000E+001 V492 1.0000000E+002 1	When the contact is ON when the instruction is executed, when the address V491 is a value smaller than V492 the value , the address V493 the output 1
	Execution result: 10.0< 100.0 =
	V493 output 1

10.1.23 MAX (Maximum Instruction)

IL	programming	LD, FBD programming language		
language				
Functio	on: The MAX instr	uction is used to determine the maximum value of two values.		
LD IN1		ШАХ		
MAX IN	12			
ST OUT				
ST	programming	IN1OUT		
language		IN2		

OUT:=MAX (IN1 , IN2)	
Note : IL, ST language	programming needs to insert variables IN1, IN2 and OUT or use
constants in the current POU v	variable worksheet

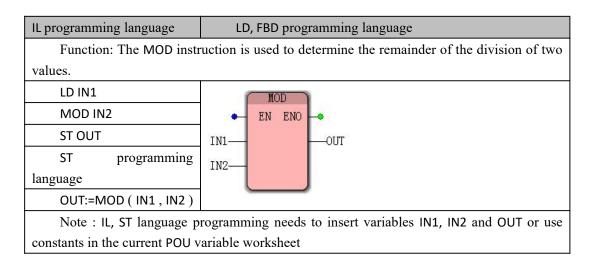
►Data type processed by MAX instruction

Input and output	type of data	description
IN1	ANY_NUM	First input
IN2	ANY_NUM	Second input
OUT	ANY	Result :
		When IN1 <= IN2 , OU T is IN2;
		When $IN1 \ge IN2$, OUT is IN1;

≻Funtion and Action examples

Integer 7	and	10	output	description
the largest value				
024	V4947 V495 10	MAX EN ENO	-• V496 10	When the contact is ON , the execution of the instruction, comparing the address V494 and V495 the value, the greater the output there is an address V496 in: Execution result : 10>7 output 10

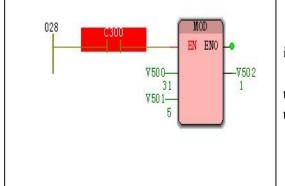
10.1.24 MIN (minimum instruction)


IL programming	LD, FBD programming language				
language					
Function: The instruction	on is used to determine the minimum of two values.				
LD IN1	MIN				
MIN IN2	• EN ENO •				
ST OUT	IN1OUT				
ST programming	IN2				
language					
OUT:=MIN (IN1, IN2)					
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use					
constants in the current POU variable worksheet					

J I I	•	
Input and output	type of data	description
IN1	ANY_NUM	First input
IN2	ANY_NUM	Second input
OUT	ANY	Result :

	When IN1 <= IN2, OUT is IN1;
	When IN1 >= IN2 , OUT is IN2;

An integer of 5 to 10 output the most small in value	description
026 V497- V497- V499 5 V499 5	WhenthecontactisON,theinstructionisexecutedtocomparethevaluesoftheaddressesV497andV498.Thelargeroutput exists in the addressV499 : </td


10.1.25 MOD (modulo instruction)

► Data type processed by MOD instruction

Input	and	type	of	description
output		data		
IN1		ANY_IN ⁻	Г	Divisor
IN2	IN2		Г	divisor
OUT		ANY_INT		As a result, the remainder of IN1 divided by IN2

Find	the	value	of	the	remainder	description
of the integ	ger 31	divided	l by !	5.		

When the contact C300 is ON time , the instruction is executed;

The address of the V500 is divided by the V501 the value of the remainder is stored in the address V502 in

Execution result: 31/5 remainder is 1

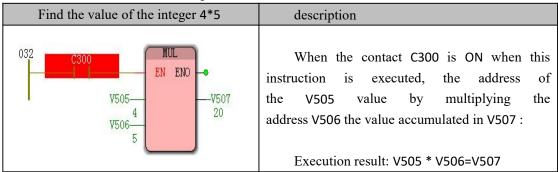
10.1.26 MOVE (Assignment Command)

IL programming	LD, FBD programming language					
language						
Function: The MOV	/E instruction is used to assign an input value to the output value.					
LD IN	MOVE					
MOVE	• EN ENO •					
ST OUT	INOUT					
ST programming						
language						
OUT:=MOVE (IN)						
Note : IL, ST langua	Note : IL, ST language programming needs to insert variables IN and OUT or use constants in					

the current POU variable worksheet

>Data type processed by MOVE instruction

Input	and	type of data	description
output			
IN		ANY_NUM	input value
OUT		ANY_NUM	Output value, OUT=IN


Address	V503	is	the	description
value transmitted	to the addre	ss V504		
	V50335		1	When the contact C300 is ON when this instruction is executed, the address of the V503 value is transferred to the address V504 in: Execution result: V503 = V504

10.1.27 MUL (Multiplication Directive)

IL programming	LD, FBD programming language				
language					
Function: The MUI	instruction is used to find the product of two data.				
LD IN1					
MUL IN2	• EN ENO				
ST OUT	anno 1				
ST programming	IN1OUT				
language	IN2				
OUT :=IN1*IN2					
Note : IL, ST lang	Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use				
constants in the current	constants in the current POU variable worksheet				

>The MUL data processing instruction type

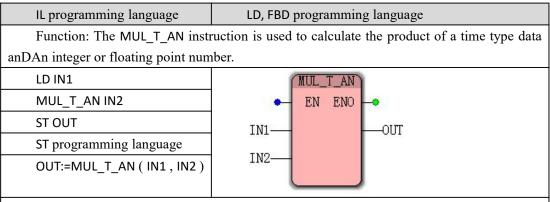
Input and	type of data	description
output		
IN1	ANY_NUM	First input
IN2	ANY_NUM	Second input
OUT	ANY_NUM	Product, OUT=IN1*IN2

10.1.28 MUL_T_AI (multiplication (time multiplied by

integer) instruction)

IL programming	LD, FBD programming language	
language		
Function: The MUL	T_AI instruction is used to calculate the product of a time type data	
anDAn integer type data.		
LD IN1	(MUL_T_AI)	
MUL_T_AI IN2	- EN ENO	
ST OUT		
ST programming	IN1 OUT	
language	IN2—	
OUT:=		
MUL_T_AI (IN1 , IN2)		
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use		

constants in the current POU variable worksheet


> MUL_T_AI data processing instruction type

		1 0	~ 1	
Input a	and	type of data		description
output				
IN1		TIME		First input, time
IN2		ANY_INT		Second input, integer
OUT		TIME		Product, OUT= IN1*IN2

Find the time T #5s multiplied	description
by the value of the integer 3	
034 V508 V509 3 V509 3	When the contact C300 is ON , the instruction is executed, and the value of the address V508 is multiplied by the value product in the address V509 and stored in V510 : Execution result: V508 * V50 9 = V510

10.1.29 MUL_T_AN (multiplication (time multiplied by

integer, real) instructions)

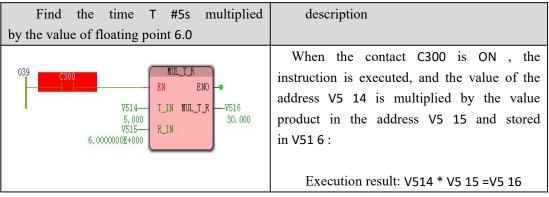
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use constants in the current POU variable worksheet

> MUL_T_AN instruction processing data types

Input and	type of data	description
output		
IN1	TIME	First input, time
IN2	ANY_NUM	Second input, integer or floating point number
OUT	TIME	Product, OU T= IN1*IN2

Find the time T #5s multiplied by the value	description
of the integer 2	
037 C300 V511 5.000 V512 2 V513 10.000	When the contact C300 is ON, the instruction is executed, and the value of the address V5 11 is multiplied by the value product in the address V5 12 and stored in V51 3 : Execution result: V511 * V5 12 = V5 13

10.1.30 MUL_T_R (multiplication (time multiplied by


real number) instruction)

IL programming language	LD, FBD programming language			
Function: The MUL_T_R instruction is used to calculate the product of a time type data anDA				
floating point type data.				
LD IN1	WIT T D			
MUL_T_R IN2				
ST OUT				
ST programming language	IN1 T_IN MUL_T_R OUT			
OUT:=MUL T-R (IN1, IN2)	IN2-R_IN			
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use				
constants in the current POU variable worksheet				

>MUL_T_R data processing instruction type

Input and output	type of data	description
IN1 (T_IN)	TIME	First input, time
IN2 (R_IN)	ANY_NUM	Second input, floating point number
OUT (MUL_T_R)	TIME	Product, OUT=IN1*IN2

≻Funtion and Action examples

10.1.31 NE (not equal to the instruction)

IL	programming	LD, FBD programming language			
language					
Funct	Function: The NE command is used to judge the magnitude relationship between two				
values. Wh	nen the first input	is not equal to the second one, the output is 1 and the others are 0.			
LD IN:	1	NE			
NE IN	2	• EN ENO			
ST OU	JT	IN1OUT			
		IN2			

ST	programming		
language			
OUT:=IN1<>IN2			
Note	Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use		
constants in the current POU variable worksheet			

► Data type processed by NE instruction

Input	and	type of data	description
output			
IN1		ANY	First input
IN2		ANY	Second input
OUT		BOOL	Result :
			When IN1 <> IN2 , OUT is 1;
			When $IN1 = IN2$, OUT is 0;

≻Funtion and Action examples

Compare the values	description
of addresses V517 and V518	
042 V517 V518 3 V519 1	When the contact C300 is ON when this instruction is executed, the address V5 . 17 values of the address V5 18 is the value of the comparison, the output is not equal to 1 Execution result: V517 * V5 18 =V5 19

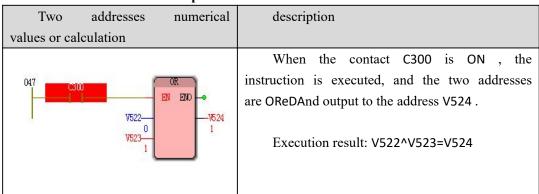
10.1.32 NOT (logical non-instruction)

IL programming	LD, FBD programming language		
language			
Function: The	NOT instruction is used to invert the input value by bit, such		
as BYTE#2#11001100,	which is calculated by NOT.		
BYTE#2#0011001	1.		
LD IN	NOT		
NOT	← EN ENO ←		
ST OUT	IN1OUT		
ST programming			
language			
OUT:=NOT(IN)			
Note : IL, ST language programming needs to insert variables IN and OUT or use constants in			
the current POU variable worksheet			

P Data t	ype pro	cessed by			
Input	and	type	of	description	
output		data			
IN		ANY_E	BIT	Input	
OUT		ANY_E	BIT	result	

≻Data	type processed by	NOT instruction
-------	-------------------	------------------------

Invert the	value	description
of address V520 (BOOL)	1	
045 C300 T520 D	NOT N ENO V521 1	When the contact C300 is ON , the instruction is executed to invert the value of the address V5 20 (BOOL):
		Execution result: 0 (V520)
		inversion output 1 (V521)


10.1.33 OR (Logic or Instruction)

IL program	ming	LD, FBD programming language			
language					
Function: The OR in	Function: The OR instruction is used to logically OR the input value by bit.				
LD IN1		OR			
OR IN2		► EN ENO			
ST OUT		IN1——OUT			
ST programming language	je	IN2			
OUT:= (1N1) OR (1N2)				
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use					

Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT constants in the current POU variable worksheet

►Data type processed by the	OR instruction
-----------------------------	-----------------------

, Dutu type processed by the "On instruction				
Input	and	type of	description	
output		data		
IN1		ANY_BIT	First input	
IN2		ANY_BIT	Second input	
OUT		ANY_BIT	Result, logical OR operation	
			IN1=0, IN2=0, OUT is 0;	
			IN1=0, IN2=1, OUT is 1;	
			IN1=1, IN2=0, OUT is 1;	
			IN1=1, IN2=1, OUT is 1;	

10.1.34 ROL (loop left shift instruction)

IL	programming	LD, FBD programming language		
language				
Functio	on: The ROL instr	uction is used to rota	ate the input value to the left by bit.	
LD IN1		1	ROL	
ROL IN	2		EN ENO	
ST OUT	Г			
ST	programming	IN1—	INOUT	
language		IN2—	N	
OUT:=F	ROL(IN1,IN2)	1112		
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use				
constants in	constants in the current POU variable worksheet			

> The ROL instruction processing data types

Input and	type of	description
output	data	
IN1	ANY_BIT	Input
IN2	ANY_INT	Number of bits shifted left
OUT	ANY_BIT	As a result, when the value of the pin IN or N changes, it is shifted left. As follows : shift two digits to the left, $\overrightarrow{0}$ 0 0 0 1 0 1 1 Value after moving 1 1 0 0 0 0 1 0 Value before moving

Function and Action Champies	
The value 16 #01 (BYTE)	description
is shifted to the left by three digits	
048 V525 V526 V526 S V527 16#01 N V527 16#08	When the contact C300 is ON when this instruction is executed, Move all bits of address V525 to the left by 3 bits:
	Execution result: . 1 6 # 01 moves to the
	left . 3 bit stored to V527 in

10.1.35 ROR (cyclic right shift instruction)

IL	programming	LD, FBD programming language	
language			
Functi	on: The ROR instr	uction is used to cyclically shift the input value to the right.	
LD IN1		ROR	
ROR IN	12	• EN ENO	
ST OU	Т		
ST program	ming language	IN1 IN OUT	
OUT:=I	ROR (IN1 , IN2)	IN2-N	
Note :	Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use		
constants in	constants in the current POU variable worksheet		

≻Data type	e processed by R	ROR instruction
Input and	type of data	description
output		
IN1(IN)	ANY_BIT	Input
IN2 (N)	ANY_INT	Number of bits shifted right
OUT	ANY_BIT	As a result, when the value of the pin IN or N changes,
		it is shifted to the right. As follows : shift two bits to the
		right
		Value after moving right
		0 0 1 1 0 0 0 1

The value before the right movement

The value 16 # 01 (BYTE)	description
rightward shift three	
	When the contact C300 is ON when this
051 C300 FOR EN ENO 16#01 V529 3	instruction is executed, The address V528 all the bits to the right 3 bits: Execution results: 1 6#01 Move 3 bits to the right to save to V530 :

10.1.36 SEL (Selection Command)

IL programming language	LD, FBD programming language	
Function: The SEL instruction is used to select different input values based on two state		
of a Boolean quantity.		
LD IN	SEL	
SEL IN1 , IN2	EN ENO	
ST OUT		
ST programming	• IN1	
language		
OUT:=SEL (IN, IN1 , IN2)		
Note : IL, ST language programming needs to insert variables IN, IN1, IN2 and OUT or use		

constants in the current POU variable worksheet

►Data type processed by SE	_ instruction
----------------------------	---------------

Input and	type of data	description
output		
IN(G)	BOOL	Select input
IN1(INO)	ANY	First input
IN2 (IN1)	ANY	Second input
OUT	ANY	Result :
		If IN=0, OUT=IN1;
		If IN=1, OUT=IN2;

Choose to output integer 3 or 5	description
053 V531 V532 V533 5 IN1 V534 5 V534 5	When the contact C300 is ON when this instruction is executed, When G is . 1 when the output address V533 in value; when G is 0 when the output address V532 the value: Execution result: output is 5

10.1.37 SHL (left shift instruction)

IL programming	LD, FBD programming language	
language		
Function: The SHL instruction is used to shift the input value to the left, the left end of the		
data is shifted out, and the right end is filled with 0.		
LD IN1	SHL	
SHL IN2		
ST OUT	• EN ENO	
ST programming	IN1-IN OUT	
language	IN2— N	
OUT:=SHL (IN1 , IN2)	1142	
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use		
constants in the current POU variable worksheet		

Data ty	re processed by	
Input and	type of data	description
output		
IN1(IN)	ANY_BIT	Input
IN2 (N)	ANY_INT	Number of digits shifted to the left

Data type processed by SHL instruction

OUT	ANY_BIT	As a result, when the value of the pin IN or N changes, it
		is shifted left. Move left by two, as follows
		Value before left shift
		1 1 1 0 0 0 1 1
		← Value after left shift ←
		1 0 0 0 1 1 0 0

The address V536 (BYTE) the value of the	description
left . 3 bit	
056 C300 V536 IN 16#50 V536 N 16#80 S	When the contact C300 is ON when this instruction is executed, the address V535 all bits to the left . 3 bits: Execution result: 1 6#01 moves left 3 bits output 16 #80

10.1.38 SHR (right shift instruction)

IL programming language	LD, FBD programming language	
Function: The instruction is used to shift the input value to the right, the right end of the		
data is shifted out, and the left end is filled with 0.		
LD IN1	SHR	
SHR IN2	• EN ENO •	
ST OUT	IN1 OUT	
ST programming language	IN2— N	
OUT:=SHR (IN1, IN2)		
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use		
constants in the current POU variable worksheet		

Data type processed by	SHR instruction
------------------------	-----------------

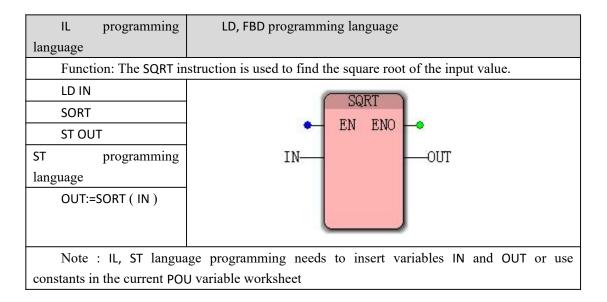
Input and output	type of data	description
IN1(IN)	ANY_BIT	Input

IN2(N)	ANY_INT	Numb	er of dig	its shifte	d to the r	ight			
OUT	ANY_BIT	As a i	As a result, when the value of the pin IN or N changes, it is						
		shifted to th	shifted to the right. Move two digits to the right, as follows						
		The va	The value before the right movement						
		0 0 0 0 0 1 1						1	
			➤ Value	ue after r	noving ri	ght —	\rightarrow		
		0	0	0	0	1	1	0	0

The value 16 # 50 (BYTE)	description
right shifted three	
058 V538 16#5C V539 3 V540 16#0A	When the contact C300 is ON when this instruction is executed, The address V538 all the bits to the right 3 bits: Execution result: 1 6#50 moves 3 bit output to the right 16 #0A :

10.1.39 SIN (sinusoidal command)

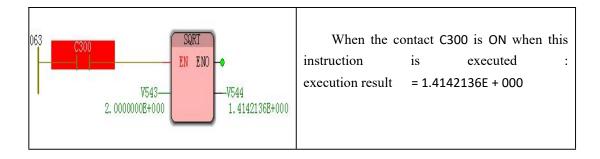
IL programming	LD, FBD programming language			
language				
Function: The SIN	instruction is used to find the sine of the input value.			
LD IN	SIN			
SIN	• EN ENO			
ST OUT				
ST programming				
language				
OUT:=SIN (IN)				
Note : IL, ST language programming needs to insert variables IN and OUT or use				
constants in the current POU variable worksheet				


Data type processed by SIN instruction

Input	and	type of data	description
output			

IN	REAL	Input, the angle is expressed in radians
OUT	REAL	Output

➤Funtion and Action examples	
Seeking the SIN (the value	description
060 C300 SIN EN ENO V541	When the contact C300 is ON when this instruction is executed, Execution result: SIN $(\pi/2) = 1$


10.1.40 SQRT (square root instruction)

≻SQRT data processing instruction type

Input	and	type of data	description
output			
IN		REAL	Input
OUT		REAL	Output

Find the value description	
----------------------------	--

10.1.41 SUB (Subtraction Instruction)

IL prog	gramming	LD, FBD programming language			
language					
Functior	n: The SUB	instruction is used to find the difference between two input values.			
LD IN1					
SUB IN2		SUB			
ST OUT		• EN ENO •			
ST prog	gramming	IN1OUT			
language		IN2			
OUT:=IN	1-IN2				
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or ι					
constants in t	constants in the current POU variable worksheet				

Data type processed by SUB instruction

Input	and	type of data	description
output			
IN1		ANY_NUM	First input
IN2		ANY_NUM	Second input
OUT		ANY_NUM	Output, OUT=IN1 - IN2

Find the value of floating point	description
number 8.0 minus 5.0	
065 C300 V545 8. 0000000E+000 V546 5. 0000000E+000 V546 5. 0000000E+000	When the contact C300 is ON , the instruction is executed : the value of the address V545 is subtracted from the value of V546 and stored in the address of V547 : Execution result: V545-V546 = V547

10.1.42 SUB_T_T (Time Subtraction Instruction)

IL programming language	LD, FBD programming language	
Function: The SUB_T_T instruction is used to find the difference between two time input		
values.		
LD IN1		
SUB IN2		
ST OUT	(SUB_T_T)	
ST programming language	• EN ENO	
$OUT:=SUB_T_T(1N1,IN2)$	IN1OUT	
	IN2	
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use		

constants in the current POU variable worksheet

>SUB_T_ data processing instruction type

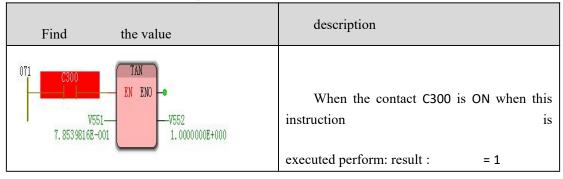
Input and	type of data	description
output		
IN1	TIME	First input
IN2	TIME	Second input
OUT	TIME	Output, OUT=IN1 - IN2

≻Funtion and Action examples

Time T # T # 55-35 's value	description
068 C300 SUB_T_T EN ENO 5.000 V549 3.000	When the contact C300 is ON , the instruction is executed : the value of the address V548 is subtracted from the value of V549 and stored in the address of the V550 : Execution result: V54 8 -V54 9=V550

10.1.43 TAN (tangential command)

IL programming language	LD, FBD programming language
Function: The TAN instruction is used to find the tangent of the input value.	
LD IN	TAN
TAN	


ST OUT	
ST programming	
language	
OUT:=TAN (IN)	
Note : IL, ST language programming needs to insert variables IN and OUT or use constants	

the current POU variable worksheet

Data type processed by TAN instruction

Input	and	type of data	description
output			
IN		REAL	Input, the angle is expressed in radians
OUT		REAL	Output

≻Funtion and Action examples

10.1. 44 XO R (Logical XOR instruction)

IL programming language	LD, FBD programming language		
Function: The XOR instruction is used to logically perform an exclusive OR operation on the			
input value.			
LD IN1	XOR		
XOR IN2	• EN ENO •		
ST OUT	IN1OUT		
ST programming language	IN2—		
OUT:= (IN1) XOR (IN2)			
]		
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use			
constants in the current POU variable worksheet			

Input	and	type of data	description
output			
IN1		ANY_BIT	First input
IN2		ANY_BIT	Second input

Data type processed by XOR instruction

OUT	ANY BIT	Logical exclusive OR operation
		IN1=0, IN2=0, OUT is 0;
		IN1=0, IN2=1, OUT is 1;
		IN1=1, IN2=0, OUT is 1;
		IN1=1, IN2=1, OUT is 0;

Find the value of the exclusive OR of	description
the address V553 (BOOL) and V554 (BOOL)	
074 C300 XOR EN ENO V553 V554 0	When the contact C300 is ON when this instruction is executed : When the V553 (BOOL) and V554 (BOOL) values of different time, the output is 1
	Execution result : V553 and V554 are different output 1

1 0.2 function block

A function block is a program organization unit POU with multiple input and output parameters, which have internal memory, and the return value of the function block depends on the value of its internal storage unit. The abbreviation of the function block is FBD different from the previous function. The function block must be instantiated. The instance name can be the default name or the default name. The instance name must be unique within the POU. In FBDAnd LD programming, this instance name appears in the upper part of the function block.

The following function blocks can be used during MULTIPROG programming

- \bigcirc bistable function block
- \bigcirc Pulse edge detection function block
- \bigcirc counter function block
- \bigcirc timer function block

Command functions included in the block (in the editor wizard from the drop-down list " function block ")

name	description
CTD	Down counter
СТО	Increment counter
CTUD	Up / down counter
F_TRIG	Falling edge detection
R_TRIG	Rising edge detection
RS	Reset priority
SR	Set priority
TOF	Disconnect delay timer
TON	On-delay timer
ТР	pulse

10.2.1 CTD (Decrement Counter Instruction)

IL programming language	LD, FBD programming language	
Function: The TD instruction is used to count down the input. When the LOAD termina		
is FALSE, if there is a rising edge at the CD	input, the CV terminal is decremented by 1 . If the	
count value CV reaches the lower limit va	alue 0 of the counter, a TRUE signal is issueDAt	
the Q output , and the CTD function block sto	ops counting. When the LOAD terminal is TRUE , the	
counter stops counting anDAssigns the valu	e of the PV input to the CV terminal.	

LD varl	
ST CTD_1.CD	
LD var2	
ST CTD_1.L0AD	
LD var3	
ST CTD_1.PV	
CAL CTD_1	
LD CTD_1.Q	
ST var4	
LD CTD_1.CV	
ST var5	
ST programming language	
CTD_1 (CD:=var1 , LOAD:=var2,	
PV:=var3)	
Var4:=CTD_1.Q	
Vase:=CTD_1.CV	
Note : IL, ST language programming ne	eeds to insert the variable vlar1~var5 constant in the

current POU variable worksheet

数据 Data type processed by CTD instruction

Input	type o	description
	data	
CD	BOOL	If the CD has a rising edge, the CV is decremented by 1.
LOAD	BOOL	When LOAD is FALSE, the count is started, it is TRUE,
		the PV is assigned to CV, and the counter is initialized.
PV	INT	Count dowNStart value
Output	type o	description
	data	
Q	BOOL	When CV=0, O=1
CV	INT	Count value

≻Funtio	n and Action examples	

|--|

turned from OFF to ON five times	
	This counter function block
	decrements the count. Assuming a
	rising edge at the CD input and LOAD
	= FALSE , the CV is decremented by
	one. If the final value of the counter
	(PV) is reached , a TRUE signal is
	sent at the Q output and the function
	block stops counting.
	If LOAD=TRUE, the counter is
	initialized by the value of
	the PV input. In order to enable the
	counting process, the LOAD input
	must be FALSE . Otherwise the
	counter will be reinitialized.

10.2.2 CTU (Incremental Counter Instruction)

IL programming language	LD, FBD programming language
Function: The CTU instruction is	used to count the input terminal. When
the RESET terminal is FLSE, if there is a ri	sing edge at the CU input, the CV terminal is
incremented by 1. If the count value C	V reaches the upper limit value PV of the
counter, a TRUE signal is issueDAt the C	Q output , and the CTU function block stops
counting. When the RESET terminal is TRUE,	he counter stops counting and the CV terminal is
cleared.	
LD varl	
ST CTU_1.CU	
LD var2	
ST CTU_1.RESET	
LD var3	
ST CTU_1.PV	
CAL CTU_1	
LD CTU_1.Q	
ST var4	
LD CTU_1.CV	
ST var5	
ST language	
CTU_1 (CD:=var1 , LOAD:=var2,	
PV:=var3)	

Var4:=CTU_1.Q

Var5:=CTU_1.CV	
Note : IL, ST language programming	needs to insert variables var1 ~ var5 or use
constants in the current POU variable workshee	et

Data type processed by CTU instruction

Input	type of data	description
CU	BOOL	If the CU has a rising edge, CV adds 1
RESET	BOOL	When RESET is FALSE , the count is started ;
		When TRUE, the CV is cleared, the counter is
		initialized, and the Q terminal is reset.
PV	INT	Incremental count upper limit
Output	type of data	description
Q	BOOL	When CV=PV , Q=1
CV	INT	Count value

≻Funtion and Action examples

Q output 1 when turned from OFF to ON five times	contact	C002	is	description
				This counter function block
				counts up. Assuming a rising
				edge at the CU input and RESET =
				FALSE , the CV is incremented by
				one. If the final value of the
				counter (PV)
				is reached , a TRUE signal is
				sent at the Q output and the
				function block stops counting.
				If RESET = TRUE ,
				the counter is initialized with 0. In
				order to enable the counting
				process, the RESET input must
				be FALSE . Otherwise the counter
				will always be reinitialized.

10.2.3 CTUD (increasing or decreasing bidirectional

counter command)

IL programming language	LD, FBD programming language		
Function: The CTUD instruction	n is used to increment or decrement the input. When the		
RESET terminal and the LOAD terminal are both FALSE, the counting is allowed : if a rising edge			
occurs at the CU input terminal, the CV terminal is incremented by one; if a rising edge occurs at			
the CD input terminal, the CV terminal	nal is decremented by one; when $CV=PV$, then $QU=1$, the		
CTUD function block stops counting	, up ; if CV=0 , then QD=1, the CTUD function block stops		
counting down. When the RESET terr	minal is TRUE, the counter stops incrementing and counting		
down, and the CV terminal is cleared	ed . When the LOAD terminal is $TRUE$, the counter stops		
incrementing and counting down, and	the PV value is assigned to the CV terminal.		
LD varl			
ST CTUD_1.CU			
LD var2			
ST CTUD_1.CD			
LD var3			
ST CTUD_1.RESET			
LD var4			
ST CTUD_1.LOAD			
LD var5			
ST CTUD_1.PV			
CAL CTUD_1			
LD CTUD_1.QU			
ST var6			
LD CTUD_1.QD			
ST var7			
LD CTUD_1.CV			
ST var8			
ST programming language			
CTUD_1 (CU:=var1 , CD:=var2,			
RESET:= var3, LOAD:=var4,			
PV:=var5) ;			
Var6:=CTUD_1.QU;			
Var7:=CTUD_ 1.QD;			
Ar8:=CTUD_ 1.CV;			
Note : IL, ST language programm	ning needs to insert the variable val \sim var8 or use constants in		

the variable worksheet of the current POU

数据 Data type processed by CTU instruction

Input	type	of	description
	data		
CU	BOOL		If the CU has a rising edge , CV adds 1
CD	BOOL		If the CD has a rising edge , the CV is decremented
			by 1.
RESET	BOOL		When RESET is FALSE , the count is started.
			When \ensuremath{TRUE} , the CV is cleared to zero and the counter
			is initialized.
LOAD	BOOL		When LOAD is FALSE , the count is started.
			When $TRUE$, the PV is assigned to CV and the counter is
			initialized.
PV	INT		Count the upper limit or start value
Output	type	of	description
	data		
QU	BOOL		When CV=PV , QU=1
QD	BOOL		When CV=0, QD=1
CV	INT		Count value

≻Funtion and Action examples

When the CU has a rising edge, the value is	
incremented by 1 when the CD has a falling edge current	description
value minus 1.	
	This counter function block
	increments or decrements the
	count. Assuming a rising edge at
	the CU input, the CV is incremented by
	one. Assuming a rising edge at
	the CD input, the CV is decremented
	by one. If $CV = PV$, the OU is set
	to TRUE . If $CV = PV$, the OU is set
	to TRUE .
	If RESET = TRUE, the counter is
	initialized to 0 . If LOAD = TRUE , the
	counter is initialized to PV . In order
	to enable the counting process, both
	the RESET and LOAD inputs must
	be FALSE . Otherwise the counter will
	be reinitialized.

10.2.4 F_TRIG (falling edge detection command)

IL programming	LD, FBD programming language					
language						
Function: F _TRIG instru	ction is used to detect the falling edge of the input . If a falling edge					
is detecteDAt the input CLK,	the output Q will change from FALSE to TRUE until the next scan of					
this command, the Q output w	ill remain is TRUE					
LD varl						
ST F_TRIG_1.CLK						
CAL F_TRIG_1						
LD F_TRIG_1.Q						
ST var2						
ST programming						
language						
F_TRIG_1(CLK:=var1)						
Var2:=F_TRIG_1.Q						
Note : IL, ST language programming needs to insert variables varl1~var2 or use constants in						
the current POU variable work	the current POU variable worksheet					

≻	the F_TF	RIG data	processing	instruction	type
---	----------	----------	------------	-------------	------

parameter	type of data	description
CLK	BOOL	Falling edge is valid
Q	BOOL	When CLK has a falling
		edge, Q= changes from 0 to 1, until the next scan
		to this instruction

10.2.5 R_TRIG (rising edge detection instruction)

IL I	programming	LD, FBD programming language						
language		,						
Function:	Function: R _TRIG instruction is used to detect the rising edge of the input. If a rising edge is							
detecteDAt the	detecteDAt the input CLK , the output Q will change from FALSE to TRUE until the next scan to this							
command, the	Q output will re	emain Is TRUE .						
LD var1								
ST R_TRIG	_1.CLK							
CAL R_TRI	G_1							
LD R_TRIG	i_1.Q							
ST var2								

ST	programming
languag	ge
R_	TRIG_1(CLK:=var1)
Va	r2:=R_TRIG_1.Q
No	ote : IL, ST language p

the current POU variable worksheet

数据 Data type processed by CTU instruction

parameter	type of data	description			
CLK	BOOL	Valid on rising edge			
Q	BOOL	When CLK has a rising			
		edge, Q= changes from 0 to 1 until the next scan to this			
		instruction.			

10.2.6 RS (RS Trigger Instruction)

IL programming language	LD, FBD programming language
Function: The RS instruction is	s used to implement the function of the RS trigger. If
the SET terminal is TRUE and the RES	ET terminal is FALSE, the output terminal Q1 is set. Even
if SET becomes FALSE, Q1 remains	set. If RESET1=TRUE, Q1 is reset regardless of whether
the SET terminal is TRUE or FALSE . Eve	en if RESET1 changes to FALSE, Q1 remains in the reset state.
LD var1	
ST RS_1.SET	
LD var2	
ST RS_1.RESETI	
AL RS_1	
LD RS_1.Q1	
ST var3	
ST programming language	
RS_1 (SET:=var1, RESET:=var2)	
X ar3:=RS_1.Q1	
Note : IL, ST language programm	ing need to insert variables valll1~var3 or use constants in
the current POU variable worksheet	

数据 Data type processed by RS instruction

parameter	type of	description
	data	
SET	BOOL	Position
RESET1	BOOL	Reset

Q1	BOOL	SET=0, RESET1=0, Q1 remains in the last state ;	
		SET=1, RESET1=0, Q1=1;	
		SET=0, RESET1=1, Q1=0;	

≻Funtion and Action examples

When the same tir	contacts e reset pric		are	ON	at	description
						This bistable function block implements a priority reset at the Q1 output. If the input SET = TRUE, the output Q1 is set. Even if SET is FALSE, Q1 remains set. If RESET1 = TRUE, Q1 is reset. If both inputs are TRUE, the Q1 output is set to FALSE by RESET1.

10.2.7 SR (SR Trigger Instruction)

IL programming language	LD, FBD programming language
Function: The RS instruction is	used to implement the function of the RS trigger. If
the SET1 terminal is TRUE, the output to	erminal Q1 is set regardless of whether the RESET terminal
is TRUE or FALSE . Even if SET1 become	s FALSE, Q1 remains set. If the RESET terminal is TRUE and
the SET1 terminal is FALSE, the Q1 term	inal is reset. Even if RESET becomes FALSE, Q1 remains in
the reset state.	
LD var1	
ST SR_1.SET1	
LD var2	
ST SR_1.RESET	
CAL SR_1	
LD SR_1.Q1	
ST var3	
ST programming language	
SR_1 (SET1:=var1, RESET:=var2)	
Var3:=SR_1.Q1	
Note : IL, ST language programmin	ng need to insert variables valll1~var3 or use constants in
the current POU variable worksheet	

parameter	type of data	description
SET1	BOOL	Position
RESET	BOOL	Reset
Q1	BOOL	result
		SET1=0, RESET=0, Q1 remains in the
		last state ;
		SET1=1, RESET=0, Q1=1;
		SET1=0, RESET=1, Q1=0;
		SET1=1, RESET=1, Q1=1;

数据 Data type processed by RS instruction

≻Funtion and Action examples

When the contacts C013 and C015 are ON at	description	
the same time, the set priority Q1 output 1		
	This bistable function block	
	implements the priority setting of	
	the Q1 output. If SET1=TRUE is entered,	
	the Q1 output is set. Even	
	if SET is FALSE , Q1 remains	
	set. If RESET = TRUE , the Q1 output is	
	reset. If both inputs are TRUE ,	
	the Q1 output is set to TRUE by SET1.	

10.2.8 TOF (Delayed Off Timer Instruction)

IL programming language	LD,FBD programming language		
Function: The TOF instruction is used to implement the delay disconnect function. If the			
input terminal IN is TRUE, the output terminal Q immediately becomes TRUE; if the input			
terminal IN is changed from TRUE to	o FALSE, the output terminal Q will be delayed by a certain		
time and then by the TRUE. It becomes FALSE, the delay time is the value of PT, and the ET end			
records the time between the time when the IN changes to FALSE and the time when the Q end			
changes to TRUE .			
LD var1			
ST TOF_1.IN			
LD var2			
ST TOF_1.PT			
CAL TOF_1			
LD TOF_1.Q			
ST var3			
LD TOF_1.ET			
ST var4			

ST programming language		
TOF_1(IN:=var1, PT:=var2)		
Var3:=TOF_1.Q		
Var4:=TOF_1.ET		
Note : IL, ST language programming needs to insert variables vall1~var4 or use constants in		
the current POU variable worksheet		

数据 Data type processed by TOF instruction

parameter	type of	description	
	data		
IN	BOOL	Enable input	
PT	TIME	To Q delay disconnecteDAsk end	
Q	BOOL	Result IN=1, Q=1;	
		IN=0, after delaying PT, Q changes from 1 to 0.	
ET	TIME	Timing time from when IN changes to FALSE to when	
		the Q end changes to TRUE	

≻Funtion and Action examples

-		
When the contact C018ON , Q immediately	description	
outputs 1 , when the contact		
is turned from ON to OFF , ${\sf Q}$ delays ${\sf PV}$ (set value) and		
outputs 0.		
	If the	
	input IN changes from TRUE to FALSE, it	
	is turned off after delaying the length of	
	time in the input PT. After the length of	
	the PT value, the Q value is set	
	to FALSE. The process time interval is	
	displayed on the output ET .	

1 0.2.9 TON (delay-on timer command)

IL programming language	LD, FBD programming language		
Function: The TON instruction is used to implement the delay on function. If the input			
terminal IN is FALSE, the output terminal Q will immediately become FALSE; if the input			
terminal IN changes from FALSE to TRUE, the output terminal Q will be delayed by a certain			
time and then changed by FALSE. For TRUE, this delay time is the value of PT, and the ET end			
records the time between the time when the IN changes to FALSE and the time when the Q end			
changes to TRUE.			

LD var1
ST TON_1.IN
LD var2
ST TON_1.PT
CALTON_1
LD TON_1.Q
ST var3
LD TON_1.ET
ST var4
ST programming language
$\texttt{TON_1} \left(\ \texttt{1N:=var1} \ , \ \texttt{PT:=var2} \ \right)$
Var3:=TON_1.Q
Var4:=TONET
Note : IL, ST language programm

the current POU variable worksheet

数据 Data type processed by TON instruction

parameter	type of	description		
	data			
IN	BOOL	Enable input		
PT	TIME	To Q delay turned end Q, such as T # 5S		
Q	BOOL	Result : If IN=0 ,		
		then Q=0; if IN=1, after delaying PT, Q changes from 0 to 1		
ET	TIME	Timing time from when IN changes to TRUE to when		
		the Q end changes to TRUE		

≻Funtion and Action examples

Start when contact C020 is ON , Q delay PV (set	description
value) output 1	
	If the input IN changes from TRUE to FALSE , it is turned on after delaying the input of the PT . After the length of the PT value, the Q value is set to TRUE . The process time interval is displayed on the output ET .

10.2.10 TP (pulse command)

IL programming language

LD, FBD programming language

Function: The :TP command is used to realize the function of a certain width pulse. If the input terminal IN changes from FALSE to TRUE, the output terminal Q generates a pulse with a time interval of PT. If the input IN becomes FALSE again during the PT time, the output Q still produces a pulse of PT width. The ET end records the time between the time when the IN changes to FALSE and the time when the Q end changes to TRUE.

LD var1	
ST TP_1.IN	
LD var2	
ST TP_1.PT	
CAL TP_1	
LD TP_1.Q	
ST var3	
LD TP_1.ET	
ST var4	
ST programming language	
TP_1 (IN:=varl , PT:=var2)	
Var3:=TP_1.Q	
Var4:=TP_1.ET	

Note : IL, ST language programming needs to insert variables valll1~var4 or use constants in the current POU variable worksheet

parameter	type of data	description
IN	BOOL	The rising edge of IN is valid
РТ	TIME	Pulse time interval
Q	BOOL	As a result, Q produces a pulse of PT width at the rising
		edge of IN .
ET	TIME	The timing from the time when IN changes to TRUE to
		the time when the Q end changes to TRUE, the state
		change of IN does not work for Q.

Data type processed by TON instruction

1 0.3 type conversion FU

The type conversion function, referred to as type conversion FU, converts one type of data into another type of data, so it has an input parameter anDAn output parameter. During the MULTIPROG programming process, the following types can be used to convert FU

- BYTE type BCD data conversion
- WORD type BCD data conversion
- DWORD type BCD data conversion
- BOOL type data conversion
- BYTE type data conversion
- WORD type data conversion
- DWORD type data conversion
- Conversion of SINT data
- Conversion of INT data
- Conversion of DINT type data
- Conversion of USINT type data
- UINT type data conversion
- Conversion of UDINT type data
- Conversion of LREAL type data
- Conversion of REAL type data
- TRUNC decimal rounding

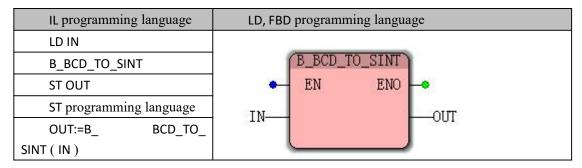
The instructions contained in the function (in the Edit Wizard, select from the drop-down

list " Type Conversion FU ")

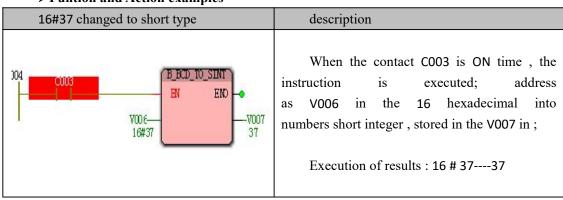
Sort	Funtions		
BYTE type BCD data	B_BCD_TO_SINT	B_BCD_TO_INT	B_BCD_TO_DINT
conversion			
WORD type BCD data	W_BCD_TO_SINT	W_BCD_TO_INT	W_BCD_TO_DINT
conversion			
DWORD type BCD	D_BCD_TO_SINT	D_BCD_TO_INT	D_BCD_TO_DINT
data conversion			
Conversion of BCD	BCD_TO_DINT		
type data			
TIME type data	TIME_TO_DINT		
conversion			
BOOL type data	BOOL_TO_BYTE	BOOL_TO_WORD	BOOL_TO_DWORD
conversion	BOOL_TO_SINT	BOOL_TO_INT	BOOL_TO_DINT
	BOOL_TO_USINT	BOOL_TO_UINT	BOOL_TO_UDINT
	BOOL_TO_REAL	BOOL_TO_LREAL	
BYTE type data	BYTE_TO_BOOL	BYTE_TO_BOOL	BYTE_TO_BOOL
conversion	BYTE_TO_WORD	BYTE_TO_WORD	BYTE_TO_WORD
	BYTE_TO_DWORD	BYTE_TO_DWORD	BYTE_TO_DWORD

etch			WORD_TO_BOOL
uata			WORD_TO_BOOL
			WORD_TO_DWORD
		D	
data	DWORD TO-BOOL	DWORD TO-BOOL	DWORD_TO-BOOL
	_	_	DWORD_TO_BYTE
	DWORD_TO_WORD	DWORD_TO_WOR	DWORD_TO_WORD
		D	
data	SINT_TO_B_BCD		SINT_TO_D_BCD
		SINT_TO_W_BCD	
	SINT_TO_BOOL		SINT_TO_WORD
		SINT_TO_BYTE	
	SINT_TO_DWORD	SINT_TO_INT	SINT_TO_DINT
	SINT_TO_USINT		SINT_TO_UDINT
		SINT_TO_UINT	
	SINT_TO_REAL		
		SINT_TO_LREAL	
data	INT_TO_B_BCD	INT_TO_W BCD	INT_TO_D_BCD
	INT_TO_BOOL	INT_TO_BYTE	INT_TO_WORD
	INT_TO_DWORD	INT_TO_SINT	INT_TO_DINT
	INT_TO_USINT	INT_TO_UINT	INT_TO_UDINT
	INT_TO_REAL	INT_TO_LREAL	
data	DINT_TO_B_BCD	DINT_TO_W_BCD	DINT_TO_D_BCD
	DINT_TO_BOOL	DINT_TO_BYTE	DINT_TO_WORD
	DINT_TO_DWORD	DINT_TO_SINT	DINT_TO_INT
	DINT_TO_USINT	DINT_TO_UINT	DINT_TO_UDINT
	DINT_TO_REAL	DINT_TO_LREAL	DINT_TO_BCD
	DINT_TO_TIME		
data	USINT_TO_BOOL	USINT_TO_BYTE	USINT_TO_WORD
	USINT_TO_DWORD	USINT_TO_SINT	USINT_TO_INT
	USINT_TO_DINT	USINT_TO_UINT	USINT_TO_UDINT
	USINT_TO_REAL	USINT_TO_LREAL	
data	UINT_TO_BOOL	UINT_TO_BYTE	UINT_TO_WORD
	UINT_TO_DWORD	UINT_TO_SINT	UINT_TO_INT
	UINT_TO_DINT	UINT_TO_USINT	UINT_TO_UDINT
	UINT_TO_REAL	UINT_TO_LREAL	
data	UDINT_TO_BOOL	UDINT_TO_BYTE	UDINT_TO_WORD
	UDINT_TO_DWORD	UDINT_TO_SINT	UDINT_TO_INT
	UDINT_TO_DINT	UDINT_TO_USINT	UDINT_TO_UINT
	<u> </u>		
	UDINT_TO_REAL	UDINT_TO_LREAL	
	data data data	WORD_TO_BYTE WORD_TO_DWORDdataDWORD_TO-BOOL DWORD_TO_BYTE DWORD_TO_WORDdataSINT_TO_B_BCDdataSINT_TO_DWORDSINT_TO_BOOLSINT_TO_USINTdataINT_TO_BACDdataINT_TO_BCDiNT_TO_BACDINT_TO_BOOLiNT_TO_BOOLINT_TO_REALdataDINT_TO_BOOLiNT_TO_USINTINT_TO_USINTiNT_TO_BOOLDINT_TO_BOOLdataDINT_TO_BOOLdataDINT_TO_BOOLDINT_TO_BOOLDINT_TO_DWORDdataDINT_TO_DWORDdataUSINT_TO_DWORDdataUSINT_TO_DWORDdataUSINT_TO_DWORDdataUSINT_TO_DWORDdataUSINT_TO_DWORDdataUSINT_TO_DINTdataUSINT_TO_DINTdataUINT_TO_DOUCRDdataUINT_TO_DWORDdataUINT_TO_DWORDdataUINT_TO_DWORDdataUINT_TO_DWORDdataUINT_TO_DWORDdataUINT_TO_DWORDdataUINT_TO_DWORDdataUINT_TO_DWORDUINT_TO_DWORDUINT_TO_DWORDdataUDINT_TO_DWORD	WORD_TO_BYTE WORD_TO_DWORDWORD_TO_BYTE WORD_TO_BWORDdataDWORD_TO-BOOL DWORD_TO_BYTE DWORD_TO_WORDDWORD_TO_BYTE DWORD_TO_WORDdataSINT_TO_BATC DWORD_TO_WORDDdataSINT_TO_BATC DWORD_TO_WORDSINT_TO_W_BCDdataSINT_TO_BOOLSINT_TO_INTSINT_TO_USINTSINT_TO_UINTSINT_TO_BACDSINT_TO_UINTSINT_TO_BACDINT_TO_UINTSINT_TO_BACDINT_TO_UINTSINT_TO_USINTSINT_TO_UINTINT_TO_BACDINT_TO_SINTINT_TO_BACDINT_TO_SINTINT_TO_BACDINT_TO_SINTINT_TO_BACDINT_TO_UINTINT_TO_BACDDINT_TO_SINTINT_TO_USINTINT_TO_UINTINT_TO_BACDDINT_TO_WACDDINT_TO_BACDDINT_TO_WACDDINT_TO_BACDDINT_TO_WACDDINT_TO_BACDDINT_TO_WACDDINT_TO_BACDDINT_TO_UINTDINT_TO_BACDDINT_TO_SINTDINT_TO_USINTDINT_TO_UINTDINT_TO_USINTDINT_TO_UINTDINT_TO_DWORDUSINT_TO_SINTDINT_TO_DWORDUSINT_TO_UINTDINT_TO_DWORDUSINT_TO_UINTUSINT_TO_DOWORDUSINT_TO_UINTUSINT_TO_DOWORDUSINT_TO_UINTUSINT_TO_BOOLUSINT_TO_UINTUSINT_TO_BOOLUSINT_TO_UINTUSINT_TO_DOWORDUSINT_TO_UINTUINT_TO_DOWORDUINT_TO_SINTUINT_TO_DOWORDUINT_TO_SINTUINT_TO_DOWORDUINT_TO_UINTUINT_TO_DOWORDUINT_TO_UINTUINT

conversion		LREAL_TO_DWORD	LREAL_TO_SINT	LREAL_TO_INT
		LREAL_TO_DINT	LREAL_TO_USINT	LREAL_TO_UINT
		LREAL_TO_UDINT	LREAL_TO_REAL	
REAL type	data	REAL_TO_BOOL	REAL_TO_BYTE	REAL_TO_WORD
conversion		REAL_TO_DWORD	REAL_TO_SINT	REAL_TO_INT
		REAL_TO_DINT	REAL_TO_USINT	REAL_TO_UINT
		REAL_TO_UDINT	REAL_TO_LREAL	
TRUNC type	data	TRUNC	TRUNC_SINT	TRUNC_INT
conversion		TRUNC_DINT		


10.3.1 Conversion of BYTE type BCD data

Type conversion FU	Features
BYTE type BCD data	The conversion of BYTE type BCD data includes the following three
conversion	instructions : B_BCD_TO_SINT,
	B_BCD_TO_INT and B_BCD_TO_DINT . These three instructions convert
	a BCD (binary encoded decimal) input value of a BYTE data type into
	an output value of the SINT, INT, and DINT data types, respectively.


BYTE type BCD data conversion instruction

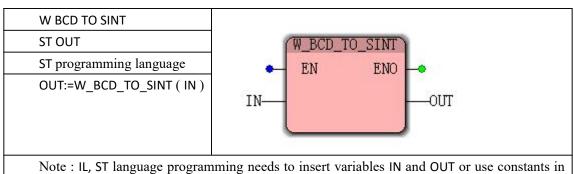
instruction	input value	output	description
		value	
B_BCD_TO_SINT	BYTE type BCD code	SINT	Input value
B_BCD_TO_INT	BYTE type BCD code	INT	range BCD code 16#0099;
B_BCD_TO_DINT	BYTE type BCD code	DINT	The corresponding
			output values SINT,
			INT and DINT are 0~99 .

usage (take B_BCD_TO_SINT as an example)

Note : IL, ST language programming needs to insert variables IN and OUT or use constants in the current POU variable worksheet

>Funtion and Action examples

10.3.2 Conversion of WORD type BCD data


Type conversion FU	Features
WORD type BCD data	The conversion of WORD type BCD data includes the
conversion	following three instructions : W_BCD_TO_SINT,
	W_BCD_TO_INT and W_BCD_TO_DINT . These three instructions
	convert a BCD (binary encoded decimal) input value
	of a WORD data type into an output value of
	the SINT, INT, and DINT data types, respectively.

WORD Type BCD conversion instruction data

instruction	input value	output	description
		value	
W_BCD_TO_SINT	WORD type BCD code	SINT	Input value BCD code 16
W_BCD_TO_INT	WORD type BCD code	INT	# 0127 , the output value
W_BCD	WORD type BCD code	DINT	corresponding to SINT to 127 ,
_TO_DINT			and then input the output is
			increased 1; the input
			values BCD code 16 # 16 # 0000
			\sim 9999 , the output value
			corresponding to INT, DINT are 0
			to 9999 .

usage (take W_BCD_TO_SINT as an example)

IL programming language	LD, FBD programming language
LD IN	

the current POU variable worksheet

16 # 0010 turn into a short integer description When the contact C186 is ON time, the instruction is executed; address W_BCD_TO_SINT as V332 in the 16 hexadecimal into EN END numbers short integer, stored in the V333 in; V332-16#0034 -V333 34 Execution of Results 16 :

>Funtion and Action examples

10.3.3 Conversion of DWOR D -type BCD data

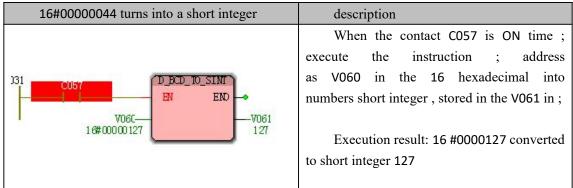
Type conversion FU	Features
DWORD type BCD data	The conversion of DWORD type BCD data includes the
conversion	following three instructions : D_BCD_TO_SINT,
	D_BCD_TO_INT and D_BCD_TO_DINT . These three instructions
	convert a BCD (binary encoded decimal) input value
	of ADWORD data type into an output value of
	the SINT, INT, and DINT data types, respectively.

0034 revolutions was 34

#

DWORD type BCD data conversion instruction

instruction	input value	output	description
		value	
D_BCD_TO_SINT	DWORD type BCD code	SINT	Enter the value BCD code
D_BCD_TO_INT	DWORD type BCD code	INT	16#0000000~16#00000127 , the
D_BCD_TO_DINT	DWORD type BCD code	DINT	corresponding output value
			SINT is 0^{127} , the input is
			increased by -1; the input
			value BCD code 16#00000000~16#0
			0032767 , the output


value INT is 032,767, and the
output is increased by -1; Input
value BCD code 16#00000000~16#9
9999999 , output value DINT
0~99999999 .

usage (take D_BCD_TO_SINT as an example)

IL programming language	LD, FBD programming language	
LD IN		
D_BCD_TO_SINT	D_BCD_TO_SINT	
ST OUT	• EN ENO	
ST programming language	INOUT	
OUT:=D_ BCD_TO_ SINT (IN)		
Note : IL, ST language programming needs to insert variables IN and OUT or use constants in		

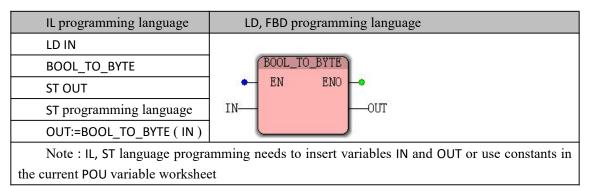
Note : IL, ST language programming needs to insert variables IN and OUT or use constants in the current POU variable worksheet

≻Funtion and Action examples

10.3.4 Conversion of BCD type data

Type conversion FU	Features
Conversion of CD type data	The BCD type data conversion instruction BCD_TO _DINT
	is used to convert a BCD (binary coded decimal number) input
	value into an output value of ADINT data type. This instruction
	is the same as D_BCD_TO_DINT .
	See D_BCD_TO_DINT for details .

10.3.5 Conversion of BOOL type data


Type conversion FU	Features

BOOL	type	data	BOOL type data conversion has 11 instructions, which can
conversion			convert BOOL type data into BYTE, WORD, DWORD, SINT, INT,
			DINT, USINT, UINT, UDINT, REAL and LREAL .

BOOL type data conversion instruction

instruction	input value	output	description
		value	
BOOL_TO_BYTE	BOOL	BYTE	Input value
BOOL_TO_WORD	BOOL	WORD	range FALSE or TRUE
BOOL_TO_DWORD	BOOL	DWORD	When the input is FALSE,
BOOL_TO_SINT	BOOL	SINT	the output is 0;
BOOL_TO_INT	BOOL	INT	When the input is TRUE,
BOOL_TO_DINT	BOOL	DINT	the output is 1;
BOOL_TO_USINT	BOOL	USINT	
BOOL_TO_UINT	BOOL	UINT	
BOOL_TO_UDINT	BOOL	UDINT	
BOOL_TO_REAL	BOOL	REAL	
BOOL_TO_LREAL	BOOL	LREAL	

usage (take BOOL_TO_BYTE as an example)

≻Funtion an	d Action	examples
-------------	----------	----------

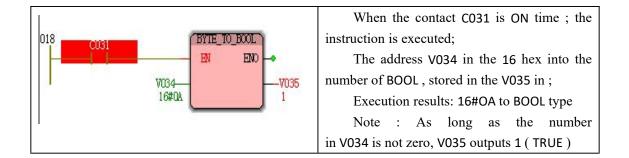
The BOOL turn bytes	description
006 006 007 000 000 000 000 000	When the contact C007 is ON time , the instruction is executed; address V010 is TRUE when , into the byte type, stored in the V 011 In ;Execution result ; V010 (TRUE) switch 16 # 01 save to V011 in ;

10.3.6 Conversion of BYTE type data

Type conversion FU		n FU	Features
BYTE	type	data	BYTE type data conversion has 11 instructions, which can
conversion			convert BYTE type data into BOOL, WORD, DWORD, SINT, INT, DINT,
			USINT, UINT, UDINT, REAL and LREAL .

BYTE type data conversion instruction

instruction	input	output	description
	value	value	
BYTE_TO_BOOL	BYTE	BOOL	The input value ranges from 0 to
BYTE _O_WORD	BYTE	WORD	255; the output is BOOL type : only
BYTE_TO_DWORD	BYTE	DWORD	when the input is 0, the output
BYTE_TO_SINT	BYTE	SINT	is FALSE, and in other cases, the
BYTE_TO_INT	BYTE	INT	output is TRUE;
BYTE_TO_DINT	BYTE	DINT	The output
BYTE_TO_USINT	BYTE	USINT	is SINT type : input 0~127 corresponds
BYTE_TO_UINT	BYTE	UINT	to output 0~127 ,
BYTE_TO_UDINT	BYTE	UDINT	input 128~255 corresponds to
BYTE_TO_REAL	BYTE	REAL	output -128~-1; when output
BYTE_TO_LREAL	BYTE	LREAL	is WORD, DWORDAnd other types, the output is equal to input.

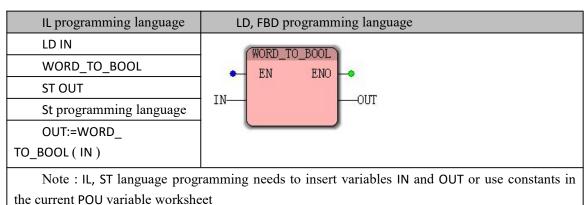

usage (take BYTE_TO_BOOL as an example)

IL programming language	LD, FBD programming language
LD IN	(BYTE_TO_BOOL)
BYTE_TO_BOOL	
ST OUT	• EN ENO •
ST programming language	INOUT
OUT:=BYTE_TO_BOOL (IN)	
	mming needs to insert variables IN and OUT or use constants in

Note : IL, ST language programming needs to insert variables IN and OUT or use constants in the current POU variable worksheet

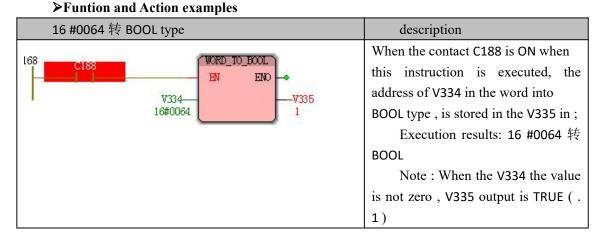
≻Funtion and Action examples

Requirements : 16 # 0A (16 decimal number)	description
turn BOOL	



10.3.7 Conversion of WORD Data

Туре	conversio	n FU	Features							
WORD	type	data	WORD	-converted	data	has		11	instructions	can
conversion	ı		be WORD res	pectively con	verted	to data	a ty	pe BC	OL, BYTE, DW	ORD,
			SINT, INT, DIN	IT, USINT, UIN	T, UDIN	IT, REA	L ar	nd LRE	EAL other types	

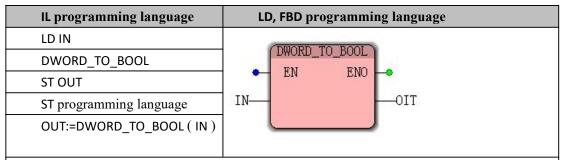

instruction	input	output	description
monderion	value	value	desemption
WORD_TO_BOOL	WORD	BOOL	The input value ranges from 0 to
WORD_TO_BYTE	WORD	BYTE	65,535.
WORD_TO_DWORD	WORD	DWORD	The output is BOOL type :
WORD_TO_SINT	WORD	SINT	the output is FALSE only when the input
WORD_TO_INT	WORD	INT	is ${\bf 0}$, and the output is TRUE in other
WORD_TO_DINT	WORD	DINT	cases ;
WORD_TO_USINT	WORD	USINT	The output
WORD _TO_UINT	WORD	UINT	is SINT type : input 0~127 corresponds
WORD _TO_UDINT	WORD	UDINT	to output 0~127 ,
WORD _TO_REAL	WORD	REAL	input 128~255 corresponds to
WORD_TO_LREAL	WORD	LREAL	output -128~-1 , input increases and output will repeat 0~127 , -128~-1;
			Output USINT, BYTE Type : Input 0
			to 255 corresponding to the output of 0
			to 255, the input further increasing the
			output will be repeated from 0 to
			255; output INT type : Input 0 to
			32767 corresponding output of 0 to
			32767, input from 32768 to
			65535 corresponding to the output -
			32768~-1; When the output is WORD,
			DWORD, etc., the output is equal to
			the input.

WORD conversion instruction type data

Usage (take WORD_TO_BOOL as an example)

.

10.3.8 Conversion of DWOR D -type data


Type conversion FU	Features
DWORD type data conversion	DWORD type data conversion has 11 instructions, which can
	convert DWORD type data into BOOL, BYTE, WORD, SINT, INT,
	DINT, USINT, UINT, UDINT, REAL and LREAL .

DWORD type data conversion instruction

instruction	input value	output	description
		value	
DWORD_TO_BOOL	DWORD	BOOL	The input value ranges from 0 to
DWORD_TO_BTTE	DWORD	BYTE	4,294,967,295; the output is BOOL type : only
DWORD_TO_WORD	DWORD	WORD	when the input is 0 , the output is FALSE, and
DWORD_TO_SINT	DWORD	SINT	in other cases, the output is TRUE;
DWORD_TO_INT	DWORD	INT	The output
DWORD_TO_DINT	DWORD	DINT	is SINT type : input 0~127 corresponds to

DWORD_TO_USINT	DWORD	USINT	output 0~127, input 128~255 corresponds to
DWORD_TO_UINT	DWORD	UINT	output -128~-1, input increases, output will
DWORD_TO_UDINT	DWORD	UDINT	repeat 0~127 , -128~-1; output
DWORD_TO_REAL	DWORD	REAL	is USINT , BYTE Type : Input 0~255 corresponds
DWORD_TO_LREAL	DWORD	LREAL	to output 0~255. When the input is increased, the
			output will repeat 0~255; the output
			is INT type : input 0~32767 corresponds to
			output 0~32767, input 32768~65535 corresponds
			to output -32768~-1, If the input is increased, the
			output will repeat 0~32767 , -32768~-1;;
			the output
			is UINT , WORD type : input 0~65535 corresponds
			to output 0~65535, the input will increase and
			the output will repeat 0~65535; the output
			is BYTE, When WORD is of type, the output is
			equal to
			Enter the lower 8 bits and lower 16 bits of
			data.

usage (take DWORD_TO_BOOL as an example)

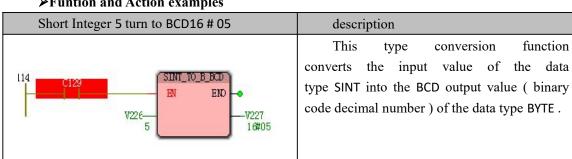
Note : IL, ST language programming needs to insert variables IN and OUT or use constants in the current POU variable worksheet

► Funtion and Action examples

16#0000082 turn BOOL	description
149 1000000000000000000000000000000000000	When the contact C049 is ON time , the instruction is executed; The address V096 in the DWORD number of revolutions BOOL type , is stored in the V097 in ; Execution result: 16 # 0000082 turn for the BOOL type Note : As long as V096 in value is not to zero when output . 1 (TRUE)

10.3.9 Conversion of SINT data

Type conversion FU		n FU	Features
SINT	type	data	SINT type data conversion has 14 instructions, which can
conversion			convert SINT type data into B_BCD, W_BCD, D_BCD , BOOL,
			BYTE , WORD , DWORD, INT, DINT, USINT, UINT, UDINT,
			REAL and LREAL .


SINT type data conversion instruction

instruction	input value	output value	description
			The input value ranges from -128 to 127.
SINT_TO_B_BCD	SINT	BYTE	When inputting 0~99, output 16#0~99;
			when inputting other values, output 16#FF
SINT_TO_W_BCD	SINT	WORD	When inputting 0~127, output 16#0~127;
			when inputting other values,
			output 16#FFFF
SINT_TO_D_BCD	SINT	DWORD	When inputting 0~127, output
			16#0~127, when inputting other values,
			output 16#FFFFFFF
SINT_TO_BOOL	SINT	BOOL	When input 0, output FALSE; when
			other values are input, output TRUE
SINT_TO_BYTE	SINT	BYTE	When inputting 0~127 ,
			output 0~127; input -128~-1 ,
			output 128~255
SINT_TO_WORD	SINT	WORD	When inputting 0~127, output
			0~127; input -128~-1 , output 128~255
SINT_TO_DWORD	SINT	DWORD	When inputting 0~127, output 0~127;
			input -128~-1 , output 128~255
SINT_TO_INT	SINT	INT	When inputting 0~127, output 0~127;
			input -128~-1 , output 128~255
SINT_TO_DINT	SINT	DINT	When inputting 0~127, output 0~127;
			input -128~-1 , output 128~255
SINT_TO_USINT	SINT	USINT	When inputting 0~127, output 0~127;
			input -128~-1 , output 128~255

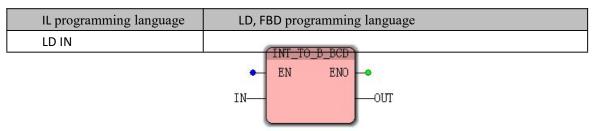
SINT_TO_UINT	SINT	UINT	When inputting 0~127, output 0~127;
			input -128~-1 , output 128~255
SINT _TO_UDINT	SINT	UDINT	When inputting 0~127, output 0~127;
			input -128~-1 , output 128~255
SINT _TO_REAL	SINT	REAL	When inputting 0~127, output 0~127;
			input -128~-1 , output -128~-1
SINT_TO_LREAL	SINT	LREAL	When inputting 0~127, output 0~127;
			input -128~-1 , output -128~-1

usage (take SINT_TO_B_BCDAs an example)

IL programming language	LD, FBD programming language	
LD IN	(SINT_TO_B_BCD)	
SINT_TO_B_BCD	• EN ENO	
ST OUT	INOUT	
ST programming language		
OUT:=SINT_TO_B_BCD (IN)		
Note : IL, ST language programming needs to insert variables IN and OUT or use constants		
the current POU variable worksheet		

► Funtion and Action examples

10.3.10 Conversion of INT data


Type conversion FU	Features
INT type data conversion	INT -converted data has 14 instructions can be INT respectively
	converted data type for the day the BCD, WBCD, D the BCD, BOOL,
	BYTE , WORD , DWORD , SINT, DINT, USINT, UINT, UDINT,
	REAL and LREAL other types.

INT type data conversion instruction

instruction	input	output	description
	value	value	The input value ranges from 32768 to 32767;
INT_TO_B_BCD	INT	BYTE	When inputting 0~99 , output 16#0~99;

			when inputting other values, output 16#FF
INT_TO_W_BCD	INT	WORD	When inputting 0~9999, output 16#0~9999;
		WORD	when inputting other values, output 16#FFFF
INT TO D BCD	INT	DWORD	When inputting 0~32767, output 16#0
		Dirend	~32767 , when inputting other values,
			input 16#FFFFFFF
INT_TO_BOOL	INT	BOOL	When input 0, output FALSE; when other
			values are input, output TRUE
INT TO BYTE	INT	BYTE	When inputting 0^{255} , the output will
			be 0~255; if the input is increased, the output
			will repeat 0~255; input -1~255 ,
			output 255~0; if the input is reduced, the
			output repeats 255~0
INT_TO_WORD	INT	WORD	When inputting 0~32767, output 0~32767;
			input -32768~-1, output 32768~65535
INT_TO_DWORD	INT	DWORD	Input 0 to 32767 , the output 0 to
			32767; input -32768- to 1 , the
			output shown from 32768 to 65535
INT_TO_SINT	INT	SINT	When inputting 0~127, output 0~127;
			input 128~255, output -128-1; input and then
			increase output repeat 0~127,
			-128~-1; input -1~-128 , output -1~-
			128; input -129~-256 , output 127~ input and
			then decrease the output repeat -1~-128, 127~0
INT_TO_DINT	INT	DINT	When inputting -32768~32767, output -32768
			~32767
INT_TO_USINT	INT	USINT	When 0~255 is input, the output is 0~255;
			if the input is increased, the output
			repeats 0~255.
INT_TO_UINT	INT	UINT	When inputting 0~32767 , output 0~32767;
			input -32768~-1 , output 32768~65535
INT_TO_UDINT	INT	UDINT	Input 0 to 32767 , the output 0 to
			32767; input -32768 to -1 , the
			output 32768 a 65535
INT_TO_REAL	INT	REAL	When inputting 0~32767, output 0~32767;
			input -32768~-1 , output -32768~-1
INT_TO_LREAL	INT	LREAL	When inputting 0~32767, output 0~32767;
			input -32768~-1, output -32768~-1

usage (take INT_TO_B_BCD as an example)

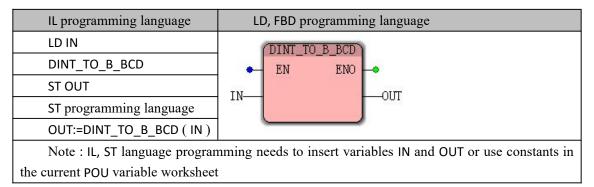
INT_TO_B_BCD		
ST OUT		
St programming language		
OUT:=INT_TO_B_BCD (IN)		
Note : IL, ST language programming needs to insert variables IN and OUT or use constants in		
current POU variable worksheet		

≻Funtion and Action examples

Integer 98 turn as BY	TE	description
)61 	INT_TO_B_BCD EN END − √121 16#98	When the contact C064 is ON when th instruction is executed, the addres of V006 in the integer 98 into BYTE type, is store in the V121 in ; Execution results: 98 intege to 16 #98 (BYTE)

10.3.11 Conversion of DINT type data

Type conversion FU		on FU	Features
DINT	type	data	DINT type data conversion has 16 instructions, which can
conversion			convert DINT type data into B_BCD, W_BCD, D_BCD , BOOL,
			BYTE , WORD , DWORD, SINT , INT, USINT, UINT, UDINT, REAL, LREAL,
			BCDAnd TIME, etc. Types of.


DINT type data conversion instruction

instruction	inpu	output	Description : The input value ranges
	t value	value	from -2,147,483,6482,147,483,647
DINT_TO_B_BCD	DINT	BYTE	When inputting 0~99 , output 16#0~99;
			when inputting other values, output 16#FF
DINT_TO_W_BCD	DINT	WOR	When inputting 0~9999 , output 16#0~9999;
		D	when inputting other values, output 16#FFFF
DINT_TO_D_BCD	DINT	DWORD	When inputting 0~99999999 , output
			16#0~9999999999. When other values are input,
			output 16#FFFFFF
DINT_TO_BOOL	DINT	BOOL	When input 0, output FALSE; when other values
			are input, output TRUE
DINT_TO_BYTE	DINT	BYTE	When inputting 0~255, the output will be 0~255;
			if the input is increased, the output will
			repeat 0~255; input -1~-255, output

			255~0; input and then decrease will output
			repeat 2550
DINT_TO_WORD	DINT	WOR D	When inputting 0^{65535} , the output is 0^{65535} ; if the input is increased, the output repeats 0^{65535} ; input -1^{-65536} , output 65535^{0} ; if the input is decreased, the
			output repeats 65535~0
DINT_TO_DWOR D	DINT	DWORD	When inputting 0~2,147,483,647 , output 0~2,147,483,647; input- 2,147,483,648~-1 , output 2,147,483,648~4,294,967,295
DINT_TO_SINT	DINT	SINT	When inputting 0~127, output 0~127; input 128~255, output -128~-1; input and then increase output repeat 0~127, -128~-1; input -1 ~-128, output -1~ -128; input -129~-256, output 127~0; input and then decrease, output repeat -1~-128, 127~0
DINT_TO-INT	DINT	INT	When input -32768 ~32767 , the output is -32768 ~32767; when the input is greater than 32767 , the output repeats -32768~32767; the input is less than -32768 , the output repeats 32767-32768
DINT_TO_USINT	DINT	USINT	When 0~255 is input, the output is 0~255; if the input is increased, the output repeats 0~255.
DINT_TO_UINT	DINT	UINT	When inputting 0~65535, the output is 0~65535; if the input is increased, the output repeats 0~65535; input -65536~-1, output 0~65535; if the input is reduced, the output repeats 65535~0
DINT-TO_UDINT	DINT	UDINT	When inputting 0~2,147,483,647 , output 0~2,147,483,647; input- 2,147,483,648~-1 , output 2,147,483,648~4.294.967.295
DINT_TO_REAL	DINT	REAL	When inputting 0~2,147,483,647, the output is 0~2,147,483,647; input -2,147,483,648~-1, output- 2,147,483,648~-1, the precision will be reduced
DINT_TO_LREAL	DINT	LREAL	When inputting 0~2,147,483,647, the output is 0~2,147,483,647; input -2,147,483,648~-1, output- 2,147,483,648~-1, the precision will be reduced
DINT_TO_BCD	DINT	BCD	Input value DINT 0~999999999 , output value BCD code 16#00000000~16#999999999 .
DINT_TO_TIME	DINT	TIME	The output value is iNSeconds ; the input value is 0~2,147,483,647 , the output value

is 0~2147483.647 seconds ; the input value
is -2147483648~-1 seconds, and the output value
is 2147483.648~4294967.295 seconds.

usage (take DINT_TO_B_BCDAs an example)

≻Funtion and Action examples

Double integer 60 rpm BYTE	description
032 C059 V062 V062 60 UNT_TO_B_BCD EN EN V063 16#60	When the contact C059 is ON when this instruction is executed, the address of V062 in the double integer of 60 revolutions of BYTE stored in V063 in ; Execution of Results : 60 (DINT) switch 16 # 60 (BYTE)

10.3.12 Conversion of USINT type data

Type conversion FU		FU	Features
USINT	type	data	USINT conversion type data there . 11 instructions can
conversion			be USINT respectively converted to data type BOOL, BYTE, WORD,
			DWORD, SINT, INT, DINT, UINT, UDINT, REAL and LREAL other types.

USINT type data conversion instruction

instruction	input	output	Description The input value ranges
	value	value	from 0 to 255.
USINT_TO_BOOL	USINT	BOOL	When input 0, output FALSE; when
			other values are input, output TRUE

USINT_TO_BYTE USINT BYTE When 0~255 is is USINT_TO_WORD USINT WORD When 0~255 is in is 0~255. is 0~255. is 0~255.	input, the output
USINT_TO_WORD USINT WORD When 0~255 is in	
is 0~255.	put, the output
USINT_TO_DWORD USINT DWORD When 0~255 is i	input, the output
is 0~255.	
USINT_TO_SINT USINT SINT When inputting	, 0~127 ,
output 0~127; inp	out 128~255 ,
output -128~-1	
USINT_TO_INT USINT INT When 0~255 is in	put, the output
is 0~255.	
USINT_TO_DINT USINT DINT When 0~255 is in	put, the output
is 0~255.	
USINT_TO_UINT USINT UINT When 0~255 is in	put, the output
is 0~255.	
USINT_TO_UDINT USINT UDINT When 0~255 is in	put, the output
is 0~255.	
USINT_TO_REAL USINT REAL When 0~255 is in	put, the output
is 0~255.	-
USINT_TO_LREAL USINT LREAL When 0~255 is in	put, the output
is 0~255.	

usage (using USINT_TO_BYTE as an example) IL programming language

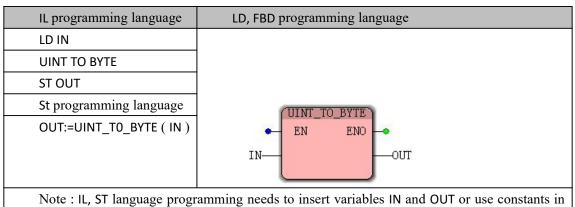
LD IN	LD, FBD programming language	
USINT_TO_BYTE	THE TAR AND THE TAR	
ST OUT	USINT_TO_BYTE	
ST programming language	• EN ENO •	
OUT:=USINT_TO_BYTE (IN)	INOUT	
Note : IL, ST language programming needs to insert variables IN and OUT or use constants in		

the current POU variable worksheet

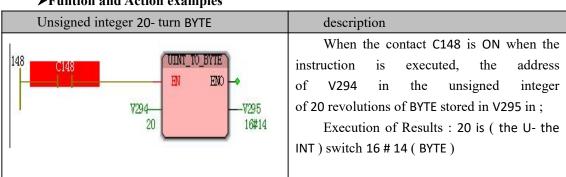
>Funtion and Action examples

24 (USINT) to BYTE description	i	
	24 (USINT) to BYTE	description

53 C158 V304 V304 24 USINT_TO_BYTE EN END V305 16#18	When the contact C158 is ON when this instruction is executed, The address V304 in the unsigned short integer of 24 rpm to BYTE, stored in the V 305 In; Execution of Results : 24 (DINT) switch 16 # 18 is (BYTE)


10.3.13 Conversion of UINT type data

Type conversion FU	Features
UINT type data conversion	UINT type data conversion has 11 instructions, which can
	convert UINT type data into BOOL, BYTE, WORD, DWORD, SINT,
	INT, DINT, USINT, UDINT, REAL and LREAL .


UINT type data conversion instruction

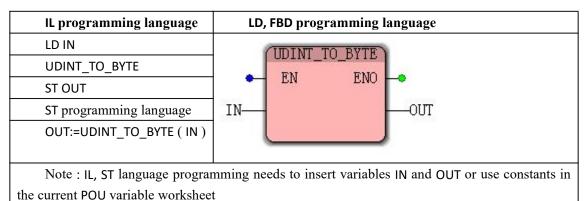
instruction	input value	output value	Description Input value range 0 65535
UINT_TO_BOOL	UINT	BOOL	When input 0, output FALSE; when other values
			are input, output TRUE
UINT _TO_BYTE	UINT	BYTE	When 0~255 is input, the output will be 0~255;
			if the input is increased, the output will
			repeat 0~255.
UINT_TO_WORD	UINT	WORD	When 0~65535 is input , the output
			is 0~65535.
UINT _TO_DWORD	UINT	DWORD	When 0~65535 is input , the output is 0~65535.
UINT_TO_SINT	UINT	SINT	When inputting 0~127, output 0~127; input
			128~255 , output -128~-1; input and then
			increase output repeat 0~127, -128~-1
UINT_TO_INT	UINT	INT	When inputting 0~32767, output 0~32767;
			input 32768~65535, output -32768~-1
UINT_TO_DINT	UINT	DINT	When 0~65535 is input , the output is 0~65535.
UINT_TO_USINT	UINT	USINT	When 0^{255} is input , the output is 0^{255} ; if
			the input is increased, the output repeats 0~255.
UINT_TO_UDINT	UINT	UDINT	When 0~65535 is input , the output is 0~65535.
UINT_TO_REAL	UINT	REAL	When 0~65535 is input , the output is 0~65535.
UINT _TO_LREAL	UINT	LREAL	When 0~65535 is input , the output is 0~65535.

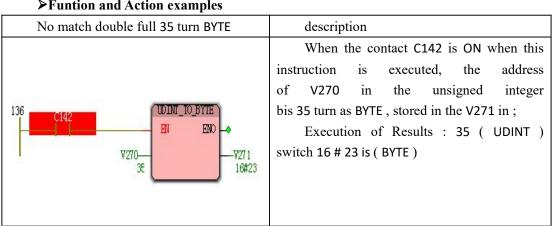
usage (take UINT_TO_BYTE as an example)

the current POU variable worksheet

≻Funtion and Action examples

10.3.14 Conversion of UDINT type data


Type conversion FU		n FU	Features
UDINT	DINT type data		UDINT type data conversion has 11 instructions, which can
conversion	conversion		convert UDINT type data into BOOL, BYTE, WORD, DWORD, SINT,
			INT, DINT, USINT, UINT, REAL and LREAL .


UDINT type data conversion instruction	
--	--

instruction	input	output	Description Input value range 04,294,967,295
	value	value	
UDINT_TO_BOOL	UDINT	BOOL	When input 0, output FALSE; when other values
			are input, output TRUE
UDINT _TO_BYTE	UDINT	BYTE	When 0~255 is input, the output will be 0~255;
			if the input is increased, the output will
			repeat 0~255.
UDINT_TO_WORD	UDINT	WORD	When inputting 0~65535, the output will be
			0~65535 . If the input is increased, the output will
			repeat 0~65535.
UDINT_TO_DWORD	UDINT	DWORD	When 0~4,294,967,295 is input , the output is

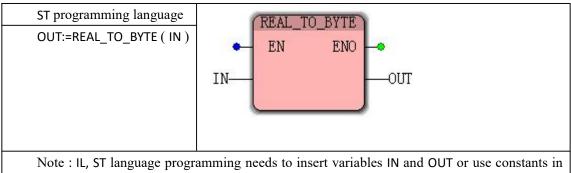
		1
		0~4,294,967,295
UDINT	SINT	When inputting 0~127, output 0~127;
		input 128~255, output -128~-1; input and then
		increase output repeat 0~127, -128~-1
UDINT	INT	When inputting 0~32767, the output is
		0~32767; input 32768~65535 output is -32768~-1,
		if the input is increased, the output
		repeats 0~32767, -32768~-1
UDINT	DINT	When inputting 0~2,147,483,647 , the output
		is 0~2,147,483,647; into 2,147,483,648~4,294,967,
		295 , lose- 2,147,483,648~-1
UDINT	USINT	When 0~255 is input , the output is 0~255; if
		the input is increased, the output repeats 0~255.
UDINT	UDINT	When inputting 0~65535 , the output is 0~65535; if
		the input is increased, the output repeats 0~65535
UDINT	REAL	When 0~4,294,967,295 is input , the output
		is 0~4,294,967,295 , the accuracy will be reduced.
UDINT	LREAL	When 0~4,294,967,295 is input , the output
		is 0~4,294,967,295 , the accuracy will be reduced.
	UDINT UDINT UDINT UDINT UDINT	UDINTINTUDINTINTUDINTDINTUDINTUSINTUDINTUDINTUDINTREAL

usage (take UDINT_TO_BYTE as an example)

Funtion and Action examples

10.3.15 Conversion of REAL type data

Type conversion FU	Features
Conversion of REAL type	REAL type data conversion has 11 instructions, which can
data	convert REAL type data into BOOL, BYTE, WORD, DWORD, SINT,
	INT, DINT, USINT, UINT, UDINT and LREAL .


REAL type data conversion instruction

	instruction	inp	output	description
		ut value	value	REAL type input value whose fractional
				part is discardeDAt the time of conversion
	REAL_TO_BOOL	REA	BOOL	When input 0, output FALSE; when other
		L		values are input, output TRUE
	REAL_TO_BYTE	REA	BYTE	When inputting 0^{255} , the output will
		L		be 0~255; if the input is increased, the output
				will repeat 0~255; input -1~-255 ,
				output 255~0; input and then decrease will
				repeat 255~0
	REAL_TO_WOR	REA	WORD	When inputting $0~65535$, the output
D		L		is 0^{-65535} . If the input is increased, the
				output repeats 0~65535; input -1~-65536 ,
				output 65535~0, input and then decrease, the
				output repeats 65535~0
	REAL_TO_DWO	REA	DWOR	When inputting 0~2,147,483,647 ,
RD		L	D	output 0~2,147,483,647, input and increase
				output
				is 2,147,483,647; input -1~-2,147,483,648 ,
				output 4,294,967,295~2,147,483,648 , input
				and then reduce output is
				still 2,147,483,648; accuracy will decrease
	REAL_TO_SINT	REA	SINT	When inputting 0~127 ,

	L		output 0~127; input 128~255 ,
			output -128~-1; input and then increase output
			repeat 0~127, -128~-1; input -1 ~-128 ,
			output -1~ -128; input -129~-256 ,
			output 127~0; input and then decrease, the
			output repeats -1~128, 127~0
REAL _TO_INT	REA	DINT	When inputting 0~32767 , the output
	L		is 0~32767; input 32768~65535} output -32768
			~-1; if the input is increased, the output
			repeats 0~32767, -32768~-1; input -1~-32768,
			output -1~ -32768; input -32769~-65536 ,
			output 32767~0; input and then decrease,
			output repeat -1~-32768, 32767~0
REAL_TO_DINT	REA	DINT	When inputting 0~2,147,483,647 , the
	L		output is 0~2,147,483 and the output is
			still 2,147,483,647-1 ~-2,147,483,648 , the
			output is -1~-2,147,483,648, the input is
			reduceDAnd the output is still -2,147,483,648
REAL_TO_USINT	REA	USINT	When inputting 0^{255} , the output
	L	03111	is 0^{255} . If the input is increased, the output
	-		repeats 0^{-255} ; input -1^{-256} , output 255^{-0} ,
			output decreases and the output repeats 255~0
REAL_TO_UINT	REA	UINT	When inputting 0~65535, the output
		UNI	is 0~65535 . If the input is increased, the
	L		output repeats 0~65535; input -1~-65536,
			output 65535~0, input and then decrease, the
			output repeats 65535~0
REAL_TO_UDIN	REA	UDINT	When inputting 0~2,147,483,647 , the
T	L		output is 0~2,147,483,647 , the input is
			increased to 2,147,483,647; the input
			is -1~-2,147,483,648 , the output
			is 4,294,967,295~2,147,483,648, the input is
			reduceDAnd the output is still 2,147,483,648;
			the precision will be reduced
REAL_TO_LREAL	REA	LREAL	Input equal to output
	L		

usage (take REAL_TO_BYTE as an example)

IL programming language	LD, FBD programming language
LD IN	
REAL_TO_BYTE	
ST OUT	

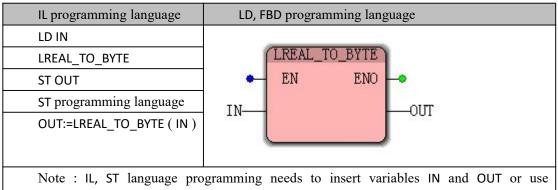
the current POU variable worksheet

≻Funtion and Action examples

Float 73 is .0 turn BYTE	description
103 (REAL_TO_BYTE)	When the contact C105 is ON , the execution of the instruction , the address of V204 in the floating 73.0 revolutions of BYTE stored
V204 EN ENO √205 7. 3000000E+001 16#49	in the V 205 in ; Execution of results : 73.0 (REAL) switch 16 # 49 (BYTE)

10.3.16 Conversion of LREAL type data

Type conversion FU		FU	Description
LREAL	type	data	LREAL conversion type data there . 11 instructions can
conversion			be LREAL respectively converted to data type BOOL, BYTE, WORD,
			DWORD, SINT, INT, DINT, USINT, UINT, UDINT and REAL types.


LREAL type data conversion instruction

instruction	input	output value	Describe the REAL type of input value
	value		whose fractional part is discardeDAt the
			time of conversion
LREAL_TO_BOOL	LREA	BOOL	When input 0, output FALSE; when
	L		other values are input, output TRUE
LREAL_TO_BYTE	LREA	BYTE	When 0~255 is input , the output
	L		is 0~255; if the input is increased, the
			output will be repeated.
			0~255; input -1~-255 ,
			output 255~0; input and then decrease,
			output repeats 255~0
LREAL_TO_WORD	LREA	WORD	When inputting 0~65535, the output
	L		is $0~65535$. If the input is increased, the

				output repeats 0~65535; input -1~-65536, output 65535~0, input and then decrease, the output repeats 65535~0
D	LREAL_TO_DWOR	LREA L	DWOR D	When inputting 0~2,147,483,647 , output 0~2,147,483,647 , increase output 4,294,967,295~2,147,483,648 , input and then reduce output is still 2,147,483,648; accuracy will decrease
	LREAL_TO_SINT	LREA L	SINT	When inputting 0~127 , output 0~127; input 128~255 , output -128~-1; input and then increase output repeat 0~127, -128-1; input -1~-128 , output -1~- 128; input -129~-256 , output 127~0; input and then decrease, the output repeats -1~-128, 127~0
	LREAL_TO_INT	LREA L	DINT	When inputting 0^32767 , the output is 0^32767 ; input 32768^{65535} output is -32768^{-1} ; if the input is increased, the output repeats 0^{32767} -32768^{-1} ; input -1^{-32768} , output -1^{-32768} ; input -32769 -65536^{-1} , outputs 32767^{-1} 0; input the output decreases again repeated -1 to -32768 , 32767^{-1} 0
	LREAL_TO_DINT	LREA L	DINT	When inputting 0~2,147,483,647, the output is 0~2,147,483647 and the output is still 2,147,483,647; input -1~-2,147,483,64 8, output -1~-2,147,483,648 Input and then reduce the output is still -2,147,483,648
	LREAL_TO_USINT	LREA L	USINT	When inputting 0^{255} , the output is 0^{255} . If the input is increased, the output repeats 0^{255} ; input -1^{-256} , output 255^{0} , output decreases and the output repeats 255^{0}
	LREAL_TO_UINT	LREA L	UINT	When inputting 0~65535, the output is 0~65535. If the input is increased, the output repeats 0~65535; input -1~-65536, output 65535~0, input and then decrease, the output repeats 65535~0
	LREAL_TO_UDINT	LREA	UDINT	When inputting 0~2,147,483,647 ,

	L		output 0~2,147,483,647 , input and
			increase output
			is 2,147,483,647; input -1~-2,147,483,648 ,
			output 4,294,967,295~2,147,483,648 ,
			input and then reduce output is
			still 2,147,483,648; accuracy will decrease
LREAL_TO_LREAL	LREA	REAL	Input equals output, accuracy is
	L		reduced

usage (take LREAL_TO_BYTE as an example)

constants in the current POU variable worksheet

≻Funtion and Action examples

Long floating	point	description
number 10.0 rpm BYTE		
		When the contact C095 is ON , the execution of
092	LREAL_TO_B	the instruction, the address
	EN	of V182 in the long floating-point number 10.0 revolut
		ions of BYTE, stored in the V183 in;
V182-	1	Execution of results : 10.0 (the LREAL)
1.0000000E+001		switch 16 # 0A (BYTE)

10.3.17 TRUNC decimal rounding

Type conversion FU	Features	
TRUNC decimal rounding	The TRUNC fraction has four instructions, which can convert	
	floating-point data to SINT , INT , DINT, and so on.	

RUNC decimal rounding instruction

instruction	input	output	description
	value	value	
TRUNC	REAL	Unsigned	Truncating the fractional part of the input value
		integer	to get an integer value
TRUNC_SINT	REAL	SINT	When inputting 0~127 ,
			output 0~127; input 128~255, output -128~-1; input
			and then increase output repeat 0~127,
			-128~-1; input 1~-128 , output -1~
			-128; input -129~-256 , output 127~0; input and then
			decrease, output repeat -1~-128, 127~0
TRUNC_INT	REAL	INT	Input 0 to 32767 when , outputs 0 to
			32767; input from 32768 to 65535 , the output from
			-32768 to -1; input to add the output
			Repeat 0~32767, -32768~-1; input -1~-32768,
			output -1~-32768; input -32769~-65536 ,
			output 32767~0; input and then decrease, the output
			repeats -1~-32768, 32767~0
TRUNC_DINT	REAL	DINT	When 0~2,147,483,647 is input , the output
			is 0~2,147,483,647.
			Input and then increase the output is
			still 2,147,483,647; input
			-1~-2,147,483,648, output -1~-2,147,483,648,
			input and then reduce the output is
			still -2,147,483,648

usage (take TRUNC_SINT as an example)

IL programming language	LD, FBD programming language			
LD IN	(TRUNC SINT)			
TRUNC_SINT				
ST OUT	INOUT			
ST programming language				
OUT:=TRUNC_SINT (IN)				
Note : IL, ST language programming needs to insert variables IN and OUT or use constants in				

the current POU variable worksheet

Floating point number 75.68 rounding				descrip	tion			
No. 1				When	the contact	C138 is	ON when	this
.34 C138	ſ	TRUNC_SINT		instruction i	s executed,			
		EN END-	•	The	address	of	V266	in
100 000	¥266—		—_¥267	the floating-	point numbe	r 75.68	rounding st	tored
	7.5680000E+001		75	in the V 267	in ;			

The implementation of the results : 75.69		
turn to 75		
(Note: This function is rounded up ,		
the number after the decimal point is rounded		
off)		

10.3.18 Conversion of TIME type data

Type conversion FU	Features
TIME_TO _DINT type	The TIME_TO _DINT type conversion function converts
conversion	a TIME type input value into ADINT type output value (any time
	value is converted to a millisecond value and then the millisecond
	value is converted to $DINT$) . The $TIME$ type data must be an
	unsigned number starting with T# . The time value greater
	than #2147483647 will be negative because the DINT type is a
	signed number and its maximum value is 2,147,483,647 . For
	example, the input value T#4294967295
	A millisecond will result in an output value of -1.

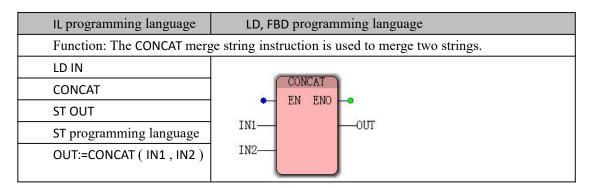
> TIME_TO_DINT data type conversion instruction processing

instruction	input value	output	description
		value	
TIME_TO_DINT	TIME	DINT	Input value range T#0~2147483647M
			S (equal to T#0~2147483.647S , converted
			to DINT output value
			0~2147483647; input value
			range T#2147483648~4294967295 ,
			converted to DINT output
			value -2147483648~-1 .

usage

the current POU variable worksheet

IL programming language	LD, FBD programming language	
LD IN		
TIME_TO_DINT		
ST OUT	(TIME_TO_DINT)	
ST programming language	- EN ENO	
OUT:=TIME_TO_DINT (IN)	INOUT	
Note : IL, ST language programming needs to insert variables IN and OUT or use constants in		


The T # 10 S converted into bis integer	description
.83 C188 V376 V376 10,000 U377 10000	When the contact C188 is ON when the instruction is executed, the address of V376 in the time value (T # 10s) turn to DINT, stored in the V277 in ; Execution of Results : T # 10S (the TIME) converted to 10000 (DINT) Note that (time units into DINT between the turn into 1000 ; (Example IS 1000)

1 0.4 String FU

□ •string function, referred to as the string FU, is a comparison, conversion, lookup, connection, etc. operation for strings, with multiple input parameters and one output parameter. During the MULTIPROG programming process, you caNSelect " String FU " from the drop-down list in the Edit WizarDAnd use the following command.

classification	Features		
Merge Insert	CONCAT	INSERT	DELEtE
Delete	REPLACE	LEN	LI MIT_STRING
Replacement	FIN D		
Length Limit			
Size and location	MAX_STRING	M IN_STRING	LEFT
	MID	RIGHT	SEL_STRING
Comparison	GT_STRING	GE_STRING	EQ_STRING
	NE_STRING	LE STRING	LT_STRING
Convert string to	STRING_TO_BYTE	STRING_TO_WORD	STRING_TO_DWORD
other	STRING_TO_SINT	STRING_TO_INT	STRING_TO_DINT
	STRING_TO_USINT	STRING_TO_UINT	STRING_TO_UDINT
	STRING_TO_LREAL	STRING_TO_REAL	STRING_TO_TIME
Other conversion	BYTE_TO_STRING	WORD_TO_STRING	DWORD_TO_STRING
to string	SINT_TO_STRING	INT_TO_STRING	DINT_TO_STRING
	USINT_TO_STRING	UINT_TO_STRING	UDINT_TO_STRING
	REAL_TO_STRING	LREAL_TO_STRING	TIME_TO_STRING

10.4.1 CONCAT (Merge String)

Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use constants in the current POU variable worksheet

Input	type of data	description
IN1	STRING	First input
IN2	STRING	Second input
Output	type of data	description
OUT	STRING	Output, OUT=IN1 +IN2; the second input is addeDAfter the
		first input, the output is not allowed to have the same name as
		the input

> CONCAT data processing instruction type

≻Funtion and Action examples

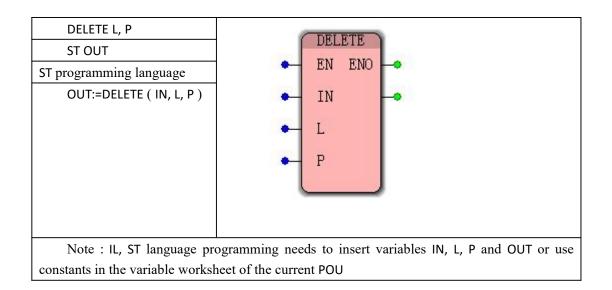
" VECTOR Company"	description
90 C189 V378 VBCTDR V379 公司 VBCTDR 公司	When the contact C189 is ON when the instruction is executed , the address of V378 in the string + address V379 in the string , stored in the V 380 In ; Execution of the results : the VECTOR + company = VECTOR Company

10.4.2 INSERT (insert string)

IL	programming	LD, FBD programming language	
language			
Function:	The INSERT Ins	nsert String instruction is used to insert a string or character i	nto
another string.			
usage			
LD IN1			
INSERT IN	I2, P	INSERT	
ST OUT		- EN ENO	
ST	programming	• IN1 •	
language			
OUT:=INS	ERT (IN1 , IN2,	• IN2	
P)		P P	

Note : IL, ST language programming needs to insert variables IN1, IN2, P and OUT or use constants in the current POU variable worksheet

数据 Data type processed by INSERT instruction

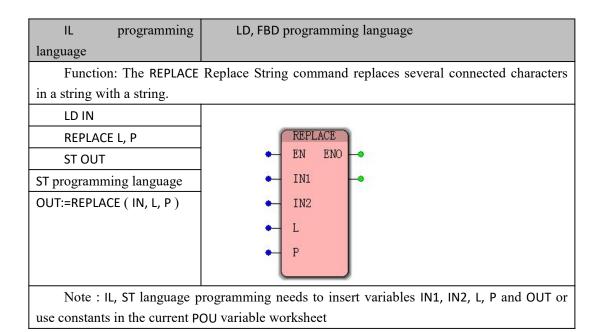

Input and output	type of data	description
IN1	STRING	The first input string, when using a variable, the
		variable must be set to a non-null initial value, or a string
		constant
IN2	STRING	EleveNSecond input string to be inserted into the first
		input, using the variable, variable amount of non-null initial
		value must be set, the string constant may be used
Р	ANY_INT	At the insertion point in the first input, P must be an
		integer greater than 0 ; the first character position in the
		string is 1 and the following characters are 2, 3,
OUT	STRING	The output second input is inserteDAfter the P character
		of the first input, and the output is not allowed to have the
		same name as the input.

≻Funtion and Action examples

The string " operation control " into the "string" Win "System run " syllable	description
191 C190 V381 区制 V382 V382 V382 V382 P P 2 N1 N2 P	When the contact C190 is ON when this instruction is executed, the address of V381 in the insertioNString address V382 in the first string after stored in V 384 In , P represents the insertion of a few strings after Execution results: transportation + motion control = motion control

10.4.3 DELETE (copies except string)

	IL	programming	LD, FBD programming language
1	anguage		
	Function:	The DELETE d	elete string instruction is used to delete several connected
c	haracters deter	rmined in a strin	g.
	LD IN		



数据 Data type processed by DELETE instruction

Input and output	type of data	description
IN	STRING	Enter a string or use a constant string
L	ANY_INT	The number of characters to be deleted, L can be 0, 1, 2
Р	ANY_INT	In the input string, the position of the first character to be
		deleted, P must be an integer greater than ${\bf 0}$; the first
		character position in the string is 1, and the following
		characters are 2, 3
OUT	STRING	The output input string is not affected by the deletion. In fact,
		this instructioNSelects several strings in the input string to
		form a new string. The output does not allow the same name
		as the input.

Delete the third character "C" in the	description
string "PLC"	When the contact C 191 contact is O N, the execution of the instruction; delete address V 385 string in the third character, in an amount of . 1 a; where L is the number of characters to be deleted, P is the first to be deleted Several characters Execution result: P LCPL

10.4.4 REPLACE (replace string)

数据 Data type processed by the REPLACE instruction

Input and output	type of data	description
IN1	STRING	First input string
IN2	STRING	The second input string will replace some characters in
		the first input string
L	ANY_NT	The number of characters to be replaced, L can be 0, 1,
		2
Р	ANY_INT	In the first input string, the position of the first character
		to be replaced, P must be an integer greater than 0 ; the first
		character position in the string is 1, and the following
		characters are 2, 3
OUT	STRING	Output the first input string is not affected by the
		substitution, in fact, this instruction is to select the first two
		characters in the first input string and the second string to
		form a new string, the output is not alloweDAnd input Same
		name

REPLACE function anDAction example

Replace the string "PLC" with the string "VECTOR" description

V386- PLC V390- VBCTOR V391- V392- V392- N392- N392- I	When the contact C 192 is O N, the execution of the instruction; address V 389 string, replace address V 390 string, where P is the number of strings is replaced by the first few Start being replaced, L is the number of characters to be replaced. Execution result: PLCVECTOR
---	---

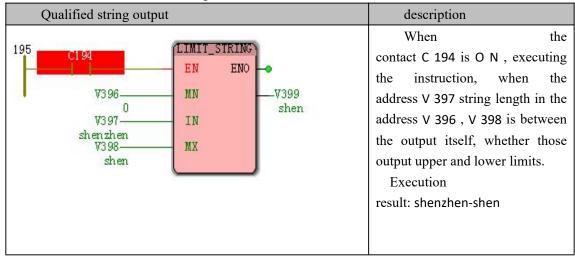
10.4.5 LEN (string length)

IL programming	LD, FBD programming language		
language			
Function: LEN dete	Function: LEN determines the length of a string.		
LD IN	TEN		
LEN	• EN ENO		
ST OUT	EN ENO		
ST programming	INOUT		
language			
OUT:=LEN(IN)			
Note : IL, ST language programming needs to insert variables IN and OUT or use constants in			
the current POU variable worksheet			

数据 Data type processed by LEN instruction

Input	and	type of	description
output		data	
IN		STRING	Input string
OUT		INT	Output, the length of one character is 1

Determine the length of a string	description
194 C193 EN EN EN EN C193 V394 C193 6	When the contact C 193 is O N when the instruction is executed , the address V 394 length of the string is displayeDAs an integer, there is an address V 395 in Execution result: V ECTOR6


10.4.6 LIMIT_STRING (set string limit)

IL programming language	LD, FBD programming language		
Function: The LIMIT_STRING instruction is used to limit the range of characters or strings			
entered by the upper and lower limits.			
LD IN1	(*************************************		
LIMIT_ STRING IN, IN2			
ST OUT			
ST programming language	• MN		
OUT:=LIMIT_STRING(IN1, IN, IN2)	• IN		
	• MX		

Note : IL, ST language programming needs to insert variables IN1, IN, IN2 and OUT or use constants in the current POU variable worksheet

Input and	type of	description
output	data	
IN1 (MN)	STRING	Lower limit of characters
IN	STRING	Enter a character or string
IN2 (MX)	STRING	Upper limit of characters
OUT	STRING	Output, the upper and lower limits of the input value will
		be equal to the upper and lower limits respectively ; the size of
		the characters will be judgeDAccording to the size of
		the ASCII code value ; when the string is input, only the first
		character participates in the comparison, that is, if When a
		character is in the upper and lower limits, the string is all
		output, otherwise only the upper or lower limit is output.

> LIMIT_STRING instruction processing data types

10.4.7 FIND (FinDA character that appears in a string)

IL programming language	LD, FBD programming language
Function: The FIND	instruction is used to determine the position of the second
string (whichever is the first	character) that appears in the first string .
LD IN1	
FIND IN2	FIND
ST OUT	• EN ENO •
ST programming language	Tati
OUT:=FIND (IN1, IN2)	• IN1 •
	• IN2
Note : IL, ST language	programming needs to insert variables IN1, IN2 and OUT or use

Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or u constants in the current POU variable worksheet

Input and	type of data	description
output		
IN1	STRING	The first input character or string, the position of the first
		character from the left in the string is 1
IN2	STRING	The second input character or string, the position of the
	first character from the left in the string is 1	
OUT	STRING	The output of the second string of the first character string
		appears in the first position, if the character is not included in
		the first string, output O.

>the FIND data processing instruction type

Find the same string	description
V4 00	When the contact is ON , the instruction
V4 00	is executed. When the character string in
VECTOR	the address V 400 is equal to the character
V4 01	string of the address 4 01A , the
IN1	address V 402 outputs 1 ;
VECTOR	The result of the execution: V ECTOR =
VECTOR	VECTOR output 1 ;

10.4.8 MAX_STRING (take a larger string)

IL programming language	LD, FBD programming language	
Function: The MAX_STRING instruction is used to determine the larger of the two characters.		
Usage LD IN1	ALLY AMPRICAS	
MAX_STRING IN2		
ST OUT	IN1OUT	
ST programming language	IN2—	
OUT:=MAX_		
STRING (IN1, IN2)		
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use		
constants in the current POU variable worksheet		

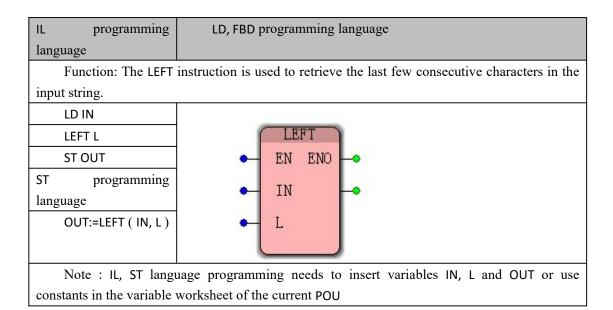
Input and output	type of data	description
IN1	STRING	The first input character or string
IN2	STRING	The second input character or string
OUT	STRING	Output, the larger of two characters or a string ; the size
		of the character is calculateDAccording to
		its ASCII code ; when the string is input, only the first character
		participates in the comparison, that is, if the first character of a
		string is larger, then all the output of this string

> max_string data processing instruction type

Compare the largest string	description
197 V403 VECTOR公司 VECTOR公司 VECTOR公司	When the contact is O N when the instruction is executed, the address comparator V 403 string address V 404 length of the string, there is a string of the maximum output V 405 of: Implementation of the results: V Ector company VECTOR Output : V Ector company

10.4.9 MIN_STRING (take a smaller string)

IL programming language	LD, FBD programming language	
Function: The MIN_STRING	instruction is used to determine the smaller of the two	
characters.		
LD IN1	WIN CTRINC)	
MIN _ STRING IN2	MIN_SIKING	
ST OUT	• EN ENO	
ST programming language	IN1OUT	
OUT:=MIN_STRING (IN1, IN2)	IN2—	
	1102-	
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use		
constants in the current POU variable worksheet		


> MIN_STRING data processing instruction type

Input	type of	description
and output	data	
IN1	STRING	The first input character or string
IN2	STRING	The second input character or string
OUT	STRING	Output, the smaller of two characters or a string ; the size of the character is calculateDAccording to its ASCII code ; when the string is input, only the first character participates in the
		comparison, that is, if the first character of a string is smaller , then all the output of this string

Compare the smallest string	description
198 C197 WIN_STRING V406 VECTOR公司 VECTOR公司 VECTOR VECTOR	When the contact is O N when the instruction is executed, the address comparator V 406 string address V 407 length of the string, there is a minimum string output V 408 of Execution results: V ECTOR - VECTOR Output : V ECTOR

10.4.10 LEFT (Remove the last few characters of the

string)

数据 Data type processed by LEFT instruction

Input	type of	description
and output	data	
IN	STRING	Input string
L	ANY_INT	The number of characters to be fetched
OUT	STRING	Output, take out L consecutive characters from the
		leftmost side of the input string ; L must be greater than ${\bf 0}$,
		and less than or equal to the number of characters of
		the input string IN

Extract the first three characters of the string "VECTOR"	description
199 V4 09 VECTOR V4 10 VECTOR V4 10 VECTOR U	When the contact is O N when the instruction is executed, the address V 409 string extracted first three characters Execution result: V ECTORVEC

10.4.11 MID (Remove several characters in a string)

IL programming	LD, FBD programming language	
language		
Function: The MID in	struction is used to retrieve the last few consecutive characters in the	
input string.		
LD IN	MID	
MID L, P	• EN ENO	
ST OUT	• IN •	
ST programming	•- L	
language	• P	
OUT:=MID (IN, L, P)		
Note : IL, ST language programming needs to insert variables IN, L, P and OUT or use		
constants in the variable worksheet of the current POU		

数据 Data type processed by MID instruction

Input	and	type of	description
output		data	
IN		STRING	Input string
L		ANY_INT	The number of characters to be fetched
Р		ANY_INT	The starting position of the character to be fetched,
			that is, the character is taken from the Pth character of
			the input string.
OUT		STRING	Output, take out the P from the Pth to P+L consecutive
			characters in the input string ;
			Note : L must be greater than 0; the first P+L characters
			must be in the input string ; P must be greater than 0 and
			less than or equal to the maximum number of characters in
			the input string ; IN must be a non-empty string

Extract any character in a string	description
200 C199 W1D EN ENO V412- VECTOR V413 V414 3 P	When the contact C 199 is ON , the instruction is executed to extract three characters in the string in the address V 412 , where L is the number of symbols to be extracted, and P is the starting position of the extracted character. Execution result: V ECTORCTO

10.4.12 RIGHT (remove the rightmost characters of the

string)

IL programming	LD, FBD programming language		
language			
Function: The RIG	HT command is used to retrieve the rightmost few consecutive characters		
in the input string.			
LD IN	RIGHT		
RIGHT L	• EN ENO •		
ST OUT	• IN -•		
ST programming	• L		
language			
OUT:=RIGHT (IN, L)			
Note : IL, ST lan	Note : IL, ST language programming needs to insert variables IN, L and OUT or use		
constants in the variable	constants in the variable worksheet of the current POU		

数据 RIGHT command processing data type

Input and	type of data	description
output		
IN	STRING	Input string
L	ANY_INT	The number of characters to be fetched
OUT	STRING	Output, take out L consecutive characters from the
		rightmost side of the input string ; L must be greater than 0,
		and less than or equal to the number of characters of the input
		string IN

Extract the rightmost 3 characters of	description
the string V ECTOR	
	When the contact C 200 is of O N , the
201 RIGHT	execution of the instruction,
EN ENO	address V416 three rightmost character is
V416- IN	extracted, the output V 418
VECTOR V417L TOR	
3	Execution result: V ECTORTOR

10.4.13 SEL_STRING (binary selection of strings)

IL programming language	LD, FBD programming language	
Function: The SEL_STRING instruct	ction is used to retrieve the last few consecutive characters	
in the input string.		
LD IN	(SEL_STRING)	
SEL_STRING IN1 , IN2	• EN ENO -•	
ST OUT	• G •	
ST programming language	• INO	
OUT:=SEL_STRING (IN, IN1 , IN2)	• IN1	

Note : IL, ST language programming need to insert variables IN, IN1, IN2 and OUT or use constants in the current POU variable worksheet

SEL_STRING instruction processing data types		
Input and	type of data	description
output		
IN(G)	BOOL	Select input
IN1(INO)	STRING	First input
IN2 (IN1)	STRING	Second input
OUT	STRING	Output
		If IN=0, OUT=IN1; if IN=1, OUT=IN2

▶SEL_STRING instruction processing data types

String for selecting output by the value	description
of variable V 419	
202 C201 V419 V419 V420 VECTOR公司 SEL_STRING EN ENO G V422 VECTOR公司	When the contact C 201 is O N time , the instruction execution, when the address V 419 is 0 when the output of the address V420 in a string; when the address V419 is . 1 , the output address V421 in the string :

10.4.14 GT_STRIN (string is greater than)

IL programming language	LD, FBD programming language
Function: The GT_STRING direc	ctive is used to determine if the first string is greater than the
second string.	
LD IN1	(AT OTDING)
GT_STRING IN2	GI_SIKING
ST OUT	- EN ENO -
ST programming language	• IN1 •
OUT:=GT_STRING (IN1, IN2)	
	• IN2
Note : IL, ST language program	mming needs to insert variables IN1, IN2 and OUT or use
constants in the current POU variable	worksheet

10.4.15 GE_STRING (string is greater than or equal to)

IL programming language	LD, FBD programming language	
Function: The GE_STRING directive is used to determine if the first string is greater than or		
equal to the second string.		
LD IN1	(AP OTDINA)	
GE_STRING IN2	GE_STRING EN ENO	
ST OUT	• IN1 •	
ST programming language	• IN2	
OUT:=GE_STRING (IN1, IN2)		
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use		

constants in the current POU variable worksheet

Input	type of	description
and output	data	
IN1	STRING	First input
IN2	STRING	Second input
OUT	BOOL	Output if the first character of the first input string is
		greater than or equal to the first
		The first character of the two input strings is considered to
		be IN1>=IN2, OUT=1; otherwise OUT=0; the size of the
		characters is calculateDAccording to its ASCII code.

GE_STRING data processing instruction type

1	
Comparison V42 . 6 and V427 two	description
character strings	
204 C2U3 V426 V426 V426 V427 VECTOR V428 IN1 IN2 V428 IN2 V428	 When the contact C 203 is O N time , the instruction execution, when the address of V42 . 6 is a string length greater than equal to the address V42 . 7 of string length when; address V42 . 8 outputs 1 ; No's output 0 Execution of results ; V42 . 6 > = V42 .

≻Funtion and Action examples

10.4.16 EQ_STRING (string equals)

IL programming language	LD, FBD programming language
Function: The EQ_STRING instruction	n is used to determine if the first string is equal to the
second string.	
LD IN1	
EO_STRING IN2	(EQ_STRING)
ST OUT	• EN ENO
ST programming language	• IN1 •
OUT:=EQ_STRING (IN1 , IN2)	
	• IN2
Note : IL, ST language programmin	g needs to insert variables IN1, IN2 and OUT or use
constants in the current POU variable work	sheet

> EQ_STRING instruction processing data types

Input and output	type of data	description
IN1	STRING	First input
IN2	STRING	Second input
OUT	BOOL	Output, if the first input string is exactly the same as the
		second input string, then IN1=IN2, OUT=1; otherwise OUT=0

Comparison V42 . 9 and V430 two character	description
strings	

205	EQ_	STRING		When the contact C 204 is O N time, the
	EN		•	instruction execution, when the address of $V42$.
	7429 IN	1		9 is the string length is equal to the
5	ECTOR V430-IN	2	1	address V4 30 the string length
V	ECTOR			of time; address V4 31 is the output 1; No's
				output 0
				Execution of results ; V42 . 9 = V4 30 Output 1

10.4.17 NE_STRING (string is not equal)

IL programming language	LD, FBD programming language
Function: The NE_ STRING inst	truction is used to determine if the first string is not equal
to the second string.	
LD IN1	AND OPDIANO
NE_STRING IN2	NE_STRING
ST OUT	• EN ENO •
ST programming language	• IN1 •
OUT:=NE_STRING (IN1, IN2)	
	• IN2
Nota - U. CT languaga program	ming needs to insert variables IN1 IN2 and OUT or use

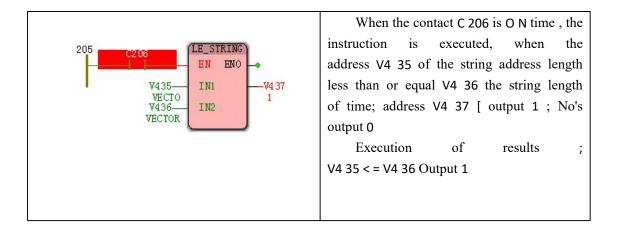
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use constants in the current POU variable worksheet

	L		
Input and	type of data	description	
output			
IN1	STRING	First input	
IN2 STRING		Second input	
OUT	BOOL	Output, if the first input string is not the same as the	
		second input string, then OUT=1; otherwise OUT=0; this	
		instruction is the opposite of EQ_STRING	

> NE_STRING data processing instruction type

Comparison V432 and V433 two	description
character strings	

205 C207 V432 V432 VECTO V433 VECTOR VECTOR V434 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	When the contact C 207 is O N time, the instruction is executed, when the address V4 32 the string length is not equal to the address V4 33 is the string length of time; address V4 34 is the output 1; No's output 0 Execution of results ; V42 . 9 < > V4 30 Output 1
---	---


10.4.18 LE_STRING (string is less than or equal to)

IL programming language	LD, FBD programming language			
Function: The LE_STRING directive is used to determine if the first string is less than or				
equal to the second string. LD IN1				
LE_STRING IN2				
ST OUT				
ST programming language				
OUT:=LE_STRING (IN1 , IN2)				
Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use				
constants in the current POU variable worksheet				

Input	and	type	of	description
output		data		
IN1		STRING		First input
IN2		STRING		Second input
OUT		BOOL		Output, if the first character of the first input string is
				less than or equal to the first character of the second input
				string, then IN1<=IN2, OUT=1; otherwise OUT=0; the size
				of the characters are pressed Its ASCII code calculation

> LE_STRING instruction processing data types

Comparison	V4	35	and	V436	two	description
character strings						

10.4.19 LT_STRING (string is less than)

IL programming language	LD, FBD programming language			
Function: The LT_STRING instruction is used to determine if the first string is smaller than				
the second string.				
LD IN1				
LT_STRING IN2	LT_STRING			
ST OUT	EN ENO			
ST programming language				
OUT:=LT_STRING (IN1, IN2)	• IN2			
]			
l /				

Note : IL, ST language programming needs to insert variables IN1, IN2 and OUT or use constants in the current POU variable worksheet

Input	type of	description
and output	data	
IN1	STRING	First input
IN2	STRING	Second input
OUT	BOOL	Output, if the first character of the first input string is less
		than the first character of the second input string, then IN1 <in2,< td=""></in2,<>
		OUT=1; otherwise OUT=0; the size of the character is in
		accordance with its ASCII code Calculation

> LT_STRING instruction processing data types

Comparison	V4	38	is	the	V439	two	description
character strings							

208 C208 V438 VECTO V439 VECTOR VECTOR	When the contact C 206 is O N time , the instruction is executed, when the address V4 38 is a string of length less than the address V4 39 the string length of time; address V4 40 outputs 1 ; No's output 0 Execution of results ; V4 35 <v4 1<="" 36="" output="" th=""></v4>
--	---

10.4.20 STRING_TO_* (converts strings to other types)

String FU	Features
STRING_TO_* directive	The STRING_TO_* instruction is used to convert a STRING type
	data into a valiDANY value type. There are 12 instructions to
	convert the STRING type data into BYTE, WORD, DWORD, SINT, INT,
	DINT, USINT, UINT, UDINT, REAL. , LREAL and TIME and other types.

STRING_TO_*	*	conversion	instructions
-------------	---	------------	--------------

instruction	input	output	description
	value	value	
STRING_TO_BYTE	STRING	BYTE	Input format 0~255* , output is BYTE type
STRING_TO_WORD	STRING	WORD	Input format 0^{65535*} , the output
			is WORD type
STRING_TO_DWORD	STRING	DWORD	Input format 0~4,294,967,295* , output
			as DWORD type
STRING_TO_SINT	STRING	SINT	Input format -128~127*, output is SINT type
STRING_TO_INT	STRING	INT	Input format -32768~-32767* , output
			is INT type
STRING_TO_DINT	STRING	DINT	Input format -2,147,483,648~
			2,147,483,647 ", output DINT
STRING_TO_USINT	STRING	USINT	Input format 0^255 ", output is USINT type
STRING_TO_UINT	STRING	UINT	Input format 0^{65535} " , the output
			is UINT type
STRING_TO_UDINT	STRING	UDINT	Input format $0^{4,294,967,295}$ ", the output
			is UDINT type
STRING_TO_REAL	STRING	REAL	Input format decimal *, output is REAL type
STRING_TO_LREAL	STRING	LREAL	Input format decimal *, output is LREAL type
STRING_TO_TIME	STRING	TIME	Input format T#0~T#4,294,967,295 "
			milliseconds, output seconds

*: In additioNSTRING_TO_TIME external command, can bring the corresponding BYTE #, WORD # other type prefix, and " 16 # " prefix, the prefix may not ; input character valid values sign and decimal numerals 0 to 9; the numbers appear The other characters and the recurring numbers are invalid.

usage (take STRING_TO_BYTE as an example)

Input output	and	type of data	description
IN		STRING	Enter a character or string, input format 0~255
OUT		BYTE	Output, convert input to BYTE type

During the numerical conversion process, the following error may occur :

@ input has an illegal prefix, such as INT##123, INT# is an illegal prefix ;

 \checkmark input value exceeds the range of the output data type, such as the input value of 1024 of STRING_TO_BYTE instruction, 1024 is greater than the range of 0~255 of BYTE type .

10.4.21 *_TO_STRING (other types are converted to

strings)

IL programming language	LD, FBD programming language
Function: *_TO_STRING is divided	into 12 instructions, which can convert BYTE, WORD,
DWORD, SINT, INT, DINT, USINT, UINT, UDI	NT, REAL, LREAL and TIME to STRING type.
Usage (take BYTE_TO_STRING as an	example)
LD IN	DUTE TO OTDING
BYTE_TO_STRING FORMAT	BYTE_TO_STRING
ST OUT	• EN ENO
ST programming language	• IN -•
OUT:=BYTE_TO_STRING(IN, IN1)	- FORMAT

BYTE_TO_STRING instruction processing data type

Input and output	type of data	description
IN	BYTE	Input range 0~255

FORMAT	STRING	Valid format : %c, %x, %u, default %x	
OUT	STRING	Output, when the format is %c , the output is the	
		input ASCII code ; when the format is $\% x$, the output is the input	
		hexadecimal number ; when the format is %u , the output is the input	
		unsigned decimal number.	

> WORD_TO_STRING instruction processing data types

Input and output	type of data	description	
IN	WORD	Input range 0~65535	
IN1 (FORMAT)	String	Valid format : %x, %u, default %x	
OUT	STRING	Output, when the format is %X, the output is the input	
		hexadecimal number ; when the format is U , the output	
		is the input unsigned decimal number	

> DWORD_TO_STRING data processing instruction type

Input and output	type of data	description	
IN	DWORD	Input range 0~4,294,967,295	
IN1 (FORMAT)	String	Valid format : %x, %u, default %x	
OUT	STRING	Output, when the format is %X, the output is the input	
		hexadecimal number ; when the format is U , the output	
		is the input unsigned decimal number	

> SINT_TO_STRING instruction processing data types

Input and output	type of data	description
IN	SINT	Input range -128~127
IN1 (FORMAT)	String	Valid format : %d, default %d
OUT	STRING	Output, output as input signed decimal
		number

> INT_TO_STRING data processing instruction type

Input and output	type of data	description
IN	INT	Input range is 32768~32767
IN1 (FORMAT)	String	Valid format : %d, default %d
OUT	STRING	Output, output as input signed decimal
		number

> DINT_TO_STRING data processing instruction type

Input and output	type of data	description
IN	DINT	Input range -2,147,483,648~2,147,483,647
IN1 (FORMAT)	String	Valid format : %d, default %d
OUT	STRING	Output, output as input signed decimal

	number

, competence and processing instruction type		
Input and output	type of data	description
IN	USINT	Input range 0~255
FORMAT	String	Valid format : %u, default %u
OUT	STRING	Output, output as the input symbol decimal
		number

USINT_TO_STRING data processing instruction type

UINT_TO_STRING data processing instruction type

Input and output	type of data	description
IN	UINT	Input range 0~65535
IN1 (FORMAT)	String	Valid format : %U, default %U
OUT	STRING	Output, output as input unsigned decimal
		number

> DINT_TO_STRING data processing instruction type

Input and	type of data	description
output		
IN	UDINT	Input range 0~4,294,967,295
IN1 (FORMAT)	String	Valid format : %u, default %u
OUT	STRING	Output, output as input unsigned decimal
		number

> REAL_TO_STRING instruction processing data types

Input	and	type of	description		
output		data			
IN		REAL	Input range - 3.402823466 E+381.175494351		
			E-38 and +1.175494351 E-38 +3.402823466 E+38		
IN1 (FORMAT) String		String	Valid format : %e, %f, default %e		
OUT STRING		STRING	Output, when the format is %e, the output is the		
			floating point number represented by the scientific notation		
			of the input ; when the format is %f , the output is the		
			floating point number of the input.		

The data type processed by the LREAL_TO_STRING instruction is the same as REAL_TO_STRING except that the input range is different.

≻	TIME_TO	_STRING d	lata	processing	instruction	type
---	---------	-----------	------	------------	-------------	------

Input	and	type of	description			
output		data				
IN		TIME	Enter	the	TIME	type,

		range T#O~T#4,294,967,295 " milliseconds, such as T#1 MS
IN1 (FORMAT)	String	Valid format : %u, default %u
OUT	STRING	Output, when the format is %u , the output is
		the TIME type that represents the input as unprefixed , in
		milliseconds, such as input T#1 S, output 1000; if no format
		is specified, the output represents the input as a
		prefixed TIME type If you input T#1 S , the output
		is T#1000MS

1 0.5 Bit operation function BIT_UTIL

The bit manipulation function is a program organization unit POU with multiple input parameters and one output parameter . It can reaDAnd write the input bit string. The bit operation function is abbreviateDAs BIT_UTIL . The bit manipulation function needs to be inserted separately into the firmware library. The instruction contained in the bit manipulation function (in the editing wizard, select from the drop-down list " BIT_UTIL ")

	BIT_UTIL function block						
	BIT_TEST		GET_CHAR		GET_LSB		GET_MSB
	I_BIT_IN_BYTE		I_BIT_IN_WOR		I_BIT_IN_DWORD		PARITY_BYTE
		D					
	PARITY_WORD		PARITY_DWOR		R_BIT_IN_BYTE		R_BIT_IN_WORD
		D					
	R_BIT_IN_DWOR		S_BIT_IN_BYTE		S_BIT_IN_WORD		S_BIT_IN_DWOR
D						D	
	SET_LSB		SET_MSB		STRING_TO_BUFFE		SWAP
				R			

10.5.1 BIT_TEST (Read bit value instruction in bit

string)

IL programming language	LD, FBD programming language
Function: The BIT_TEST ins	struction is used to read the value of a single bit in the input b
string.	
LD IN	BIT_TEST
	• EN ENO •
	• IN •
	NO NO

BIT_TEST	IN1
ST OUT	
ST	programming
language	
OUT:=BIT_T0_	EST (IN, IN1)

Note : IL, ST language programming needs to insert variables IN, IN1 and OUT or use constants in the variable worksheet of the current POU

·	·				
Input and output	type of data	description			
IN (IN)	ANY_BIT	Input bit string			
IN1(NO)	SINT	Bit string to be read in the first NO bit range : BYTE 0			
OUT	BOOL	Output, enter the value of			
		the NOth bit in the bit string			

BIT_TEST data processing instruction type

≻Funtion and Action examples

-	
Read the value of the 4th bit in	description
the address V441 byte ;	
209 C208 V4 41 16#10 V4 42 4 NO V4 43 1	When the contact C 208 is O N time , the instruction is executed , the reaDAddress V441 in the first 4 bit value , V442 address output of the corresponding bit status : Note (the first of several from 0 to start calculation)

10.5.2 GET_CHAR (Remove the character instruction in the

string)

IL programming language	LD, FBD programming language
Function: The GET_CHAR in	nstruction is used to get a character from the input string and
the ASCII code represents the char	acter.
LD IN	
	EN ENO IN GET_CHAR N

GET_CHAR IN1
ST OUT
ST programming language
OUT:=GET_CHAR (IN,
IN1)
Note : II ST language pro

Note : IL, ST language programming needs to insert variables IN, IN1 and OUT or use constants in the variable worksheet of the current POU

> to GET_CHAR data processing instruction type

Input and output	type of data	description
IN(IN)	ANY_BIT	Input string
IN1(N)	INT	The Nth character in the string to be fetched ,
		ranging from 0 to 32767
OUT (GET_CHAR)	INT	Output, input the ASCII value of the Nth character
		in the string

Note : This command is not supported by the current software version.

10.5.3 GET_LSB (Remove the lower 8 -bit instruction in the

bit string)

IL programming	LD, FBD programming language		
language			
Function: The GET_LSB in	Function: The GET_LSB instruction is used to read the value of the lower byte (the Less Significant BYTE) in		
the input bit string.			
LD IN			
GET_LSB	GET_CHAR		
ST OUT	• EN ENO •		
ST programming	• IN GET_CHAR •		
language	• N		
OUT:=GET_LSB (IN)			
Note III ST language programming needs to insert variables IN, and OUT or use constants in			

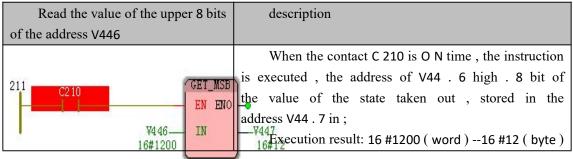
Note : IL, ST language programming needs to insert variables IN, and OUT or use constants in the variable worksheet of the current POU

· · · ·		
Input and	type of data	description
output		
IN	WORD	Input bit string
OUT	BYTE	Output, lower byte (lower 8 bits) value

GET_LSB instruction processing data types

A reaDAddress V444 low .	description
8 -bit value	
210 GET_LSB	When the contact C 209 is O N time , the instruction
EN ENO	is executed , the address of V444 is low . 8 bit of
V444- IN	the value of the state taken out, stored in the
16#0012	[#] address V445 in ;
	Execution result: 16 #0012 (word)16 #12 (byte)

10.5.4 GET_MSB (Remove the high 8 -bit instruction in the


bit string)

IL pro	ogramming	LD, FBD programming language	
language			
Function: G	ET_MSB in	struction for reading the most significant byte of	f the input bit
string (The Most	Significant I	BYTE) values.	
LD IN		(APT HOP)	
GET_MSB		• GET_MSB EN ENO	
ST OUT			
ST programming	language		
OUT:=GET_N	MSB(IN);		
Note : IL, ST language programming needs to insert variables IN , and OUT or use constants in			

the variable worksheet of the current POU

≻	GET_	_MSB instruction	processing data	ı types
---	------	------------------	-----------------	---------

	_	-	8 1	-
Input	and	type of data		description
output				
IN		WORD		Input bit string
OUT		BYTE		Output, the value of the highest
				byte (higher 8 bits)

10.5.5 I_BIT_IN* (Invert the single bit in the bit string)

IL programming language	LD, FBD programming language	
Function: The I_BIT_IN* instruction is used to invert a single bit in the input bit string, including the I_BIT_IN_WORDAnd I_BIT_IN_DWORD instructions, and can handle input bit strings of BYTE, WORDAnd DWORD types.		
LD ENAB I_ BIT_IN_BYTE IN , BIT_ NO	ENAB	
ST OUT IND ST programming language IN OUT:=I_BIT_IN_BYTE (IN) BIT_NO		
Note : IL, ST language programming needs to insert variables IN1, IN, IN2 and OUT or use constants in the current POU variable worksheet		

Input and output	type of data	description
IN1 (ENAB)	BOOL	Enable
IN	BYTE	Input bit string
	WORD	
	DWORD	
IN2	SINT	The NO bit in the bit string to be operated, the
(BIT_N O)		value range is 0~7 for BYTE , 0~15 for WORD , 0~31 $$
		for DWORD (other values are invalid)
OUT	BYTE	Output, when IN1 is FALSE, the output OUT is
		equal to the input IN; when IN1 is TRUE , the
		output OUT is the input IN of NO value of the bit
		negated

> I_BIT_IN_BYTE data processing instruction type

NegateDAddress V449 in the second of	description
the two values of the bits	

212 c211	I_BIT_IN_BYTE EN ENO	L.	i
V448	ENAB IN BIT_NO		1

When the contact C 211 is O N time , the instruction is executed , and when the ENAB is ON , the inverted V449 in the second 2 bit , outputs; if ENAB is FALSE when , without inverted output self itself;

Execution result: 16#01 (byte) ---16#05 (byte)

10.5.6 PARITY_* (parity instruction for bit string)

IL programming language	LD, FBD programming language		
Function: PARITY_* instructio	n to check the input bit string is . 1 the number of bits is odd or		
even number, an odd number if t	he output is FALSE , is even if the output is TRUE, PARITY_		
* instructions comprise team RITY_	_BYTE, PARITY_WORDAnd PARITY _DWORD directive, capable		
of handling input bit strings of BYTE	E, WORDAnd DWORD types.		
LD IN			
PARITY_BYTE	(PARITY BYTE)		
ST OUT	• EN ENO •		
ST programming language	IN		
OUT:=PARITY_BYTE (IN)			
Note : IL, ST language programming needs to insert variables IN and OUT or use constants in			

the current POU variable worksheet

	,		
Input and	type of data	description	
output			
IN	BYTE	Input bit string	
	WORD		
	DWORD		
OUT	BOOL	When the input bit string as a number of	
		bits is an odd number, the output	
		is FALSE; is a number of bits of an even number	
		of time (including 0 th to 1 -bit) , output	
		is TRUE	

≻ PARITY	_BYTE data	processing	instruction	type
-----------------	------------	------------	-------------	------

Check the number of 1 in	description
the address V452 for output	

213 C212 V452 16#1 10 10 100 PARITY_DWORD EN ENO V452	When the contact C 212 is O N time, the instruction is executed, the address V4 52 is in is one of the number removed, when is 1 is an odd number, the address V453 output is 0; when a is 1 the number is an even number when (or all 0 time) address V453 output 1 Execution result: 16#11010100 (D WORD) 1 (BOOL)

10.5.7 R _BIT_IN_* (instruction of a single position 0 in a

bit string)

IL programming language	LD, FBD programming language				
Function: The R _BIT_IN_* instruction is used to input a single bit position 0 in the input b					
string , including the R_BIT_IN_B	string , including the R_BIT_IN_BYTE and R_BIT_IN_DWORD instructions, to handle input bit				
strings of BYTE, WORDAnd DWORD	types.				
LD ENAB					
R_BIT_IN_ BYTE IN , BIT_NO	R_BIT_IN_BYTE				
ST OUT	• EN ENO				
ST programming language	• ENAB				
OUT:=R_BIT_IN_ BYTE (IN)	• IN				
	• BIT_NO				
	mming needs to insert variables IN1 IN IN2 and OUT or use				

Note : IL, ST language programming needs to insert variables IN1, IN, IN2 and OUT or use constants in the current POU variable worksheet

> **R_BIT_IN_BYTE** instruction processing data types

Input and output	type of data	description	
IN1 (ENAB)	BOOL	Enable	
IN	BYTE	Input bit string	
	WORD		
	DWORD		
IN2 (BIT_NO)	SINT	A first bit string to be operated NO bit	
		range : BYTE when 0 ~ 7, WORD when 0 ~ 15	
		DWORD when 0 to 31 (the other value is	
		invalid)	
OUT	BYTE	Output, when IN1 is FALSE , the	
		output OUT is equal to the	
		input IN; when IN1 is TRUE , the	

output	OUT	is	the	input	IN	of	
the NO p	position	0 val	lue of				

► Funtion and Action examples

Reset the status of	the 4th bit	description
in address V455		
214 V4 54 V4 54 1 V4 55 16#10 V4 56	CONTRACTOR OF A	When the contact C 213 is O N time , the instruction is executed , when the ENAB is ON time , reset address V455 in the first of four of the state; when ENAB is FALSE when the output address V455 current value;
4.00	DTI_NO	Execution result: 16#10 (BYTE)16#00 (BYTE)

10.5.8 S_BIT_IN_* (1 instruction in a single bit in the bit

string)

IL programming language	LD, FBD programming language				
Function: SBIT_IN_ * instruction is used to position a single input bit string 1, comprising S_BIT_IN_BYTE, S_BIT_IN_WORDAnd S_BIT_IN_DWORD instructions, capable of handling BYTE, WORD, and DWORD types of input bit sequence.					
LD ENAB S_BIT_IN_BYTE IN, BIT_NO ST OUT ST programming language OUT:=S_BIT_IN_BYTE (IN)	S_BIT_IN_BYTE EN ENO ENAB IN BIT_NO				
	romming pages to insert variables IN1. IN IN2 and OUT or use				

Note : IL, ST language programming needs to insert variables IN1, IN, IN2 and OUT or use constants in the current POU variable worksheet

	1 8 11	
Input and	type of data	description
output		
IN1 (ENAB)	BOOL	Enable
IN	BYTE	Input bit string
	WORD	
	DWORD	
IN2 (BIT_NO)	SINT	The NO position in the bit string to

≻S_BIT_IN_BYTE instruction processing data types

		be operated , the value range is 0~7
		for BYTE , 0~15 for WORD , 0~31
		for DWORD (other values are invalid)
OUT	BYTE	Output, when IN1 is FALSE, the
		output OUT is equal to the
		input IN; when IN1 is TRUE, the
		output OUT is the
		input IN of NO position 1 value of

≻Funtion and Action examples

Set the	status	of the	5th	bit	description
in address V458					
	V4 58 — 1 V4 59 — 16#00 V4 60 — 5	(S_BIT_IN EN ENAB IN BIT_NO		161 6#20	When the contact C 214 is O N time , the instruction is executed , when the ENAB is ON time , set address V45 . 8 in the first of five of the state; when ENAB is FALSE when the output address V455 current value; Execution result: 16#00 (BYTE)16#20 (B
					YTE)

10.5.9 SET_LSB (Write instructions to the lower 8 bits in the

bit string)

IL programming language	LD, FBD programming language				
Function: The SET_LSB instruction is used to write a value to the lower byte (the Less Significant BYTE) in the input bit string .					
LD IN1 SET_LSB IN ST OUT ST programming language OUT:=SET_LSB (IN1 , IN)					
Note : IL, ST language programming needs to insert variables IN1, IN and OUT or use constants in the variable worksheet of the current POU					

▷SET_LSB instruction processing data types

Input and	type of	description	
output	data		
IN1(LSB)	BYTE	The value to be written, range 0~255	
IN (DATA)	WORD	Input bit string, 0~65535	
OUT	WORD	Output, change the lower byte (lower 8 bits) of	
		the input bit string to IN1	

≻Funtion and Action examples

Change	the	value	of	description
the lower 8 bits o	f address \	/463 to 16 #52		
216 C2 15	V4.62	SET_LSB EN ENO LSB DATA V464 16#0052		When the contact C 215 is O N time , the instruction is executed , the address of V463 is low . 8 bit values to 16 # 52 , and then output : Results of execution : 16 #002116#0052

10.5.10 SET_MSB (the high bit string 8 write

digit command)

IL programming language	LD, FBD programming language				
Function: SET_MSB instruction being for the most significant byte string input bit (The Most					
Significant BYTE) Write value.					
LD IN1	SET_MSB				
SET_MSB IN	- EN ENO				
ST OUT	• MSB				
ST programming language	• DATA				
OUT:=SET_MSB(IN1,IN)					
Note : IL, ST language programming needs to insert variables IN1, IN and OUT or use					

constants in the variable worksheet of the current POU

	£	5 N
Input and output	type of data	description
IN1 (MSB)	BYTE	The value to be written, range 0~255
IN (DATA)	WORD	Input bit string, 0~65535
OUT	WORD	Output, change the highest byte (high 8 bits) of
		the input bit string to IN1

> SET_MSB instruction processing data types

		поп слап	- F *		
Change	the	value	of	the	description
upper 8 bits of	address	V466 to 1	6 #35		
217	₩4.64 16# ₩4.61 16#00	35 5 DATA	0 -• 	500	When the contact C 216 is O N time , the instruction is executed , the address of V466 high . 8 bit values to 16 # 35 , and then output :
		<u> </u>	-		The result of
					the execution : 16 #000016#3500

≻Funtion and Action examples

10.5.11 STRING_TO_BUFFER (copy string to

buffer instruction)

IL programming language	LD, FBD programming language				
Function: The STRING_TO_BUFFER instr	uction is used to copy a string into a buffer, which is				
a byte array .					
LD IN					
STRING_TO_BUFFER IN1 , IN2	STRING_TO_BUFFER ENO				
ST OUT	STR_IN STRING_TO_BUFFER				
ST programming language	BUFFER BUF_LEN				
OUT:=STRING_TO_BUFFER (IN1,IN)					
Note : IL, ST language programming needs to insert variables IN, IN1, IN2 and OUT or use					

constants in the current POU variable worksheet

> STRING_TO_BUFFER instruction processing data types

Input and output	type of	description
	data	
IN (STR_IN)	STRING	Input string
IN1 [0] (BUFFER)	BYTE	An element of a buffer (byte array),
		such as IN1 [0] or IN1[1]
IN2 (BUF_LEN)	INT	Number of characters copied into the
		buffer
OUT (STRING_TO_BUFFER) INT		The output is not defined yet. In fact, the
		character is copied into the buffer IN1 . An
		element (byte) in IN1 stores the ASCII code of
		the copied character .

10.5.12 SWAP (swapping high byte and low

byte instructions)

IL programming language	LD, FBD programming language			
	Instruction is used to swap the position of the highest byte (MSB) and			
LD IN SWAP				
ST OUT ST programming language				
OUT:=SWAP (IN)				
Note : IL, ST language programming needs to insert variables IN and OUT or use constants in				
the current POU variable worksheet				

数据 Data type processed by SWAP instruction

Input and output	type of data	description
IN (IN)	WORD	Input bit string
OUT (STRING_TO_BUFFER)	WORD	Output bit string, exchange
		the high and low bytes of the
		input bit string and output

≻Funtion and Action examples

The address V556 (16 # 9900) is high . 8 bits	description
of the low . 8 bit swap	
078 C300 V556 IN V556 IN V556 IN V557 16#9900	When the contact C300 is ON , the instruction is executed to exchange the upper 8 bits of the address V556 with the lower 8 bits ; Execution result: 16 # 9900 exchange into a 16 # 0099

10.6 ProConOS Features

 $\label{eq:FILE_OPEN, FILE_CLOSE \ , \ FILE_SEEK \ , \ FILE_TELL \ , \ FILE_READ \ , \ FILE_WRITE, \\ FILE_REMOVE \ instructions \ in \ ProConOS \ are \ not \ available.$

10.6 .1 BUF type conversion to other types

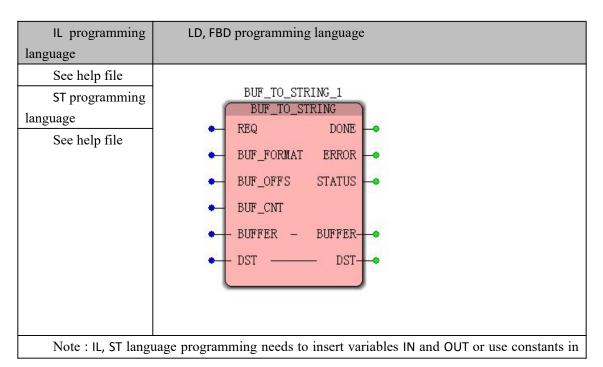
BUF type data can be divided into 12 function blocks, which can copy basic data types from byte stream to variables, arrays or elements of user-defined structure, that is, convert to BYTE, WORD, DWORD, SINT, INT, DINT, respectively. USINT, UINT, UDINT, REAL, STRING, TIME and other data, it is mainly used for data transfer or to perforMCommunication in the application on different hardware platforms.

The BUF type data conversion instruction in ProConOS needs to be selected from the drop-down list " ProConOS " in the editing wizard . Source data must be an array of bytes (data type BYTE), but also of ANY_BIT (BOOL excluding) or ANY_INT type (number of bytes is converted to data type stored can not exceed the target).

instruction	source data	Converted data	description	
BUF_TO_BYTE	BUF	BYTE	The data format of the	The number of bytes converted is 1
BUF_TO_WORD	BUF	WORD	buffer is MOTOROLA or I	The number of bytes converted is 2
BUF_TO_DWORD	BUF	DWORD	NTEL . The source data can also	The number of bytes converted is 4
BUF_TO_SINT	BUF	SINT	be ANY_BIT (BOOL).	The number of bytes converted is 1
BUF_TO_INT	BUF	INT	Except) or A	The number of bytes converted is 2
BUF_TO_DINT	BUF	DINT		The number of bytes converted is 4
BUF_TO_USINT	BUF	USINT		The number of bytes converted is 1
BUF_TO_UINT	BUF	UINT		The number of bytes converted is 2
BUF _ TO _UDINT	BUF	UDINT		The number of bytes converted is 4
BUF_TO_RAEL	BUF	REAL	The data format of	Enter the hexadecimal

BUF type data conversion instruction

			the buffer is	code of IEEE 754
			MOTOROLA	floating point number.
				The number of bytes
				converted can be 4
BUF_TO_STRING	BUF	STRING	The data	Enter the ASCI I code as
			format of the	a character. The
			buffer	number of bytes to be
			is MOTOROLA or I	converted can be
			NTEL	a positive integer such
				as 1, 2
BUF_TO_TIME	BUF	TIME	The data	The input is a
			format of the	hexadecimal code in
			buffer is INTEL	milliseconds. The
				number of bytes
				converted is 4 and the
				output unit is seconds.

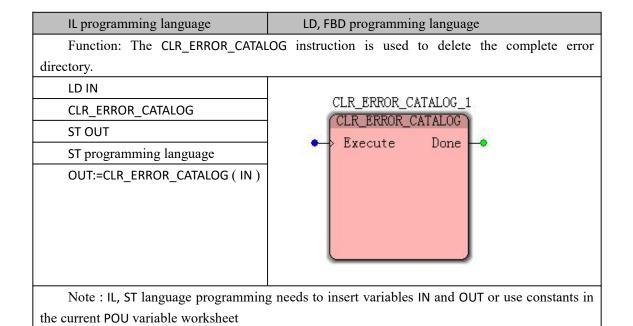

BUF_TO_ * data processing instruction type

Pin	Features	type of	description
		data	
REQ	Input	BOOL	Valid on rising edge
BUF_FORMAT	Input	BOOL	TRUE indicates that the buffer data
			is in MOTOROLA format ;
			FALSE indicates INTEL format
BUF_OFFS	Input	DINT	The starting byte number of the
			buffer being converted, 0 is the first byte
			of the buffer
BUF_CNT	Input	DINT	The number of bytes converted in
			the buffer
BUFFER	Input - output	ARRAY	Buffer, a byte array
DST	Input - output	Array	The storage area, the content of the
		or ANT	converted byte is placed here, the type
			of DST should be consistent with the
			specific BUF_TO_* type, such as the DST
			of the BUF_TO_BYTE instruction must
			be BYTE type
DONE	Output	BOOL	After the conversion is complete,
			set to 1 until REQ is 0.
ERROR	Output	BOOL	The conversion is normal, 0 ,
			otherwise set to 1
STATUS	Output	INT	If the conversion is not normal, an
			error code is given, as shown in the table
			below.

Note : The data storage order of MOTOROLA and INTEL microprocessor is different. The INTEL format is high and low byte array, and the MOTOROLA format is low and high byte array.

error code	description		
0	The conversion process is completed normally		
1	BUFFER and DST output-output type error		
2	Exceeding the length of the buffer, the number of bytes to be		
	copied BUF_CNT is larger than the number of available bytes of		
	the buffer BUFFER		
3	Exceeding the length of the storage area, the number of bytes to be		
	copied BUF CN T exceeds the length of the storage area		
4	This data type is not supported		
5	The length of the byte to be converted does not correspond to the byte		
	length of the storage area. The former number of bytes must be divisible by the		
	latter number of bytes.		
6	Conversion of INTEL/MOTOROLA failed		
7	The length of the string is not appropriate. For the data type string, it is		
	necessary to do additional checks.		
8	Storage areAData type error		
9	BUF_OFFS value is incorrect		
10	BUF_CNT value is incorrect		
11	The buffer is the same as the storage area address		

Note : The number of bytes available for buffer BUFFER - starting from the BUF_OFFS bytes in the buffer to the last word


the current POU variable worksheet

10.6.2 Other types are converted to BUF type

Other types can be converted to BUF type data, and the basic data types in the variables, arrays or elements of the user-defined structure can be copied into the byte stream. There are 12 instructions, respectively BYTE, WORD, DWORD, SINT, INT, Data such as DINT, USINT, UINT, UDINT, REAL, STRING, TIME are converted into BUF type data, which is mainly used for data transfer or communication in applications on different hardware platforms.

Converting other types in ProConOS to BUF type instructions requires selecting "ProConOS " from the drop-down list in the Edit Wizard . The storage area must be a byte array (data type is BYTE) or ANY_BIT (except BOOL) or ANY_INT . The usage of these instructions is similar to the above, " BUF type conversion to other types ", and will not be described here.

10.6.3 CLR_ERROR_CATALOG (except for the

complete error directory)

> CLR_ERROR_CATALOG data processing instruction type

Input and	type of data	description
output		
IN (Execute)	BOOL	Valid on rising edge
OUT (Done) BOOL		0: The error directory cannot be deleted.

	1:	The	error	directory	was	successfully
	deleted.					

10.6.4 CLR_OUT (Set the output of the I/O image

to 0 pointer)

IL programming language	LD, FBD programming language
Function: The CLR_OUT instru	ction is used to set the output of the I/O image area to O .
LD IN	CLR_OUT_1
ST INCLR_OUT_1.EN	
CAL CLR_OUT_1	
ST programming language	
CLR_OUT_1 (EN:= (IN))	
Note : IL, ST language progr	ramming needs to insert variable IN or use constant in the

current POU variable worksheet

> CLR_OUT data processing instruction type

Input and output	type of data	description
IN (Execute)	BOOL	If TRUE, set all outputs of the I/O image to zero

Note : The CLR_OUT instruction is temporarily unavailable.

10.6.5 COLD_RESTART (PLC cold start)

IL	programming	LD, FBD programming language
language		
Functio	n: The COLD_R	ESTART instruction is used to cold start the PLC. Initialize all
datADuring	a cold restart. If	the program has a stack overflow, a string error, or ADivide by ${\tt 0}$,
you can call	this command to	automatically restart the execution of the program.
LD IN		
COLD_F	RESTART	COLD_RESTART
ST OUT		• EN ENO
ST	programming	COND OND
language		
COLD_F	RESTART_1 (IN)	
Note : I	L, ST language pr	ogramming needs to insert variables IN and OUT or use constants in
the current P	OU variable work	tsheet

	-	
Input and output	type of data	description
IN (COND)	BOOL	If TRUE , perform a cold restart
OUT	BOOL	OUT is TRUE if COND=TRUE and can be cold started

COLD_RESTART data processing instruction type

Note : The COLD_RESTART instruction is temporarily unavailable.

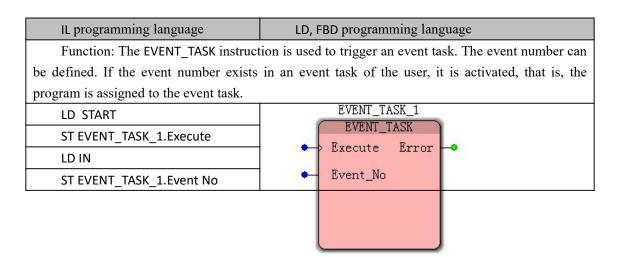
10.6.6 CONTINUE (continue running the program)

IL programming	LD, FBD programming language		
language			
Function: The CONTI	NUE instruction is used to run other programs when there is a temporary		
error in the program (such	n as a timer error) . This feature should not be used for exception events		
such as divide by 0, stack	overflow, bus errors, and boundary errors.		
LD IN			
CONTINUE	CONTINUE		
ST OUT	• EN ENO		
ST programming			
language			
CONTINUE (IN)			
Note : IL, ST language	e programming needs to insert variables IN and OUT or use constants in		
the current POU variable worksheet			

数据 Data type processed by CONTINUE instruction

Input and output	type of data	description
IN (COND)	BOOL	If TRUE, the execution of the program is continued.
OUT	BOOL	If COND = TRUE, and you can execute the program,
		compared with TRUE

10.6.7 DERIVAT (differential)


IL programming language	LD, FBD programming language
Function: The DERIVAT instruction is us	ed to perform time differential calculation on data.
When using the differential instruction, the	task type of the POU needs to be set to periodic

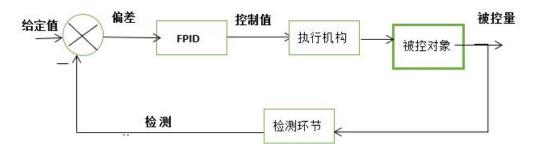
scan (CYCLIC), and the scan period, task typ	pe setting and scan perioDAre set according to their
own needs. See the programming model in th	is manual ◊ Hardware ◊ Tasks.
LD ENABLE	
ST DERIVAT_1.ENABLE	
LD RUN	
ST DERIVAT_1.RUN	DERIVAT_1
LD XIN	DERIVAT
ST DERIVAT_1.XIN	- ENABLE XOUT -
LD CYCLE	• RUN
ST DERIVAT_1.CYCLE	×IN
CAL DERIVAT_1	
LD DERIVAT_1.XOUT	• CYCLE
ST XOUT	
ST programming language	
DERIVAT_1 (ENABLE:= IN, RUN:=IN1,	
XIN:=IN2, CYCLE:=T) ;	
OUT:=DERIVAT_1.XOUT;	
Note : IL, ST language programming r	need to insert variables ENABLE, RUN, etc. in the
current POU variable worksheet or use consta	nts

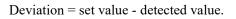
> DERIVAT data processing instruction type

Input and output	type of data	description	
ENABLE	BOOL	Execution function block when TRUE	
RUN	BOOL	FALSE, the function block is pauseDAnd the output	
		is set to 0	
XIN	REAL	input value	
CYCLEX	TIME	When Q constant, iNSeconds, this instruction is	
		actually [the XIN (n-) -XIN (n 1)] / CYCLE differential	
OUT	REAL	Output value, differential result	

10.6.8 EVENT_TASK (trigger event)

CAL EVENT_TASK_1		
LD EVENT_TASK_1.Erroe		
ST OUT		
ST programming language		
EVENT_TASK_1 (Execute:=START,		
Event_No:=IN) ;		
OUT:=EVENT_TASK_1.Error;		
Note · II ST language programmi	ing need to insert variables START	IN and OUT or


Note : IL, ST language programming need to insert variables START , IN and OUT or use constants in the current POU variable worksheet


Input	type of	description
	data	
START (Execute)	BOOL	Valid on rising edge
IN (Event_No)	UINT	Event number
OUT (Error)	BOOL	Error code :
		0:1 no error occurred ;
		The event number is not within the valid range of
		the value

> EVENT_TASK data processing instruction type

10.6.9 FPID

ProConOS function	Features	
FPID	The FPID commanDAutomatically calculates the control value	
	according to the deviation between the set value and the detected	
	value, so that the detected value can track the set value, and the set	
	value is a value that is expected to be maintained by the controlled	
	device, and the detected value is The value detected by the behavior of	
	the control device, and the control value is a value that controls the	
	behavior or indirect behavior of the controlled device, thus forming a	
	closed-loop control loop. As shown in the figure below, the FPID is the	
	core part.	

When the FPID instruction is in the automatic working mode, its output value is the result of the calculation after the PID operation, as follows

Output = $= kp \left(e(t) + \frac{1}{T_i} \int_0^t e(\tau)_{d\tau} + T_d \frac{de(t)}{dt} \right)$ FPID instruction in manual mode, the output

value is equal to the manual output value

Input and output	Types of	description	
REMOTE	BOOL	Remote setting for TRUE and local setting for FALSE	
AUTO	BOOL	TRUE when FPID to self- move mode of operation, FALSE when the manual mode of operation	
DIRECTN	BOOL	TRUE is positive (detection value is higher than the set value ◊ control value rises) , FALSE is the reaction (detection value is higher than the set value ◊ control value decreases)	
INTLCK	BOOL	TRUE when FPID output Yout is forced, by a force values FPID input INTLCKV set ; FALSE output does not force (output Yout via a proportional integral derivative Calcd value or manually)	
Tscan	REAL	Time constant, iNSeconds, can generally be set to REAL#0.1 o The larger the Tscan value, the stronger the control effect	
Yman	REAL	FPID output value in manual mode	
SPR	REAL	Remote set value	
SPL	REAL	Local setting	
X	REAL	Detected value	
КР	REAL	Proportion, the user caNSet an initial value, such as 6.5	
TI	REAL	Integral, iNSeconds, the user caNSet an initial value, such as 60	
TD	REAL	Differential, iNSeconds, the user caNSet an initial value, such as 0	
HIGH	REAL	Output the upper limit of Yout	
LOW	REAL	Output the lower limit of Yout	
INTLCKV	REAL	Mandatory value, valid when INTLCK is TRUE	
Output	Types of	description	
OUT	REAL	output value	

> FPID data processing instruction type

10.6.10 GET_ERROR (details of errors obtained in the error directory)

Note : The GET_ERROR instruction is temporarily unavailable.

10.6.11 GET_ERROR_CATALOG (information about the current content obtained in the error directory)

Note : The GET_ERROR_CATALOG instruction is temporarily unavailable.

10.6.12 GET_SYM (search for the symbolic name of the PDD variable)

Note : The GET_SYM instruction is temporarily unavailable.

10.6.13 HOT_RESTART (PLC Hot Start)

Note : The HOT_RESTART instruction is temporarily unavailable.

10.6.14 IMEMCPY (data replication)

IL programming language	LD, FBI	D programming langu	lage
Function: The IMEMCPY instruction is us	sed to copy a	lata from the source	e data area to the
target data area.			
LD CNT			
IMEMCPY SRC, SRC_OFF, DST, DST_OFF			
ST OUT	57	IMEMCPY	
ST programming language		EN ENO	•
OUT:=IMEMCPY (CNT, SRC, SRC_OFF,		CNT IMEMCPY	-•
DST, DST_OFF) ;	٠	SRC	
) •	SRC_OFF	
		DST	
	261	DST_OFF	

Note : IL, ST language programming needs to insert variables CNT , SRC, etc. in the
current POU variable worksheet or use constants

Input and output	type of data	description
CNT (CNT)	INT	The number of bytes to be copied
SRC[0] (SRC)	BYTE	The first byte of the source data area, written
		as SRC[0] when the data type is ARRAY
SRC_OFF (SRC OFF)	INT	The starting byte number of the source data area,
		the sequence number of the first byte is 0.
DST[0] (DST)	BYTE	The first byte of the target data area, written
		as DST[0] when the data type is ARRAY
DST_OFF (DST OFF)	INT	The starting byte serial number of the target data
		area, the sequence number of the first byte is 0.
OUT (IMEMCPY)	INT	Error code :
		0 copied data, no error occurred
		14 buffers exceed the data segment
		15 target area is an input group

> IMEMCPY data processing instruction type

10.6.15 INTEGRAL (integration)

IL programming language	LD, FBD programming language
	calculate the integral time of data. When using ype of POU to cycle scan (CYCLIC), and set the

Note : IL, ST language programming need to insert variable E, RUN, etc. or use constants in the current POU variable worksheet

	> the introduct data processing instruction type						
Input and output	type of data	description					
ENABLE	BOOL	Execution function block when TRUE					
RUN	BOOL	When TRUE, the integratioNStarts, when FALSE, the					
		integration is paused, and the output keeps the last integral					
		value.					
R1	BOOL	Reset when TRUE, reset value is XO					
XIN	REAL	input value					
XO	REAL	Reset value					
CYCLE	TIME	Time constant, iNSeconds, this instruction					
		actually integrates XIN CYCLE					
Q	BOOL	Q is equal to R1 inversion					
XOUT	REAL	Output value					

10.6.16 MEMCPY (Data Copy Instruction)

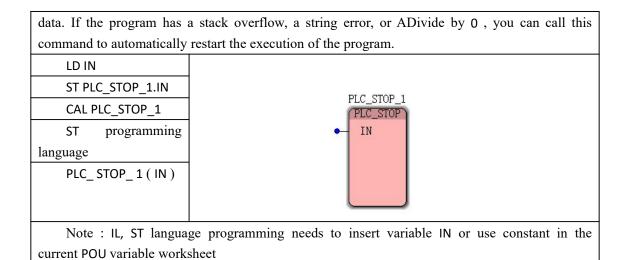
IL programming language	LD, FBD programming language							
Function: The MEMCPY instruction is used to copy data from the source data area to the								
target data area.								
LD ERR	MEMCPY							
MEMCPY CNT, SRC[0], DST[0]	• EN ENO •							
ST OUT	- ERR MEMCPY -							
ST programming language	- CNT							
OUT:= MEMCPY (ERR, CNT, SRC[0], DST[0])	• SRC							
	• DST							
Note : IL, ST language programming need to insert variables ERR, CNT, SRC[0], etc. or use								
constants in the current POU variable worksheet								

≻the MEMCPY data	processing instruction type	

y the method r data processing instruction type							
Input and output	type of	description					
	data						
ERR (ERR)	INT	Error code : 0- one correctly copied ; 14- one					
		buffer exceeds data segment ; 15 - target					
CNT (CNT)	INT	The area is an input array. Note : This is the					
		output parameter placed on the left !					
SRC[0] (SRC)	BYTE	The number of bytes to copy					
DST[0] (DST)	BYTE	The first byte of the source data area, written					
		as SRC[0] when the data type is ARRAY					

OUT (IMEMCPY)	WORD	The first byte of the target data area, written
		as SRC[0] when the data type is ARRAY

10.6.17 MEMSET (DatADistribution)


IL programming language	nming language LD, FBD programming language					
Function: The MEMSE T instruction is used to distribute source data to the target data area.						
LD ERR MEMSET VAL, CN 工 DST[0] ST OUT ST programming language OUT:=MEMSET (ERR, VAL, CNT, DST[0])	 MEMSET EN ENO ERR MEMSET VAL CNT DST 					
Note : IL, ST language programming needs to insert variables ERR, VAL, CNT, etc. in the current POU variable worksheet or use constants						

Input and output	type of data	description	
ERR (ERR)	INT	Error code : 0 to 1 correctly copied ;	
		The 14- one buffer exceeds the data segment ; 15 -	
		the target area is an input array. Note : This is the output	
		parameter placed on the left !	
VAL (VAL)	BYTE	Source data	
CNT (CNT)	DINT	The number of copies to be distributed, one source	
		data can be distributed to N bytes in the target data area,	
		one byte per copy	
DST[0] (DST)	BYTE	The first byte of the target data area, written	
		as SRC[0] when the data type is ARRAY	
OUT (IMEMCPY)	WORD	Output, the duty is not defined, the characters	
		actually being copied to the target data areADST the	

> MEMSET data processing instruction type

10.6.18 PLC_STOP (PLC stop)

	IL	programming	LD, FBD programming language								
la	nguage										
	Funct	tion: PLC_STOP	instruction fo	r stopping	the	PLC ,	cold	restart	process,	initializes	all

P LC_STOP instruction processed data type

Input	and	type of data	description
output			
IN		BOOL	The rising edge is valid,
			the PLC stops

10.6.19 RD_*_BY_SYM (Read the value of

the PDD variable)

 \square •Instruction function overview: RD_*_BY_SYM includes the following instructions for reading variables of different data types of PDD

RD_BOOL_BY_SYM	RD_BYTE _BY_SYM	RD_WORD_BY_SYM	RD_DWORD_BY_SYM
RD_SINT_BY_SYM	RD_INT_BY_SYM	RD_DINT_BY_SYM	RD_USINT_BY_SYM
RD_UINT_BY_SYM	RD_UDINT_BY_SYM	RD_REAL_BY_SYM	RD_STRING_BY_SYM
RD_TIME_BY_SYM	RD_INPUT_GROUP		

PDD is a method that can access the value of a variable by the name of the variable. It is a method used when the controller kernel layer accesses the value of the PLC variable defined by MULTIPROG. The RD_*_BY_SYM instruction is temporarily unavailable, and the general user directly reads and writes. The variables are fine.

10.6.20 WR_*_BY_SYM (write the value of

the PDD variable)

Instruction function overview: WR_*_BY_SYM includes the following instructions for

-	0	51 . = =		
	WR_BOOL_BY_	WR_BYTE_BY_SY	WR_WORD_BY_	WR_DWORD_BY_
SYⅣ	l	Μ	SYM	SYM
	WR_SINT_BY_S	WR_INT_BY_SYM	WR_DINT_BY_SY	WR_USINT_BY_SY
YM			М	Μ
	WR_UINT_BY_S	WR_UDINT_BY_S	WR_REAL_BY_SY	WR_STRING_BY_S
YM		YM	М	YM
	WR_TIME_BY_S	WR_OUTPUT_GR		
ΥM		OUP		

writing variables of different data types of PDD

PDD is a method that can access the value of a variable by the name of the variable. It is a method used when the controller kernel layer accesses the value of the PLC variable defined by MULTIPROG. The WR_*_BY_SYM instruction is temporarily unavailable, and the general user directly reads and writes. The variables are fine.

10.6.21 RTC_S (Read PLC Clock)

IL programming language	LD, FBD programming	
	language	
Function: The RTC_S instruction is used to read the PLC cloc	k in a string variable, and the	
read clock is in GMT format. The format of the oral and time output string specifie		
in IEC61131-3 is : DT#1998-11-21-15:27:56.46 .		
LD IN		
ST RTC_S_1.EN	RTC_S_1	
CAL RTC_S_1	RTC_S	
LD RTC_S_1.Q	🔸 EN Q 🛶	
ST Q	CDT	
LD RTC_S_1.CDT	CDT -•	
ST OUT		
ST programming language		
RTC_S_1 (EN:= (IN)) ; Q:=RTC_S_1.Q; OUT:=RTC_S_1.CDT;	1	
Note : IL, ST language programming needs to insert variables	IN, O, OUT or use constants in	
the variable worksheet of the current POU		

	action process	8
Input and	type of	description
output	data	
IN(EN)	BOOL	If TRUE, the actual date and time is written to the linked
		output string.
Q(Q)	BOOL	If EN is TRUE, Q is TRUE , otherwise Q is FALSE
OUT (CTD)	STRING	Date and time of the acquisition, such

RTC_S instruction processing data types

as DT#2011-08-15-10:08:55.19

10.6.22 WARM_RESTART (PLC Warm Start)

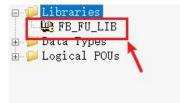
Note : The WARM_RESTART instruction is temporarily unavailable.

V A motion controller programming manual

XI Motion Commands

11.1 Insert FB_FU_LIB (motion control firmware library)

11.1.1 Features

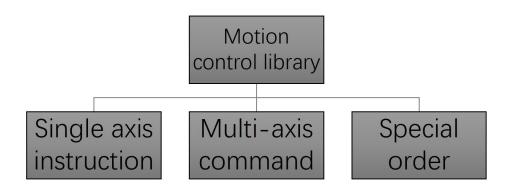

FB_FU_LIB firmware library is provided for motion control and is used as a library function for the user. The user does not need complicated programming, just call and set some simple parameters to use. The motion control library contains a wealth of motion commands such as absolute point for single axis motion, relative point function, electronic cam for multi-axis motion, electronic gear, and overlay function.

11.1.2 Adding firmware library

(1) Right click "Library" in the project tree window, select "Insert" and select "Firmware Library" as shown.

Insert	😓 User Library
Paste Ctrl+V	<u>F</u> irmware Library

(2) Find the location of the stored "FB_FU_LIB" file, find the file, click the "Include" button, and when finished, as shown.



(3) Click "FB_FU_LIB" under the "Edit Wizard" group to view the newly inserted motion control library as shown below.

Edit Wizard	+ • [
Group:	
<fb_fu_lib></fb_fu_lib>	~
Name	^
EX_ADC	
EX_DAC	
EX_PT100	
EX_Thermocouple	
EX_WT	
MC_AbortTrigger	
The MC_AXIS_REF	
≢ MC_CamIn	
≢ MC_CamOut	
≢ MC_CamReadPoint	
MC_CamReadTappetStatus	
≢ MC_CamReadTappetValue	
≢ MC_CamSet	
≢ MC_CamWritePoint	
≢ MC_CamWriteTappetValue	
MC_CombineAxes	
≢MC_GearIn	
≢ MC_GearOut	

11.2 motion commands

11.2.1 Motion Control Library Classification

11.2.2 Movement instruction list

Instruction	Instruction code	Features	page number	
set				
	MC_Power	Enable	<u>11.4.1 MC_Power</u>	
		command	(ENABLE command)	
	MC_MoveVelocity	Speed	<u>11.4.2 MC_MoveVelocity</u>	
		command	(speed command)	
	MC_MoveRelative	Relative	<u>11.4.3 MC_MoveRelative</u>	
		displacement	(relative displacement	
		instruction	instruction)	
	MC_MoveAdditive	Additional	11.4.4 MC_MoveAdditive	
		displacement	(additional displacement	
Ľ		instruction	instruction)	
Uniaxial instruction	MC_MoveAbsolute	Absolute	<u>11.4.5</u>	
iali		displacement	MC_MoveAbsolute	
instr		instructions (absolute		
ucti			instructions)	
on	MC_MoveSuperimposed	Additional	<u>11.4.6</u>	
		Motion	MC_MoveSuperimposed_	
		commands	(additional displacement	
			instruction)	
	MC_HaltSuperimposed	Pause	<u>11.4.7</u>	
		additional	MC_HaltSuperimposed_	
		displacement	(Pause additional	
		command	<u>displacement)</u>	
	MC_Home	Homing	<u>11.4.8 MC_Home (zero</u>	

	instruction	return instruction)
MC SetOverride	Speed	11.4.9 MC SetOverride
_	overshoot	(overshoot speed command)
	command	
MC Stop	Stop	11.4.10 MC Stop (stop
	command	<u>command</u>)
MC Halt	Pause	11.4.11 MC Halt
_	command	(pause command)
MC_SpecialMoveAbsolute	Special	<u>11.4.11</u>
	instructions	MC_SpecialMoveAbsolute
	absolute	(special absolute
	displacement	displacement instructions)
MC_ReadActualPosition	Read live	<u>11.4.12</u>
	position	MC_ReadActualPosition_
	command	(real position instruction
		<u>read)</u>
MC_ReadActualVelocity	Real-time	<u>11.4.13</u>
	speed reading	MC_ReadActualVelocity_
	instruction	(read real-time speed)
MC_ReadMotionState	Read axis	<u>11.4.14</u>
	motion	MC_ReadMotionState (read
	command	axis motion command)
MC_ReadStatus	Read status	<u>11.4.15</u>
	command	MC_ReadStatus (Read axis
	axis	<u>state)</u>
MC_SetPosition	Position	<u>11.4.16</u>
	setting	MC_SetPosition (position
	command	setting instruction)
MC_Phasing	Spindle	<u>11.4.17 MC_Phasing</u>
	command	(shift spindle command)
	offset	
MC_TouchProbe	Position	<u>11.4.18</u>
	capture	MC_TouchProbe (position
	command	capture command)
MC_AbortTrigger	Position	<u>11.4.19</u>
	capture	MC_AbortTrigger (position
	interrupt	capture interrupt instruction)
	instruction	
NS_MC_Jog	Jog	<u>11.4.20 NS_MC_Jog</u>
	command	(jog command)
NS_MC_StopByPos	Mode	<u>11.4.21</u>
	Specifies the	<u>NS_MC_StopByPos</u>
	phase stop	(position designated mode

		command	stop command)
	NS MC ReadParameter	A read	<u>11.4.22</u>
		parameter	NS MC ReadParameter
		command	(read command parameter)
	MC GearIn	Electronic	<u>11.5.1</u> MC GearIn
	Me_Geann	gear coupling	(electronic gear coupling
		instruction	instructions)
	MC GearOut	Instruction	11.5.2 MC GearOut
	Me_Gearout	from the	(electronic gear disengaged
		electronic	instruction)
		gear	
	MC CombineAxes	Combined	11.5.3
		dual-spindle	MC CombineAxes (double
		gear	spindle gears combined
		command	instruction)
	NS MC RotaryCutIn	Peeling	11.5.9
		instructions	<u>NS MC RotaryCutIn</u>
		mstructions	(peeling instruction)
	NS MC SpecialCamIn	Special	<u>11.5.10</u>
		instructions	NS MC SpecialCamin
		cam	(special cam instruction)
z	NS MC SpecialCombineAxes	Special	11.5.11
[ulti		double joint	NS MC SpecialCombineAx
axia		gear shaft	es (special double joint
l in		instruction	spindle gear command)
Multiaxial instruction	MC CamIn	Electronic	11.5.12 MC CamIn
ctio	_	cam	(electronic cam associated
		associated	instruction)
		instruction	
	MC CamOut	Instruction	11.5.13 MC CamOut
	_	from the	(electronic cam departing
		electronic	instruction)
		cam	
	MC CamWritePoint	The cam	11.5.14
		point	MC_CamWritePoint (cam
		information	point information write
		write	<u>command)</u>
		command	
	MC_CamReadPoint	The cam	<u>11.5.15</u>
		point	MC_CamReadPoint (cam
		information	point information reading
		read	instruction)
		command	

	MC ComSet	<u>C1</u>	1151(MC ComOrt
	MC_CamSet	Change the	<u>11.5.16 MC_CamSet</u>
		entry into	(changes to take effect cam
		force of the	point instructions)
		cam point	
		instruction	
	MC_ReadTappetStatus	A plurality of	<u>11.5.17</u>
		read status	MC_ReadTappetStatus (read
		command	status command plurality of
		tappet points	lifters points)
	MC_ReadTappetValue	A plurality of	<u>11.5.18</u>
		read	MC_ReadTappetValue
		instructions	(single read command tappet
		tappet point	point information)
		information	
	MC_WriteTappetValue	Edit	<u>11.5.19</u>
		instruction	MC_WriteTappetValue (edit
		information	point information tappet
		tappet point	instruction)
	NS_CC_ADC	AD	<u>11.6.1 NS_CC_ADC</u>
		instruction	(AD instruction)
	NS_CC_DAC	DA	<u>11.6.2 NS_CC_DAC</u>
		nstruction	(DA instruction)
	EX_ADC	Extended	<u>11.6.3 EX_ADC (AD</u>
		instruction	extended instruction)
		AD	
	EX_DAC	DA extended	<u>11.6.4 EX_DAC (DA</u>
		instruction	expansion module)
	NS_CC_NOoutput	Output	<u>11.6.5</u>
<u>v</u>		instruction is	NS_CC_NOoutput
peci		prohibited	(prohibition command
al ii		QXX	output QXX)
Special instructions	NS_CC_Counter	High-speed	11.6.6 NS_CC_Counter
ıctie		count	(High-Speed Counter)
suc		instruction	
	NS_CC_CNTI	High-speed	<u>11.6.7 NS_CC_CNTI</u>
		counting	(high-speed counter interrupt
		interrupt	instruction)
		instruction	
	NS_CC_CNT_Out	Interval	<u>11.6.8</u>
		comparison	<u>NS_CC_CNT_Out</u>
		output	<u>(comparison output</u>
		instruction	instruction section)
	NS_CC_DI_Counter	High-speed	11.6.9
l			

		count	NS CC DI Counter
		instruction	(DI-speed count instruction)
		DI	
	NS CC EVTI		11 (10 NG CC EVTI
	NS_CC_EXTI	DI interrupt	<u>11.6.10 NS_CC_EXTI</u>
		instruction	(DI interrupt instruction)
	NS_CC_ReadPulseVelocity	Read pulse	<u>11.6.11</u>
		rate	NS_CC_ReadPulseVelocity
		command	(read-axis pulse rate
			<u>controlled</u>)
	RTC_S	Clock special	<u>11.6.12 RTC_S (special</u>
		register	register clock)
	NC_GroupEnable	Group enable	<u>11.7.1</u>
6		command	NC_GroupEnable_
coj		shaft	(ENABLE command axis
G commands			<u>group)</u>
and	NC_MoveLiner	Linear	<u>11.7.2 NC_MoveLiner</u>
a a a a a a a a a a a a a a a a a a a		interpolation	(linear interpolation)
		command	
	NC_MoveCircula	Circular	<u>11.7.3</u>
		interpolation	<u>NC_MoveCircula (circular</u>
		command	interpolation)
	NC_CartesianCoordinate	Cartesian	<u>11.7.4</u>
		coordinate	NC_CartesianCoordinate_
		system	(Cartesian robot command)
		command	
	NS CC CANopen NMT Read	Network	3.1.1
		status read	NS CC CANopen NMT R
		command	ead (network status read
			instruction)
	NS CC CANopen NMT Write	Network	3.1.2
		status write	NS CC CANopen NMT
CA		instruction	Write (network state write
No			command)
CANopen code instructions	NS CC CANopen PDO Comm	PDO process	3.1.3
cod		data	NS CC CANopen PDO C
e in		communicati	omm (PDO process data
stru		on	communication_
ctio		configuration	<u>configuration parameters)</u>
ns		parameters	
	NS CC CANopen PDO Map	PDO process	3.1.4
		data mapping	<u>NS CC CANopen PDO M</u>
		configuration	ap (PDO process data
		parameters	mapping configuration

		parameters)
NS_CC_CANopen_RPDO	PDO data	<u>3.1.5</u>
	mapping area	NS_CC_CANopen_RPDO
	read	(PDO data mapping area
	command	read command)
NS_CC_CANopen_TPDO	PDO data	<u>3.1.6</u>
	mapping area	NS_CC_CANopen_TPDO
	assignment	(PDO data mapping area
	instruction	assignment instruction)
NS_CC_CANopen_SDO_Read	Service data	<u>3.1.7</u>
	reading	<u>NS_CC_CANopen_SDO_R</u>
	instruction	ead (service data reading
		instruction)
NS_CC_CANopen_SDO_Write	Service Data	<u>3.1.8</u>
	assignment	<u>NS_CC_CANopen_SDO_W</u>
	instruction	rite (service data assignment
		instruction)

11.3 Basics of motion control instructions

11.3.1 Command modes of motion controller

Digital pulse: This method is similar to the control method of the stepping motor. The motion controller sends the pulse signal of the pulse/direction or CW/CCW type to the servo driver. Our company only supports the AB pulse; the servo driver works in the position control mode. The position loop is completed by the servo drive. Japanese servos and domestic servo products mostly use this mode. The advantage is that the system debugging is simple and not easy to cause interference, but the disadvantage is that the servo system responds slightly slower.

Analog signals: In this way, the motion controller sends a $\pm 10V$ analog voltage command to the servo driver, and receives position feedback signals from position detectors such as motor encoders or linear encoders; the servo driver operates in speed control mode, and the position closed loop is controlled by motion. The device is completed. Most of the servo products in Europe and America use this mode of operation. The advantage is that the servo response is fast, but the disadvantage is that it is sensitive to on-site interference, and the debugging is slightly complicated.

CANopen communication: This method is to control the operation of the servo driver through the communication protocol. See Appendix IV for details.

The following describes the general debugging steps for the motion controller to control the servo axis with analog signals:

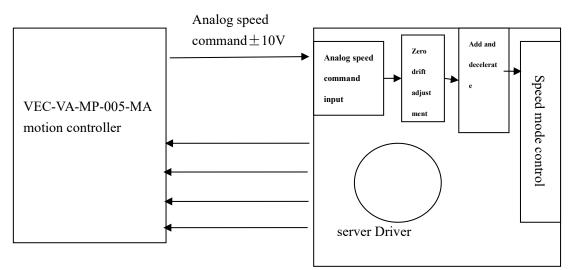
(1) initialization parameters

After confirming that the servo driver wiring is correct, first initialize the parameters of the servo drive (restore the factory settings). After the servo drive completes the factory setting: set the control mode; set the enable by external control; the gear ratio of the encoder signal output; set the proportional relationship between the control signal and the motor speed (the analog output voltage corresponds to the servo shaft speed).

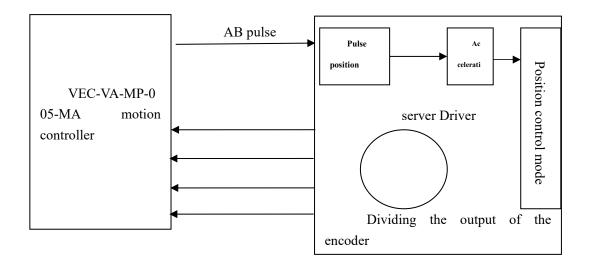
(2) Wiring

Connect the signal line between the motion controller and the servo. The following wiring is required: the analog output line of the motion controller, the servo enable control signal line, and the encoder signal line of the servo output. (For details, please refer to 11.4.2 Wiring method)

(3) Test direction


For a closed-loop control system, if the direction of the feedback signal is incorrect, the consequences must be catastrophic. The servo driver's enable signal is controlled by the motion controller programming output Q0. At this point the servo axis should rotate at a lower speed, which is called "zero drift". Execute the motion controller command module (DA module). Use this command module to see if the motor speed and direction can be controlled by this command (parameter) and monitor whether the encoder feedback signal is consistent (ie, ensure that the encoder is federically incremented when the analog voltage is given as a positive voltage). When the analog voltage is given to a negative voltage, the encoder feedback is decremented). If it cannot be controlled, or the encoder feedback is incorrect, check the parameter settings of the analog wiring, encoder feedback line and control mode.

(4) inhibition zero drift


In the closed-loop control process, the existence of zero drift will have a certain influence on the control effect, and it is best to suppress it. With the command module on the motion controller or adjusting the zero drift value on the servo to suppress the zero drift phenomenon, it can be realized (refer to the analog zero drift adjustment), so that the motor speed approaches zero. Since the zero drift itself also has a certain randomness, it is not necessary to require the motor speed to be absolutely zero.

11.3.2 movement control.

VEC-VA-MP-005-MA analog motion controller controlling the servo drive \pm 10V operating velocity mode, the servo drive encoder signal divided output fed back to the motion controller, the position loop is completed by a motion controller, as shown below shown;

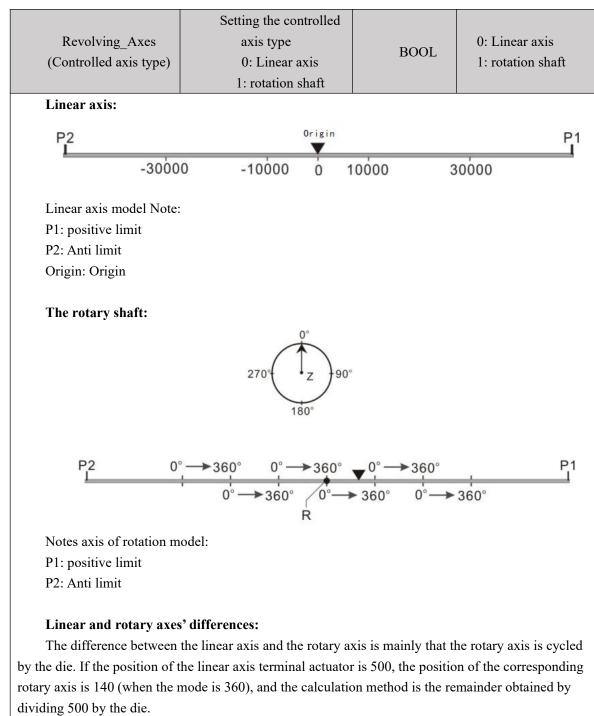
The VEC-VA-MP-005-MA motion controller uses the pulse amount control servo driver to operate in the position mode. The servo driver divides the output encoder signal and feeds it back to the motion controller. The position closed loop is completed by the servo driver, as shown in the figure below.

11.3.3 MC_AXIS_REF (axis parameter setting)

FB / FU		Explanation		Applicable model
FB	This comn	hand is used to configure th	he	VEC-VA-MP-005-MA
	parameters of the c	ontrolled servo axis AXIS	XXX	
	12	. MC_AXIS_REF_1		Q.,
	17 C-	MC_AXIS_REF AXIF_NUM	Em	
		CantrolMode	Error	
			Soft_Limit_M	
			Soft_Limit_M	
		- Reductor_Num		
		- Reductor_Den		
	· •	Screw_Lead		
		Disc_Circumference		
		Closed_Loop_Scaling		
	· •	Revolving_Axes		
	•	Modulo		
	· •	Soft_Limit		
		Soft_Limit_Max_Position		
	•	Soft_Limit_Min_Position		
		Sample_Time		
	•	Camplete_Win		
		Middle_Value		
	•	DA_Gain		
	•	Offset_Max_V		
		Pid_KP		
	•	Pid_KI		
		Pid_KD		
		Pid_MaxError Pid_Deadband		
		FeedForward_KP		
		Encoder_Source_Valid		
		Encoder_Source		
		Encoder_Inverse		
		DA_Inverse		
		- Filter_Plan_T		
		Filter_Feedback_T		
		Filter_T_as_Master		
		Abs_Encoder		
		<u></u>		

Input parameters

name	Features	type of data	Range setting (default value)
Axis_Num (axis number)	Setting instruction to be controlled axes	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)


Axis number description:

Axis_Num is the axis number of the controlled axis. Under the control of analog or pulse mode, the axis numbers 0~4 are the real axes, and the 5~11 is the virtual axis. Compared with the real axis, the virtual axis has no actual control effect;

In CANopen mode, the axis numbers $0\sim15$ can be used as real or virtual axes. The real axis of the network is configured, and the virtual axis is not configured. In the template given by CANopen, the node number of the control = axis number + 1.

the node number of the control = axis number $+ 1$.						
	Select the output mode of the motion control		0: analog control			
The ControlMode	commands		1: Pulse Control			
(control mode)	0: analog control	INT	2: CANOPEN control			
	1: Pulse Control		(0)			
	2: CANopen control					
Motor Max V	Servo drive allows					
(maximum speed)	maximum motor speed	DINT	A positive number			
(maximum speed)	Unit: r / min					
The motion controller o	utputs $\pm 10V$ analog, it correspo	onds to the maximu	Im forward and reverse			
speed of the servo drive; that	is, the servo speed correspond	ing to each volt. Fo	or example, if the servo			
driver analog gain is set to 30	driver analog gain is set to 300 (r/min)/v, the parameter is 10*300=3000 r/min.					
Motor_PPC (Pulses per revolution)	Pulses per revolution of the motor	DINT	A positive number			
The number of pulses of	f the divided servo output per r	evolution of the se	rvo drive is multiplied			
by 4 times, not necessarily th	e resolution of the motor encod	der *4 times the fre	equency			
(Some servos can suppo	ort encoder crossover output set	tings)				
Reductor_Num	Reduction ratio of the					
(Molecular reduction	motor shaft to the execution	LREAL	A positive number			
gear ratio)	terminal					
+						
Reductor_Den (Reduction gear	Deceleration ratio denominator from motor	LREAL	A positive number			

shaft to actuator		
Lead lead, the distance traveled by the lead screw Unit: per unit	LREAL	A positive number
ence is 0, the default is the trans	mission terminal s	crew.
→ → → → → → → → → → → → → →		
inal drive screw. When the redu	ction ratio numera	tor/reduction ratio
tes the distance that the servo m	otor rotates two tu	rns of the screw
Disk perimeter terminal Unit: unit	LREAL	A positive number
of the terminal transmission disc	. When the deceler	ration ratio
	at the arc length of	the servo motor
Double closed loop coefficient, number of motor pulses per meter of terminal mechanism / number of pulses per meter of external encoder, if there is no external encoder, this	LREAL	A positive number
	Lead lead, the distance traveled by the lead screw Unit: per unit ence is 0, the default is the trans 中子子子 告轮比 = N/M 丝杆副部件— inal drive screw. When the reductes the distance that the servo m Disk perimeter terminal Unit: unit ence not zero, Screw_Lead inva 可 the terminal transmission disc enominator = 1/2, it indicates the unference. Double closed loop coefficient, number of motor pulses per meter of terminal mechanism / number of pulses per meter	Lead lead, the distance traveled by the lead screw Unit: per unit LREAL ence is 0, the default is the transmission terminal set filter filter fi

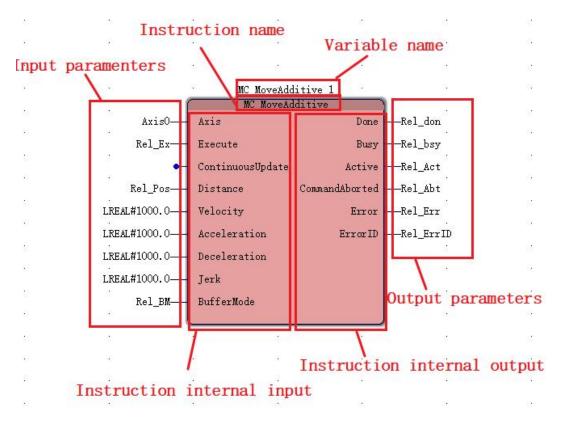
Modulo (mold)	Mode setting rotational shaft Unit: unit	LREAL	A positive number	
The actual position of the terminal to bisect actuator cycle				
Soft_Limit (Soft limit)	When Soft_Limit = 1, turn soft limit function	BOOL	TRUE or FALSE	
Soft_Limit_Max_Position	The maximum value	LREAL	Positive,	

(Soft limit maximum value)	of the software limit. If the maximum position exceeds this value, Soft_Limit_Max outputs TRUE.		negative, zero (0)		
Soft_Limit_Min_Position (Soft limit the minimum value)	The soft limit is the minimum value. If the minimum position is lower than this value, Soft_Limit_Min outputs TRUE.	LREAL	Positive, negative, zero (0)		
Sample_Time (sampling time)	Setting the sampling pulse encoder feedback time (unit: ms)	WORD	A positive number		
Set time sampling puls	se encoder feedback. When Abs [1,3]	s_Encoder = 2, Sar	nple_Time must range		
Complete_Win (Points to complete the window)	Retention	DINT	Retention		
Middle_Value (Analog value zero drift)	Analog value zero drift	DINT	Positive, negative, 0 (0)		
-	rift value is 0, the analog outpune as the value of DAC Value				
DA_Gain (Analog gain)	Analog gain setting	DINT	Positive, negative, 0 (0)		
Set the analog gain, which is normally set to zero. The analog offset is adjusted to adjust the linearity of the output analog to ensure that the analog output of the controller is consistent with the servo analog gain to improve the control accuracy. (1+DA Gain/10000)* Original analog output.					
Offset_Max_V (Maximum compensation rate)	The maximum compensation rate Unit: r / min	DINT	A positive number, 0 (0)		
The maximum compensation speed of the servo motor, when there is an error in the analog closed-loop control, the servo motor will get a compensation speed to achieve precise control of the position. The maximum value of this compensation speed is Offset_Max_V.					
Pid_KP	Proportional gain	DINT	A positive number, 0 (0)		

This parameter is valid when the control mode is selected as analog control, ie ControlMode=0. The proportional gain is similar to the position loop proportional gain of the servo drive. When the position closed loop control is completed on the motion controller, increasing the value shortens the positioning time; when the value is 0, the controller will not adjust the position closed loop; This value can be increased when the motor is not shaken)				
Pid_KI	Integral gain	DINT	A positive number, 0 (0)	
The integral gain is similar t	when the control mode is select to the integral gain of the posi- cumulative error can be redu	tion loop of the se	ervo. When the value is	
Pid_KD	Differential gain	DINT	A positive number, 0 (0)	
-	when the control mode is select the differential gain of the pos	-		
Pid_MaxError	PID maximum error	DINT	A positive number, 0 (0)	
When the number of errors set to zero.	or pulses exceeds this value, the	he integral gain is	useless and is generally	
Pid_Deadband	PID dead zone	DINT	A positive number, 0 (0)	
PID error deadband follower means (the number of error pulses) is within this value, no adjustment of the PID.				
FeedForward_KP	Feedforward gain	DINT	A positive number, 0 (0)	
shaft, poor dynamic response	Traditional P control requires a tracking error (setpoint - actual value) causes this error profile shaft, poor dynamic response, increased during execution of the contour, feed forward gain to appropriately increase the following error can be reduced during operation.			
Encoder_Source_Valid (Source encoder significant bit)	Source encoder valid bit	BOOL	TRUE / FALSE	
When the value is TRUE, set Encorder_Source port select shaft encoder signals as source port. When this is FALSE, the function block parameter select shaft axis Axis_Num port set as an encoder signal source port.				
Encoder_Source (Source encoder)	Setting encoder signal source	WORD	0-4	
With Encorder_Source_Valid, setting the encoder signal source.				
Encoder_Inverse (Reverse significant bit encoder)	Reverse significant bit encoder	BOOL	TRUE / FALSE	
When the value is TRUE, the shaft opening position of the received pulses counted negated				

DA Inverse			
(Analog inversion)	DA reverse	BOOL	TRUE / FALSE
DA Inverse has two mo	des 0 and 1		
_	, the controller controls the ser	vo motor counterc	lockwise, that is, the
analog output is positive volt			
2) When DA_Inverse=1	, the controller controls the ser	vo motor clockwis	e, that is, the analog
output is a negative voltage;			
Special Note: The two n	nodes of DA_Inverse need to b	e matched with the	e encoder direction,
otherwise the closed loop cor	ntrol cannot be formed.		
For example, in the example,	nple of the following instruction	on, when MC_Pow	er is executed, if the
servo axis can be positioned,	the value does not need to be r	nore	
If the motor is running a	t a set compensation speed Off	set_Max_V, chang	e the value from the
original 0 to 1 or the original	1 to 0, or change the encoder A	A/B line to any one	. By Encoder_Inverse
Or the register MB3.965	4 is set to modify the encoder	direction; the spec	ial register address
(%MB3.9654) corresponds to	the modified axis AXISXX (2	XX represents 0~4) as follows:
Special register addres	s Numerical (binary)	Modifi	ied shaft
% MB3.9654	00000001 (decimal 1) AXIS()
% MB3.9654	0000 0010 (decimal 2	2) AXIS1	
% MB3.9654	0000 0100 (decimal 4	4) AXIS2	2
% MB3.9654	00001000 (decimal 8) AXIS3	
% MB3.9654	0001 0000 (decimal	16) AXIS4	Ļ
For example: modify the axis AXIS0 feedback encoder counting direction; just fill in the special register %MB3.9654, you can change from the original increment to the decrement, or from decrement to increment. If you need to modify multiple axes, write 1 to the corresponding bit.			
Filter_Plan_T (Given filtering)	Filter_Plan_T For a given position DINT		
Filter_Plan_T ur	its of underlying period, a peri	od of 2ms. Enable	change invalid.
Filter_Feedback_T (Feedback filter)	Speed feedback filter	DINT	
Filter_Feedback_T	units of underlying period, a p	eriod of 2ms. Enal	ole change invalid.
Filter_T_as_Master	Spindle speed filtering	DINT	
Expressed as provided Filter_T_as_Master spindle, it outputs it to the filtering speed of the shaft from the real axis.			
Abs_EncoderSetting an absolute encoderUSINT0-2 (0)			
Set the absolute encoder type, only the spindle port 4 can be connected to the absolute encoder 0: not enabled 1: Enable 23-bit absolute encoder 2: Enable 24 is an absolute encoder (this mode is only supported when the absolute encoder function is enabled, and the 24-bit encoder must be a Nikon encoder)			

Module Description:


• When using the servo axis to control the servo motor, the AXIS_REF module of the controlled servo axis must be correctly configured according to the mechanical parameters. Otherwise, the servo axis cannot correctly control the servo motor operation;

• In the following single-axis instruction and multi-axis instruction program examples, the AXIS_REF module needs to be called and the relevant information is correctly configured (the following program demonstration will not be repeated);

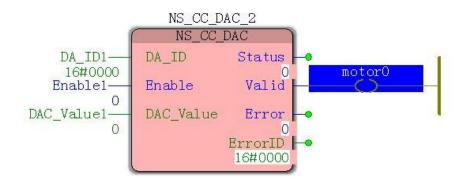
• Use up to one module per axis for the entire project.

11.3.4 sports instruction constitutes

Motion command configuration shown in FIG.

11.3.5 Analog offset adjustment

Zero drift Definition:Zero drift analog amplifier means when the input signal is zero, the output is not zero is called zero drift phenomenon. That is: When the input of the amplifier short circuit, at the output there is an irregular phenomenon generated voltage changes slowly.


The motion controller instruction module zero drift adjustment step; (here, respectively to servo drive Vector VB and VC will be described servo drive)

Vector VB servo drives:

(1) Reference<u>11.6.2 NS_CC_DAC (DA instruction)</u>Instructions and digital to analog conversion module DA relation, after the completion of programming.

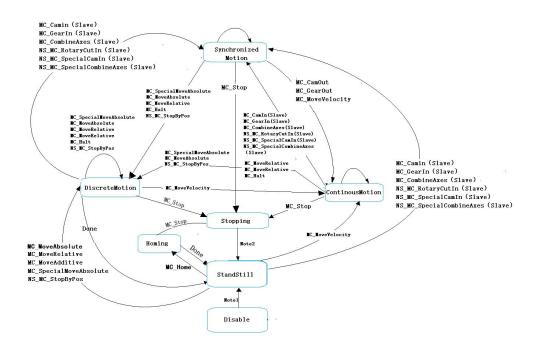
(2) in the Edit Wizard, the callout "NS_CC_DAC" module, where 0 is the adjusting shaft (Axis0) zero drift, DA_ID initial value fill other axis "0" and so on (0-3), can control multi-axis simultaneously tune a plurality of "NS CC DAC" module.

(3) Fill in the data input module type variable, the variable name can be named their own, but to ensure that the user name is not duplicated without having to complete the actual physical address, the software automatically assigned an address. Be downloaded after clicking "Create" no error when finished.

(4) the online debugging mode, when the Enable becomes FALSE TRUE by the (already in ensuring the servo enabled state), if the motor is running at the speed of zero drift, DAC_Value adjustment value at this time to ensure that the servo drive in a stationary state, Enable the TRUE to FALSE, offset adjustment is completed, and then completing the axis parameters as the initial value of the value DAC_Value MC_AXIS_REF (axis parameter) of the module Middle_Value.

Vector VC servo drives:

Steps (1), (2), and (3) are the same as the VB servo driver. In step (4), in the online debugging mode, when Enable is changed from FALSE to TRUE (ensure that the servo is already enabled), if the motor is at zero speed During operation, the servo P06.68 (AI1 zero drift mV) / P06.73 (AI2 zero drift mV) / P06.78 (AI3 zero drift mV) is adjusted through the BOP panel to ensure that the servo drive is at rest, zero drift The adjustment is complete. When filling the axis parameter, use 0 as the initial value of the MC_AXIS_REF (axis parameter) module Middle_Value.


note:

1) After the zero drift adjustment is completed, it is determined that the Enable state on the module is False, and the state of the parameter Enable is not allowed to be "TRUE" during the execution of the program by the "NS_CC_DAC module" and the "MC_Power module", otherwise the function module is run. The motor will run on a meal.

2) The examples described below will all be the default example after the zero drift has been adjusted. The following program demonstration will not repeat the description.

11.3.6 state machine

When the VEC-VA-MP-005-MA motion controller controls each axis using motion control commands, each axis has an internal operating state. The state switching of the controlled axes follows the state machine shown in the figure below. The state machine defines the motion commands that can be executed in each state and the state after the motion command is executed. When the motion command is used by the user, the state machine can determine whether a motion command can be used in the current state. The state machine of the VEC-VA-MP-005-MA motion controller is shown in the figure below, and the arrow indicates that the part is the state of the axis.

Note1: Enable with MC_Power command and MC_Power. Status is True. Note2: MC_Stop.Done is True and MC_Stop.Execute is False.

No.	Axis Status	Explanation
1	StandStill	Ready to execute state
2	Disable	The state is not performed
3	Stopping	Stop state
4	Homing	Homing state
5	Discrete Motion	Discrete motion
6	Continuous Motion	Continuous motion
7	Synchronized Motion	Synchronous Movement

The state of the shaft can be determined based MC_ReadStatus (read status command axis) output pin, refer to the specific use instructions "<u>11.4.15 MC_ReadStatus (Read axis state)</u>."

11.3.7 BufferMode Features

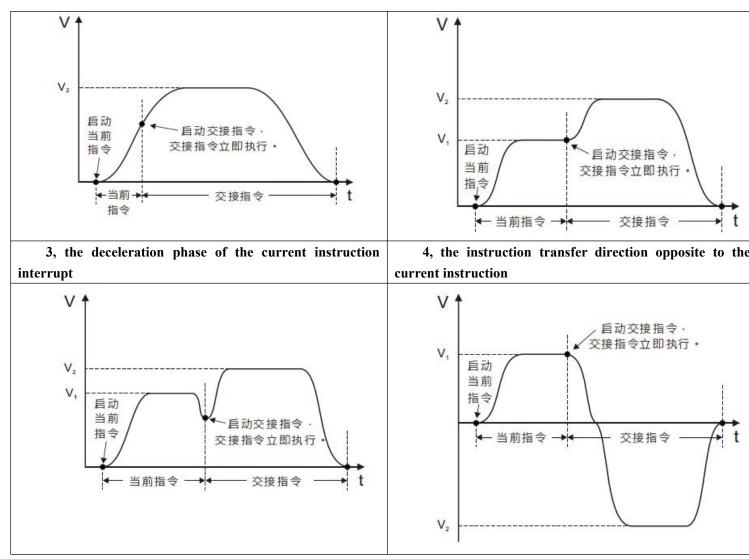
For the same axis, when there is a motion command control axis during the motion, other motion commands can be started. When the two motion commands are handed over, there are two options for the handover mode. The handover mode can be based on the BufferMode of the latter motion command. Pin parameter settings to choose from. The meaning of the BufferMode related terms is as follows:

- 1. Current command: motion command of the current control axis
- 2. Handover instructions: instructions waiting to be executed
- 3. Handover speed: the speed at which the current command switches to the handover command
- 4. Target speed: Velocity pin parameters in the instruction
- 5. Target position: Position or Distance pin parameters in the displacement related instruction.

Transfer mode	Action Description
0: mcAborting	Immediate action to interrupt the current instruction execution and
(interrupt)	delivery instructions
1: mcBuffered	Wait for the current instruction execution after the normal action,
(wait)	and execute the handover command immediate action

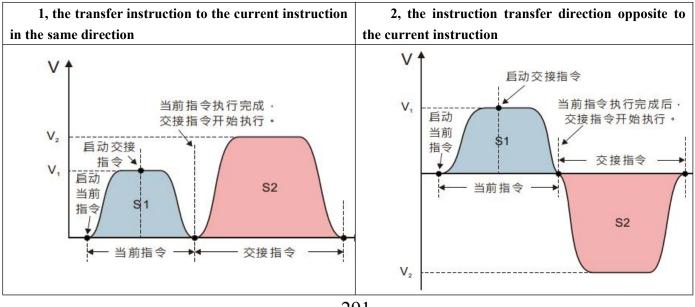
• Two kinds of transfer mode

• note


The same axis only supports the first-level BufferMode buffer: For the motion instruction with BufferMode, if the motion instruction 2 with BufferMode=1 is used to transfer the motion instruction 1, and the motion instruction 2 has not been executed, the motion instruction of BufferMode=1 is executed at this time. Invalid and error, but does not affect the execution of instruction 1 and instruction 2.

Program example:

Brief description of BufferMode with two relative displacement instructions. The first relative displacement command speed is v1, the displacement is S1, the second relative displacement command speed is v2, and the displacement is S2. Changing the BufferMode of the second displacement instruction makes the two instructions have different handover procedures, as explained below:


■ When BufferMode=0, the following four situations are explained:

1, when the current interrupt command acceleration	2, the current instruction uniform stage interrupted
	transport

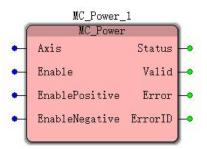
Note: When the controlled axis current instruction and the transfer instruction transfer acceleration / deceleration handover command acceleration / deceleration

■ When BufferMode = 1, the following will be described for two cases:

11.4 Uniaxial Instruction

Precautions:

• For non-moving command, MC_ReadActualVelocity, MC_ReadActualPosition, MC_SetOverride, MC_ReadMotionState, MC_ReadStatus, NS_MC_ReadParameter, MC_SetPosition, can be used in any state of the shaft.

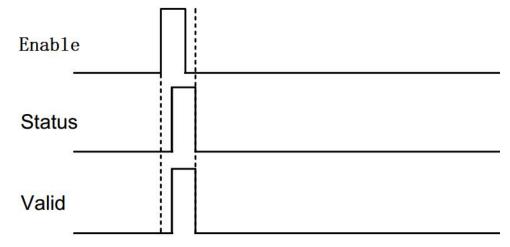

• Each instruction in the same number of works on the same axis using the following:

10110 willg.	
MC_AXIS_REF	Up to 1 module per axis for the entire project
MC_Power	Up to 1 module per axis for the entire project
MC_CamIn	Up to 3 module per axis for the entire project
MC_CamOut	Up to 3 module per axis for the entire project
MC_CombineAxes	Up to 3 module per axis for the entire project
MC_GearIn	Up to 3 module per axis for the entire project
MC_GearOut	Up to 3 module per axis for the entire project
MC_Halt	Up to 3 module per axis for the entire project
MC_Home	Up to 3 module per axis for the entire project
MC_MoveAbsolute	Up to 3 module per axis for the entire project
MC_MoveAdditive	Up to 3 module per axis for the entire project
MC_MoveRelative	Up to 3 module per axis for the entire project
MC_MoveVelocity	Up to 3 module per axis for the entire project
MC_Stop	Up to 3 module per axis for the entire project
NS_MC_StopByPos	Up to 3 module per axis for the entire project
MC_SpecialMoveAbsolute	Up to 3 module per axis for the entire project
NS_MC_RotaryCutIn	Up to 1 module per axis for the entire project
NS_MC_SpecialCamIn	Up to 1 module per axis for the entire project
NS_MC_SpecialCombineAxes	Up to 3 module per axis for the entire project
MC_HaltSuperimposed	Up to 1 module per axis for the entire project
MC_MoveSuperimposed	Up to 1 module per axis for the entire project
MC_Phasing	Up to 3 module per axis for the entire project
NS_MC_Jog	Up to 1 module per axis for the entire project
MC_SetOverride	Up to 1 module per axis for the entire project
MC_SetPosition	Up to 1 module per axis for the entire project
MC_TouchProbe	Up to 1 module per axis for the entire project
MC_AbortTrigger	Up to 1 module per axis for the entire project
NS_MC_CamReadPoint	Up to 1 module per axis for the entire project
NS_MC_CamReadTappetStatus	Up to 3 module per axis for the entire project
NS_MC_CamReadTappetValue	Up to 1 module per axis for the entire project

NS_MC_CamSet	Up to 1 module per axis for the entire project
NS_MC_CamWritePoint	Up to 1 module per axis for the entire project
NS_MC_CamWriteTappetValue	Up to 1 module per axis for the entire project
MC_ReadActualPosition	Any number
MC_ReadActualVelocity	Any number
MC_ReadMotionState	Any number
MC_ReadStatus	Any number
NS_MC_ReadParameter	Any number

11.4.1 MC_Power (ENABLE command)

FB / FC	Explanation	Applicable model
FB	This command is used to enable the respective	VEC-VA-MP-005-MA
	servo axis or enable release	

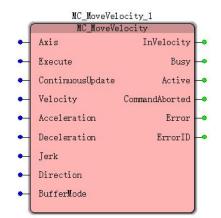

> Inp	ut parameters			
name	Features	type of data	Range setting (default value)	The timing of the entry into force
The Axis (axis number)	Setting instruction to be controlled axes	USINT	Analog / Pulse: 0-4 (real axis) 5 -11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Enable is TRUE
Enable (execute bit)	When Enable isTrue,theinstructionisexecuted.	BOOL	TRUE or FALSE (FALSE)	Enable is TRUE
EnablePositi ve (forward rotation)	Retention	BOOL	Retention	Retention
EnableNega tive (allowing inversion)	Retention	BOOL	Retention	Retention

\triangleright **Output parameters**

name	Features	type of data	Output range
Status	This parameter indicates when the instruction is TRUE control shaft	BOOL	TRUE or FALSE
Valid	The output parameter	BOOL	TRUE or FALSE

	represents the effective output command is TRUE		
Error	This parameter indicates the instruction execution error to TRUE	BOOL	TRUE or FALSE
ErrorID	Instruction execution error code error	WORD	-

> FIG timing variation output parameter



Function Description

- When the Enable FALSE to TRUE, a delay period, Status, Valid simultaneously TRUE;
- When the Enable TRUE to FALSE, a delay period, Status, Valid while is FALSE;
- This instruction is for causing the controlled release servo axis or enabled;
- When the analog or pulsed mode, it just the motion controller corresponding to the control servo axes enabled, not servo drive enable itself can, servo drive enable it needs to be set depending on the servo manufacturer; down CANopen mode directly enabled servo itself;
- Only one the MC_Power a shaft (Enable command)
- Uniaxial and multiaxial instruction before executing the instruction, the instruction must be executed MC_Power executed or not executed in reverse order When the motion control function will not be executed.

11.4.2 MC_MoveVelocity (speed command)

FB / FC	Explanation	Applicable model
	This instruction is used to set the control shaft in	VEC-VA-MP-0
FB	accordance with the deceleration to the movement at a	
	uniform speed and the set speed	05-MA

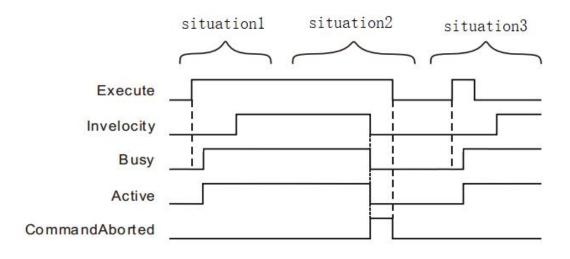
> Input parameters

name	Features	type of data	Rangesetting(default value)	The timing of the entry into force
Axis (axis number)	Setting instruction to be controlled axes	USINT	Analog / Pulse: 0-4 (real axis) 5 -11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Execute from FALSE to TRUE
Execute (execution position)	When the Execute FALSE to TRUE, the instruction execution starts	BOOL	TRUE or FALSE (FALSE)	-
ContinuousUpdata	Retention	-	-	-
Velocity (speed)	Set target speed (Unit: unit / S)	LREAL	Positive (non-default)	Execute from FALSE to TRUE
Accleration (Acceleration)	Thesettargetacceleration (unit: unit/ S2)	LREAL	Positive (non-default)	Execute from FALSE to TRUE
Decleration (decrease speed)	Set target deceleration (unit: unit / S2)	LREAL	Positive (non-default)	Execute from FALSE to TRUE

Jerk (The rate of change of acceleration)	The rate of change of the set target acceleration / deceleration (Unit: unit / S3)	LREAL	Positive (non-default)	Execute from FALSE to TRUE
Direction (direction)	Set the operation direction 1: positive direction 3: Negative direction 4: Continuation of the current direction	INT	1:positive direction 3:Negative direction 4: Continuation of the current direction (Non-default)	Execute from FALSE to TRUE
BufferMode (Transfer mode)	Setting the transfer mode between the two instructions 0: immediately interrupted 1: Wait	INT	0: immediately interrupted 1: Wait (0)	Execute from FALSE to TRUE

Description:

1. This instruction starts when Execute changes from FALSE to TRUE. This instruction is being executed. When Execute is changed from TRUE to FALSE, there is no effect on the execution of this instruction.


2. When the instruction is being executed and Execute is changed from FALSE to TRUE again, the instruction can be re-executed. The pin parameters that can be re-validated include Velocity, Acceleration, Deceleration, Jerk, Direction, and BufferMode.

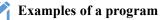
name	Features	type of data	Output range
InVelocity (arrival rate)	This parameter represents the speed output reaches to TRUE	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborted (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the	BOOL	TRUE or FALSE

> Output parameters

	output instruction is TRUE		
EmonID (annon aada)	Error Error code when	WORD	
ErrorID (error code)	execution instruction	WORD	-

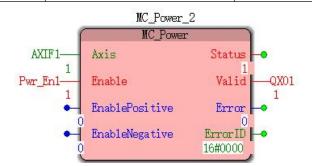
> FIG timing variation output parameter

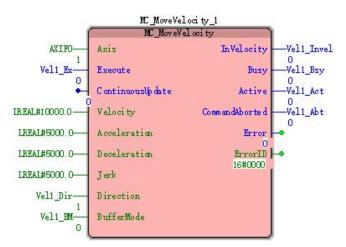
Case 1: When the Execute FALSE to TRUE, after a period, Busy, Active becomes TRUE. When the speed of arrival, Invelocity becomes TRUE, while still Busy and Active remains TRUE state.

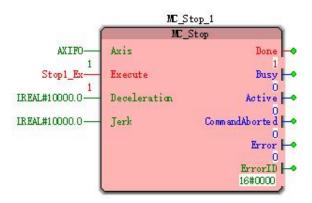

Case 2: When Execut is TRUE, the instruction is interrupted when the other instruction, CommandAborted becomes TRUE, while Invelocity, Busy and Active becomes FALSE, when a TRUE to FALSE Execute, CommandAborted becomes FALSE.

Case 3: In the course of instruction execution, when the Execute TRUE to FALSE, after reaching the speed, InVelocity becomes TRUE, the Busy remains to TRUE and the Active state.

Function Description

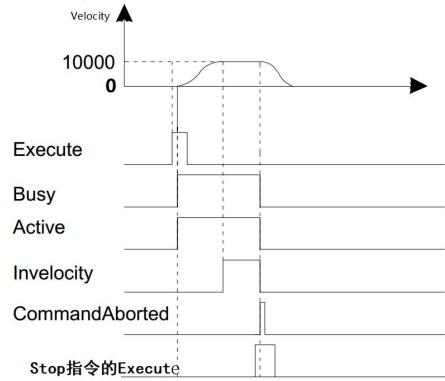

- The instruction to execute upon the Execute FALSE to TRUE. If the instruction is no transfer of command, regardless of whether the instruction is executed, the Execute again when the FALSE to TRUE, the command can be executed again, this time to re-pin the parameters in force include Velocity, Acceleration, Deceleration, Jerk, Direction, BufferMode ;
- When you modify Velocity speed value of the controlled axes, you need to re-trigger Execute, speed can be changed;


• When the instruction is executed after the completion, i.e. the Invelocity FALSE to TRUE, even by changing the target speed command MC_SetOverride, Invelocity this time remains to TRUE. When MC_MoveVelocity not completed, i.e. InVelocity to FALSE, by changing the target speed command MC_SetOverride Upon reaching the new target speed, only the InVelocity FALSE to TRUE.



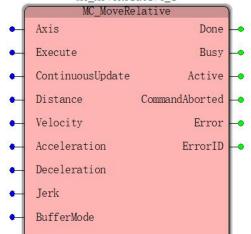
In the example below MC_MoveVelocity instruction execution time of the individual.

1、Variables and procedures	5	
variable name	type of data	The initial value
MC_MoveVelocity1	MC_MoveVelocity	
AXIF0	USINT	1
Vel1_Ex	BOOL	FALSE
Vel1_Dir	INT	1
Vel1_BM	INT	0
Vel1_Invel	BOOL	
Vel1_Bsy	BOOL	
Vel1_Act	BOOL	
Vel_Abt	BOOL	
MC_Stop1	MC_Stop	
Stop_Ex	BOOL	FALSE



299

2. Timing and motion profiles of FIG.



• When Vel1_Ex a FALSE to TRUE, Vel1_Bsy, Vel_Act simultaneously become TRUE, starts instruction execution speed; when the speed reaches, Vel1_Invel becomes TRUE, and at the same time Vel1_Bsy Vel1_Act remains to TRUE.

• When Stop_Ex1 a FALSE to TRUE, after a period, CommandAborted a FALSE to TRUE (in this case, if Vel1_Ex FALSE, then after a period CommandAborted becomes FALSE), while, Busy and Active becomes FALSE.

11.4.3 MC_MoveRelative (relative displacement instruction)

FB / FC	Explanation	Applicable model
FB	This instruction is used to control axis current position as a starting point, according to the set speed, acceleration and deceleration, rate of change of acceleration of the moving distance setting	VEC-VA-M P-005-MA
MC_MoveRelative_1		

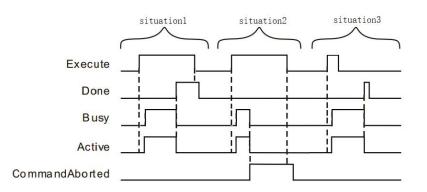
Input parameters

name	Features	type of data	Rangesetting(default value)	The timing of the entry into force
Axis (axis number)	Setting instruction to be controlled axes	USINT	Analog/Pulse:0-4 (real axis)5to5to11(imaginary axis)CANopenmode:0-15 (realaxis /imaginaryaxis)(0)	Exexcute from FALSE to TRUE
Execute ContinuousU	When the Exexcute FALSE to TRUE, the instruction execution starts. Retention	BOOL	TRUE or FALSE (FALSE)	-
pdata Distance (distance)	Goal Setting distance (Unit: unit)	LREAL	Positive, negative, zero (0)	Exexcute from FALSE to TRUE

Velocity (speed)	Set target speed (Unit: unit / S)	LREAL	Positive (non-default)	Exexcute from FALSE to TRUE
Acceleration (Acceleration)	Goal setting acceleration (Unit: unit / S2)	LREAL	Positive (non-default)	Exexcute from FALSE to TRUE
Deceleration (decrease speed)	Set target deceleration (Unit: unit / S2)	LREAL	Positive (non-default)	Exexcute from FALSE to TRUE
Jerk (The rate of change of acceleration)	The rate of change of the target acceleration or deceleration setting (Unit: unit / S3)	LREAL	Positive, zero (0)	Exexcute from FALSE to TRUE
BufferMode (Transfer mode)	Setting the transfer mode between the two instructions 0: immediately interrupted 1: Wait	INT	0: immediately interrupted 1: Wait (0)	Exexcute from FALSE to TRUE

Description:

1, the instruction to execute upon the Execute FALSE to TRUE. The instruction is being executed when the Execute TRUE to FALSE, no effect on the implementation of the directive.


2, when the instruction is being executed, the Execute again by the FALSE to TRUE, the instructions may be re-executed, the parameters can be revalidated The pin comprises a Distance, Velocity, Acceleration, Deceleration, Jerk, BufferMode.

name	Features	type of data	Output range
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborte d (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the	BOOL	TRUE or FALSE

> Output parameters

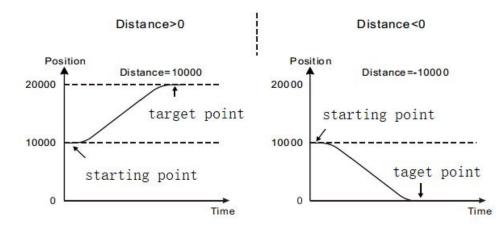
	output instruction is TRUE		
ErrorID (error	Error Error code when	WORD	
code)	execution instruction	WORD	-

> FIG timing variation output parameter

Case 1:When the Execute FALSE to TRUE, Busy and Active simultaneously become TRUE. When the positioning is completed, Done becomes TRUE, and the Busy Active becomes FALSE, if after the completion of the positioning, Execute a TRUE to FALSE, after a period, Done becomes FALSE.

Case 2:When the Execute is TRUE, the instruction is interrupted other instructions, CommandAborted becomes TRUE, and the Busy Active becomes FALSE; Execute when a TRUE to FALSE, after a period CommandAborted becomes FALSE.

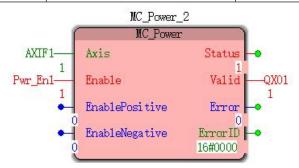
Case 3:During instruction execution, after the Execute TRUE to FALSE, when the instructions are executed, the Done becomes TRUE, and the Busy Active becomes FALSE, and after a period, the Done becomes FALSE.

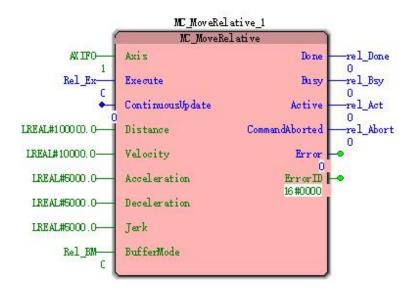

Function Description

• This instruction is used to set speed control shaft, deceleration and acceleration rate of change moving distance setting, with reference to the starting point of the distance of the axis position when the instruction to start execution.

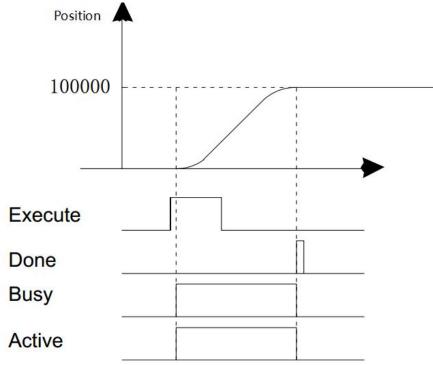
• Distance starting point with the reference axis together determine a target position under control of the instruction, i.e. the reference target position start position = + Distance.

• 0 Distance When completed, the movement target position for the current position of the axis, i.e., instruction execution in the next cycle is started, the Done becomes TRUE.


As shown below, the reference position of the starting point is 10,000, when Distance> 0 (10,000), the axis of the forward movement, the target position is 20,000 (10,000 + 10,000), in the lower left diagram; when Distance <0 (-10000), the reverse shaft, the target position is 0 (10000-10000), as the lower right in FIG.



Examples of a program

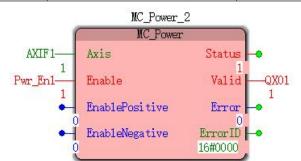

In the example below MC_MoveRelative instruction execution time of the individual.

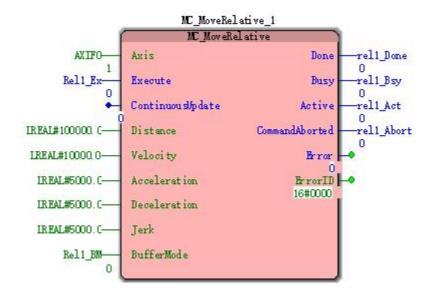
variable name	type of data	The initial value
MC_MoveRelativey1	MC_MoveRelative	
AXIF0	USINT	1
Rel_Ex	BOOL	FALSE
Rel_BM	BOOL	0
Rel_Done	BOOL	
Rel_Bsy	BOOL	
Rel_Act	BOOL	
Rel_Abort	BOOL	

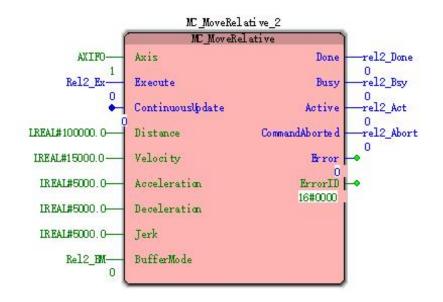
2, Motion curve and timing diagram

• When the Rel_Ex FALSE to TRUE, a period, while the Busy and Active is TRUE, starts executing the instruction in accordance with the relative displacement of the parameter setting, the current position of the axis at this time is 0, the target location is 100,000.

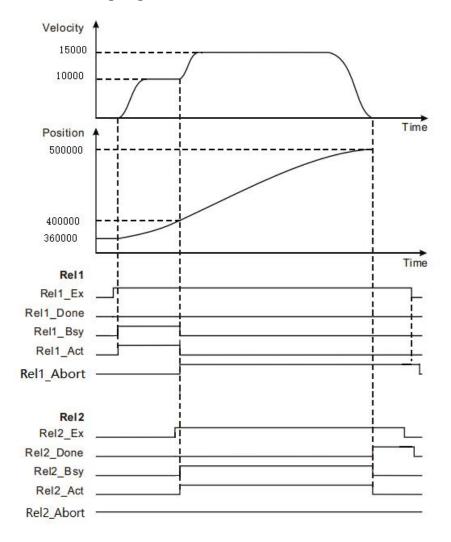
• When the shaft reaches the position 100 000, the instruction execution is completed, the output Done to TRUE.


Program Example Two


MC MoveRelative interrupted MC MoveRelative example is shown below.


1, variables, and procedures

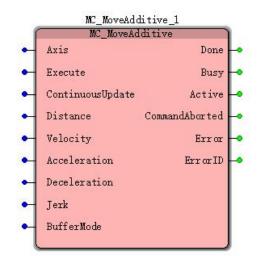
variable name	type of data	The initial value


MC_MoveRelativey1	MC_MoveRelative	
AXIF0	USINT	1
Rel_Ex	BOOL	FALSE
Rel_BM	BOOL	0
Rel_Done	BOOL	
Rel_Bsy	BOOL	
Rel_Act	BOOL	
Rel_Abort	BOOL	
MC_MoveRelativey2	MC_MoveRelative	
AXIF0	USINT	1
Rel2_Ex	BOOL	FALSE
Rel2_BM	BOOL	0
Rel2_Done	BOOL	
Rel2_Bsy	BOOL	
Rel2_Act	BOOL	
Rel2_Abort	BOOL	

2, Motion curve and timing diagram

• When Rel1_Ex a FALSE to TRUE, the first MC_MoveRelative instruction starts execution, the current position of the axis at this time is 360 000, the position of the target

(46,000 + 10,000 = 36,000).


• When the shaft position is reached 40000, Rel2_Ex a FALSE to TRUE, MC_MoveRelative second instruction begins execution, and the execution of the first instruction MC_MoveRelative is interrupted, the output parameter Rel1_Abt becomes TRUE.

• Position when the shaft reaches 50,000 (50,000 + 10,000 = 40,000), the second MC_MoveRelative execution is completed, the output parameter Rel2_Done becomes TRUE.

11.4.4 MC_MoveAdditive (additional displacement

instruction)

FB / FC	Explanation	Applicable model
FB	This instruction from the control shaft in accordance with	VEC-VA-M
ГD	the set speed, acceleration and deceleration moved a additional	P-005-MA

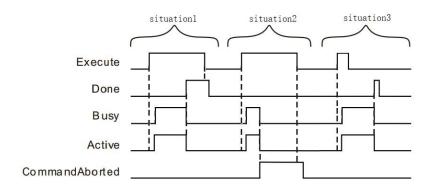
name	Features	type of data	Range setting (default value)	The timing of the entry into force
Axis (axis number)	Setting instruction to be controlled axes	USINT	Analog/Pulse: $0-4$ (real axis)5to11(imaginary axis)11CANopenmode:0-15 (realaxis / imaginaryimaginaryaxis)(0)	Exexcute from FALSE to TRUE
Execute	When the Exexcute FALSE to TRUE, the instruction execution starts.	BOOL	TRUE or FALSE (FALSE)	-
Updata Distance	Retention Goal Setting	-	- Positive,	- Exexcute from
(distance)	distance	LREAL	negative, zero	FALSE to TRUE

> Input parameters

	(Unit: unit)		(0)	
Velocity (speed)	Set target speed (Unit: unit / S)	LREAL	Positive (non-default)	Exexcute from FALSE to TRUE
Acceleration (Acceleration)	Goal setting acceleration (Unit: unit / S2)	LREAL	Positive (non-default)	Exexcute from FALSE to TRUE
Deceleration (decrease speed)	Set target deceleration (Unit: unit / S2)	LREAL	Positive (non-default)	Exexcute from FALSE to TRUE
Jerk (The rate of change of acceleration)	The rate of change of the target acceleration or deceleration setting (Unit: unit / S3)	LREAL	Positive, zero (0)	Exexcute from FALSE to TRUE
BufferMode (Transfer mode)	Setting the transfer mode between the two instructions 0: immediately interrupted 1: Wait	INT	0: immediately interrupted 1: Wait (0)	Exexcute from FALSE to TRUE

Description:

1, the instruction to execute upon the Execute FALSE to TRUE. The instruction is being executed when the Execute TRUE to FALSE, no effect on the implementation of the directive.


2, when the instruction is being executed, the Execute again by the FALSE to TRUE, the instructions may be re-executed, the parameters can be revalidated The pin comprises a Distance, Velocity, Acceleration, Deceleration, Jerk, BufferMode.

name	Features	type of data	Output range
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborte d (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of	BOOL	TRUE or

> Output parameters

	the faulting instruction when the		FALSE
	output instruction is TRUE		
ErrorID (error	Error Error code when	WORD	
code)	execution instruction	WORD	-

> FIG timing variation output parameter

Case 1:When the Execute FALSE to TRUE, after a period Buys Active and simultaneously become TRUE;

When the positioning is completed, Done becomes TRUE, and the Busy Active becomes FALSE, it is the Execute TRUE to FALSE after a period, Done becomes FALSE.

Case 2: When the Execute is TRUE, the instruction is interrupted after the other instructions, CommandAborted becomes TRUE, and the Busy Active becomes FALSE; Execute when a TRUE to FALSE, after a period CommandAborted becomes FALSE.

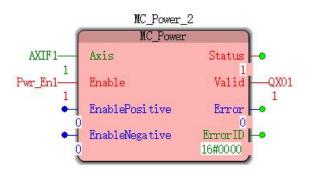
Case 3: After during instruction execution, Execute a TRUE to FALSE, when the instructions are executed, Done becomes TRUE, and the Busy Active becomes FALSE, and after a period, Done becomes FALSE.

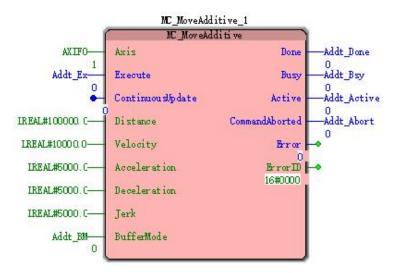
Function Description

• This instruction means for controlling the terminal to perform the set rate of acceleration of the mobile some additional distance.

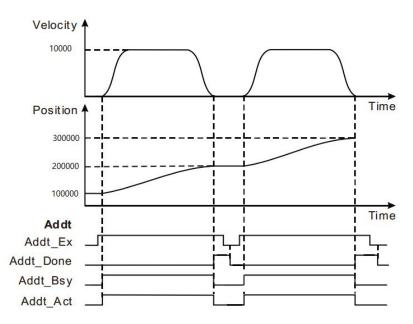
• The current command is a command related to the displacement, if not complete, then the instruction is executed in the mobile terminal from the remaining actuator to a command from the front and from the sum of this instruction set, when this instruction is complete, the terminal actuator after the current command is a speed command, this command will terminate the instruction execution speed, when executed, according to a set speed, acceleration and deceleration of the moving distance setting; the final position of the former and the sum of a travel command from the instruction set stop

When this instruction is executed alone, the effect same as the MC_MoveRelative


Examples of a program


Examples when a separate instruction is executed as follows MC MoveAdditive

311


variable name	type of data	The initial value
MC_MoveAdditive1	MC_MoveAdditive	
AXIF0	USINT	1
Addt_Ex	BOOL	FALSE
Addt_BM	INT	0
Addt_Done	BOOL	
Addt_Bsy	BOOL	
Addt_Active	BOOL	
Addt_Abort	BOOL	

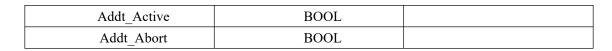
1. Variables and procedures

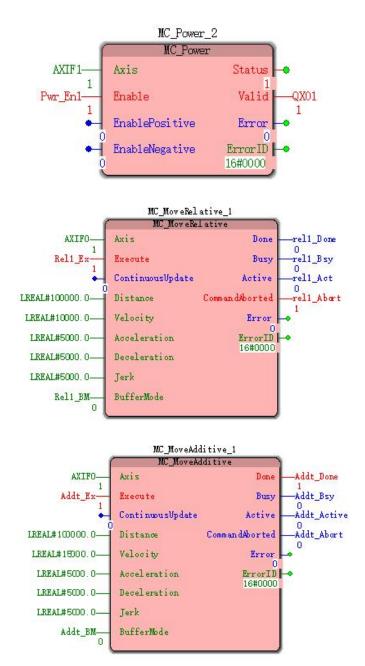
2. Timing and motion profiles of FIG.

• When Addt_Ex a FALSE to TRUE, the motion controller controls the operation of the servo motor to the current position as a reference point, after a period Addt_Bsy, Addt_Act becomes TRUE. After the completion of the servo motor set distance, a done bit Addt_Done FALSE to TRUE, and at the same time Addt_Bsy Addt_Act a TRUE to FALSE.

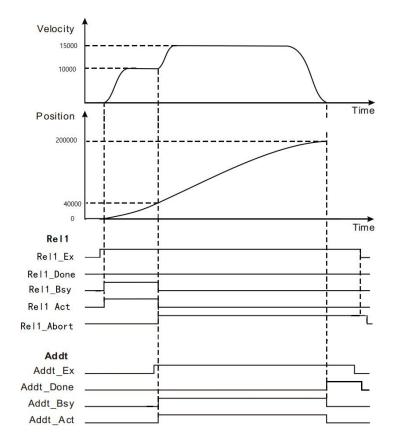
• When Addt_Ex a TRUE to FALSE, a bit Addt_Done reset cycle is complete.

• After completion of the servo motor set distance, Addt_Ex again by the FALSE to TRUE, the motion controller controls the operation of the servo motor, the servo motor after completion of the set distance, again by the complete bit Addt Done FALSE to TRUE.



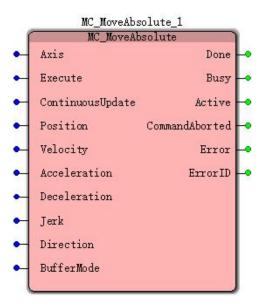

Program Example Two

MC_MoveAdditive interrupt instruction examples below MC_MoveRelative


Variable name	type of data	The initial value
MC_MoveRelative_1	MC_MoveRelative	
AXIF0	USINT	1
Rel1_Ex	BOOL	FALSE
Rel1_BM	INT	0
Rel1_Done	BOOL	
Rel1_Bsy	BOOL	
Rel1_Act	BOOL	
Rel1_Abort	BOOL	
MC_MoveAdditive1	MC_MoveAdditive	
Addt_Ex	BOOL	FALSE
Addt_BM	INT	0
Addt_Done	BOOL	
Addt_Bsy	BOOL	

1. Variables and procedures

2, Motion curve and timing diagram


• When Rel1_Ex a FALSE to TRUE, the motion controller controls the operation of the servo motor to the current position as a reference point, the position of the shaft at Position = 40,000, additional displacement instruction execution, Addt_Ex a FALSE to TRUE, after one cycle, interrupt bit Rel1_Abt from FALSE becomes TRUE. Meanwhile, the servo motor movement to position the second additional command parameters. When the servo motor reaches a set distance (set this time from the sum of the distances to two instructions), completed by a bit Addt_Done FALSE to TRUE.

• When Addt_Ex a TRUE to FALSE, a bit Addt_Done reset cycle is complete.

11.4.5 MC_MoveAbsolute (absolute displacement

instructions)

FB / FC	Explanation	Applicable model
FB	This instruction is used to set speed control axes, acceleration and deceleration to move relative to the target zero position	VEC-VA-M P-005-MA

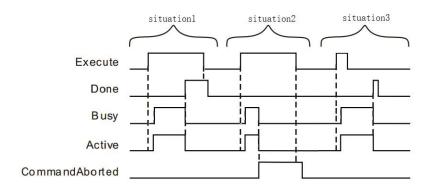
> Input parameters

name	Features	type of	Range setting	The timing of
		data	(default value)	the entry into force
			Analog /	
			Pulse:	
			0-4 (real axis)	
			5 to 11	
Axis	Setting instruction to	LICDIT	(imaginary axis)	Exexcute from
(axis number)	be controlled axes	USINT	CANopen	FALSE to TRUE
			mode: 0-15 (real	
			axis / imaginary	
			axis)	
			(0)	
	When the Exexcute			
Evenute	FALSE to TRUE, the	BOOL	TRUE or FALSE	
Execute	instruction execution	BUUL	(FALSE)	-
	starts.			

Continuous Updata	Retention	-	-	-
Position (position)	Set the target position Rotary shaft: 0≤ Position <mold Linear axis: Unlimited (Unit: unit)</mold 	LREAL	Positive, negative, zero (0)	Exexcute from FALSE to TRUE
Velocity (speed)	Set target speed (Unit: unit / S)	LREAL	Positive (non-default)	Exexcute from FALSE to TRUE
Acceleration (Acceleration)	Goal setting acceleration (Unit: unit / S2)	LREAL	Positive (non-default)	Exexcute from FALSE to TRUE
Deceleration (decrease speed)	Set target deceleration (Unit: unit / S2)	LREAL	Positive (non-default)	Exexcute from FALSE to TRUE
Jerk (The rate of change of acceleration)	The rate of change of the target acceleration or deceleration setting (Unit: unit / S3)	LREAL	Positive, zero (0)	Exexcute from FALSE to TRUE
Direction (direction)	Running direction (the rotation axis only when the parameter is effective) 1: Forward 2: The shortest distance 3: Reverse 4: Current direction	INT	1: Forward 2:The shortest distance 3: Reverse 4:Current direction (Non-default)	Exexcute from FALSE to TRUE and the axis as a rotation axis mode
BufferMode (Transfer mode)	Setting the transfer mode between the two instructions 0: immediately interrupted 1: Wait	INT	0:immediately interrupted 1: Wait (0)	Exexcute from FALSE to TRUE

Description:

1. This instruction starts execution when the Execute FALSE to TRUE. The instruction is being executed when the Execute TRUE to FALSE, no effect on the implementation of the directive.


2, when the instruction is being executed, the Execute again by the FALSE to TRUE, the instructions may be re-executed, the parameters can be revalidated The pin comprises a Distance, Velocity, Acceleration, Deceleration, Jerk, Direction, BufferMode. 3. When the shaft as a rotation axis, Position parameters may be within 0 to die but not including the value of the mold, if the

absolute value is greater than or equal to the parameter Position mode, this instruction execution error; when the shaft linear axis, parameter Position and regardless of the size of the mold can be set to an arbitrary constant. 4. Direction parameter is valid only when the shaft rotation axis, a detailed description of the parameters, refer to the instruction described in the function section Direction.

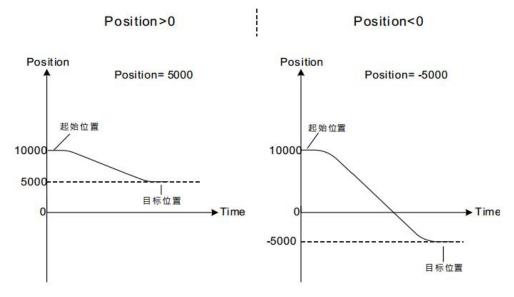
name	Features	type of data	Output range
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborte d (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

Output parameters

> FIG timing variation output parameter

Case 1:When the Execute FALSE to TRUE, after a period Buys Active and simultaneously become TRUE;

When the positioning is completed, Done becomes TRUE, and the Busy Active becomes FALSE, it is the Execute TRUE to FALSE after a period, Done becomes FALSE.


Case 2: When the Execute is TRUE, the instruction is interrupted after the other instructions, CommandAborted becomes TRUE, and the Busy Active becomes FALSE; Execute when a TRUE to FALSE, after a period CommandAborted becomes FALSE.

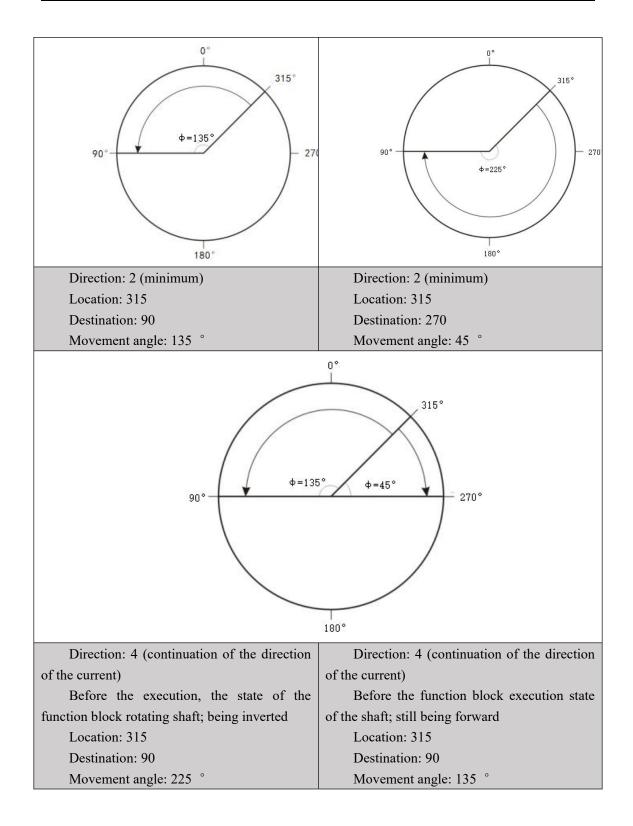
Case 3: After during instruction execution, Execute a TRUE to FALSE, when the instructions are executed, Done becomes TRUE, and the Busy Active becomes FALSE, and after a period, Done becomes FALSE.

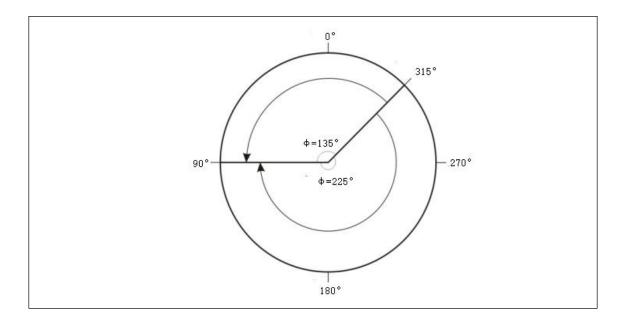
Function Description

• This instruction is used to set speed control shaft, and a deceleration jerk to move relative to the target zero position.

• Axis position command execution starting absolute displacement 10,000, when Position> 0 (5000), the axis will reverse movement, the target position 5000, shown below as left; when Position <0 (-5000), the reaction shaft turn, the target position -5000, as shown in the lower right in FIG.

note: Once this instruction is terminated other instructions during operation,

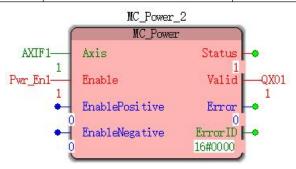

the remaining distance is not completed will be discarded, the new instruction

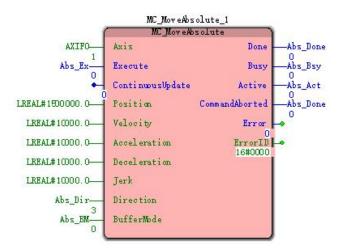

execution functions.

Direction

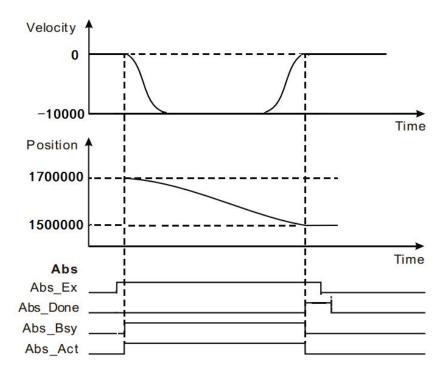
Direction parameters take effect only when the shaft is a rotating shaft, its different values, the direction of movement of the axis shown in the following table examples (modulo 360):

Direction: 1 (positive direction)	Direction: 3 (reverse orientation)	
Location: 315	Location: 315	
Destination: 90	Destination: 90	
Movement angle: 135 °	Movement angle: 225 °	




Examples of a program

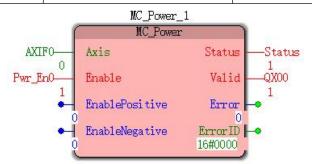
The controlled axis is a linear axis, while examples of single instruction is executed as follows MC MoveAbsolute

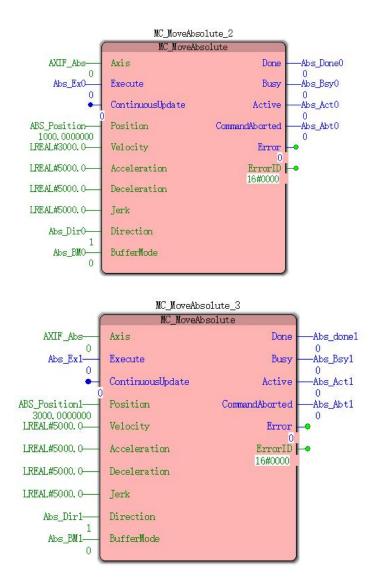

1, variables, and procedures

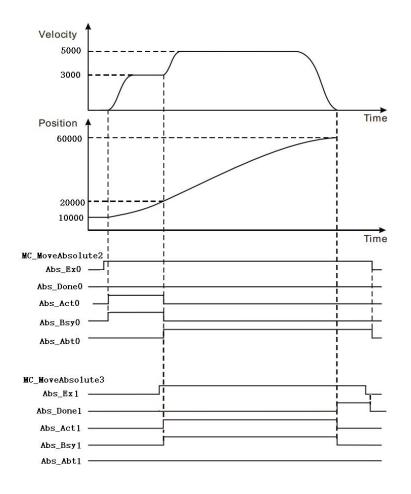
variable name	type of data	The initial value
MC_MoveAbsolue_1	MC_MoveAbsolute	
AXIF0	USINT	1
Abs_Ex	BOOL	FALSE
Abs_Dir	INT	1
Abs_BM	INT	0
Abs_Done	BOOL	
Abs_Bsy	BOOL	
Abs_Act	BOOL	
Abs_Done	BOOL	

2, Motion curve and timing diagram

• When the Abs_Ex MC_MoveAbsolute FALSE to TRUE to start the instruction execution, the current position of the axis at this time is 1.7 million, 1.5 million target position.


• When the shaft moves to the 1500000, the instruction execution is completed.

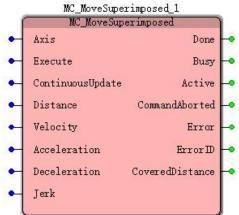

Program Example Two


The controlled axis is a linear axis, MC_MoveAbsolute instruction interrupt instruction MC_MoveAbsolute examples are as follows:

1, variables, and procedures

variable name	type of data	The initial value
MC_MoveAbsolue_2	MC_MoveAbsolute	-
Abs_Ex0	BOOL	FALSE
ABS_Position	LREAL	30000.0
Abs_Dir0	INT	-
Abs_BM0	INT	0
Abs_Done0	BOOL	FALSE
Abs_Bsy0	BOOL	FALSE
Abs_Act0	BOOL	FALSE
Abs_Abt0	BOOL	FALSE
MC_MoveAbsolue_3	MC_MoveAbsolute	-
Abs_Ex1	BOOL	FALSE
ABS_Position1	LREAL	60000.0
Abs_Dir1	INT	-
Abs_BM1	INT	0
Abs_Done0	BOOL	FALSE
Abs_Bsy0	BOOL	FALSE
Abs_Act0	BOOL	FALSE
Abs_Abt0	BOOL	FALSE

• When Abs_Ex0 a FALSE to TRUE, the first MC_MoveAbsolute instruction starts execution, the current position of the axis at this time is 1000, the target location 3000.


• When the shaft position is reached 20000, Abs_Ex1 a FALSE to TRUE, MC_MoveAbsolute second instruction begins execution, and the execution of the first instruction MC_MoveAbsolute is interrupted, the output parameter Abs1_Abt becomes TRUE.

• Position when the shaft reaches 60,000, the second MC_MoveAbsolute instructions are executed, the output parameter Abs2_Done becomes TRUE.

11.4.6 MC_MoveSuperimposed (additional displacement

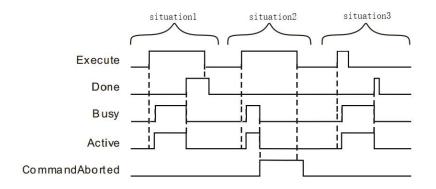
instruction)

FB / FC	Explanation	Applicable model
FB	This instruction is used to control movement of the shaft in the current state of the set speed, acceleration and deceleration some additional independent set distance.	VEC-VA-M P-005-MA

> Input parameters

name	Features	type of data	Range setting (default value)	The timing of the entry into force
Axis (axis number)	Setting instruction to be controlled axes	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Exexcute from FALSE to TRUE
Execute (Execute bit)	When the Exexcute FALSE to TRUE, the instruction execution starts.	BOOL	TRUE or FALSE (FALSE)	_
Continuous Updata	Retention	-	-	-
Distance (distance)	Goal Setting distance (Unit: unit)	LREAL	Positive, negative, zero (0)	Exexcute from FALSE to TRUE
Velocity (speed)	Set target speed (Unit: unit / S)	LREAL	Positive (non-default)	Exexcute from FALSE to TRUE

Acceleration (Acceleration)	Goal setting acceleration (Unit: unit / S2)	LREAL	Positive (non-default)	Exexcute from FALSE to TRUE
Deceleration (decrease speed)	Set target deceleration (Unit: unit / S2)	LREAL	Positive (non-default)	Exexcute from FALSE to TRUE
Jerk (The rate of change of acceleration)	The rate of change of the target acceleration or deceleration setting (Unit: unit / S3)	LREAL	Positive, zero (0)	Exexcute from FALSE to TRUE


Description:

1, the instruction to execute upon the Execute FALSE to TRUE. The instruction is being executed when the Execute TRUE to FALSE, no effect on the implementation of the directive. 2, when the instruction is being executed, the Execute again by the FALSE to TRUE, the instructions may be executed again, this time can be revalidated pin parameters include Distance, Velocity, Acceleration, Deceleration, Jerk.

۶	Output parameter	rs

name	Features	type of data	Output range
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	TRUE indicates output		TRUE or FALSE
CommandAborte d (interruption) The output parameter is TRUE representing instructions is interrupted		BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (errorError Error code whencode)execution instruction		WORD	-
CoveredDistance (Additional cumulative distance)	CoveredDistanceThe instruction to start the accumulated since the added		Negative, positive, 0

> FIG timing variation output parameter

Case 1:When the Execute FALSE to TRUE, after a period Buys Active and simultaneously become TRUE;

When the completion of the additional displacement, Done becomes TRUE, and the Busy Active becomes FALSE, it is the Execute TRUE to FALSE after a period, Done becomes FALSE.

Case 2: When the Execute is TRUE, the instruction is interrupted after the other instructions, CommandAborted becomes TRUE, and the Busy Active becomes FALSE; Execute when a TRUE to FALSE, after a period CommandAborted becomes FALSE.

Case 3: After during instruction execution, Execute a TRUE to FALSE, when the instructions are executed, Done becomes TRUE, and the Busy Active becomes FALSE, and after a period, Done becomes FALSE.

Function Description

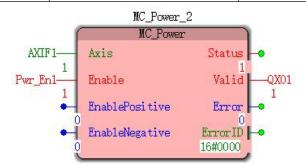
• MC_MoveSuperimposed instruction is executed, the previous instruction does not terminate (not including MC_MoveSuperimposed MC_HaltSuperimposed and instructions) is executed, two instructions are simultaneously executed, distance, speed, acceleration and deceleration in real time superimposed (when an instruction reaches the set speed, its acceleration 0). A current instruction execution is completed, will not be superimposed on its speed, acceleration and deceleration, MC_MoveSuperImposed instruction still operate independently.

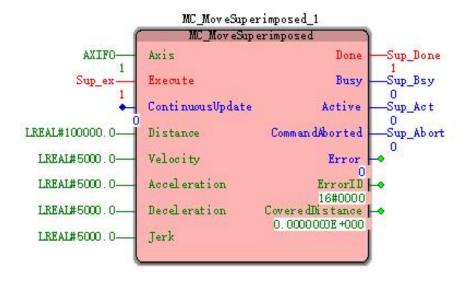
• State when the shaft is Standstill, MC_MoveSuperImposed instruction execution, MC_MoveSuperimposed MC_MoveRelative instruction and is equivalent to the instruction.

• When MC_MoveSuperimposed common command and control axis motion command, then execute other instruction motion (not including MC_MoveSuperimposed and MC_HaltSuperimposed instructions). If Buffermode move command after execution = 0, then the first movement MC_MoveSuperimposed instruction execution and instruction will be interrupted; if Buffermode instructions executed after the movement to other values, and the motion command MC_MoveSuperimposed instruction will not be executed first, interrupted.

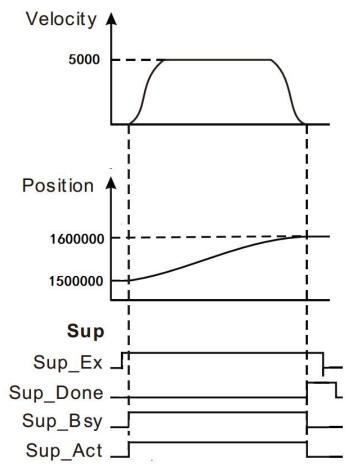
• When MC_MoveSuperimposed command individually controlled axes, and then perform another MC_MoveSuperimposed instruction, the previous instruction was interrupted MC MoveSuperimposed.

MC_MoveSuperimposed instruction is executed, and then execution


MC HaltSuperimposed instruction, MC MoveSuperimposed instruction was interrupted.


This instruction does not affect the current state of the machine

Examples of a program


Examples when a separate instruction is executed as follows MC_MoveSuperimposed **1**, variables, and procedures

variable name	type of data	The initial value
MC_MoveSuperimposed	MC_MoveSuperimposed	
AXIF0	USINT	1
Sup_Ex	BOOL	FALSE
Sup_Done	BOOL	
Sup_Bsy	BOOL	
Sup_Act	BOOL	
Sup_Abort	BOOL	

2, Motion curve and timing diagram

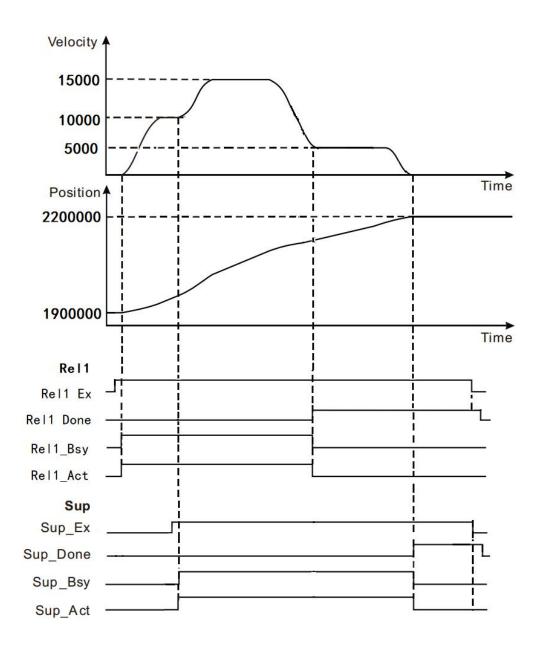
• When Sup_Ex becomes TRUE, after a period, Sup_Bsy, Sup_Act becomes TRUE, the motion controller controls the operation of the servo motor to the current position as a reference point.

• After the completion of the servo motor set distance, Sup_Done becomes TRUE, and at the same time Sup Bsy Sup Act becomes FALSE.

• When Sup_Ex becomes FALSE, Sup_Done becomes FALSE.

Program Example Two

MC MoveSuperimposed MC MoveRelative and instructions with the example below:


iv variables and procedures			
variable name	type of data	The initial value	
MC_MoveRelative_1	MC_MoveRelative		
AXIF0	USINT	1	
Rel1_Ex	BOOL	FALSE	
Rel1_BM	INT	0	
Rel1_Done	BOOL		
Rel1_Bsy	BOOL		
Rel1_Act	BOOL		
Rel1_Abort	BOOL		

1. Variables and procedures

MC_MoveSuperimposed _1	MC_MoveSuperimposed	
Sup_Ex	BOOL	FALSE
Sup_Done	BOOL	
Sup_Bsy	BOOL	
Sup_Act	BOOL	
Sup_Abort	BOOL	

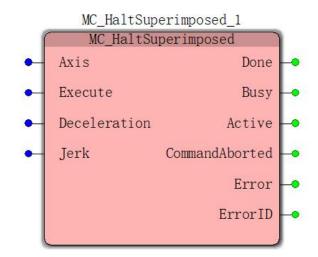
2. Timing and motion profiles of FIG.

• When Rel_Ex becomes TRUE, after a period Rel_Act, Rel_BsyBecomes TRUE, the motion controller controls the operation of the servo motor to the current position as a reference point.

• When Sup_Ex becomes TRUE, after a period, Sup_Act, Sup_BsyBecomes TRUE, MC_MoveSuperimposed instruction starts execution, and an acceleration of the servo motor speed will (in this case acceleration is 0) is superimposed.

• When a position command is completed MC_MoveRelative, Rel_Done becomes TRUE, Rel_Bsy and Rel_Act becomes FALSE. The final position of the shaft of the total two command and processing initial position set position.

• When the additional distance MC_MoveSuperimposed instruction completion, Sup_Done becomes TRUE, Sup_Bsy and Sup_Act becomes FALSE. The final position of the shaft of the total two command and processing initial position set position.


• When Rel_Ex becomes FALSE, Rel_Done becomes FALSE. When Sup_Ex becomes FALSE, Sup_Done

Becomes FALSE.

11.4.7 MC_HaltSuperimposed (Pause additional

displacement)

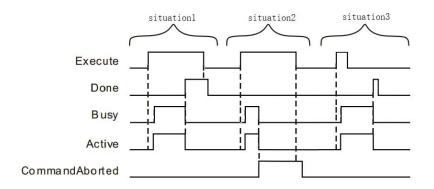
FB / FC	Explanation	Applicable model
FB	This instruction is used to suspend the additional	VEC-VA-M
ГД	displacement command	P-005-MA

> Input parameters

name	Features	type of data	Rangesetting(default value)	The timing of the entry into force
Axis (axis number)	Setting instruction to be controlled axes	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Exexcute from FALSE to TRUE
Execute (Execute bit)	When the Execute FALSE to TRUE, the instruction execution starts	BOOL	TRUE or FALSE	
Accelera tion (Acceler ation)	Goal setting acceleration (Unit: unit / S2)	LREAL	Positive (non-default)	Exexcute from FALSE to TRUE

Deceleration (decrease speed)	Set target deceleration (Unit: unit / S2)	LREAL	Positive (non-default)	Exexcute from FALSE to TRUE
Jerk (The rate of	The rate of change of the target acceleration	LREAL	Positive, zero	Exexcute from
change of acceleration)	or deceleration setting (Unit: unit / S3)	LKLAL	(0)	FALSE to TRUE

Description:


1,The instruction to execute upon the Execute FALSE to TRUE. The instruction is being executed, ExecuteWhen the TRUE to FALSE, this instruction performs no effect.

2, when the instruction is being executed, the Execute again by the FALSE to TRUE, the instructions may be re-executed, the parameters can be revalidated The pin comprises Deceleration, Jerk.

> Output parameters

name	Features	type of data	Output range
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborte d (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

FIG timing variation output paramete

Case 1:When the Execute FALSE to TRUE, after a period Buys Active and simultaneously become TRUE;

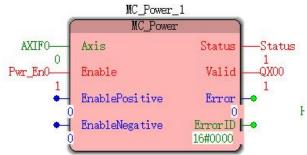
When the suspension is added to complete the displacement, Done becomes TRUE, and the Busy Active becomes FALSE, it is the Execute TRUE to FALSE after a period, Done becomes FALSE.

Case 2: When the Execute is TRUE, the instruction is interrupted after the other instructions, CommandAborted becomes TRUE, and the Busy Active becomes FALSE; Execute when a TRUE to FALSE, after a period CommandAborted becomes FALSE.

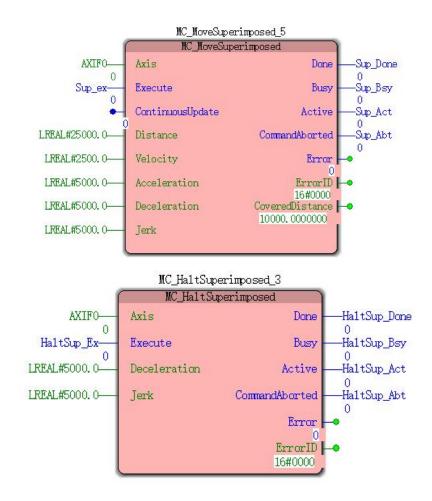
Case 3: After during instruction execution, Execute a TRUE to FALSE, when the instructions are executed, Done becomes TRUE, and the Busy Active becomes FALSE, and after a period, Done becomes FALSE.

Function Description

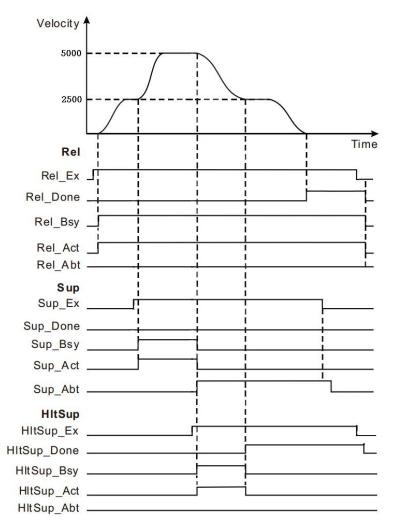
- MC_HaltSuperimposed instruction execution can only be interrupted for MC_MoveSuperimposed instructions.
- When MC_MoveSuperimposed and other motion control instructions common axis, and then execute MC_HaltSuperimposed instructions, instruction MC_HaltSuperimposed MC_MoveSuperimposed interrupt instruction, but the execution is not affected other motion instructions.


Examples of a program

MC_HaltSuperimposed suspend instruction command is added to MC_MoveSuperimposed MC_MoveRelative instruction of the example below:


variable name	type of data	The initial value
MC_MoveRelative_1	MC_MoveRelative	-
AXIF0	USINT	1
Rel_Ex	BOOL	FALSE
Rel_BM	INT	0
Rel_Done	BOOL	FASLE

1, variables, and procedures


Rel_Bsy	BOOL	FALSE
Rel_Act	BOOL	FALSE
Rel_Abort	BOOL	FALSE
MC_MoveSuperimposed_5	MC_MoveSuperimposed	-
Sup_Ex	BOOL	FALSE
Sup_Done	BOOL	FALSE
Sup_Bsy	BOOL	FALSE
Sup_Act	BOOL	FALSE
Sup_Abort	BOOL	FALSE
MC_HaltSuperimposed_3	MC_HaltSuperimposed	-
HaltSup_Ex	BOOL	FALSE
HaltSup_Done	BOOL	FALSE
HaltSup_Bsy	BOOL	FALSE
HaltSup_Act	BOOL	FALSE
HaltSup_Abt	BOOL	FALSE

2, Motion curve and timing diagram

• When Rel_Ex becomes TRUE, after a period, Rel_Bsy and Rel_Act becomes TRUE, the motion controller controls the operation of the servo motor to the current position as a reference point. Sup_Ex becomes TRUE when, after a period, Sup_Bsy and Sup_Act becomes TRUE, MC_MoveSuperimposed instruction starts execution, and an acceleration of the servo motor speed will (in this case acceleration is 0 axis) is superimposed.

• When Hltsup_Ex becomes TRUE, after a period, Hltsup_Bsy and Hltsup_Act becomes TRUE, MC_HaltSuperimposed instruction starts execution, MC_MoveSuperimposed instruction was interrupted, Sup_Bsy, Sup_Act becomes FALSE, while Sup_Abt becomes TRUE. MC_HaltSuperimposed instruction interrupt MC_MoveSuperimposed instruction execution.

• When Hltsup_Done becomes TRUE, Hltsup_Bsy and Hltsup_Act become FALSE.

• MC_HaltSuperimposed instruction execution does not affect the execution of MC_MoveRelative instructions.

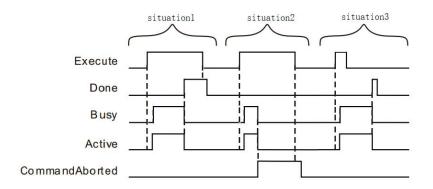
11.4.8 MC_Home (zero return instruction)

FB / FC	Explanation	Applicable model
FB	This instruction is used according to the mode and the control shaft speed parameter setting operation is performed homing	VEC-VA-M P-005-MA
	MC_Home_1 MC_Home Axis Done Execute Busy Position Active First_Velocity CommandAborted Second_Velocity Error Home_DI ErrorID Min_Limit_DI	

Max_Limit_DI

Mode BufferMode

Input parameters


name	Features	type of data	Rangesetting(default value)	The timing of the entry into force
Axis (axis number)	Setting instruction to be controlled axes	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Exexcute from FALSE to TRUE
Execute (Execute bit)	When the Execute FALSE to TRUE, the instruction execution starts.	BOOL	TRUE or FALSE	-
Position (position)	The controlled axis origin offset, unit: unit	LREAL	Negative, positive, 0	Exexcute from FALSE to TRUE
First_Velocity (First speed)	First speed shaft charged OPR, Unit: r / min	LREAL	Positive (non-default)	Determined by the Mode

Second_Veloc ity (2nd speed)	2nd speed shaft charged OPR, Unit: r / min	LREAL	Positive (non-default)	Determined by the Mode
Home_DI (Origin switch)	DI designated as a home switch	INT	0 to 63	Exexcute from FALSE to TRUE
Min_Limit_ DI (Reverse limit)	Specify a limit switch as an inverted DI	INT	0 to 63	Exexcute from FALSE to TRUE
Max_Limit_ DI (Forward limit)	DI designated as a forward limit switch	INT	0 to 63	Exexcute from FALSE to TRUE
Mode (mode)	Set homing mode	INT	17 to 30, 35	Exexcute from FALSE to TRUE
BufferMode (Transfer mode)	Retention	-	-	-

> Output parameters

name	Features	type of data	Output range
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborted (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

> FIG timing variation output parameter

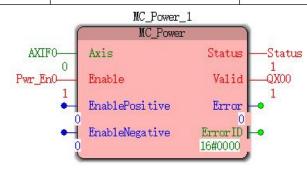
 Case 1:When the Execute FALSE to TRUE, after a period Buys Active and simultaneously become TRUE;

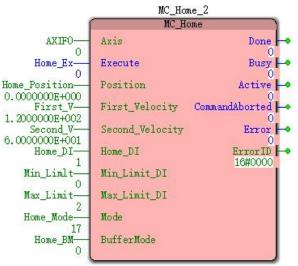
When the positioning is completed, Done becomes TRUE, and the Busy Active becomes FALSE, it is the Execute TRUE to FALSE after a period, Done becomes FALSE.

- Case 2: When the Execute is TRUE, the instruction is interrupted after the other instructions, CommandAborted becomes TRUE, and the Busy Active becomes FALSE; Execute when a TRUE to FALSE, after a period CommandAborted becomes FALSE.
- Case 3: In the course of instruction execution, after the Execute TRUE to FALSE, when the positioning is completed, the Done becomes TRUE, and the Busy Active becomes FALSE, and after a period, the Done becomes FALSE.

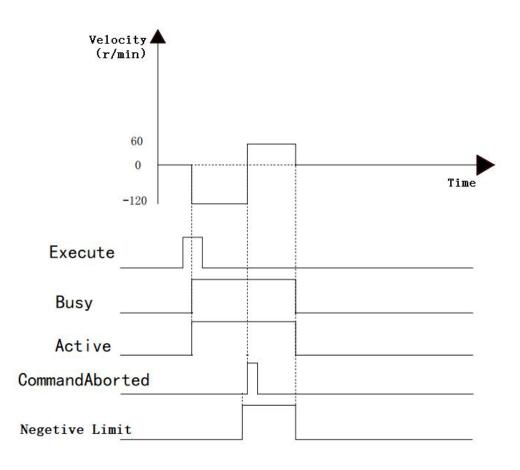
Function Description

- This instruction according to the selected homing mode, and the home switch to forward or reverse limit switchMotion ControllerofDigitalThe entry point to achieve homing function.
- It provided a two-stage real axis speed mode and OPR OPR axis parameters in the software section. Describe homing mode, see Appendix A.
- This instruction only when the shaft is in a state StandStill may perform, when executed in other states, this command being given.
- Position parameter defines the return to the origin position offset relative to the servo zero position.

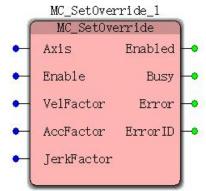

Program Example


Homing select the appropriate mode and the photoelectric switch mechanism positions when Home_Ex from FALSE becomes TRUE, the motion controller controls the operation of the servo motor, the mechanical drive mechanism back to the origin position A.

variable name	type of data	The initial value
MC_Home_2	MC_Home	
Home_Ex	BOOL	FALSE
Home_Position	LREAL	0.0


1. Variables and procedures

First_V	LREAL	120.0
Second_V	LREAL	60.0
Home_DI	INT	1
Min_Limit	INT	0
Max_Limit	INT	2
Home_Mode	INT	17
Home BM	INT	0

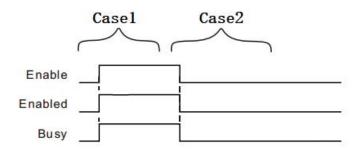

 $2\,$ Timing and motion profiles of FIG.

• Mode = 17, when the Home_Ex becomes FALSE TRUE, the motion controller controls the operation of the servo motor, means starts reverse rotation, after reaching the reverse limit switch is turned forward, and then leaving the stop position of the reverse limit switch, so as to drive institutions back to the mechanical origin position A.

11.4.9 MC_SetOverride (overshoot speed command)

FB / FC	Explanation	Applicable model
ED	This instruction is used to change the current as a	VEC-VA-M
FB	percentage of the controlled target speed shaft	P-005-MA

> Input parameters


name	Features	type of data	Rangesetting(default value)	The timing of the entry into force
Axis (axis number)	Setting instruction to be controlled axes	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Enable is TRUE
Enable	When Enable is TRUE, this AD	BOOL	TRUE or FALSE	-
VelFactor	Speed overshoot value (unit:%)	LREAL	0 to 500 (0)	Enable is TRUE
AccFactor	Retention	LREAL	Retention	-
JerkFactor	Retention	LREAL	Retention	-

> Output parameters

name Features	type of data	Output range
---------------	-----------------	--------------

Enabled (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

> FIG timing output parameter

Case 1: When Enable the FALSE to TRUE, Busy, Enabled To TRUE

Case 2: When Enable a TRUE to FALSE, Enabled simultaneously become FALSE and Busy

Function Description

This instruction is used as a percentage of the target speed change shaft

• The instructions may change the target speed as follows:

, <u></u> , <u>_</u>	8 1
MC_MoveAbsolute(Absolute	MC_MoveAdditive(Additional displacement
displacement instructions)	instruction)
MC_MoveRelative(Relative	MC_SpecialMoveAbsolute(Special absolute
displacement instruction)	displacement instructions)
MC_MoveVelocity(Speed command)	

The new target speed as follows:

The target speed after the change in the target speed instruction execution = current *VelFactor

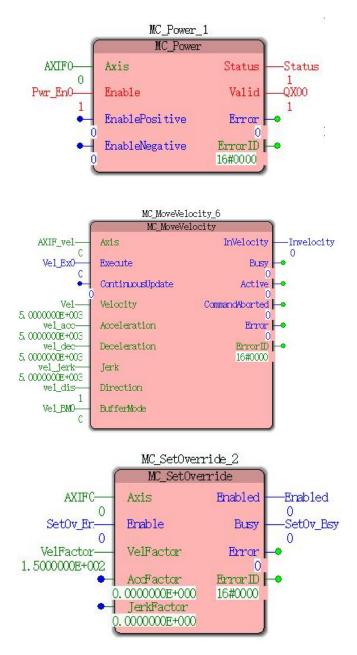
- VelFactor unit is%. "100", "100%." VelFactor valid range from 0 to 500, the instruction execution MC SetOverride beyond the effective range, the instruction being given
- For MC_MoveVelocity command, the target relative speed change, the axis acceleration (or deceleration) to the target speed after the change according to Acceleration (or with Deceleration) the currently executing instruction.
- ForMC_MoveAbsolute,MC_MoveAdditive,MC_MoveRelative,MC_SpecialMoveAbsoluteC ommand, the target speed after the change of the relative shaft is accelerated (or decelerated)

according to Acceleration (or with Deceleration) the currently executing instruction *VelFactor2To the target speed after the change.

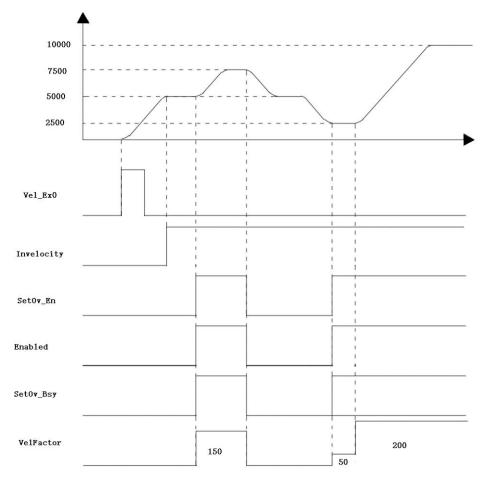
- When VelFactor set to "0", the target speed becomes "0", the performance of the operation shaft is decelerated at a rate of "0" operation.
- He wants to keep state action, but want to temporarily stop the axis movement, the VelFactor set to "0." At this time, the shaft does not change state.
- When motion or motion instruction execution transfer instruction may be changed VelFactor to set a new target speed

Enable is TRUE, modify VelFactor, VelFactor take effect immediately without restarting MC SetOverride instruction.

- Enable is TRUE, modify VelFactor, VelFactor beyond the effective range, MC_SetOverride given instruction, it returns the target speed 100%. When Enable becomes FALSE, in order to accelerate VelFactor = 100 or reduced to a target.
- When MC_MoveVelocity instruction execution using MC_SetOverride instruction, when the instruction becomes TRUE MC_MoveVelocity InVelocity is, even when changing the target speed, the TRUE state InVelocity is maintained.
- You can use a same axis of the module.


Program Example

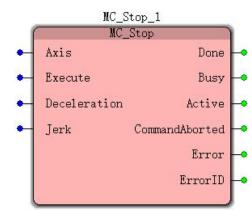
In the example below when MC_SetOverride instruction execution:


Impact on the results $\ensuremath{\mathsf{MC}}\xspace_{\ensuremath{\mathsf{MC}}\xspace}\xspace$ instruction paradigm about $\ensuremath{\mathsf{MC}}\xspace_{\ensuremath{\mathsf{Set}}\xspace}\xspace$ instruction execution.

variable name	type of data	The initial value
MC_MoveVeleocity_6	MC_MoveVelocity	
AXIF0	USINT	0
Vel_EX0	BOOL	FALSE
Vel	LREAL	5000.0
Vel_acc	LREAL	5000.0
Vel_dec	LREAL	5000.0
Vel_Jerk	LREAL	5000.0
Vel_dis	INT	1
Vel_BM0	INT	0
Invelocity	BOOL	-
MC_SetOverride_2	MC_SetOverride	
SetOv_En	BOOL	FALSE
VelFactor	LREAL	150.0
Enabled	BOOL	
SetOv_Bsy	BOOL	

1 variables, and the program name

2 Motion curve and timing diagram


• When Vel_Ex0Becomes TRUEAfter time, a period Vel_BsyAnd Vel_Act becomes TRUEAfter axis starts forward rotation, the output reaches the set speed Invelocity TRUEAnd then SetOv_EnSet TRUEWhile Enbaled, SetOv_BsyBecomes TRUE, MC_SetOverride effective date of the controlled axis according VelFactorThe value of re-generate the target speed.

• When SetOv_EnBecomes FALSEWhen, VelFactor = 100 corresponds to the deceleration target speed.

• MC_SetOverride modified during execution of instructions VelFactorValues, VelFactorValue takes effect immediately, the target speed command MC_MoveVelocity will change accordingly.

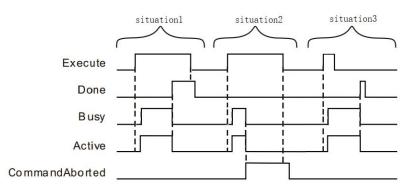
FB / FC	Explanation	Applicable model
FB	This instruction is used to control	VEC-VA-MP-005-MA
	deceleration of the axes of the set deceleration	
	until it stops. Stopping state machine enters the	
	shaft	

11.4.10 MC_Stop (stop command)

Input parameters

name	Features	type of data	Range setting (default value)	The timing of the entry into force
Axis (axis number)	Setting instruction to be controlled axes	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Execute TRUE when the FALSE to
Execute	When the Execute FALSE to TRUE, the instruction is executed	BOOL	TRUE or FALSE	-
Deceleration	decrease speed (Unit: unit / S2):	LREAL	Positive (non-default)	
Jerk	Deceleratio n change rate (Unit: unit / S3)	LREAL	Positive (non-default)	

Description:


1, The instruction to execute upon the Execute FALSE to TRUE. The instruction is being executed, ExecuteWhen the TRUE to FALSE, this instruction performs no effect.

2, when the instruction is being executed, the Execute again by the FALSE to TRUE, the instructions may be re-executed, the parameters can be revalidated The pin comprises Deceleration, Jerk.

name	Features	type of data	Output range
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborte d (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

> Output parameters

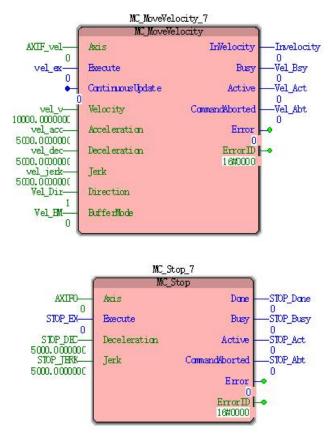
> FIG timing variation output parameter

Case 1:When the Execute FALSE to TRUE, after a period at the same time becomes TRUE and the Active Buys; when the position is reached, Done becomes TRUE, and the Busy Active becomes FALSE, it is the Execute TRUE to FALSE after a period, Done becomes FALSE.

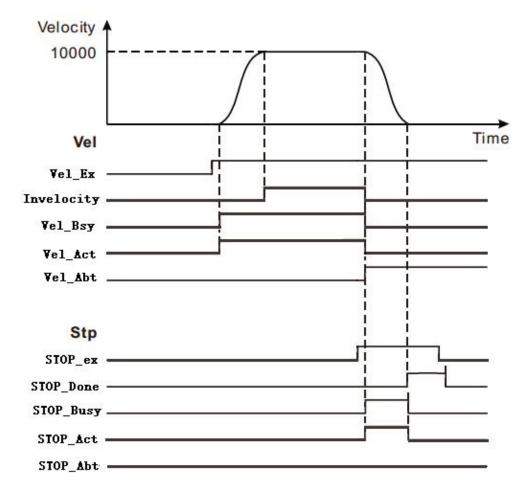
- Case 2: When the Execute is TRUE, the instruction is interrupted after the other instructions, CommandAborted becomes TRUE, and the Busy Active becomes FALSE; Execute when a TRUE to FALSE, after a period CommandAborted becomes FALSE.
- Case 3: After during instruction execution, Execute a TRUE to FALSE, when positioning is completed, Done becomes TRUE, and the Busy Active becomes FALSE, and after a period, Done becomes FALSE.

Function Description

• MC_Stop instruction execution is completed, the shaft speed falls to zero as long as Excute is TRUE, it has been Stopping axis status, other motion instructions can not be executed at this time.


• And comparing MC_Halt instructions, instruction MC_Stop lock shaft, the controller can not perform another movement instruction (instruction not included MC_Stop) MC_Stop during execution of instructions. After MC_Stop instruction has completed, the shaft has stopped, the controller can not execute other instruction motion, only when the MC_Stop Excute by TRUE to FALSE in order to execute other instruction motion

Program Example

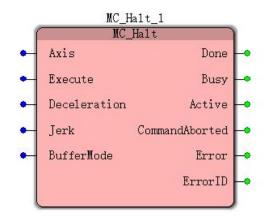

MC_Stop example below when instruction execution:

variable name	type of data	The initial value
MC_MoveVeleocity_7	MC_MoveVelocity	-
AXIF_vel	USINT	0
vel_ex	BOOL	FALSE
Vel_v	LREAL	10000.0
Vel_acc	LREAL	5000.0
Vel_dec	LREAL	5000.0
Vel_jerk	LREAL	5000.0
Vel_Dir	INT	1
Vel_BM	INT	0
Invelocity	BOOL	
Vel_Bsy	BOOL	
Vel_Act	BOOL	
Vel_Abt	BOOL	
MC_Stop_7	MC_Stop	
AXIF0	USINT	0
STOP_EX	BOOL	FALSE
STOP_DEC	LREAL	5000.0
STOP_JERK	LREAL	5000.0
STOP_Done	BOOL	
STOP_Busy	BOOL	
STOP_Act	BOOL	
STOP_Abt	BOOL	

1, Variables, and the program name

2, Motion curve and timing diagram

• When Vel_Ex becomes TRUE, after a period Vel_Bsy, Vel_Act becomes TRUE, the servo motor begins to move forward. When the servo motor reaches the target speed, Invelocity becomes TRUE.


• When STOP_ex becomes TRUE, after a period STOP_Busy, STOP_Act becomes TRUE, while Invelocity becomes FALSE, Vel_Abt becomes TRUE, the servo motor starts to decelerate.

• When the shaft speed is reduced to zero, STOP_Done becomes TRUE, while STOP_Busy, STOP_Act becomes FALSE.

• When STOP_ex becomes FALSE, after a period STOP_Done becomes FALSE.

11.4.11 MC_Halt (pause command)

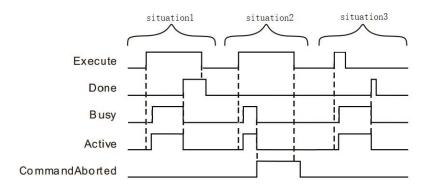
FB / FC	Explanation	Applicable model
FB	This instruction is used to control deceleration of the	VEC-VA-MP-005
	axes of the set deceleration until it stops.	-MA

> Input parameters

name	Features	type of data	Range setting (default value)	The timing of the entry into force
Axis (axis number)	Setting instruction to be controlled axes	USINT	Analog/Pulse:0-4 (real axis)5to5to11(imaginary axis)CANopenmode:0-15 (realaxis /imaginaryaxis)(0)	Execute TRUE when the FALSE to
Execute (Execute bit)	When the Execute FALSE to TRUE, the instruction is executed	BOOL	TRUE or FALSE	-
Deceleration (decrease speed)	decrease speed (Unit: unit / S2):	LREAL	Positive (non-default)	Execute TRUE when the FALSE to
Jerk (Rate of change of deceleration)	Deceleration change rate (Unit: unit / S3)	LREAL	Positive (non-default)	Execute TRUE when the FALSE to

BufferMode (Transfer mode)	Setting the transfer mode between the two instructions 0:immediatelyint errupted 1: Wait	INT	0: immediately interrupted 1: Wait (0)	Execute TRUE when the FALSE to
-------------------------------	--	-----	---	--------------------------------------

Description:


1,The instruction to execute upon the Execute FALSE to TRUE. The instruction is being executed, ExecuteWhen the TRUE to FALSE, this instruction performs no effect.

2, when the instruction is being executed, the Execute again by the FALSE to TRUE, the instructions may be re-executed, the parameters can be revalidated The pin comprises Deceleration, Jerk, BufferMode.

name	Features	type of data	Output range
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborte d (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

> Output parameters

> FIG output timing parameters

Case 1:When the Execute FALSE to TRUE, after a period Buys Active and simultaneously become TRUE;

When the position is reached, Done becomes TRUE, and the Busy Active becomes FALSE, it is the Execute TRUE to FALSE after a period, Done becomes FALSE.

- Case 2: When the Execute is TRUE, the instruction is interrupted after the other instructions, CommandAborted becomes TRUE, and the Busy Active becomes FALSE; Execute when a TRUE to FALSE, after a period CommandAborted becomes FALSE.
- Case 3: After during instruction execution, Execute a TRUE to FALSE, when positioning is completed, Done becomes TRUE, and the Busy Active becomes FALSE, and after a period, Done becomes FALSE.

Function Description

• MC_Halt instruction starts execution, the state machine enters DiscreteMotion, when the shaft speed is reduced to 0, Done becomes TRUE, while the state machine changes to Standstill.

• MC_Stop instructions and comparison, the MC_Halt instruction does not lock shaft, the movement of the controller may perform other instructions. MC_Halt during instruction execution, the shaft during deceleration, may perform other instruction motion MC_Halt interrupt instruction; MC_Halt finish executing the instruction, after the shaft has been stopped, the controller may perform other motion command to restart the shaft.

11.4.11 MC_SpecialMoveAbsolute (special absolute

FB / FC Explanation **Applicable model** FB VEC-VA-MP-005 This instruction is used to set speed control axes, acceleration and deceleration to move relative to the target -MA zero position MC_SpecialMoveAbsolute_1 MC_SpecialMoveAbsolute Axis Done Busy Execute

Active

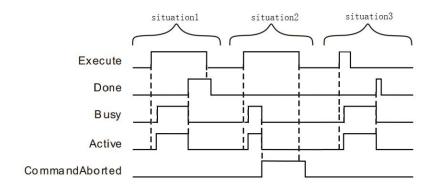
displacement instructions)

•	Velocity	CommandAborted
•	AccTime	Error
•	DecTime	ErrorID
•	Min_Velocity	
•	BufferMode	

Position

۶ **Input parameters**

name	Features	type of data	Range setting (default value)	The timing of the entry into force
Axis (axis number)	Setting instruction to be controlled axes	USINT	Pulse mode:0-4 (real axis)5to11(imaginary axis)(0)	Exexcute from FALSE to TRUE
Execute (Execute bit)	When the Exexcute FALSE to TRUE, the instruction execution starts.	BOOL	TRUE or FALSE (FALSE)	-
Position (position)	Set the target position (Unit: unit)	LREAL	Positive, negative, zero (0)	Exexcute from FALSE to TRUE
Velocity (speed)	Set target speed (Unit: unit / S)	LREAL	Positive (non-default)	Exexcute from FALSE to TRUE
AccTime (acceleration time)	Target set acceleration time (Unit: S)	LREAL	Positive (non-default)	Exexcute from FALSE to TRUE


DecTime (deceleration time)	The set target deceleration time (Unit: S)	LREAL	Positive (non-default)	Exexcute from FALSE to TRUE
Min_Velocity	The set minimum target rotational speed (Unit: unit / S)	LREAL	Positive (non-default)	Exexcute from FALSE to TRUE
BufferMode (Transfer mode)	Setting the transfer mode between the two instructions 0:immediately interrupted 1: Wait	INT	0: immediately interrupted 1: Wait (0)	Exexcute from FALSE to TRUE

Description:

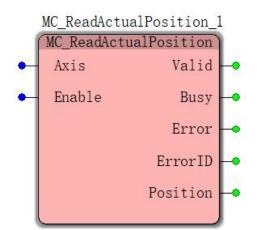
1, the instruction is executed, the controlled axis Min_Velocity actuated to stop Min_Velocity.

2, the next instruction to be executed = 1 ControlModel, the amount of which is a semi-closed loop control pulse, before the instruction has not been executed, according to the input parameters on the module, a programming corresponding to a given position and a given speed table runtime, the current feedback pulse, determined at a given speed. Thus the present non-reciprocal adjustment module configured to control relatively large inertia would be more stable.

name	Features	type of data	Output range
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborte d (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution ofError (error)the faulting instruction when the output instruction is TRUE		TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

> FIG timing variation output parameter

➤ **Case 1:**When the Execute FALSE to TRUE, after a period at the same time becomes TRUE and the Active Buys; When the positioning is completed, Done becomes TRUE, and the Busy Active becomes FALSE, it is the Execute TRUE to FALSE after a period, Done becomes FALSE.

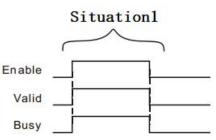

➤ **Case 2**: When the Execute is TRUE, the instruction is interrupted after the other instructions, CommandAborted becomes TRUE, and the Busy Active becomes FALSE; Execute when a TRUE to FALSE, after a period CommandAborted becomes FALSE.

Case 3: After during instruction execution, Execute a TRUE to FALSE, when the instructions are executed, Done becomes TRUE, and the Busy Active becomes FALSE, and after a period, Done becomes FALSE.

11.4.12 MC_ReadActualPosition (real position instruction

read)

FB / FC	Explanation	Applicable model
FB	This instruction is used to read the actual position of	VEC-VA-MP-005
	the axis	-MA


> Input parameters

name	Features	type of data	Range setting (default value)	The timing of the entry into force
Axis (axis number)	Setting instruction to be controlled axes	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Enable made to TRUE
Enable (Execute bit)	When Enable is TRUE, the instruction execution	BOOL	TRUE or FALSE	-

name	Features	type of data	Output range
Valid (output valid)	The parameter output outputs a valid instruction is TRUE	BOOL	TRUE
Busy (execution)	This parameter indicates to	BOOL	TRUE or

	TRUE output instruction is		FALSE
	executed		
Error (error)	It represents execution of the faulting instruction when the	BOOL	TRUE or FALSE
	output instruction is TRUE		FALSE
ErrorID (error	Error Error code when	WORD	
code)	execution instruction	WORD	-
Position (actual	The actual position of the	LREAL	Real
position)	axis	LKEAL	Keal

FIG output change timing

Case 1:When Enable the FALSE to TRUE, Valid and Busy simultaneously become TRUE ,. When Enable becomes FALSE, Valid, Busy all become FALSE.

Function Description

This instruction is used to read the actual position of the shaft (including the real axis and the imaginary axis encoder shaft)

• The actual position

Units of the actual position of this instruction is read as a unit, and the unit of the servo actuator feedback to the controller the position of a pulse, therefore the actual position obtained by the feedback pulses position servo drive after conversion, use the axis parameter in the conversion of Motor_PPC, Reductor_Num, Reductor_Den, means lead / perimeter (Screw_Lead / Disc Circumference). Conversion relation shown in the following formula:

$$ActualPosition = \frac{institutional \, lead \, / \, perimeter}{(motor_{PPC}) * \frac{Reductor_Num}{Reductor_Den}} * Servo \, position \, feedback \, pulse$$

Position output performed when a linear axis, the command axis = ActualPosition;

If the axis of the rotary shaft, the output of the instruction execution Position = ActualPosition% Modulo (modulo result Position ActualPosition press axis parameters do modulo

operation), the value of Position changes between $0 \sim Modulo$.

The actual location update timing

Because of this actual position from the position feedback servo drive pulses, the refresh timing of the actual position provided by MC_AXIS_REF Sample_Time sampling time of the pulse encoder feedback decisions. In a sampling period, the number of servo position feedback pulses to the controller action occurs only once. Thus, the real axis command read

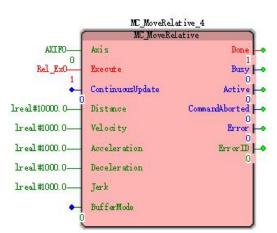
Real-time position is less than the actual position capture, real-time location For obtaining higher, use the position capture function.

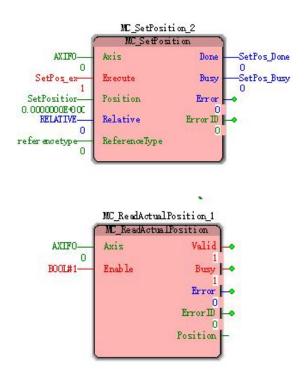
• The actual position of influence MC_SetPosition

After MC_SetPosition instruction executed, the actual position of the read command MC ReadActualPosition shall be added is

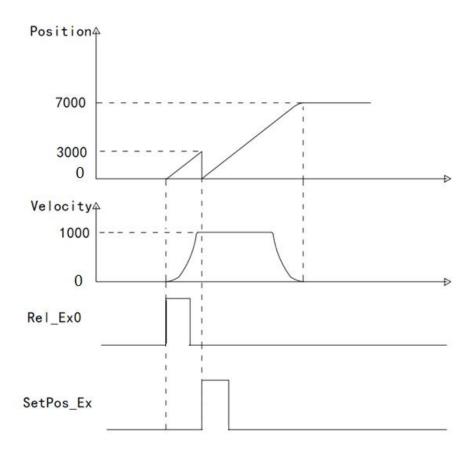
MC_SetPosition position shift amount caused by the instruction, as shown in the following formula in terms of the relationship:

 $ActualPosition = MC \quad SetPosition + \frac{institutional lead-perimeter}{(motor_{PPC})*\frac{Reductor_{Num}}{Reductor_{Den}}} *$


Servo position feedback pulse


Program Example

Effects of the present embodiment described MC_SetPosition MC_ReadActualPosition instruction command, the example procedure is as follows:


variable name	type of data	The initial value
MC_MoveRelative_4	MC_MoveRelative	-
AXIF0	USINT	0
Rel_Ex0	BOOL	-
MC_SetPosition_2	MC_SetPosition	-
SetPos_ex	BOOL	-
SetPosition	LREAL	0.0
RELATIVE	BOOL	FALSE
referencetype	BOOL	FALSE
Read_P0	LREAL	-

2. Motion curve and timing diagram

• MC_ReadActualPosition execution instruction fetch real-time position, the MC_MoveRelative performed, charged at a set speed to the target shaft position 10000

movement.

• ActualPosition is 3000, MC_SetPosition instruction execution, since instructions MC_SetPosition selected as the absolute position, therefore, performed after the completion of ActualPosition = 0, ActualPosition MC_MoveRelativel instruction is complete when the 7,000.

• As can be seen by the speed command MC_SetPosition curve image above does not affect the movement is performed, but it reflects MC_RealActualPosition ActualPosition curve value read ActualPosition affected MC_SetPosition instructions.

FB / FC Explanation Applicable model VEC-VA-MP-005-MA FB This instruction is used to read the actual speed of the shaft MC_ReadActualVelocity_1 MC_ReadActualVelocity Valid Axis Enable Busy Error ErrorID Velocity

11.4.13 MC_ReadActualVelocity (read real-time speed)


Input	parameters
-------	------------

name	Features	type of data	Range setting (default value)	The timing of the entry into force
Axis (axis number)	Setting instruction to be controlled axes	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Enable made to TRUE
Enable (Execute bit)	When Enable is TRUE, the instruction execution	BOOL	TRUE or FALSE	-

name	Features	type of data	Output range
Valid (output valid)	The parameter output outputs a valid instruction is TRUE	BOOL	TRUE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE

	It represents execution of		
Error (error)	the faulting instruction when the	BOOL	TRUE or FALSE
	output instruction is TRUE		
ErrorID	Error Error code when	WORD	
(error code)	execution instruction	WORD	-
Velocity	Axis actual speed	DEAL	Deel
(actual speed)	Unit: unit / S	REAL	Real

> FIG output change timing

Case 1:When Enable the FALSE to TRUE, Valid and Busy simultaneously become TRUE ,. When Enable becomes FALSE, Valid, Busy all become FALSE.

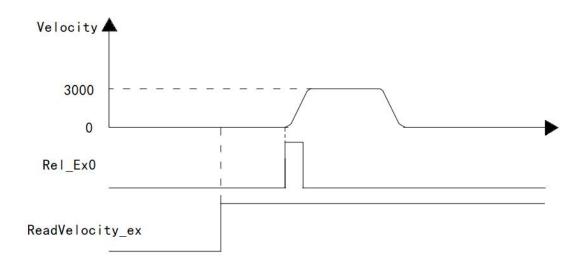
Function Description

Speed of the moving speed of the read command Velocity actuator terminal in units of cells / S, converted to revolutions per minute of the motor:

$$r / min = \frac{Velocity}{(Screw_Lead ext{ \mathcal{B} Disc_Circumference}) * \frac{Reductor_Num}{Reductor_Den}} * 60$$



Program Example


Performing MC_MoveRelative, MC_ReadActualVelocity controlled axis realtime speed is ad.

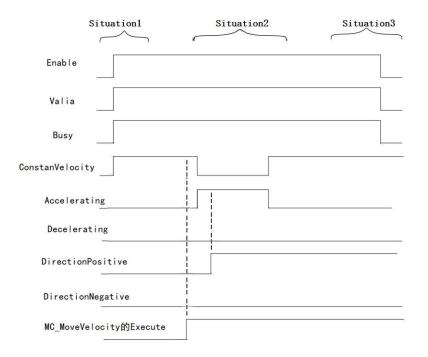
1. Variables and procedures

variable name	type of data	The initial value
MC_MoveRelative_4	MC_MoveRelative	-
AXIF0	USINT	0
Rel_Ex0	BOOL	FALSE
REL_DIS	LREAL	15000.0
REL_V	LREAL	3000.0
REL_ACC	LREAL	5000.0
REL_DEC	LREAL	5000.0
REL_JERK	LREAL	5000.0
MC_ReadActualVelocity_1	MC_ReadActualVelocity	-
ReadVelocity_ex	BOOL	FALSE
Read_V0	LREAL	-

2. Timing and motion profiles of FIG.

11.4.14 MC_ReadMotionState (read axis motion command)

FB /	Explanation		Applicable	
FC				model
FB	This instruction i	s used to read the state of mot	ion	VEC-VA-MP-005
	со	ntrolled axes		-MA
	₽ ₽-	MC_ReadMotionState_2 MC_ReadMotionState Axis Valid Enable Busy Source Error ErrorID ConstantVelocity Accelerating DirectionPositive DirectionNegative	-• -• -•	


> Input parameters

name	Features	type of data	Range setting (default value)	The timing of the entry into force
Axis (axis number)	Setting instruction to be controlled axes	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Enable is TRUE
Enable (Execute bit)	When Enable is TRUE, the instruction execution	BOOL	TRUE or FALSE	-
Source (Reserved)	Retention	INT	-	-

nameFeaturestype of dataOutput range	
---	--

Valid (output valid)	The parameter output outputs a valid instruction is TRUE	BOOL	TRUE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-
ConstanVelocity (Uniform state)	The output parameter is TRUE axis represents doing uniform motion	BOOL	TRUE or FALSE
Accelerating (Acceleration state)	This parameter indicates the output shaft speed increases the absolute value is TRUE	BOOL	TRUE or FALSE
Declerating (Decelerating state)	This parameter indicates the output shaft speed to reduce the absolute value is TRUE	BOOL	TRUE or FALSE
DirectionPositive (Forward axis)	This parameter indicates the output shaft is increased when the current position is TRUE	BOOL	TRUE or FALSE
DirectionNegative (Axis inversion)	The output parameter is TRUE indicates the current position of the axis is reduced	BOOL	TRUE or FALSE

> FIG timing variation output parameter

Case 1: In the controlled axis is Standstill state, when the Enable from FALSE to TRUE, and Busy vaild simultaneously become TRUE, ConstantVelocity, Accelerating, Decelerating, DirectionPositive, according to the output pin axis DirectionNegative state to TRUE or FALSE.

Case 2: the instruction execution speed, the controlled-axis accelerometer, Accelerating output is TRUE, ConstantVelocity output becomes FALSE, when the current position of the controlled axis is increased DirectionPositive output to TRUE.

Case 3: When the Enable TRUE to FALSE, Vaild Busy and simultaneously become FALSE, ConstantVelocity, Accelerating, Decelerating, DirectionPositive, DirectionNegative output pin state remains unchanged when the Enable TRUE.

Function Description

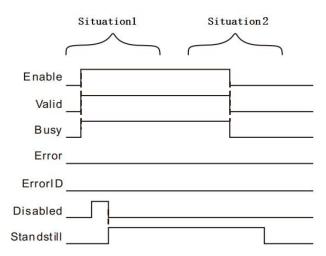
This instruction is used to read the current state of motion of the servo axis. Servo axis motion comprises: uniform motion, acceleration or deceleration motion, and the forward or reverse.

FB /		Explanation		Applicable
FC				model
FB	This instruction is u	used to read the st	ate informatic	on VEC-VA-MP-005
	of the o	controlled axes		-MA
	14	MC_ReadStatus_2 MC_ReadStatus		
		Axis	Valid -	6
	•	Enable	Busy -	
	2		Error 🛶	8
			ErrorID -•	ē.
			ErrorStop -•	Q
			Disabled 🗕	9
			Stopping -•	
			Homing -•	
			Standstill -•	
		Dis	aretellotian 🗝	1
		Canti	nuousMotian 🛶	2)
			SyndMotion -•	91
				
4	Input parameters			

11.4.15 MC_ReadStatus (Read axis state)

	input par ameters			
name	Features	type of data	Range setting (default value)	The timing of the entry into force
Axis (axis number)	Setting instruction to be controlled axes	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Enable is TRUE
Enable (Execute bit)	When Enable is TRUE, the instruction execution	BOOL	TRUE or FALSE	-

|--|


Valid (output valid)	The parameter output outputs a valid instruction is TRUE	BOOL	TRUE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-
ErrorStop (Abnormal stop)		BOOL	TRUE or FALSE
Disabled (Not performed)		BOOL	TRUE or FALSE
Stopping (Normal stop)		BOOL	TRUE or FALSE
Homing (OPR)		BOOL	TRUE or FALSE
Standstill (Ready to execute)	Refer to the state machine described <u>11.3.6 state machine</u>	BOOL	TRUE or FALSE
DiscreteMotion (Discrete motion)		BOOL	TRUE or FALSE
ContinousMotion (Continuous motion)		BOOL	TRUE or FALSE
SyncMotion (Synchronous motion)		BOOL	TRUE or FALSE

Description:

1. The instruction is executed when the Enable is TRUE, status read axes.

2, when the instruction by the Enable TRUE to FALSE, Vaild, Busy becomes FALSE, the output ErrorStop, Disabled, Stopping, Homing, Standstill, DiscreteMotion, ContinuousMotion Enable and SyncMotion remains unchanged state of TRUE.

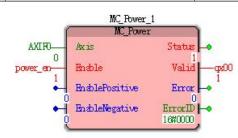
• FIG output timing parameters

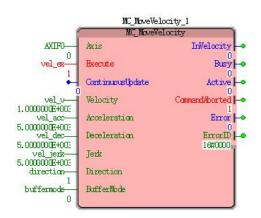
Case 1: When the Enable FALSE to TRUE, Vaild Busy and simultaneously become TRUE, ErrorStop, Disabled, Stopping, Homing, Standstill, DiscreteMotion, ContinuousMotion The shaft and SyncMotion state to TRUE or FALSE.

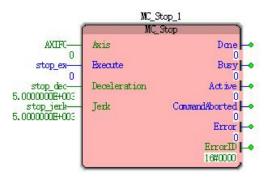
Case 2: When the Enable TRUE to FALSE, Vaild Busy and simultaneously become FALSE, the output Disabled, Stopping, Homing, Standstill, DiscreteMotion, ContinuousMotion and SyncMotion Enable pin remains unchanged state of TRUE.

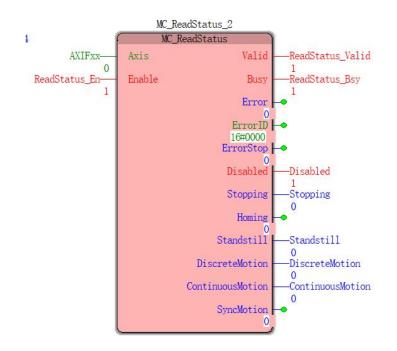
Function Description

This instruction is used to read the state information of the controlled axis of the shaft, a detailed description about an axis refer to the status of the state machine described

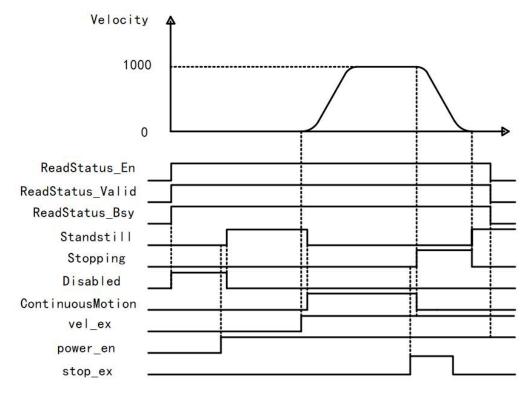

Program Example


MC_ReadStatus instruction execution example as follows:


15 variables and procedures				
variable name	type of data	The initial value		
MC_Power_1	MC_Power	-		
AXIF0	USINT	0		
Power_en	BOOL	FALSE		
MC_MoveVelocity_1	MC_MoveVelocity	-		
Vel_ex	BOOL	FALSE		
Vel_v	LREAL	1000.0		
Vel_acc	LREAL	5000.0		
Vel_dec	LREAL	5000.0		
Vel_jerk	LREAL	5000.0		
direction	INT	1		
buffermode	INT	0		
MC_Stop_1	MC_Stop	-		
stop_ex	BOOL	FALSE		
stop_dec	LREAL	5000.0		
stop_jerk	LREAL	5000.0		


1. Variables and procedures

MC_ReadStatus_2	MC_ReadStatus	-
AXIFxx	USINT	0
ReadStatus_En	BOOL	FALSE
ReadStatus_Valid	BOOL	FALSE
ReadStatus_Bsy	BOOL	FALSE
Disabled	BOOL	FALSE
Stopping	BOOL	FALSE
Standstill	BOOL	FALSE
DiscreteMotion	BOOL	FALSE
ContinuousMotion	BOOL	FALSE



2, the motion profile and timing

• Enable MC_Power from FALSE to TRUE instruction, the latter instruction cycle Disabled MC_ReadStatus by TRUE to FALSE, while Standstill MC_ReadStatus instruction from FALSE to TRUE (i.e., the state machine changes from the Disabled Standstill)

• Execute the speed command from FALSE to TRUE, after a period MC_ReadStatus Standstill instruction from TRUE to FALSE, ContinuousMotion while MC_ReadStatus instruction from FALSE to TRUE (i.e., the state machine changes from the Standstill ContinuousMotion)

• Execute the instruction MC_Stop FALSE to TRUE, ContinuousMotion after a period MC_ReadStatus instruction from TRUE to FALSE, Stopping while MC_ReadStatus instruction from FALSE to TRUE (i.e., the state machine changes from the ContinuousMotion Stopping)

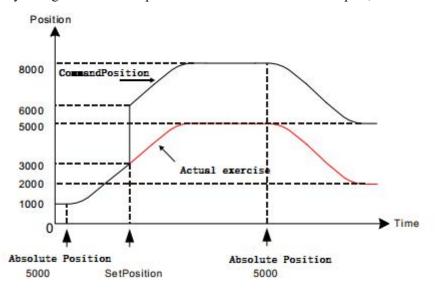
11.4.16 MC_SetPosition (position setting instruction)

FB / FC		Applicable model		
FB	This instru	ction is used to set	the position value o	of VEC-VA-MP-005-
	the axis to a pred	letermined value, a	and does not cause th	ne MA
	shaft	to produce the actu	ual motion.	
	1	MC_SetPos MC_SetPo		
	•	Axis	e (
		Execute	Busy -	•
		Position	Error	•
	•	Relative	ErrorID -	•

ReferenceType

Input parameters \triangleright

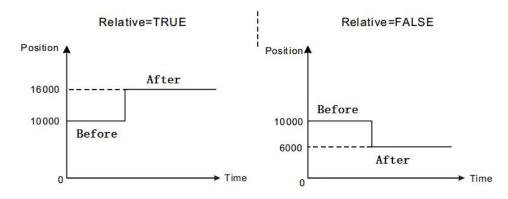
name	Features	type of data	Range setting (default value)	The timing of the entry into force
Axis (axis number)	Setting instruction to be controlled axes	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Execute from FALSE to TRUE
Execute (Execute bit)	When the Execute FALSE to TRUE, the instruction execution starts	BOOL	TRUE or FALSE (FALSE)	
Position (position)	Set the target position (Unit: unit)	LREAL	Positive, negative, zero (0)	Execute from FALSE to TRUE
Relative (Relative mode)	Set a target position and the current position of relative mode or	BOOL TRUE: Relative Mode FALSE: Absolute	TRUE or FALSE (FALSE)	Execute from FALSE to TRUE


	absolute mode	Mode		
		INT		
ReferenceType	Reference	0: command		Execute
(Type reference	position set type	position	0 (0)	from FALSE to
position)	position set type	1: The actual		TRUE
		position		

> Output parameters

name	Features	type of data	Output range
Done	The output parameter to TRUE	BOOL	TRUE or FALSE
Done	indicates instructions are executed	BOOL	TRUE OF FALSE
Ducy (avantian)	This parameter indicates to	BOOL	TRUE or FALSE
Busy (execution)	TRUE output instruction is executed	BOOL	I KUE OI FALSE
	It represents execution of the		
Error (error)	faulting instruction when the output	BOOL	TRUE or FALSE
	instruction is TRUE		
EmerID (emer esde)	Error Error code when	WORD	
ErrorID (error code)	execution instruction	WORD	-

• Function Description

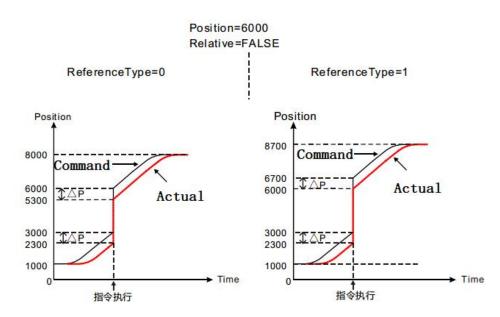

This instruction is used to set the position value of the axis to a predetermined value, and does not cause the shaft to produce the actual motion. The implementation of this directive will not have a real impact on the movement in progress, but this instruction is executed instruction to complete before you begin the actual implementation of the results of an impact, as shown below:

• Position and Relative

Input parameters Position, Relative axial position of the instruction execution start time (herein used to mean "reference position") together determine the position of the value to be set.

Relative to the input parameters define the relationship between the input parameter Position reference position. When Relative = TRUE, Position relative relationship with the reference position, the reference position setting position = + Position; when Relative = FALSE, Position absolute relationship with the reference position, the position setting value = Position. As shown below, the reference position instruction execution 10000, Position input parameter value 6000, when the input parameters Relative to a different value, corresponding to the implementation of the results were lower left and bottom right.

• ReferenceType


ReferenceType input parameters for the command for selecting the reference position or actual position. When ReferenceType = 0, the reference position for the axis command position; when ReferenceType = 1, the reference position for the actual position of the shaft.

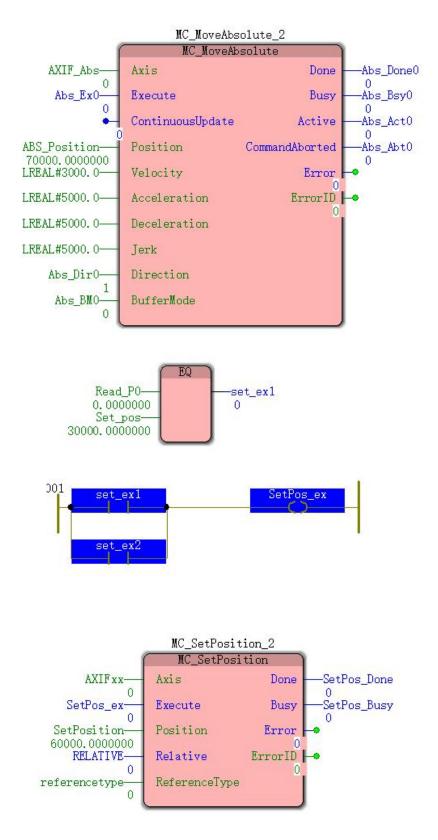
When selected as the reference position of the position command, the instruction command is calculated based on the current position and the Position of the target position command, the position and the modification value for the target value of the position command; while the actual position of the shaft will also change , variation is: change in the amount equal to the change in position command and the actual position, that is, the difference between the command position and the actual position in the instruction execution time and the start time of the instruction execution is completed unchanged.

Mode selecting process when the reference position is the actual position and the reference position when the mode selection process for the same reason commanded position.

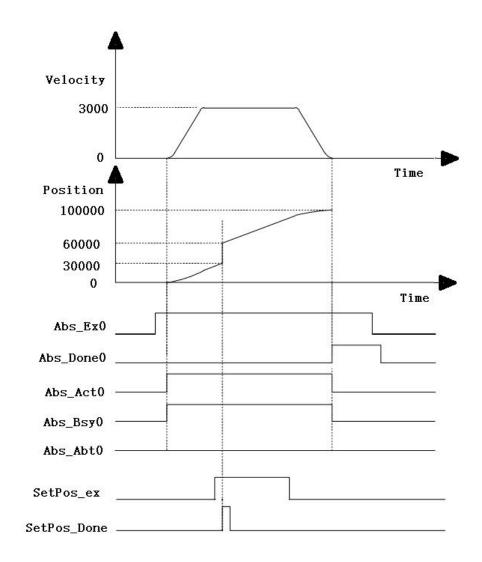
If the instruction execution MC_SetPosition, the axes are stationary, the reference position are performed to select the actual effect of the command position and the actual position is no difference, because the shaft is stationary, there is no difference (difference between the command position and the actual position 0);

If the instruction execution MC_SetPosition, the axis is in motion, there is a difference between the command position and the actual position (the difference is not 0, the response time caused by the command), the reference position are executed when the actual selection command position and the actual position MC_SetPosition instruction execution (absolute mode, position = 6000) when the curve as shown, for positioning the shaft is moving (target position 5000), then the command position and the actual position of the shaft: differences in effect, as the example shown in FIG. 3000 and 2300, respectively (difference $\triangle P = 700$). If the reference position selection command position, after executing the instructions, commands the shaft position becomes 6000, the actual position becomes 5300 (5300 = 6000- $\triangle P$), shown at bottom left; if the actual position of the reference position selection, the command after the execution, the actual position of

the shaft 6000 is changed, the command position becomes 6700 (6700 = $6000 + \triangle P$), as shown below right:


Program Example

2、


Effects This example describes the effect of execution of the instruction MC_SetPosition MC_MoveAbsolute executed being executed: no effect on the actual implementation of the results MC_SetPosition MC_MoveAbsolute instruction being executed.

variable name	type of data	The initial value
MC_MoveAbsolute_2	MC_MoveAbsolute	-
AXIF_abs	USINT	0
Abs_Ex0	BOOL	FALSE
Abs_Position	LREAL	70,000
Abs_BM0	INT	
Abs_Done0	BOOL	
Abs_Bsy0	BOOL	
Abs_Act0	BOOL	
Abs_Abt0	BOOL	
MC_SetPosition_2	MC_SetPosition	
AXIFxx	USINT	0
SetPos_ex	BOOL	FALSE
SetPosition	LREAL	60,000
RELATIVE	BOOL	0
referencetype	INT	
SetPos_Done	BOOL	
SetPos_Busy	BOOL	

Variables and procedures

2, the motion profile and timing

• When Abs_Ex0 a FALSE to TRUE, MC_MoveAbsolute instruction starts execution, MC_SetPosition instruction execution when the current position is greater than 30,000.

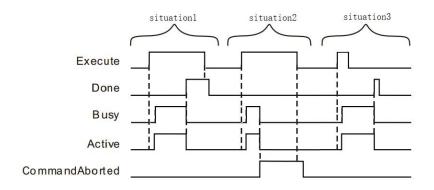
• MC_SetPosition command position when the instruction to start execution of 30,000, a command execution completion position which is 60,000, when the position of the instruction execution is completed MC_MoveAbsolute 100,000.

• Of speed variations can be seen in the figure above: MC_SetPosition instruction does not affect the practical implementation of the results of executing MC_MoveAbsolute

11.4.17 MC_Phasing (shift spindle command)

FB / FC	Expla	Applicable model		
FB	This instruction is used	to position the additional	VEC-VA-MP-005-	
	main section shift does not af	fect the movement of the	MA	
	spind	le		
	MC_ MC			
	• Master	Done 🗕		
	• Slave	Busy 🗖		
	• Execute	Active 🛁		
	🔶 PhaseShift	CommandAborted -•		
	 Velocity 	 Velocity Error 		
	• Acceleratio	 Acceleration ErrorID 		
	• Deceleratio	n		
	• Jerk			
	• BufferMode			

> Input parameters


name	Features	type of data	Range setting (default value)	The timing of the entry into force
Master (spindle)	Setting instruction to be controlled spindle	USINT	Analog/Pulse: $0-4$ (real axis)5to11(imaginary axis) $CANopen$ mode: $0-15$ (realaxis / imaginaryaxis)(0)	Exexcute from FALSE to TRUE
Slave (Slave axis)	Setting instruction from the shaft to be controlled	USINT	0-4 the real axis 5 to 11 virtual axis (0)	Exexcute from FALSE to TRUE
Execute (Execute bit)	When the Execute FALSE to TRUE, the instruction	BOOL	TRUE or FALSE	Exexcute from FALSE to TRUE

	is executed			
PhaseShift (Offset)	Setting spindle position offset (Unit: unit)	LREAL	Positive, negative, zero (0)	Exexcute from FALSE to TRUE
Velocity (speed)	Spindle speed offset is set	LREAL	A positive number (Non-default)	Exexcute from FALSE to TRUE
Acceleration (Acceleration)	Spindle offset is set acceleration	LREAL	A positive number (Non-default)	Exexcute from FALSE to TRUE
Decleration (decrease speed)	Spindle offset is set deceleration	LREAL	A positive number (Non-default)	Exexcute from FALSE to TRUE
Jerk (Plus / deceleration rate of change)	Spindle offset is set the rate of change of acceleration / deceleration	LREAL	A positive number (Non-default)	Exexcute from FALSE to TRUE
BufferMode (Transfer mode)	Retention	-	-	-

> Output parameters

name	Features	type of data	Output range
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborted (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

> FIG timing variation output parameter

Case 1:When the Execute FALSE to TRUE, after a period Buys Active and simultaneously become TRUE;

After completion of the offset spindle, Done becomes TRUE, and the Busy Active becomes FALSE, it is the Execute TRUE to FALSE after a period, Done becomes FALSE.

Case 2: When the Execute is TRUE, the instruction is interrupted after the other instructions, CommandAborted becomes TRUE, and the Busy Active becomes FALSE; Execute when a TRUE to FALSE, after a period CommandAborted becomes FALSE.

Case 3: After during instruction execution, Execute a TRUE to FALSE, when the instructions are executed, Done becomes TRUE, and the Busy Active becomes FALSE, and after a period, Done becomes FALSE.

Function Description

• This command is used to overlay a virtual displacement of the spindle motion by some set distance, velocity, acceleration / deceleration of the rate of change of deceleration, it does not affect the actual movement of the spindle, the spindle acquired from the shaft to the physical location will based on the offset, resulting in a position offset Slave axis of the slave follower.

MC_GearIn (electronic gear)	NS_MC_RotaryCutIn (peeling instruction)
MC_CamIn (electronic cam)	NS_MC_SpecialCAmin (special cam)
NS_MC_SpecialCombineAxes	
(Special two-spindle coupling)	

MC_PhasingPolyaxial instructions may act as follows:

11.4.18 MC_TouchProbe (position capture command)

FB / FC	Explanation			Applicable model
FB	This position of the cap	oture command for th	e shaft	VEC-VA-MP-005-
				MA
		_TouchProbe_2 C_TouchProbe		
	 Axis 	Done	- •	
	 Active_Axis 	Busy	- •	
	• Execute	Active	- •	
	• ExecuteInpu	CommandAborted	- •	
	• ExecuteEdge	Error	•	
	🔶 TriggerInpu	: ErrorID	-•	
	• InputEdge	Touched	-•	
	• Windowonly	RecordedPositionUp	-•	
	• FirstPositi	on RecordedPositionDown	-•	
	• LastPositio	1		
	• Mode			
	• Mask			
			1	

> Input parameters

name	Features	type of data	Predetermin ed area (Default value)	The timing of the entry into force
Axis (Axis No.)	In mode 0, 1 and high-speed counter for pairing, 3,4 mode as the count number of the shaft	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Execute from FALSE to TRUE
Active_Axis (Hardware axis number)	Set position to capture the source hardware axis number	USINT	0-4 the real axis	Execute from FALSE to TRUE
Execute (Execute bit)	When the Execute FASLE becomes TRUE, the instruction is executed.	BOOL	TRUE or FALSE	
ExecuteInput (Trigger enable bit)	Inputs I0 ~ I7, I10 ~ I17 of a capture trigger bit position, the pin corresponding to the input	WORD	0~15	Execute from FALSE to TRUE

	value of 0 to 7 inputs I0 ~ I7,8 ~ 15 corresponding to the input point I10 ~ I17. The pin mode (Mode) is equal to 2 active.			
ExecuteEdge (Signal edge)	FALSE, the selection signal is a falling edge input DI, TRUE, the selection of a rising edge of the input signal DI;	BOOL	TRUE or FALSE	Execute from FALSE to TRUE
TriggerInput (Trigger bit)	Inputs I0 ~ I7, I10 ~ I17 of a capture trigger bit position, the pin corresponding to the input value of 0 to 7 inputs I0 ~ I7,8 ~ 15 corresponding to the input point I10 ~ I17.	WORD	0 ~ 15 (0)	Execute from FALSE to TRUE
InputEdge (Signal edge)	Setting signal trigger edge 0: Falling 1: Rising	BOOL	TRUE or FALSE	Execute from FALSE to TRUE
Windowly	Retention	-	-	-
FirstPosition	Retention	-	-	-
LastPosition	Retention	-	-	-
Mode (mode)	Position capture mode selection, see below Mode Description	INT	0-6 (0)	Execute from FALSE to TRUE
Mask	Retention	-	_	-

name	Features	type of data	Output range
	The output parameter to		
Done	TRUE indicates instructions are	BOOL	TRUE or FALSE
Done	executed, the parameter is only		TRUE OF FALSE
	valid in 0,3 Mode =.		
	The output parameter is		
Busy (execution)	TRUE representing instructions	BOOL	TRUE or FALSE
	is being executed.		
	When this parameter is		
The Active (control)	TRUE indicates output	BOOL	TRUE or FALSE
	command under the control shaft		

CommandAborted (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-
Touched (Continuous mode loop count)	When the selected mode is latched position 2,4, every time the latch position, Touched plus 1, Toucheded0 ~ 3 cyclically.	INT	0-3
RecordedPositionUp (Rising latch position)	When InputEdge = TRUE, store the latched position thereto. Unit: pulse	LREAL	Positive, negative, 0
RecordedPositionDown (Falling edge latches position)	When InputEdge = FALSE, store the position of the latch thereto. Unit: pulse	LREAL	Positive, negative, 0

Mode Description

> Mode Description		
mode	Position capture trigger	
Mode = 0	The single mode is a high-speed counter is latched position capture	
	instruction executed in this mode:	
	①TriggerInput only effective in the first trigger.	
	②NS_CC_Counter needs a high count number of instructions used in	
	conjunction. Active_Axis ineffective, requires input parameter Axis AXIF_no	
	same input parameters NS_CC_Counter instruction.	
Mode = 1	The continuous mode is a high-speed counter is latched position capture	
	instruction executed in this mode:	
	①Each trigger TriggerInput updated once a latched position.	
	[©] NS_CC_Counter needs a high count number of instructions used in	
	conjunction. Active_Axis ineffective, requires input parameter Axis AXIF_no	
	same input parameters NS_CC_Counter instruction.	
Mode = 2	The special mode is a high-speed counter latch continuously, perform location	
	capturing order in this mode:	
	^① Before each position latch trigger TriggerInput update, you need to trigger a	
	ExecuteInput.	
	² NS_CC_Counter needs a high count number of instructions used in conjunction.	
	In this mode, Active_Axis ineffective, requires input parameter Axis AXIF_no	
	same input parameters NS_CC_Counter instruction.	
Mode = 3	This mode is a single encoder latch. In this mode, performs location capturing	

	order:
	① TriggerInput only effective in the first trigger.
	②Axis number register latch axis position, Active_Axis axis actual pulse
	source encoder.
Mode = 4	This mode is a continuous encoder latch. In this mode, performs location
	capturing order:
	①Each trigger TriggerInput updated once a latched position.
	² Axis number register latch axis position, Active_Axis axis actual pulse source
	encoder.
Mode = 5	This mode is dedicated CANopen single latch mode, the DI signal with the
	servo external latch is used, the position of the capture instruction executed in this
	mode:
	① TriggerInput only effective in the first trigger.
	⁽²⁾ Axis number register latch axis position, Active_Axis ineffective.
Mode = 6	The continuous mode is CANopen dedicated latch mode, the DI signal with
	the servo external latch is used, the position of the capture instruction executed in
	this mode:
	①Each trigger TriggerInput updated once a latched position.
	⁽²⁾ Axis number register latch axis position, Active_Axis ineffective.

Function Description

- Position capture command to capture a position (RecordedPositionUp / RecordedPositionDown) Is a servo encoder from shaft / spindleofFeedback pulses;
- This high-speed position capture command belonging to the instruction, the count of the underlying hardware, the scan cycle is not affected.
- In mode 0, the instruction requires complex NS_CC_Counter (High-Speed Counter) used, the position is captured servo encoder feedback value A / B pulse alone does not make sense.
- When you have finished using continuous latch mode, the need to replace re-trigger input conditions, (position capture interrupt instruction), exit the current continuous latch mode, can then trigger must first MC_AbortTrigger;
- In CANopen control mode, mode 5 and 6, the function of the special need to download the template probe CANopen Division I, in conjunction with the VEC CANopen servo drives used. Servo function comes probe, an external latch signal DI position information (encoder unit) when the changes, and then transmitted to the master station outputs.

① VEC supports two probes simultaneously enabled, the position information can be recorded simultaneously rising and falling edges of the signal corresponding to each probe, while the latch 4 to the position information (rising and falling by switching InputEdge);
② 1 as a probe Probe Select signal DI8 probe 2 as a probe selected DI9 signal, and DI8 DI9 herein refers to the DI servo;

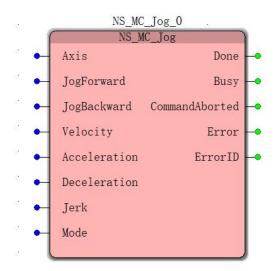
③ When selecting DI8 probe signal, the servo axis number Axis = node number 1; when DI9 signal probes, axis servo node number number Axis = +31;

11.4.19 MC_AbortTrigger (position capture interrupt

instruction)

FB / FC	Explanation	Applicable model
FB	This instruction is used to interrupt the position of	VEC-VA-MP-005-
	the capture shaft	MA

> Input parameters


name	Features	type of data	Predetermin ed area (Default value)	The timing of the entry into force
Axis (Axis No.)	The value is set to the same value MC_TouchProbe Axis command. Directed shaft for counting numbers need to be interrupted	USINT	Analog/Pulse:0-4 (real axis)5to5to11(imaginary axis)CANopenmode:0-15 (realaxis/imaginaryaxis)(0)	Execute from FALSE to TRUE
Execute (Execute bit)	When the Execute from FALSE to TRUE, the instruction execution starts.	BOOL	TRUE or FALSE	-
Triggerinp ut	Retention	-	-	-

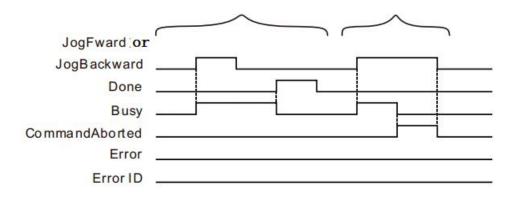
name	Features	type of data	Output range
Done	The output parameter to	BOOL	TRUE or FALSE

	TRUE indicates instructions are		
	executed		
	This parameter indicates to		
Busy (execution)	TRUE output instruction is	BOOL	TRUE or FALSE
	executed		
CommandAborted	The output parameter is		
	TRUE representing instructions	BOOL	TRUE or FALSE
(interruption)	is interrupted		
	It represents execution of		
Error (error)	the faulting instruction when the	BOOL	TRUE or FALSE
	output instruction is TRUE		
Enne ID (anne n a da)	Error Error code when	WORD	
ErrorID (error code)	execution instruction	WORD	-

11.4.20 NS_MC_Jog (jog command)

FB / FC	Explanation	Applicable model
ED	This instruction can be used to move the function,	VEC-VA-MP-005-MA
FB	also can be superimposed on the speed.	VEC-VA-IVIP-003-IVIA

name	Features	type of data	Range setting (default value)	The timing of the entry into force
The Axis (axis number)	Setting instruction to be controlled axes	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	JogForward or JogBackward to TRUE
JogFoward (JOG)	When JogFoward changed from FALSE TRUE, the instruction is executed	BOOL	TRUE or FALSE	-
JogBackward (Jog Reverse)	When JogBackward changed from FALSE TRUE, the instruction is executed	BOOL	TRUE or FALSE	-


> Input parameters

Velocity (speed)	Set target speed (Unit: unit / S)	LREAL	A positive number (Non-default)	JogForward or JogBackward to TRUE
Acceleration (Acceleration)	Goal setting acceleration (Unit: unit / S2)	LREAL	A positive number (Non-default)	JogForward or JogBackward to TRUE
Deceleration (decrease speed)	Set target deceleration (Unit: unit / S2)	LREAL	A positive number (Non-default)	JogForward or JogBackward to TRUE
Jerk (The rate of change of acceleration)	The rate of change of the target acceleration or deceleration setting (Unit: unit / S3)	LREAL	A positive number (Non-default)	JogForward or JogBackward to TRUE
Mode (Mode)	Jog mode selection: 0: Jog jog speed the process of change, need to re-trigger Excute take effect; 1: Jog jog speed the process of change takes effect immediately	INT	0 or 1	JogForward or JogBackward to TRUE

> Output parameters

name	Features	type of data	Output range
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
CommandAborte d (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

> FIG timing variation output parameter

Case 1:When JogForward or JogBackward a FALSE to TRUE, Busy becomes TRUE. When the movable stop point, the shaft speed is reduced to 0, Busy becomes FALSE, and at the same time maintaining a Done period becomes TRUE.

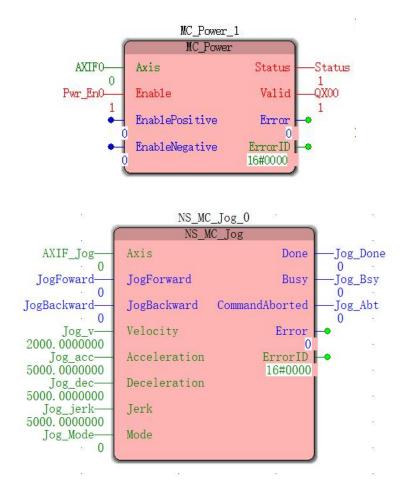
Case 2:When a JogBackward JogForward or FALSE to TRUE, the instruction is interrupted by other instruction,

CommandAborted becomes TRUE, the Busy becomes FALSE; or when JogForward JogBackward changed by TRUE FALSE, CommandAborted becomes FALSE.

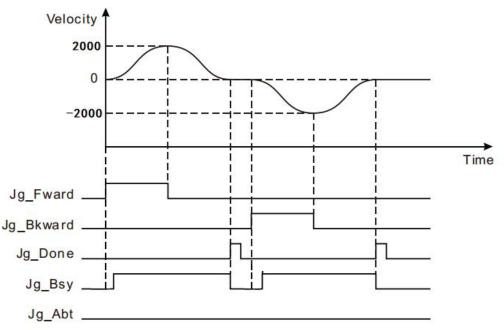
Function Description

• This instruction is used to specify a given axis overlay jog speed, JogForward is TRUE controlled axis overlay a forward jog speed, JogBackward is TRUE controlled axis overlay a reverse jogging speed. When superposed jog speed reduced speed 0, Done after a period TRUE to FALSE

• This instruction does not affect the current state machine.



Program Example

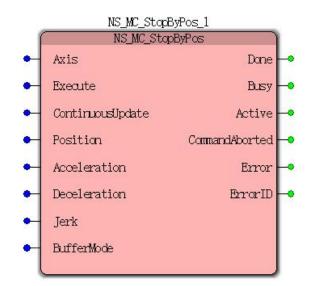

When the instruction following examples NS_MC_Jog performed separately:

i, variabies, and prov		
variable name	type of data	The initial value
NS_MC_Jog_2	NS_MC_Jog	-
JogForward	BOOL	FALSE
JogBackward	BOOL	FALSE
Jog_v	LREAL	2000.0
Jog_acc	LREAL	5000.0
Jog_dec	LREAL	5000.0
Jog_jerk	LREAL	5000.0
Jog_Done	BOOL	FALSE
Jog_Bsy	BOOL	FALSE
Jog_Abt	BOOL	FALSE

1, variables, and procedures

2. The motion profile and timing diagrams

When the Jog_Forward NS_MC_Jog FALSE to TRUE to start execution instruction, after a period of Jog_Bsy FALSE to TRUE, the axis movement in positive direction; FALSE to TRUE to the Jog Forward, the shaft begins to decelerate, when the deceleration is 0,


Jog_Bsy becomes It is FALSE, while the rear Jog_Done a period from FALSE to TRUE becomes FALSE.

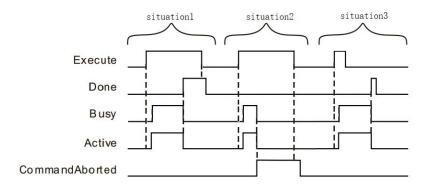
• When Jog_Backward a FALSE to TRUE, NS_MC_Jog instruction starts execution, after a period of Jog_Bsy FALSE to TRUE, start the reverse operation of the shaft; and a TRUE to FALSE Jog_Backward, the shaft begins to slow when the velocity is reduced to zero, Jog_Bsy after the bit is set to FALSE, FALSE to TRUE while the Jog_Done one cycle becomes FALSE.

11.4.21 NS_MC_StopByPos (position designated mode stop

command)

FB / FC	Explanation	Applicable model
FB	It stopped at the specified position specified axis	VEC-VA-MP-005-
ГД	mode command for this operation	MA

, ,	Input par ameters			
name	Features	type of data	Range setting (default value)	The timing of the entry into force
Axis (axis number)	Setting instruction to be controlled axes	USINT	Analog/Pulse:0-4 (real axis)5to5to11(imaginary axis)CANopenmode:0-15 (realaxis /imaginaryaxis)(0)	Exexcute from FALSE to TRUE
Execute (execution position)	When the Execute FALSE to TRUE, the instruction execution starts	BOOL	TRUE or FALSE	-
Continous Update	Retention		Retention	-


> Input parameters

Position	Die set location	LREAL	0≤Position	Exexcute from
(position)			<mold< td=""><td>FALSE to TRUE</td></mold<>	FALSE to TRUE
Acceleration (Acceleration)	Goal setting acceleration	LREAL	A positive number (Non-default	Exexcute from FALSE to TRUE
,	(Unit: unit / S2))	
Deceleration (decrease speed)	Set target deceleration (Unit: unit / S2)	LREAL	A positive number (Non-default)	Exexcute from FALSE to TRUE
Jerk (The rate of change of acceleration)	The rate of change of the target acceleration or deceleration setting (Unit: unit / S3)	LREAL	A positive number (Non-default)	Exexcute from FALSE to TRUE
BufferMode (Transfer mode)	Setting the transfer mode between the two instructions 0: immediately interrupted 1: Wait	INT	A positive number (Non-default)	Exexcute from FALSE to TRUE

> Output parameters

name	Features	type of data	Output range
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborted (interruption) The output paramete TRUE representing instruct is interrupted		BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

FIG timing variation output parameter

• **Case 1:**When the Execute FALSE to TRUE, after a period Buys Active and simultaneously become TRUE;

When the position is reached, Done becomes TRUE, and the Busy Active becomes FALSE, it is the Execute TRUE to FALSE after a period, Done becomes FALSE.

- **Case 2**: When the Execute is TRUE, the instruction is interrupted after the other instructions, CommandAborted becomes TRUE, and the Busy Active becomes FALSE; Execute when a TRUE to FALSE, after a period CommandAborted becomes FALSE.
- **Case 3**: After during instruction execution, Execute a TRUE to FALSE, when positioning is completed, Done becomes TRUE, and the Busy Active becomes FALSE, and after a period, Done becomes FALSE.

Function Description

• This instruction is used to specify the axes of the addition, the set deceleration, jerk is stopped at a specified position on the mold. Position mode is specified in a position, which value is less than the value of the parameter setting Modulo MC_AXIS_REF axis of the Execute instruction from FALSE to TRUE, the controlled axis according to the set acceleration / deceleration, the acceleration / rate of change of the position of the control shaft deceleration stop mode position position setting, the shaft finally stops is a whole multiple of + position of Moulo

As shown in, the following figure is a Modulo 1000, 400 Position, Position can be stopped at a specified position control mode by the command terminal of the actuator, the actuator may stop in the terminal unit 400, unit 1400, unit 2400, unit 3400

	Position	F	Position	F	Position		Position	
L			1				Ĩ	
0	400	1000	1400	2000	2400	3000	3400	

On the motion controller calculates the position of the real-time mode explained as follows:

Die = real-time position location of the terminal actuator% Module

11.4.22 NS_MC_ReadParameter (read command parameter)

FB / FC	Explanation	Applicable model
FB	This instruction is used to read the relevant	VEC-VA-MP-005-MA
	parameters of the controlled axis	
	NS_MC_ReadParameter_1 NS_MC_ReadParameter Axis Valid Enable Busy ParameterNumber Error ErrorID Value1 Value2 Value3	

> Input parameters

name	Features	type of data	Range setting (default value)	The timing of the entry into force
Axis (axis number)	Setting instruction to be controlled axes	USIN T	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Enable is TRUE
Enable (Execute bit)	When Enable is TRUE, the instruction execution	BOOL	TRUE or FALSE	
ParameterNumber (Monitoring function number)	Monitor the corresponding function of the control shaft No. value	INT	A positive number	Enable is TRUE

> Output parameters

name	Features	type of	Output range

		data	
Valid	The parameter outputs a	BOOL	TRUE or
vanu	TRUE output instruction is valid	BOOL	FALSE
	The output parameter is		
Duov	TRUE Table	BOOL	TRUE or
Busy	Illustrates the instruction	BOOL	FALSE
	being executed		
	This parameter indicates		TRUE or
Error	the output command execution	BOOL	FALSE
	error to TRUE		FALSE
ErrorID	Instruction execution error	WORD	
EIIOIID	code error.	WORD	-
Value1	Function number	DINT	-
Value2	corresponding to the monitored	REAL	-
Value3	parameter	LREAL	-

Monitoring function parameter list

Function	Applicable function	Monitoring description	The timing
No.	blocks		of the entry into
			force
	Uniaxial / Multiaxial	Feedback an ender resition (write	Run
3	instruction	Feedback encoder position (unit:	command
	instruction	pulse)	execution
	II		Run
4	Uniaxial / Multiaxial	A given position (unit: pulse)	command
	instruction		execution
	II		Run
5	Uniaxial / Multiaxial instruction	The encoder position feedback setposition	command
			execution
	Luisviel / Multisviel	After a siver resition	Run
6	Uniaxial / Multiaxial	After a given position	command
	instruction	setposition	execution
	Uniaxial / Multiaxial	Given the speed of planning	Run
7	instruction	theory	command
	instruction	(Unit: r / min)	execution
	Uniovial / Multiovial	Pool time speed after the	Run
8	Uniaxial / Multiaxial instruction	Real-time speed after the	command
		position compensation loop PI	execution
	Uniaxial / Multiaxial	Pool time at a given speed (unit:	Run
9		Real-time at a given speed (unit:	command
	instruction	r / min)	execution
10	Uniaxial / Multiaxial	Each incremental position	Run
10	instruction	underlying given period	command

		(Unit: Pulse)	execution
	Uniaxial / Multiaxial		Run
11	instruction	Real-time error (Unit: Pulse)	command
	Instruction		execution
	Uniaxial / Multiaxial		Run
12		Real-time analog output	command
	instruction		execution
	Uniaxial / Multiaxial	Civen the summent position of the	Run
16		Given the current position of the	command
	instruction	mold	execution
		Given the current pulses	Run
17	Uniaxial / Multiaxial	corresponding to the position of the	command
	instruction	mold	execution
	TT ' ' 1 / N C 1.' ' 1		Run
18	Uniaxial / Multiaxial	The current position of the	command
	instruction	feedback mode	execution
	· · · · · · · · · · · · · · · · · · ·	Feedback current pulses	Run
19	Uniaxial / Multiaxial instruction	corresponding to the position of the	command
		mold	execution
	Uniaxial / Multiaxial instruction	Sampling time to the number of pulses collected Sample_Time	Run
20			command
			execution
		Absolute encoder reads the absolute position of the lap	Run
24	Multiaxial instruction		command
	Manual motion		execution
			Run
40	Multiaxial instruction	After filtering the speed of the	command
	Wallaxia histaeton	spindle	execution
			Run
41	Multiaxial instruction	The position of the spindle	command
			execution
			Run
42	Multiaxial instruction	After filtering speed of the	command
		second spindle	execution
			Run
43	Multiaxial instruction	Position of the second spindle	command
15			execution
		Directly read values of the	Run
44	Uniaxial / Multiaxial	encoder, the encoder for checking	command
-7 -7	instruction	whether a wrong or reverse	execution
			Run
45	Uniaxial / Multiaxial	Direct imaginary axis encoder	command
	instruction	reading value	
			execution

		Reading module that	Run
46	Uniaxial instruction	Active_Axis MC_TouchProbe actual	command
		real time axis of the latch pulse	execution
		control error (unit: pulse)	
	Uniaxial / Multiaxial	Latching the shaft when the	Run
47	instruction	instant error trigger DI0	command
	mstruction	(Unit: Pulse)	execution
	Uniaxial / Multiaxial	Latching the shaft when the	Run
48		instant error trigger DI1	command
	instruction	(Unit: Pulse)	execution
		Reading module that	D.
10	TT I I I I I I I I I I	Active Axis MC TouchProbe actual	Run
49	Uniaxial instruction	axle latch timing pulse in real time	command
		speed (unit: r / min)	execution
			Run
63	Multiaxial instruction	Read the spindle position of	command
05		MC_SpecialCamIn in user units	execution
			Run
70	Multiaxial instruction	Read MC_CamIn spindle	command
70		position, the unit is a subscriber unit	execution
	Europeding IO Transs	Number of times the evention type	execution
	Expanding IO Types	Number of times the expansion type	D 1
180		is scanned (if an expansion is read,	Run command
		this parameter will be stacked after	execution
		each scan)	
181	Expanding IO Types	Type of the first expansion	Run command
			execution
182	Expanding IO Types	Type of the second expansion	Run command
_			execution
183	Expanding IO Types	Type of the third expansion	Run command
100			execution
184	Expanding IO Types	Type of the fourth expansion	Run command
104			execution
105	Expanding IO Types	Type of the fifth expansion	Run command
185			execution
100	Expanding IO Types	The sixth type of expansion	Run command
186			execution
	Expanding IO Types	The seventh type of expansion	Run command
187			execution
	Expanding IO Types	Type of the eighth expansion	Run command
188			execution
	Expanding IO Types	Number of scans for the type of	Run command
180	ipunuing io iypos	expansion (if an expansion is read,	execution
100		this parameter will be stacked after	
		uns parameter will be stacked alter	

		each scan)	
181	Expanding IO Types	Type of the first expansion	Run command
_			execution

11.5 Multiaxial instruction

MasterValueSource Description:

When MasterValueSource = 0, the following spindle axis from a position command. When MasterValueSource = 1, follows from the actual position of the spindle axis, the actual position of a number of pulses detected by the hardware to the axis of the opening decision.

11.5.1 MC_GearIn (electronic gear coupling instructions)

FB / FC	Explanation		Applicable model
FB	This relationship established instructions	for V	VEC-VA-MP-005-MA
	electronic gear shaft between two		
	S 17 2	<u>8</u> 3	
	MC_GearIn_2 MC_GearIn		
	Master InGea	r 🛶 .	
	- Slave Bus		
	Execute Activ		
	ContinucusUpdate CommandAborte		
	RatioNumerator Erro		
	MasterValueSource		
	Acceleration	21	
	Deceleration		
	Jerk		
	- BufferMode	21	

> Input parameters

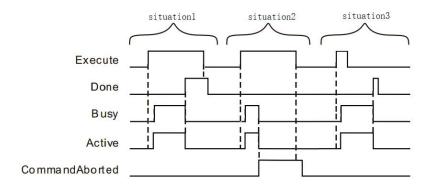
Name	Features	Type of data	Predetermin ed area (Default value)	The timing of the entry into force
Master (Spindle)	Setting instruction to be controlled spindle	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen	Exexcut e from FALSE to TRUE

	Setting instruction		mode:0-15 (realaxis/axis)(0)Analog/Pulse:0-4 (real axis)5to	Exexcut
Slave (Slave axis)	from the shaft to be controlled	USINT	(imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	e from FALSE to TRUE
Execute (Execute bit)	When the Execute FALSE to TRUE, the instruction execution starts	BOOL	TRUE or FALSE	-
ContinousUpdate	Retention	-	-	-
RatioNumerator (Electronic gear molecule)	Molecular electronic gear	LREAL	Positive, negative, (Non-default)	Exexcut e from FALSE to TRUE
RatioDenominat or (Electronic gear denominator)	The denominator of electronic gear	LREAL	A positive number (Non-default)	Exexcut e from FALSE to TRUE
MasterValueSource (Select location source)	Source selection command from the shaft 0: Follow the spindle axis from a position command 1: the actual position of the shaft from the spindle to follow	INT	0 or 1	Exexcut e from FALSE to TRUE
Acceleration (Acceleration)	Goal setting acceleration (Unit: unit / S2)	LREAL	A positive number (Non-default)	Exexcut e from FALSE to TRUE
Deceleration (decrease speed)	Set target deceleration (Unit: unit / S2)	LREAL	A positive number (Non-default)	Exexcut e from FALSE to TRUE

Jerk (The rate of change of acceleration)	The rate of change the target acceleration of deceleration setting (Unit: unit / S3)		Positive, zero (0)	Exexcut e from FALSE to TRUE
BufferMode (Transfer mode)	Setting the transfe mode between the two instructions 0: immediate interrupted 1: Wait	y INT	0: immediately interrupted 1: Wait (0)	Exexcut e from FALSE to TRUE

Description:

1. This instruction starts execution when the Execute FALSE to TRUE. Regardless of whether the instruction is executed, when the Execute FALSE to TRUE again, the instructions may be re-executed, the parameters can be revalidated The pin comprises RatioNumerator, RatioDenominator, MasterValueSource, Acceleration, Deceleration, Jerk, BufferMode, and outputs TRUE CommandAborted.


2. When the instruction is executed, execution of the instruction from the shaft as the other motion instructions can be interrupted MC_MoveVelocity this instruction, the spindle and gear will be released from the relationship between the axes. MC_Halt may be performed or stopped from MC_Stop axis.

3, the instruction is followed by the pulse change spindle.

name	Features	type of data	Output range
InGear (synchronized state)	This parameter is TRUE output shaft from the synchronized state represents	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborted (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

Output parameters

> FIG timing variation output parameter

Case 1:When the Execute FALSE to TRUE, and after a period, Busy, Active becomes TRUE. When the synchronous state has been reached, InGear becomes TRUE, while Busy Active and remains to TRUE.

Case 2: When the Execute is TRUE, the shaft is controlled from other instructions, the instruction is interrupted by another instruction, CommandAborted becomes TRUE, the Busy and Active to FALSE; Execute when a TRUE to FALSE, FALSE becomes a cycle after CommandAborted .

Case 3:During instruction execution, when the Execute TRUE to FALSE, InGear becomes TRUE, the Busy Active and remains to TRUE.

Function Description

- This instruction is used to establish a relationship between two electronic gear shaft. After this instruction is executed, according to the electronic gear shaft molecules, electronic gear denominator, the source of the command, acceleration, deceleration, jerk, the transfer mode of operation and the spindle gear. Spindle axis may be real, imaginary axis or shaft encoder, the shaft may be a real axis or an imaginary axis.
- When this instruction is executed, the shaft need enabled state, the spindle enable or are the lower energy state.
- When two electronic gear shaft is not established relationship (i.e. InGear FALSE when the instruction), execute the instruction, designated according to the command from electronic gear shaft molecules, electronic gear denominator, deceleration, acceleration jerk reaches the target speed (real-time speed spindle).

^①When the spindle real constant acceleration, deceleration Slave axis of the instruction set, the acceleration change rate reaches the target speed

⁽²⁾When the real-time change of the acceleration of the spindle, towards the target speed change shaft speed from the following equation.

Slave Acc(or Dec) = Master Acc(or Dec) $* \frac{Electronic \ gear \ Numerator}{Electronic \ gear \ Denominator}$

After establishing two-axis electronic gear relationship (InGear the instruction is TRUE), from the relationship with the electronic gear shaft speed molecule, the denominator of the electronic gear and spindle speed as follows:

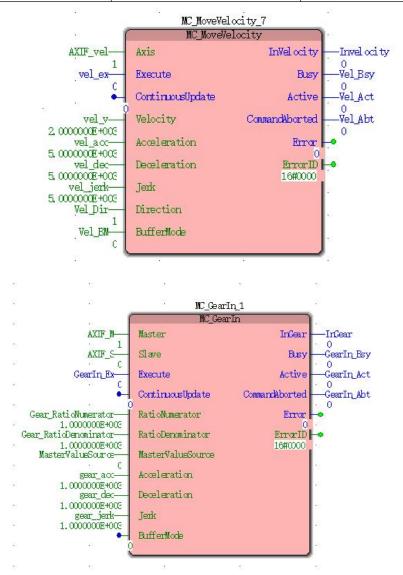
Slave taget speed = Master taget speed $* \frac{Electronic \ gear \ Numerator}{Electronic \ gear \ Denominator}$

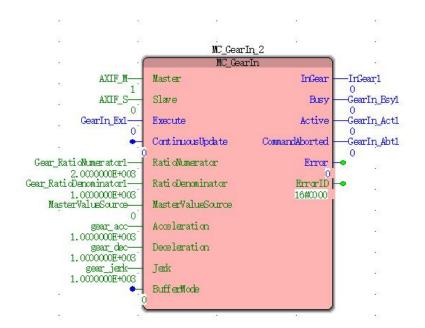
• Electronic gear ratio

$Electronic \ gear \ ratio = \frac{Electronic \ gear \ Numerator}{Electronic \ gear \ Denominator}$

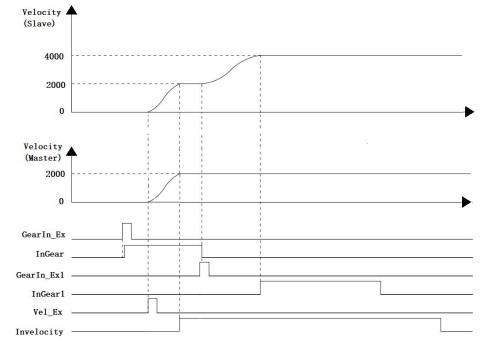
When the ratio is positive, the same direction of movement of electrons from the gear shaft and the spindle.

When the ratio is negative, and from the opposite direction of movement of the spindle shaft.


Program Example


MC_GearIn program of instructions in the example below:

1, variables, and procedures


variable name	type of data	The initial value
MC_MoveVelocity_7	MC_MoveVelocity	
AXIF_vel	USINT	1
Vel_ex	BOOL	FALSE
Vel_v	LREAL	2000.0
Vel_acc	LREAL	5000.0
Vel_dec	LREAL	5000.0
Vel_jerk	LREAL	5000.0
Vel_Dir	INT	1
Vel_BM	INT	0
Invelocity	BOOL	
Vel_Bsy	BOOL	
Vel_Act	BOOL	
Vel_Abt	BOOL	
MC_GearIn_1	MC_GearIn	
AXIF_M	USINT	1
AXIF_S	USINT	0
GearIn_Ex	BOOL	FALSE
Gear_RatioNumerator	LREAL	1000.0
Gear_RatioDenominator	LREAL	1000.0
MasterValueSource	INT	0
Gear_acc	LREAL	1000.0
Gear_dec	LREAL	1000.0
Gear_Jerk	LREAL	1000.0
InGear	BOOL	
GearIn_Bsy	BOOL	
GearIn_Act	BOOL	
GearIn_Abt	BOOL	
MC_GearIn_2	MC_GearIn	

GearIn_Ex1	BOOL	FALSE
Gear_RatioNumerator1	LREAL	2000.0
Gear_RatioDenominator1	LREAL	1000.0
InGear1	BOOL	
GearIn_Bsy1	BOOL	
GearIn_Act1	BOOL	
GearIn_Abt1	BOOL	

2, Motion curve and timing diagram

- MC_GearIn1 electronic gear ratio of the numerator and denominator are both 1, GearIn_Ex a FALSE to TRUE, after a period, Gear_Bsy, Gear_Act, InGear becomes TRUE, the spindle and the establishment of the gear shaft from the relationship.
- Electronic gear spindle and the establishment of the shaft from the relationship, Vel_Ex changes from FALSE to TRUE, and after a period, Vel_Bsy, Vel_Act becomes TRUE, the instruction execution speed of the spindle, the spindle operation shaft follows.
- MC_GearIn2 electronic gear ratio of the numerator and denominator are 2 and 1, GearIn_Ex1 a FALSE to TRUE, and after a period, GearIn_Bsy1, GearIn_Act1 and GearIn_Abt1 becomes TRUE, the electronic gear set Slave axis than in accordance with the instruction MC_GearIn2, source of the command, the acceleration the rate of change of acceleration, reaching the target speed transfer mode. Because GearIn2 numerator and denominator of the

electronic gear ratio of 2 and 1, respectively, so that the target speed of the shaft is twice the speed of the spindle. When InGear1 becomes TRUE, the speed of the shaft is twice the speed of the spindle.

11.5.2 MC_GearOut (electronic gear disengaged instruction)

FB / FC	Explanation	Applicable model
FB	This instruction for releasing the electronic gear	VEC-VA-MP-005-MA
	relationship between the two axes established	

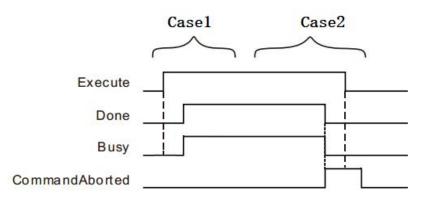
name	Features	type of data	Predetermine d area (Default value)	The timing of the entry into force
Slave (Slave axis)	Setting instruction from the shaft to be controlled	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Exexcute from FALSE to TRUE
Execute (Execute bit)	When the Execute FALSE to TRUE, the instruction execution starts	BOOL	TRUE or FALSE	-

Input parameters

Description:

After establishing the relationship between electronic gear (MC_GearIn) 1. two axes, from electronic gear from the shaft by the relationship If MC_GearOut command, the speed will remain disengaged from the shaft to continue to run.

2. The instructions are executed, the instruction can be executed from the other motion axes.


3. After the two axes from the electronic gear relationship (MC_GearOut), if you want to stop the shaft, can be used MC_Halt, MC_Stop or NS_MC_StopByPos instructions cause the slave axis is stopped.

name	Features	type of data	Output range
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is	BOOL	TRUE or FALSE

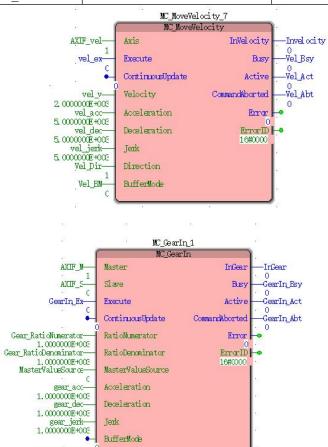
> Output parameters

	executed		
CommandAborted (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

> FIG timing variation output parameter

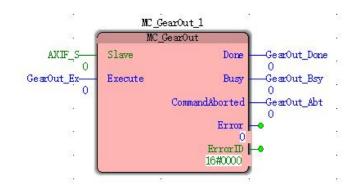
Case 1: When the Execute FALSE to TRUE, after a period, Done becomes TRUE. After Execute a TRUE to FALSE, Busy and Done remains to TRUE.

Case 2: When the Execute is TRUE, if the instruction is interrupted by another instruction, CommandAborted becomes TRUE, the Busy and Done becomes FALSE; Execute when a TRUE to FALSE, after a period, CommandAborted becomes FALSE.

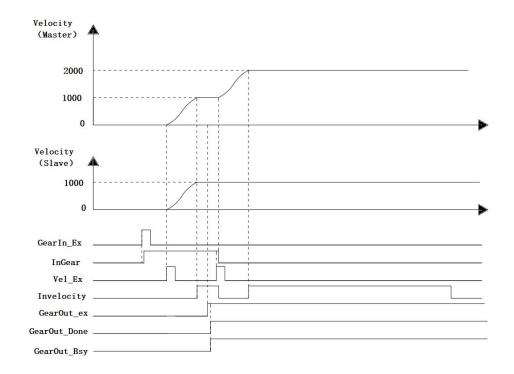

Program Example

MC_GearOut program of instructions in the example below:

es	
type of data	The initial value
MC_MoveVelocity	
USINT	1
BOOL	FALSE
LREAL	1000.0
LREAL	5000.0
LREAL	5000.0
LREAL	5000.0
INT	1
INT	0
BOOL	
BOOL	
	type of data MC_MoveVelocity USINT BOOL LREAL LREAL LREAL LREAL INT INT BOOL


1. variables, and procedures

X7.1 A 4	DOOL	
Vel_Act	BOOL	
Vel_Abt	BOOL	
MC_GearIn_1	MC_GearIn	
AXIF_M	USINT	1
AXIF_S	USINT	0
GearIn_Ex	BOOL	FALSE
Gear_RatioNumerator	LREAL	1000.0
Gear_RatioDenominator	LREAL	1000.0
MasterValueSource	INT	0
Gear_acc	LREAL	1000.0
Gear_dec	LREAL	1000.0
Gear_Jerk	LREAL	1000.0
InGear	BOOL	
GearIn_Bsy	BOOL	
GearIn_Act	BOOL	
GearIn_Abt	BOOL	
MC_GearOut_1	MC_GearOut	
GearOut_Ex	BOOL	FALSE
GearOut_Done	BOOL	
GearOut_Bsy	BOOL	
GearOut_Abt	BOOL	



415

BufferMode

2, Motion curve and timing diagram

- MC_GearIn1 electronic gear ratio of the numerator and denominator are both 1, GearIn_Ex a FALSE to TRUE, after a period, Gear_Bsy, Gear_Act, InGear becomes TRUE, the spindle and the establishment of the gear shaft from the relationship.
- Electronic gear spindle and the establishment of the shaft from the relationship, Vel_Ex changes from FALSE to TRUE, and after a period, Vel_Bsy, Vel_Act becomes TRUE, the instruction execution speed of the spindle, the spindle operation shaft follows.
- When the spindle speed command is executed, GearOut_Ex a FALSE to TRUE, after a period, GearOut_Bsy, GearOut_Done and GearIn_Abt becomes TRUE, the current from the shaft speed continues to operate.
- Velocity spindle speed command to modify the parameters of 2000.0, is performed again, increasing the spindle speed 2000.0, no longer subject to the influence from the spindle axis.

11.5.3 MC_CombineAxes (double spindle gears combined

instruction)

FB / FC	Explanation	Applicable model
FB	The positions of the two spindles addin	g or VEC-VA-MP-005-MA
	subtracting a value from the output shaft pos	ition
	MC_CombineAxes_2	13
	MC_CombineAxes	
	Master1	InSync –
	Master2	Bus y
	• Slave	Active -
	🔶 Execute Comma	ndAb or ted
	• ContinuousUpdate	Error
	CombineMode	ErrorID -
	GearRatioNumeratorM1	
	- GearRatioDenominatorML	
	GearRatioNumeratorM2	
	e GearRatioDenominatorM2	
	MasterValueSourceM1	
	MasterValueSourceM2	
	Acc	
	• Dec	
	- Jerk	
	• BufferMode	

> Input parameters

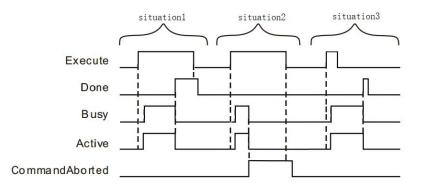
name	Features	type of data	Predetermined area (Default value)	The timing of the entry into force
Master1 (Spindle 1)	When controlling the first shaft Location sources.	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Exexcute from FALSE to TRUE

Master2 (Spindle 2)	When controlling the second shaft Location sources.	USINT	0-4 the real axis 5 to 11 virtual axis (CANopen Mode: 0 ~ 15, can be real or imaginary axis) (0)	Exexcute from FALSE to TRUE
Slave (Slave axis)	Accused of shaft	USINT	0-4 the real axis 5 to 11 virtual axis (CANopen Mode: 0 ~ 15, can be real or imaginary axis) (0)	Exexcute from FALSE to TRUE
Execute (Execute bit)	When the Execute FALSE to TRUE, the instruction execution starts	BOOL	TRUE or FALSE	-
ContinuousUpdate	Retention	-	-	-
CombineMode (Synthesis Mode)	Select the synthesis mode 0: adding the change in the position of each of the two spindles 1: change in the position of each of the two spindles subtraction	INT	0 or 1	Exexcute from FALSE to TRUE
GearRatioNumerator M1 (Spindle 1 Gear Ratio)	Setting spindle 1 Gear Ratio	LREAL	Positive or negative (Non-default)	Exexcute from FALSE to TRUE
GearRatioDenominator M1 (Spindle gear denominator)	Setting spindle gear denominator	LREAL	Positive or negative (Non-default)	Exexcute from FALSE to TRUE
GearRatioNumerator M2 (2 spindle Gear Ratio)	Setting spindle 2 Gear Ratio	LREAL	Positive or negative (Non-default)	Exexcute from FALSE to TRUE

GearRatioDenominator M2 (2 spindle gear denominator)	Setting spindle gear denominator	LREAL	Positive or negative (Non-default)	Exexcute from FALSE to TRUE
MasterValueSourceM1 (Spindle synchronization source 1)	Setting spindle synchronization source 1 0: command position 1: The actual position	INT	0 or 1	Exexcute from FALSE to TRUE
MasterValueSourceM2 (Spindle synchronization source 2)	Setting spindle synchronization source 2 0: command position 1: The actual position	INT	0 or 1	Exexcute from FALSE to TRUE
Acc (Acceleration)	Setting acceleration from the shaft Unit: unit / S2	LREAL	A positive number (Non-default)	Exexcute from FALSE to TRUE
Dec (decrease speed)	Setting the deceleration from the shaft Unit: unit / S2	LREAL	A positive number (Non-default)	Exexcute from FALSE to TRUE
Jerk (The rate of change of acceleration)	Setting a rate of change of acceleration Slave axis Unit: unit / S3	LREAL	A positive number (Non-default)	Exexcute from FALSE to TRUE
BufferMode (Transfer mode)	Setting the transfer mode between the two instructions. 0: interrupted 1: Wait	INT	0 or 1	Exexcute from FALSE to TRUE

Description:

1. This instruction starts execution when the Execute FALSE to TRUE. Whether the command has been executed is completed, the Execute a FALSE to TRUE again, the instructions may be re-executed, the parameters can be revalidated The pin comprises CombineMode, RatioNumeratorM1, RatioDenominatorM1, RatioNumeratorM2, RatioDenominatorM2, MasterValueSourceM1, MasterValueSourceM2, Acceleration, Deceleration, Jerk, BufferMode.


2. When the instruction is executed, execution of the instruction from the shaft as the other motion instructions can be interrupted MC_MoveVelocity this instruction, the spindle will be released from the positional relationship between the axes. MC_Halt may be performed or stopped from MC_Stop axis.

> Output parameters

name	Features	type of	Output range

		data	
InSync (synchronized state)	This parameter is TRUE output shaft from the synchronized state represents	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborted (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

> FIG timing variation output parameter

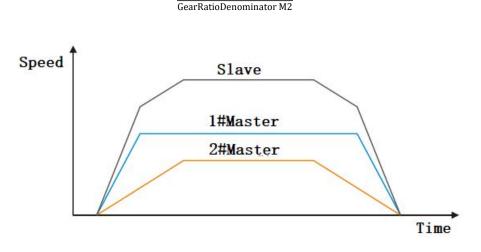
Case 1:When the Execute FALSE to TRUE, after a period, Busy, Active becomes TRUE. When you have two spindles and synchronous slave axis, InSync becomes TRUE, while Busy Active and remains to TRUE.

Case 2: When the Execute is TRUE, the Busy is TRUE, Active is TRUE, and when the two spindle synchronization has been Slave axis, InSync is TRUE, this time interrupted by another instruction of this command, CommandAborted becomes TRUE, while Invelocity, Busy and Active becomes FALSE, TRUE when the Execute becomes FALSE, after a period, CommandAborted becomes FALSE.

Case 3: In the process of implementation, when the Execute TRUE to FALSE, the instruction is still being executed, Busy and Active status will not change. When you have two spindles and synchronous slave axis, InSync becomes TRUE, while Busy Active and remains to TRUE.

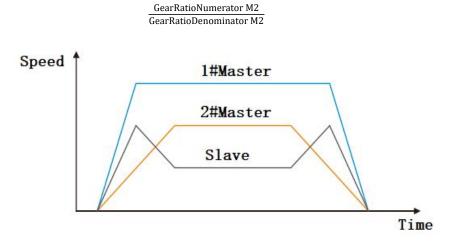
• Function Description

This instruction is used to position two spindles adding or subtracting a value as the output from the shaft position. Here is the location of the unit pulse.


This instruction synthetically divided into two: the addition or subtraction

Position change amount of the change amount and II One main spindle is added or subtracted, the calculated value as an output shaft from a position change amount.

■ When the value is 0 CombineMode


 $SlavePositionChange = 1 \# MasterPositionChange * \frac{GearRatioNumerator M1}{GearRatioDenominator M1} + 2 \# MasterPositionChange * Optimized and the state of the$

GearRatioNumerator M2

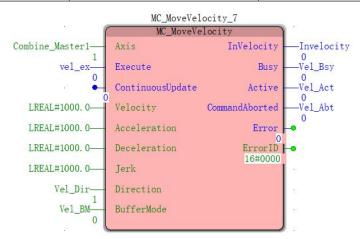
■ When the value is 1 CombineMode

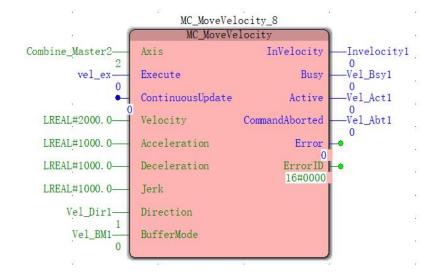
 $SlavePositionChange = 1 \# MasterPositionChange * \frac{GearRatioNumerator M1}{GearRatioDenominator M1} - 2 \# MasterPositionChange * MasterPositionChange + MasterP$

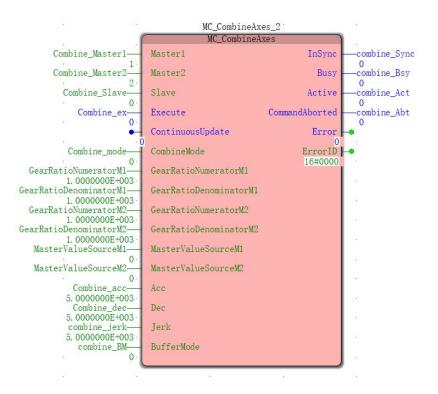
- Mainshaft gear ratio numerator and denominator are adjusted to set the amount of change of the two spindle positions factor using Equation supra.
- Spindle synchronization source may be set to 0: position command; 1: the actual

position, a position to confirm the source of the amount of change. Is set to 0 for the amount of change of the spindle position command addition or subtraction, it is set to 1 when the amount of change in the actual position of the spindle addition or subtraction.

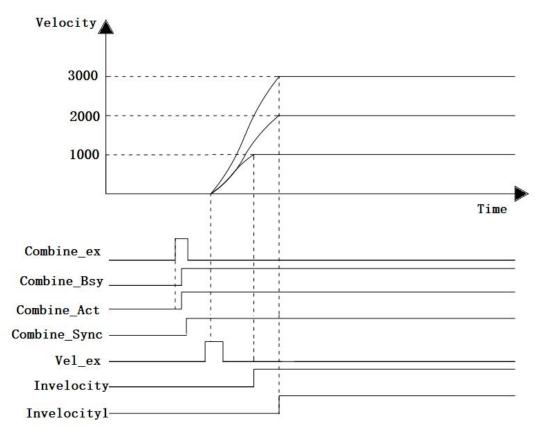
- Acceleration, deceleration and acceleration of the rate of change represented before executing this instruction, the motion of the spindle has, at this time if this instruction is executed, will be accelerated or decelerated Slave axis of the acceleration, deceleration, and jerk, in order to achieve and synchronous spindle position change. After synchronization InSync is TRUE, the instructions are executed.
- To this end of the main shaft from the instruction relationship, use a motion command from the control shaft (e.g. MC_Stop), BufferMode 0 input pin fill to interrupt this instruction is released from the relationship between the master axis.


Program Example


Example MC CombineAxes instructions of the program are as follows:


variable name	type of data	The initial value
MC_MoveVelocity_7	MC_MoveVelocity	
Combine_Master1	USINT	1
Vel_ex	BOOL	FASLE
Vel_Dir	INT	1
Vel_BM	INT	0
Invelocity	BOOL	
Vel_Bsy	BOOL	
Vel_Act	BOOL	
Vel_Abt	BOOL	
MC_MoveVelocity_8	MC_MoveVelocity	
Combine_Master2	USINT	2
Vel_ex1	BOOL	FASLE
Vel_Dir1	INT	1
Vel_BM1	INT	0
Invelocity1	BOOL	
Vel_Bsy1	BOOL	
Vel_Act1	BOOL	
Vel_Abt1	BOOL	
MC_CombineAxes_2	MC_CombineAxes	
Combine_Slave	USINT	1
Combine_ex	BOOL	FALSE
Combine_mode	INT	0
GearRatioNumeratorM1	LREAL	1000.0
GearRatioDenominatorM1	LREAL	1000.0

1, variables, and procedures


LREAL	1000.0
LREAL	1000.0
INT	0
INT	0
LREAL	5000.0
LREAL	5000.0
LREAL	5000.0
INT	0
BOOL	
BOOL	
BOOL	
BOOL	
	LREAL INT INT LREAL LREAL LREAL INT BOOL BOOL BOOL BOOL

2, Motion curve and timing diagram

• When the Combine_ex FALSE to TRUE, MC_CombineAxes instruction starts execution, after some time, the instruction is executed successfully, Combine_InSync becomes TRUE, the three axes in accordance with the instruction required to achieve synchronous movement

state. At this time, the two spindles Excute MC_MoveVelocity instruction becomes TRUE, two spindle starts moving, when the movement of the shaft also starts according to a change amount of a position and two spindles, the position change amount per unit time Slave axis is two spindle position and the amount of change. When the instructions are executed spindle, three axes remain synchronized. To interrupt the synchronization state of the three axes, are available Slave axis, to lift the synchronization state using the corresponding interrupt instruction converter according to the state machine of FIG.

11.5.4 peeling electronic cam Profile

Brief introduction

Electronic cam is fundamentally a function of the cam computer-implemented, the entire system generally consists of two parts, hardware and software. The system hardware includes a microprocessor, a memory device, D / A converter, a controller and actuators. The encoder signals the microprocessor to obtain from the storage device corresponding to the displacement signal calculated from the formula or a displacement value, then the input of the cam displacement value D / A converter, the converted signal processing to achieve the corresponding actuator is driven by the controller exercise.

Applications

Electronic cam having a wide range of applications in the mechanical industry material field cut to length, for example cut to length steel, wood

Material for coil, aluminum strip for cutting fixed-length, the corrugated crop, laterally sealing the packaging bags slitting, punching,

Embossing. Electronic cam application flying shear, peeling, cut recovery, and stop discharging collectively called shear cut the wheel, called transverse.

Relative to the longitudinal cross terms, refers to vertically cut the material in the material transport direction, cutting length is generally fixed.

(1) Peeling

In this mechanism, mounted on a roller (or the number of the shearing blades), driven by movement of the shearing blades rotating roll, the roll motion of the severing one week once (or several times).

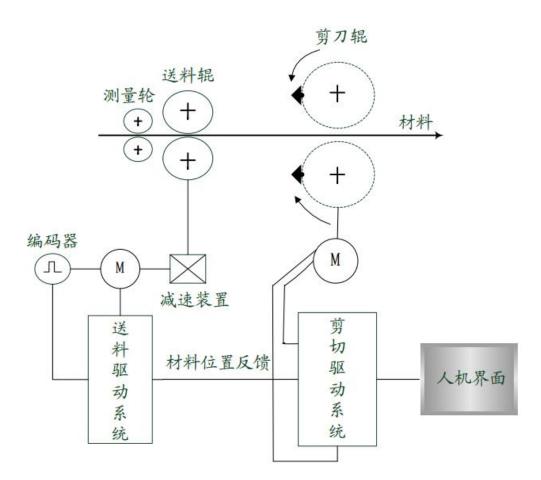
(2) Flying Shear

And peeling in the same definitions section, but in some special shear, for example shear plate, the eccentric shaft

Mounting the blade holder about the fixed shearing blade rotary movement, to achieve the purpose of the cut to length [5].

(3) to recover shears

Cut recovery is characterized by: the sync area set pulling speed of the shearing member and feeding same feed rate, shear motion in the sync area is completed, and different lengths of the cut by adjusting the speed to accommodate non-synchronous zone. Chase cut and peeling, the biggest difference is flying shear: Shear chase reciprocating motion, and peeling, flying shear is a movement in the same direction. Another application of shear to catch flying saw, flying saw cutting means that when synchronization feed mechanism, the material for cutting.


(4) stop cutting

And said cutting different ways, stop feeding the control shaft shear, rapid feed in the shearing blade is lifted off time and cut to stop. Several different from the previous, stop feeding the cut feed gap, so that the shear stop control simple, low processing efficiency.

11.5.5 peeling function of the system configuration

An essential part of functions including peeling knife roll shaft and the axis, detecting element, and a motor control unit. Other

Depending on the processed products you may also need color. As shown, each blade roll rotation of the complete system configuration in FIG 11.5.9 first shearing, measuring the length measuring roll material, according to pre-designed control unit controlling the movement of the knife roller cam curve, so that blade into engagement with the material by the length of the material it is exactly desired length, thus completing precise cut to length.

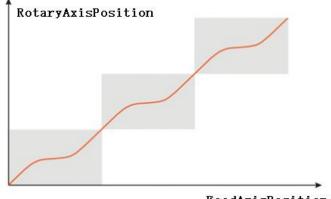

11.5.6 Peeling process parameters

FIG parameters	The actual meaning	Command name	
L	Setting the cut length	Cut_Length (cutting length)	
	(unit: unit (means))		
R1	Material feed roller	FeedAxisRadius (feed shaft radius)	
	radius (unit: unit (means))		
R2	Peeling axis radius;	Cutter_Cir (cutter perimeter) = 2 * R2 *	
		3.1415	
P1	Sync area	Sync_Angle (synchronous zone)	
P2			
N	Bit number peeling axis	RotaryAxisKnifeNum	
Special Note:	Special Note: Please refer to the name of instruction 11.5.9 NS_MC_RotaryCutIn (peeli		
instruction)			

I. P2 P1 CutPoint CutPoint CutPoint

11.5.7 peeling function control characteristics

Rotary Cut function is a special electronic cam function. Continuous cutting, peeling schematic curve which follows:

FeedAxisPosition

Features

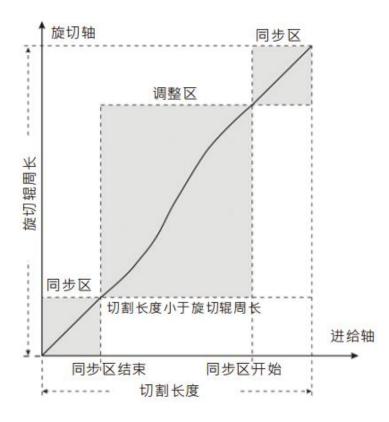
1, The user can freely set the cutting length according to process requirements, can be less than or greater than the cut length equal to the circumference of the cutter.

2. In the synchronization area, the peeling axis feed shaft according to a certain operation speed ratio (speed generally equal), and the cut material occurs in the synchronization area.

3, The peeling function is activated, the feed peeling axis to follow the phase of the operation shaft, the shaft can therefore feed a constant speed, acceleration, deceleration, irregular movement.

4, the roller peeling peeling function supports multiple tip.

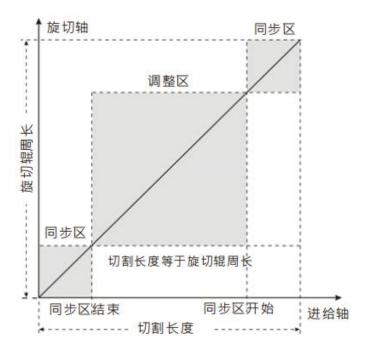
5, after the peeling function, rotary cutter stop-zero, i.e., entry point.


11.5.8 peeling Features

Peeling area and curve into synchronous adjustment zone.

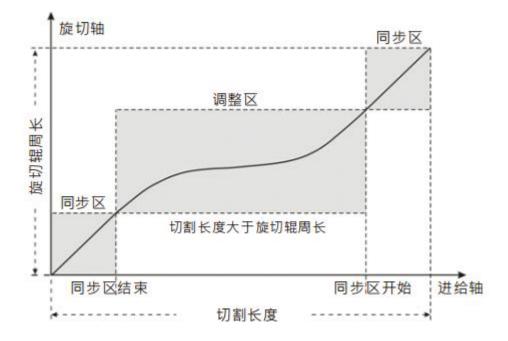
- *Sync area*: At this time, the peeling axis feed shaft at a fixed speed ratio operation (linear velocity of the tip of the cutting face generally equal), and the cut material occurs in the synchronization area.
- <u>Adjustment zone</u>:Due to the different cutting lengths, corresponding displacement adjustment needs to be done. The cutting length adjustment region can be divided into the following three cases.

1: Short material cutting


When the cut length is less than the circumference of the roller peeling, peeling cycle follows a curve of any

When feeding short cut, peeling axis adjustment must be accelerated in the region, and then decelerate to synchronous speed.

2: Isometric cutting


When peeling a length equal to the circumference of the knife roll, peeling curve of any one of the following cycle:

In this case, sync area with the non-synchronous zone peeling axis and the feed axis speed synchronization has been maintained, no adjustment peeling axis.

3: Long cutting material

When the peeling length is greater than the circumference of the roller cutter, a peeling profile according to any of the following cycle:

In this case, peeling axis adjustment should first deceleration zone, and then accelerated to

synchronous speed. If the length is much greater than peeling knife roll circumference, the cutter roll may have decelerated to zero, stay for some time, and then accelerated to synchronous speed. The longer the cutting length, the longer the time spent.

11.5.9 NS_MC_RotaryCutIn (peeling instruction)

FB / FC		Explanatio	n	Applicable model
FB	This	s instruction is used to esta	ablish a relationship	VEC-VA-MP-005-
		between two axes pe	eeling	MA
		NS_MC_Rotary	CutIn 1	
	1	NS_MC_Rota	and and an an an and an	
	•	Master	InSync 🛁	
	•	Slave	End)fProfile 🚽	
	•	Execute	CutOut_Done 🚽	
	•	Enable_CutOut	Busy 🚽	
	•	CutLength	Active -	
	•	FeedAxisRadius	CommandAborted -	•
	•	RotaryAxisRadius	Error —	
	•	RotaryAxisKnifeNum	ErrorD -	
	•	SyncAngle		
	•	First_Mark_Offset		
	•	StartMode		
	•	MasterValueSource		
	•	BufferMode		
	•	Mark_DI_Valid		
	•	Mark_DI_Nm		
	-	Mark_DI_Edge		
	•	Cut_DI_Valid		
	•	Cut_DI_Num		
	•	Cut_DI_Edge		

Input parameters

name Features	type of data	Predetermine d area (Default value)	The timing of the entry into force
---------------	-----------------	--	--

			Analog /	
Master (Spindle)	Setting instruction to be controlled spindle	USINT	Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Exexcute from FALSE to TRUE
Slave (Slave axis)	Setting instruction from the shaft to be controlled	USINT	0-4 the real axis 5 to 11 virtual axis (CANopen Mode: 0 ~ 15, can be real or imaginary axis) (0)	Exexcute from FALSE to TRUE
Execute (Execute bit)	When the Execute FALSE to TRUE, the instruction is executed.	BOOL	TRUE or FALSE	-
Enable_CutOut (Lifting peeling bit)	When Enable_CutOut is TRUE and the peripheral end of the cam point, the main shaft is released from the peeling relation, from the shaft stops at the point of tangency.	BOOL	TRUE or FALSE	-
CutLength (Cut length)	Setting the cut length (refer to the feed axis length) Unit: unit	LREA L	A positive number	Exexcute from FALSE to TRUE
FeedAxisRadius (Feed shaft radius)	Setting the feed axis spindle radius Unit: unit	LREA L	A positive number	Exexcute from FALSE to TRUE
RotaryAxisRadius (Peeling axis radius)	Peeling setting spindle radius, i.e. the distance to the center of the roller peeling the tip (Unit: unit)	LREA L	A positive number	Exexcute from FALSE to TRUE
RotaryAxisKnifeNum (Peeling head axes)	Peeling axis setting bit number, i.e. the number of tip peeling roller installed	USINT	Positive integer (1 to 16)	Exexcute from FALSE to TRUE

(Punctuation color signal)	specified color number, input	INT	0~15	from FALSE to TRUE
Mark_DI_Num	Punctuation terminal	DIE	^ · · ·	Exexcute
signal valid bit)	invalid color code signal;			TRUE
(Color code	color code signal; FALSE	BOOL	FALSE	from FALSE to
Mark_DI_Valid	Status is TRUE valid		TRUE or	Exexcute
	1: Wait			
(Transfer mode)	interrupted			TRUE
(Transfer mode)	0: immediately	INT	0,1	from FALSE to
BufferMode	instructions			Exexcute
	mode between the two			
	Setting the transfer			
	spindle to follow			
	1: the actual position of the shaft from the			
	command			
source)	axis from a position			
synchronization	0: Follow the spindle			TRUE
(Spindle	be 1.	INT	0,1	from FALSE to
MasterValueSource	MasterValueSource must			Exexcute
	StartMode = $2,3,4,$			
	when the selection time $S_{tot} = 2.2.4$			
	command from the shaft,			
	described. Source selection			
(Startup mode)				TRUE
StartMode	mode of the instruction, as detailed in the mode	INT	0-4	from FALSE to
C4+1 M1-	Setting the startup			Exexcute
	punctuation. Unit: unit			
				TRUE
(First color distance)	provided to achieve the first knife to cut the color	L	number, 0	from FALSE to
First_Mark_Offset	point, this value can be	LREA	A positive	Exexcute
	distance to the cutting			
	Punctuation color			
	Unit: degrees			
(Synchronous angle)	axis)	L		TRUE
SyncAngle	(peeling angle refers to the	LREA	0`360	from FALSE to
	Range sync area			Exexcute
	the two knives.			
	consistent distance between			
	needs to try to ensure			
	greater than 1, the knife			
	when the bit number is			

	V.1 CO / 7			
	Value of 0 to 7			
	corresponding to the input			
	point I0.0 ~ I0.7,8 ~ 15			
	corresponding to the input			
	I1.0 ~ I1.7			
	Punctuation set color			
Mark_DI_Edge	signal trigger edge		TRUE or	Exexcute
(Color signal	along	BOOL		from FALSE to
edge punctuation)	0: Falling		FALSE	TRUE
	1: Rising			
	Status is TRUE			
Cut_DI_Valid	effective cut point signal;	BOOL	TRUE or FALSE	Exexcute
(Cut point signal	FALSE cutting point signal			from FALSE to
valid bit)	is invalid;			TRUE
	Cutting bit number			
	designated terminal, the		0~15	
	input value of 0 to 7			Exexcute
Cut_DI_Num	corresponding to the input	INT		from FALSE to
(Cut point signal)	point I0.0 ~ I0.7,8 ~ 15			TRUE
	corresponding to the input			
	I1.0 ~ I1.7			
	Cutting edge set-point			
Cut_DI_Edge	signal trigger			Exexcute
(Cutting edge	along	BOOL	TRUE or	from FALSE to
point signal)	0: Falling		FALSE	TRUE
1 0 /	1: Rising			

Description:

- For Disc_Circumference peeling axis and the feed axis, set FeedAxisRadius (feed shaft radius), RotaryAxisRadius (peeling axis radius) before, should their respective axis parameter module MC_AXIS_REF, set their respective radii match (circle circumference of the disc) parameters for use in MC ReadActualPosition, MC ReadActualVelocity module.
- When the instruction is being executed may be modified CutLength, after re-trigger value Execute SyncAngle, FeedAxisRadius, RotaryAxisRaidus, RotaryAxisKnifeNum, First_Mark_Offset, Mark_DI_Valid, Cut_DI_Valid, the modified parameters to take effect in the next cycle after the trigger cam Execute. Execute and do not re-trigger CommandAborted set to TRUE;
- The CANopen mode, or the tangent point with color function is not available.

name	Features	type of data	Output range
InSync (synchronized state)	This parameter is TRUE output shaft from the	BOOL	TRUE or FALSE

Output parameters

	synchronized state represents		
EndOfProfile (peeling end of the cam execution flag)	This parameter indicates the output end of the cam is TRUE is performed	BOOL	TRUE or FALSE
CutOut_Done (complete lifting peeling)	This parameter indicates the output shaft is released from the main completion peeling relationship is TRUE	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborted (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

Mode Description

mode	Explanation			
0	After the instruction is executed, the direct current to the synchronous speed point			
	tangent point follows the start of the spindle.			
1	After the instruction is executed, the current point to point half of the circumference			
	of the knife (i.e., the tangent point opposite points) follow the master boot zero speed			
2	After the instruction is executed, the trigger signal color to the current tool point of			
	half the circumferential point (i.e. the point opposite the point of tangency) follow the			
	master boot zero speed. The real axis of the spindle must be in this mode, it is set			
	Mark_DI_Valid Ture, and is False Cut_DI_Valid			
3	After the instruction is executed, the current point of the knife periphery half of the			
	points (i.e., opposing points tangent point) zero speed start to follow the spindle, to reach			
	synchronous speed in the sync area, waiting for the cut point trigger, the tangential point			
	trigger, executing the next cam cycle. The real axis of the spindle must be in this mode, it			
	is set Cut_DI_Valid Ture, and is False Mark_DI_Valid			
4	After the instruction is executed, the trigger color signal, the current point of the			
	knife periphery half of the points (i.e., opposing points tangent point) zero speed start			
	follow the master waits cut point trigger, while the chromatic scale, if the color patch			
	triggered later than the point of tangency trigger immediate early cut, then color when			

	triggered from a rotary axis will be compensated, can ensure that the next sets of			
	standard. The real axis of the spindle must be in this mode, Cut_DI_Valid Mark_DI_Valid			
	and are set to Ture			

Function Description

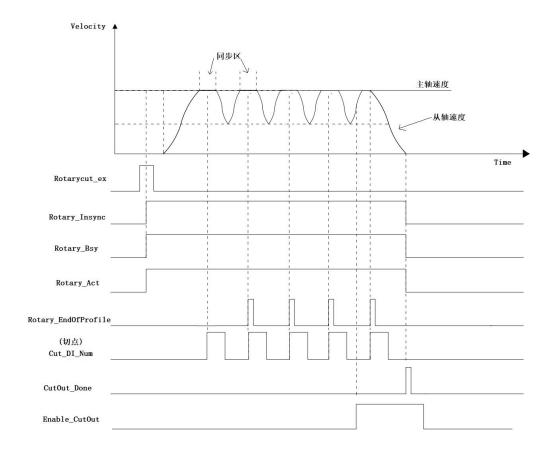
1,The camshaft is a kind of follow the same movement, the camshaft position itselfYesBy the parameters we setThe spindle positionAutomatic planning out

2,Cutting wheel module is continuous cam curve. As long as proper planning parameters without continuousExecuting instructions, May remain fixed length mode. (Because the cutting wheel and the position of zero clearance profile planning point is tangent point, and is typically applied at the tangent point from the shaft)


3, in mode 3, 4, the signal contact point indispensable, otherwise it is impossible to realize the function of electronic cam wheel cut from the shaft, both tangent point from the start position is the end position of the axis cleared zero, no cut point Slave axis has been running at synchronous speed, can not be executed next cam cycle;

4, under CANopen mode, only mode 0,1.

1, Variables, and procedures			
variable name	type of data	The initial value	
MC_MoveVelocity_7	MC_MoveVelocity		
Master	USINT	0	
Velocity	LREAL	1000.0	
Vel_Dir	INT	1	
Vel_BM	INT	0	
NS_MC_RotaryCutIn_1	NS_MC_RotaryCutIn		
AXIF_M	USINT	0	
AXIF_S2	USINT	1	
Rotarycut_ex	BOOL	FALSE	
Enable_Cutout	BOOL	FASLE	
StartMode	INT	3	
MasterValueSource	INT	1	
BufferMode	INT	0	
Mark_di_valid	BOOL	TRUE	
Mark_DI_Num	INT	11	
Mark_DI_Edge	BOOL	TRUE	
Rotary_Insync	BOOL		
Rotary_EndOfProfile	BOOL		
CutOut_Done	BOOL		
Rotary_Bsy	BOOL		
Rotary_Act	BOOL		


Program Example

1, Variables, and procedures

	NS_MC_Rotary	CutIn_1	ę w
	NS_MC_Rotar	yCutIn	
AXIF M-	Master	InSync	-Rotary Insync
· · 0			0 .
AXIF_S2-	Slave	EndOfProfile	Rotary_EndOfProfile
-1	and the second		0
Rotarycut_ex	Execute	CutOut_Done	-CutOut_Done
Enable_Cutout	Enable_CutOut	Busy	O · Rotary_Bsy
· · · · · · · · · · · · · · · · · · ·	Enable_cutout	Dusy	0 · ·
Cutlength-	CutLength	Active	-Rotary Act
1.2000000E+003		and second shifts	0 .
FeedAxisRadius-	FeedAxisRadius	CommandAborted	-•
1.5000000E+002	and the second second	0	
RotaryAxisRadius-	RotaryAxisRadius	Error	-•
 1.5000000E+002 RotaryAxisKnifeNum— 	RotaryAxisKnifeNum	0 ErrorID	1
KOTATYAXISKHILENUM	KOTATYAXISKHITENUM	16#0000	
Sync angle	SyncAngle	10#0000	
8.0000000E+001			21
First_mark_offset-	First_Mark_Offset		
• 0.000000E+000			89
Rotarycut_StartMode-	StartMode		
MasterValueSource—	MasterValueSource		•
mastervaluesource	master value source		
BufferMode	BufferMode		
0			
Mark_di_valid-	Mark_DI_Valid		
• 1	and a second		50
Makr_DI_Num	Mark_DI_Num		
Mark di edge-	Mark_DI_Edge		
mark_ur_euge	Mark_D1_Euge		
cut_di_valid-	Cut_DI_Valid		44
- 1			20
cut_di_num	Cut_DI_Num		
· 11	Cut DT Rdas		-
cut_di_edge	Cut_DI_Edge		
ci (i <u>1</u>			
81 101	12	8	

2, Motion curve and timing diagram

- To StartMode =3Executing instructions, Execute becomes TRUEAfter a period, InSync, Busy, Active becomes TRUE, From the shaft reaches the soft-start sync area, a trigger signal is tangent point, the cam next cycle. Then cut each time the trigger point signal, output EndOfProfile signal TRUEA cycle, if the cut point signal has not been triggered, the slave axis has been running at a line speed synchronization.
- Enable_CutOut becomes TRUE, Cut the trigger point signal from the shaft to lift peeling relationship and stop at the tangent point of the opposition point.

11.5.10 NS_MC_SpecialCamin	(special cam instruction)
----------------------------	---------------------------

FB / FC	Explanation		Applicable model
FB	Establishing a special instruction is used	for two cam	VEC-VA-MP-005-MA
	shafts relationship between		
	NS_MC_SpecialCamIn_ NS_MC_SpecialCamIn_ NS_MC_SpecialCamIr Master Slave Er Execute CC Enable_CamOut DistanceOffæt_Master	_3	
	 Mark_DI_Num Mark_DI_Edge 		

Input parameters

name	Features	type of data	Predetermined area (Default value)	The timing of the entry into force
Master (Spindle)	Setting instruction to be controlled spindle	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Exexcute from FALSE to TRUE
Slave (Slave axis)	Setting instruction from the shaft to be controlled	USINT	0-4 the real axis 5 to 11 virtual	Exexcute from FALSE to TRUE

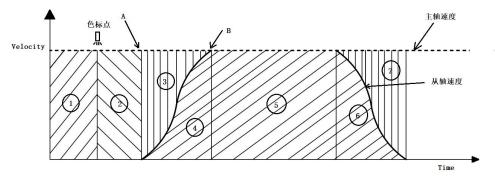
	[]		I	Γ
			axis (CANopen Mode: 0 ~ 15, can be real or	
			imaginary axis) (0)	
Execute (Execute bit)	When the Execute FALSE to TRUE, the instruction execution starts	BOOL	TRUE or FALSE	-
Enable_CamOut (Special relationship lift cam)	When the master is released soon Enable_CamOut is TRUE, the next cam cycle comes from the special relationship between the cam shaft	BOOL	TRUE or FALSE	
DistanceOffset_ Master (Spindle position offset)	Setting spindle cam offset distance from the starting point	LREAL	A positive number	Exexcute from FALSE to TRUE
DistanceAdd (Acceleration distance)	Acceleration distance from the shaft sync area reached by a stationary	LREAL	A positive number	Exexcute from FALSE to TRUE
DistanceSync (Synchronous distance)	Synchronous operation to the distance Slave axis of the sync area	LREAL	A positive number,0	Exexcute from FALSE to TRUE
DistanceDec (Deceleration distance)	Slave axis reaches the deceleration distance from the stationary sync area	LREAL	A positive number	Exexcute from FALSE to TRUE
ActivationPosition (Engagement start position)	Setting the engagement process begins spindle position, i.e., when the spindle passes through this position, the engaging operation started from the shaft. 0,1 effective mode. (Engagement start position relative position)	LREAL	A positive number, 0	Exexcute from FALSE to TRUE
Periodic_Master _Units (Spindle unit cam cycle)	Periodic_Master_Unit s = DistanceOffset_Master + DistanceAdd *	LREAL	Positive, zero	Exexcute from FALSE to TRUE

	20/17			
	30/16			
	+ DistanceSync +			
	DistanceDec * 30/16			
	Effective Mode 0			
	Source selection			
	command from the shaft,			
	when selected when Mode			
	= 1,2, MasterValueSource			
MasterValueSource	must be 1.			Exexcute
(Select location	0: Follow the spindle	INT	0,1	from FALSE to
source)	axis from a position			TRUE
	command			
	1: the actual position			
	of the shaft from the			
	spindle to follow			
	Setting the transfer			
	mode between the two			
BufferMode	instructions	INT	0,1	Exexcute
(Transfer mode)	0: immediately			from FALSE to
,	interrupted			TRUE
	1: Wait			
	Setting the startup			-
Mode	mode of the instruction, as		0-2	Exexcute
(Instruction	detailed in the mode	INT		from FALSE to
execution mode)	described.			TRUE
Mark DI Valid	Status is TRUE valid			Exexcute
(Color code	color code signal; FALSE	BOOL	TRUE or	from FALSE to
signal valid bit)	invalid color code signal;		FALSE	TRUE
6)	Punctuation terminal			
	specified color number,			
	input			
Mark_DI_Num	Value of 0 to 7			Exexcute
(Color code	corresponding to the input	INT	$0 \sim 15$	from FALSE to
signal)	point I0.0 \sim I0.7,8 \sim 15			TRUE
	corresponding to the input			
	$I1.0 \sim I1.7$			
	Punctuation set color			
Mort DI Eda			TRUE or FALSE	Exexcute
Mark_DI_Edge (Color code	signal trigger edge	BOOL		from FALSE to
,	along	BOOL		
signal edge)	0: Falling			TRUE
	1: Rising			

> Output parameters

name	Features	type of data	Output range
InSync (synchronized state)	This parameter is TRUE output shaft from the synchronized state represents	BOOL	TRUE or FALSE
EndOfProfile (end of the cam execution flag)	This parameter indicates the output end of the cam is TRUE is performed	BOOL	TRUE or FALSE
CutOut_Done (complete lifting peeling)	This parameter indicates the output shaft is released from the main completion peeling relationship is TRUE	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborted (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of Error (error)It represents execution of the faulting instruction when the output instruction is TRUE		TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

> Mode Description


Mode	Explanation		
0	When the instruction is executed, when the spindle reaches ActivationPosition starts		
	engagement, the axis of Periodic_Master_Units motion cycles, the need to		
	Mark_DI_Valid this mode is set to False		
1	When the instruction is executed, when the spindle reaches the start		
	ActivationPosition engaged to perform a Periodic_Master_Units cam cycle, then a		
	trigger for each color, according to the axisDistanceOffset_Master,		
	DistanceAdd, DistanceSync, DistanceDec a complete set cam cycle,In		
	this mode it needs to be set to Ture Mark_DI_Valid		
2	When the instruction is executed, a trigger for each color, according to the		
	<pre>axisDistanceOffset_Master, DistanceAdd, DistanceSync, DistanceDec a</pre>		
	complete set cam cycle, In this mode it needs to be set to Ture Mark_DI_Valid		

> Function Description

• When the instruction is being executed may be modified DistanceOffset_Master, DistanceAdd, DistanceSync

DistanceDec, the value of the retrigger Periodic_Master_Units Execute, the modified parameters to take effect in the next cycle after the trigger cam Execute. After modifying Mark_DI_Valid, Mark_DI_Num, Mark_DI_Edge value of the modified parameter re-trigger Execute effective immediately. Execute and do not re-trigger CommandAborted set to TRUE;

- Mode 2, if not performed on a complete cam cycle, the trigger signal and the color does not immediately begin the next cycle again a cam;
- Under CANopen mode, colored punctuation function can not be used;
- MC_SpecialCamIn implemented instructions for controlling a synchronous movement of the cam shaft from the cam in accordance with the relationship with the spindle preplanned;
- Source electronic cam shaft selectively to the real axis (AXIS0 ~ AXIS3) or the imaginary axis or spindle (AXIS4);
- The electronic cam instruction parameters DistanceOffset_Master, AvtivationPosition, DistanceAdd, DistanceSync, DistanceDec, electronic cam curve generated automatically; cam position relationship between the main shaft as shown;

(1) The upper panel shows the electronic cam and the spindle speed timing positional relationship:

(2) (1) He expressed ActivationPosition, (2) ShowDistanceOffset_Master, (4) An electron

acceleration distance setting cam, (5) It represents a constant speed from the electronic cam

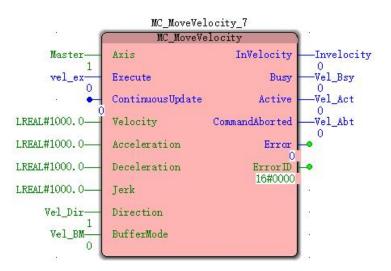
(electronic cam shaft from the main axis equal speed), (6) An electron deceleration distance setting

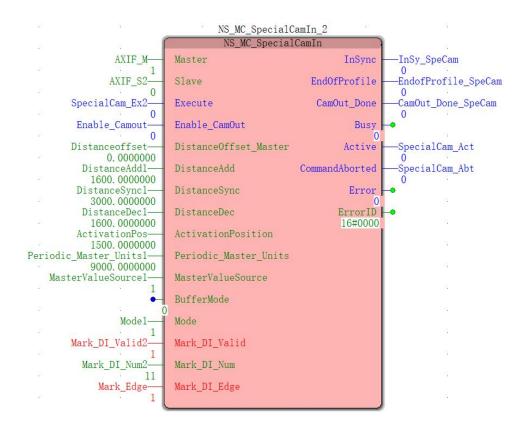
cam. among them, ③ versus ④, ⑥ versus ⑦ The area ratio are all 14:16. This ratio can be solved

by a period from the spindle axis to recover the desired speed acceleration distance.

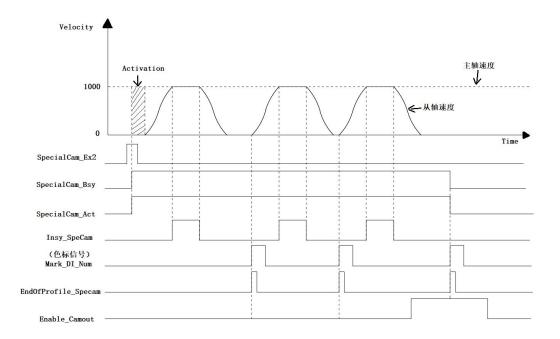
Example: Suppose claim spindleA motion to BAfter position (distancefor

100 Units),Electronic camFrom the shaftSynchronization with the main axis of the speed, the acceleration distance of the electronic cam should be set to the number? Solution: Set Electronic cam acceleration distance X,then X = 100 * 16/30;


Program Example


In a mode instruction execution NS MC SpecialCamin examples shown below.

445


variable name	type of data	The initial value
MC_MoveVelocity_7	MC_MoveVelocity	
Master	USINT	1
Vel_Dir	INT	1
Vel_BM	INT	0
NS_MC_SpecialCamIn_3	NS_MC_SpecialCamIn	
AXIF_M	USINT	1
AXIF_S2	USINT	0
SpecialCam_Ex2	BOOL	FALSE
Enable_Camout	BOOL	FALSE
Distanceoffset	LREAL	0.0
DistanceAdd1	LREAL	1600.0
DistanceSync1	LREAL	3000.0
DistanceDec1	LREAL	1600.0
ActivationPos	LREAL	1500.0
Periodic_Master_Units1	LREAL	9000.0
MasterValueSource1	INT	1
Mode1	INT	1
Mark_DI_Valid2	BOOL	TRUE
Mark_DI_Num2	INT	11
Mark_DI_Edge2	BOOL	TRUE
Insy_SpeCam	BOOL	
endOfProfile_specam	BOOL	
CamOut_done_SpeCam	BOOL	
SpecialCam_Bsy	BOOL	
SpecialCam_Act	BOOL	
SpecialCam_Abt	BOOL	

1, procedures, and variables

2, the motion profile and timing diagrams

 Mode = 1 NS_MC_SpecialCamIn to execute instructions, the Execute becomes TRUE, after a period, Busy, Active becomes TRUE, in this case as a starting point, when the spindle reaches the Activation, the distance Slave axis in accordance with the acceleration set to sync area in the sync area inner, InSync output TRUE, and then completes the synchronization deceleration distance from the end of the first synchronization period.

- After the completion of the first cam cycle, the trigger signal color, synchronized motion from a cam shaft in accordance with the table set immediately generated parameters.
- Enable_Camout set to TRUE, the time of arrival of a next color signal, released from the relationship between the main cam shaft.

11.5.11 NS_MC_SpecialCombineAxes (special double joint

spindle gear command)

FB / FC		Explanation		Applicable model
FB		is instruction is used to esta	VEC-VA-MP-005-MA	
	relation	ship between the gear joint		
		two-spindle axes		
		NS_MC_SpecialCombi		
		NS_MC_SpecialComb Master	ineaxes InSync -	-•
		Slave	Busy -	-•
		Execute	Active -	-•
	•	Execute_Precal cul ate	CommandAborted -	-•
		Precalculate_Pulse_Cycle	Errar -	-•
	1	RatioNumeratorM1	Error ID -	•
		RatioDenominatorM1	Pos_Min -	•
	12	RatioNumeratorM2	Pos_Max -	-•
		RatioDenominatorM2		
	•	Gear_RatioNumerator		
		Gear_RaticDenominator		
))•	Cam_DistanceOffset_Master		
		Cam_DistanceAdd		
		Cam_DistanceSync		
	•	Cam_DistanceDec		
		Cam_Pulse_Per_Unit_M		
	· •	Periodic_Master_Units		
		MasterValueSource		
		BufferMode		
		Mode		
		Mark_DI_Valid		
	(6 -	Mark_DI_Num		
))•	Mark_DI_Edge		

> Input parameters

		type of	Predetermined	The timing
name	Features	type of data	area	of the entry
		uata	(Default value)	into force

Master (Spindle)	Setting instruction to be controlled spindle	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Exexcute from FALSE to TRUE
Slave (Slave axis)	Setting instruction from the shaft to be controlled	USINT	0-4 the real axis 5 to 11 virtual axis (CANopen Mode: 0 ~ 15, can be real or imaginary axis) (0)	Exexcute from FALSE to TRUE
Execute (Execute bit)	When the Execute FALSE to TRUE, the instruction execution	BOOL	TRUE or FASLE	
Execute_Precaculate (Precomputed execute bit)	When Execute_Precaculate is TRUE, the calculated value Pos_Min and Pos_Max	BOOL	TRUE or FASLE	
Precaculate_Pulse_ Cycle (Pre-calculated number of spindles cycle pulse)	This parameter is used to calculate and Pos_Max Pos_Min Precalculate_Pulse_C ycle = Periodic_Master_Units * Cam_Pulse_Per_Unit_M Unit: Pulse	LREAL	A positive number	When Execute_Precac ulate changed from FALSE to TRUE
RatioNumerator M1 (Spindle 1 Gear Ratio)	Setting spindle 1 Gear Ratio	LREAL	Positive or negative (Non-default)	Exexcute from FALSE to TRUE
RatioDenominator M1 (Spindle gear denominator)	Setting spindle gear denominator	LREAL	Positive or negative (Non-default)	Exexcute from FALSE to TRUE

RatioNumerator	Setting spindle 2 Gear		Positive or	Exexcute
M2	Ratio	LREAL	negative	from FALSE to
(2 spindle Gear Ratio)	IXatio		(Non-default)	TRUE
RatioDenominator M2 (2 spindle gear denominator)	Setting spindle gear denominator	LREAL	Positive or negative (Non-default)	Exexcute from FALSE to TRUE
Gear_RatioNumerator (Electronic gear molecule)	Molecular electronic gear ratio MC_GearIn	LREAL	Positive, negative, (Non-default)	Exexcute from FALSE to TRUE
Gear_RatioDenomina tor (Electronic gear denominator)	Electronic gear denominator MC_GearIn	LREAL	Positive, negative, (Non-default)	Exexcute from FALSE to TRUE
Cam_DistanceOffset_ Master (Spindle position deviation)	Unit: unit	LREAL	Positive, zero (0)	Exexcute from FALSE to TRUE
Cam_DistanceAdd (Acceleration distance)	NS_MC_SpecialCamI n acceleration distance sync area reached by a stationary	LREAL	A positive number (Non-default)	Exexcute from FALSE to TRUE
Cam_DistanceSync (Synchronous distance)	NS_MC_SpecialCamI n distance synchronous operation of the sync field	LREAL	Positive, zero (0)	Exexcute from FALSE to TRUE
Cam_DistanceDec (Deceleration distance)	NS_MC_SpecialCamI n deceleration distance from the sync area reached stationary	LREAL	A positive number (Non-default)	Exexcute from FALSE to TRUE
Cam_Pulse_Per_ Unit_M (Spindle number of pulses per unit)	This value is determined according to MC_SpecialCamIn cam curve planning, setting this value such as 5, when the spindle take 10,000 pulses at this time that the mobile terminal of the actuator spindle position 2000 units.	LREAL	A positive number	Exexcute from FALSE to TRUE
Periodic_Master _Units (Spindle cam means cycles)	Periodic_Master_Unit s = DistanceOffset_Master + DistanceAdd *	LREAL	A positive number (Non-default)	Exexcute from FALSE to TRUE

	I	Г Г		
	30/16			
	+ DistanceSync +			
	DistanceDec * 30/16			
	Source selection			
	command from the shaft			
	0: Follow the spindle			
	axis from a position			_
MasterValueSource	command			Exexcute
(Select location	1: the actual position	INT	0,1	from FALSE to
source)	of the shaft from the			TRUE
	spindle to follow			
	(Mode 1 this value			
	`			
	must be 1)			
	Setting the transfer			
	mode between the two			Exexcute
BufferMode	instructions	INT	0,1	from FALSE to
(Transfer mode)	0: immediately			TRUE
	interrupted			
	1: Wait			
	Instruction execution		0,1	
	mode			
	Mode 0:			
Mode	superimposed on the			Exexcute
	tracking position changes	INT		from FALSE to
(mode)	of the spindle 1 and the			TRUE
	spindle 2 from the shaft			
	Mode 1: consult our			
	technical staff			
	Status is TRUE valid			Exexcute
Mark_DI_Valid	color code signal; FALSE	BOOL	TRUE or	from FALSE to
(Valid bit color)	invalid color code signal;	DOOL	FALSE	TRUE
	Punctuation terminal			INCL
	specified color number,			
	-			
	input			Exexcute
Mark_DI_Num	Value of 0 to 7	INT	0~15	from FALSE to
(Color code signal)	corresponding to the input			TRUE
	point I0.0 ~ I0.7,8 ~ 15			
	corresponding to the input			
	I1.0 ~ I1.7			
	Punctuation set color			
Mark_DI_Edge	signal trigger edge		TRUE or	Exexcute
(Color code signal	along	BOOL	FALSE	from FALSE to
edge)	0 5 11		TALSE	
cuge)	0: Falling			TRUE

Function Description:

 When the instruction is being executed may be modified RatioNumeratorM1, RatioDenominatorM1, RatioNumeratorM2, RatioDenominatorM2, Gear_RatioNumerator, Gear_RatioDenominator, Cam_DistanceOffset_Master, Cam_DistanceAdd,

Cam_DistanceSync, Cam_DistanceDec, Cam_Pulse_Per_Unit_M, Periodic_Master_Units Execute the retrigger value modified parameter effect at the next cycle after the trigger cam Execute. Execute and do not re-trigger CommandAborted set to TRUE;

- Under CANopen mode, colored punctuation function can not be used;
- NS_MC_SpecialCombineAxes instruction can be regarded as the superposition of two parts:
 ① By following the movement of the spindle axis from the instruction MC_GearIn, herein referred to as the spindle 1

⁽²⁾By following the movement of the spindle axis from the instruction

NS MC SpecialCamIn, herein referred to as the spindle 2

therefore,

SlavePositionChange

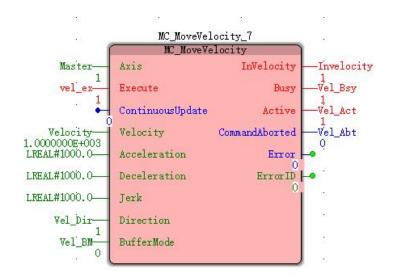
$= 1 \# Master Position Change * \frac{Gear Ratio Numerator M1}{Gear Ratio Denominator M1}$

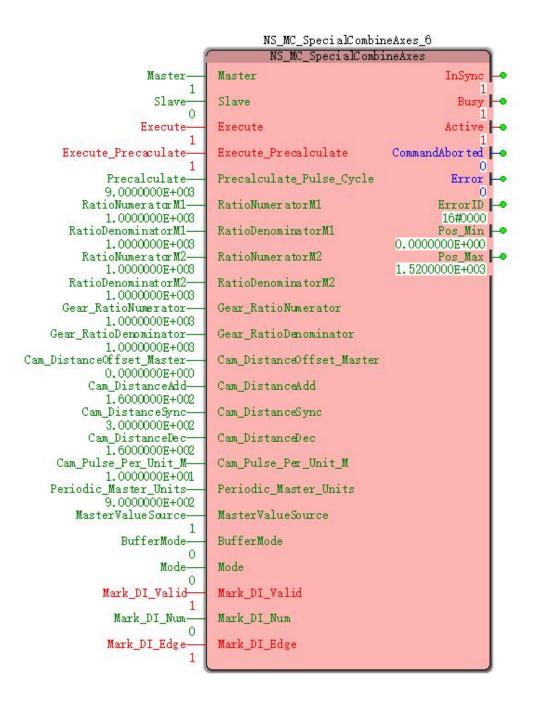
 $+\ 2 \# Master Position Change * \frac{Gear Ratio Numerator\ M2}{Gear Ratio Denominator\ M2}$

name	Features	type of data	Output range
InSync (synchronized state)	This parameter is TRUE output shaft from the synchronized state represents	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborted (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-
Pos_Min (minimum position)	Within one execution cycle, the position of minimum distance Slave axis of the cycles	LREAL	

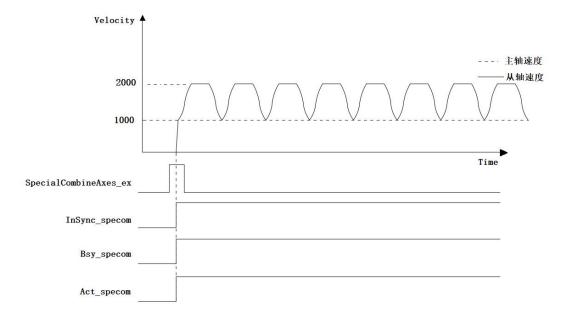
Output parameters

	performed starting from		
	Unit: Unit		
	Within one execution cycle,		
Dog May (maximum	the execution cycle from the		
Pos_Max (maximum position)	starting point Slave axis of the	LREAL	
position)	maximum position		
	Unit: Unit		




Program Example

In mode 0 instructions execute NS_MC_SpecialCamIn


1, procedures, and variables

variable name	type of data	The initial value
MC_MoveVelocity_7	MC_MoveVelocity	
Master	USINT	1
Vel_Dir	INT	1
Vel_BM	INT	0
Master	USINT	1
Slave	USINT	0
Execute	BOOL	FASLE
Execute_Precalculate	BOOL	FALSE
Precalculate	LREAL	9000.0
RatioNumeratorM1	LREAL	1000.0
RatioDenominatorM1	LREAL	1000.0
RatioNumeratorM2	LREAL	1000.0
RatioDenominatorM2	LREAL	1000.0
Gear_RatioNumerator	LREAL	1000.0
Gear_RatioDenominator	LREAL	1000.0
Cam_DistanceOffset_Master	LREAL	0.0
Cam_DistanceAdd	LREAL	160.0
Cam_DistanceSync	LREAL	300.0
Cam_DistanceDec	LREAL	160.0
Cam_Pulse_Per_Unit_M	LREAL	10.0
Periodic_Master_Units	LREAL	900.0
MasterValueSource	INT	0
Mode_specom	INT	0
InSync_specom	BOOL	
Bsy_specom	BOOL	
Act_specom	BOOL	
Abt_specom	BOOL	

2, a timing graph and

• Spindle speed 1000, execution NS_MC_SpecialCombineAxes, made in accordance with the motion from the shaft of the cam follower shaft position change table.

11.5.12 MC_CamIn (electronic cam associated instruction)	
--	--

FB / FC		Explanation		A	pplicable model
FB	This relationship established instructions for			V	EC-VA-MP-005-
	electronic c	electronic cam shaft between two			MA
		MC_CamIn_	2		
	ſ	MC_CamIn			
	•	Master	InSync	•	
	•	Slave	EndOfProfile -	•	
	•	Execute	Busy -	-•	
	•	ContinuousUpdate	Active	•	
	•	CamTable (CommandAborted -	•	
	•	Periodic	Error	•	
	•	MasterAbsolute	ErrorID	•	
	•	SlaveAbsolute			
	•	MasterOffset			
	•	SlaveOffset			
	•	MasterScaling			
	•	SlaveScaling			
		SlaveRange			
		MasterSyncPosition		-	
		ActivationPosition			
	223	ActivationMode			
		StartMode			
		Velocity			
		Acceleration			
	and the second se	Deceleration			
		Jerk			
	22	Jerk MasterValueSource			
	•1	BufferMode			
> Inp	ut parameters				
, inb			Predet	ermine	
		type of			The timing

Name	Features	type of data	Predetermine d area (Default value)	The timing of the entry into force
Master (Spindle)	Set electronic cam shaft	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen	Exexcute from FALSE to TRUE

			mode: 0-15 (real axis / imaginary axis) (0)	
Slvae (Slave axis)	Set from the electronic cam shaft	USINT	0-4 the real axis 5 to 11 virtual axis (CANopen Mode: 0 ~ 15, can be real or imaginary axis) (0)	Exexcute from FALSE to TRUE
Execute (Execute bit)	When the Execute FALSE to TRUE, the instruction execution starts	BOOL	TRUE or FALSE	
ContinousUpdate (Reserved)				
CamTable (Electronic cam table number)	Establishing a main cam for setting table based on the relationship of the cam shaft from	USINT	0 to 31	Exexcute from FALSE to TRUE
Periodic (Cycle Sport)	Setting electronic cam operating cycle of a cycle or run only	BOOL	TRUE or FALSE	Exexcute from FALSE to TRUE
MasterAbsolute (Spindle absolute)	Setting spindle position mode: When TRUE, the absolute position of the spindle mode; to FALSE, the relative position of the spindle mode	BOOL	TRUE or FALSE	Exexcute from FALSE to TRUE
SlaveAbsolute (Absolute slave axis)	Mode is set from the position of the axis: When TRUE, the main mode is the absolute mode position; to FALSE, the spindle opposite position mode to mode	BOOL	TRUE or FALSE	Exexcute from FALSE to TRUE
MasterOffset (Spindle position offset)	Setting spindle position offset (Unit: unit)	LREAL	Positive, negative, 0 (0)	Exexcute from FALSE to TRUE

SlaveOffset (Offset Slave axis position)	Setting a position offset Slave axis (Unit: unit)	LREAL	Positive, negative, 0 (0)	Exexcute from FALSE to TRUE
MasterScaling (Spindle position zoom ratio)	Set the scale of the spindle position	LREAL	A positive number (Non-default)	Exexcute from FALSE to TRUE
SlaveScaling (Scaling ratio Slave axis position)	Axis scale is set from the position	LREAL	A positive number (Non-default)	Exexcute from FALSE to TRUE
SlaveRange (Slave axis of the cam phase range)	Setting range from the phase of the cam shaft	LREAL		
MasterSyncPosition (Reserved)	Retention			
ActivationPosition (Engagement start position)	Setting the engagement process begins when the main shaft position, i.e. the position when the spindle passes, from the shaft engagement operation started (Unit: unit)	LREAL	Positive, negative, 0 (0)	Exexcute from FALSE to TRUE
ActivationMode (Mode boot mode)	Engagement start position setting mode	INT	0: the relative position of the axis 1: Absolute shaft position 2: Absolute phase axis 3: Absolute cam phase (0)	Exexcute from FALSE to TRUE
StartMode (Engaging mode)	Performing engagement operation mode is set from the shaft	INT	0: The shortest distance 1: Forward 2: Reverse	Exexcute from FALSE to TRUE
Velocity (speed)	Maximum meshing operation setting execution process allows stacking velocities from the shaft (Unit: unit / S)	LREAL	A positive number (Non-default)	Exexcute from FALSE to TRUE
Acceleration (Acceleration)	Maximum engagement setting operation performed during	LREAL	A positive number (Non-default)	Exexcute from FALSE to TRUE

	the acceleration from the shaft to allow superimposition (Unit: unit / S2)			
Deceleration (decrease speed)	Setting execution during the engagement operation of the maximum allowed deceleration is superimposed from the shaft (Unit: unit / S2)	LREAL	A positive number (Non-default)	Exexcute from FALSE to TRUE
Jerk (Plus / deceleration	Retention			
rate of change) MasterValueSource (Spindle position source)	Electronic cam type setting spindle position calculation process	INT	0: Follow the spindle axis from a position command 1: the actual position of the shaft from the spindle to follow	Exexcute from FALSE to TRUE
BufferMode (Transfer mode)	Setting the transfer mode between the two instructions	INT	0: immediately interrupted 1: Wait (0)	Exexcute from FALSE to TRUE

Description:

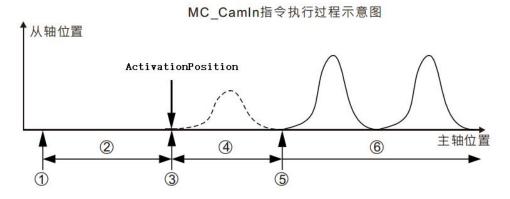
1,The instruction to execute upon the Execute FALSE to TRUE. The instruction is being executed, ExecuteBy the TRUeWhen going to FALSE, no effect on the implementation of the Directive.

2, when the instruction is being executed, BufferMode = at 0, Execute FALSE to TRUE when the re, the instructions may immediately interrupt their own.

• Output	parameters
----------	------------

name	Features	type of data	Output range
InSync (synchronized state)	This parameter is TRUE output shaft from the synchronized state represents	BOOL	TRUE or FALSE
EndOfProfile (end of the cam execution flag)	This parameter indicates the output end of the cam is TRUE is performed	BOOL	TRUE or FALSE

Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
Active	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborted	This parameter indicates the output instruction execution is interrupted to TRUE	BOOL	TRUE or FALSE
Error	This parameter indicates the instruction execution error to TRUE	BOOL	TRUE or FALSE
ErrorID	Command execution error is the error code	WORD	


• Function Description:

- MC_CamIn implemented instructions for controlling a synchronous movement of the cam from the cam shaft in accordance with a preplanned relationship with the spindle;
- MC CamOut instructions for the release cam relationship.

H Brief instruction MC_CamIn

♦ Instruction execution flow MC_CamIn

MC_CamIn instruction execution flow as shown below:

stage 1: Trigger MC_CamIn instruction execution

stage 2: Wait engagement start

stage ③: Engaging the spindle reaches the start position, the shaft engagement operation started

stage (4): During engagement

stage ③: Complete engagement, the main shaft from the synchronization

stage 6: Synchronized movement from the main shaft

stage : Trigger MC_CamIn instruction execution

MC CamIn instruction execution at the moment, will immediately enter the shaft

from the engagement start wait state.

note:If ActivationPosition ActivationMode is 0 and is 0 (location relative to the shaft), the current speed from the shaft will be moving toward the synchronous speed, in addition, from immediately moving axis stops! The MC_CamIn instruction input parameters at the moment is read and locked instruction, the instruction for use during execution.

stage@:Wait for the engagement start

From the shaft in a stationary state, waiting to begin execution timing of the arrival of the engaging operation, i.e., after waiting for the spindle ActivationPosition location specified parameters. From the waiting time axis will be different in different circumstances, if the instruction to start execution MC_CamIn spindle ActivationPosition i.e. at the location specified parameters, the slave axis starts executing the engaging operation; never have a chance if the spindle reaches the specified parameter ActivationPosition position, the slave axis will never be able to begin engagement never be achieved cam synchronization. Parameters ActivationPosition, ActivationMode role at this stage.

stage :Engaging the spindle reaches the start position, the shaft engagement operation started

When the spindle passes ActivationPosition location specified parameters, started from the shaft engagement operation. Parameters MasterAbsolute, SlaveAbsolute, MasterOffset, SlaveOffset, MasterScaling, SlaveScaling onset of action in the moment, for the correspondence relationship between the master axis position of the shaft from the cam phase of its determination.

stage@:During engagement

StartMode engagement operation performed by the parameter Slave axis in the manner specified. In addition to the StartMode parameters, parameters Velocity, Acceleration, Deceleration is also applied at this stage, they will determine the meshing process, from the shaft speed, acceleration / deceleration motion characteristics of these items.

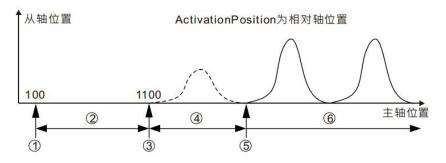
stage S: Complete engagement, the main shaft from the synchronization

After the engagement operation started from the shaft, the main shaft if the corresponding cam phase satisfy the relationship of the cam planning, completion of the engagement, to achieve synchronization of the cam shaft from the spindle.

Description: The figure shows only the case when the engagement start position of the spindle is greater than MC_CamIn instruction starts execution timing of the main shaft position, and the case is equal to less than the same way may be derived.

ActivationPosition

Start position parameter ActivationPosition cam engaged (the position of the spindle "position"), i.e., the right trigger MC_CamIn instruction execution and the main shaft reaches ActivationPosition, engagement operation started from the shaft.


ActivationPosition may be: the position of the spindle, the phase of the spindle, the spindle cam phase parameter selected by ActivationMode.

• ActivationPosition relative axial position

When time parameters ActivationMode = 0, ActivationPosition axis position, and the position of the spindle MC_CamIn instruction starts execution time relative relationship, i.e. the actual position of engagement of the spindle at the start position of the spindle MC CamIn instruction starts execution time plus ActivationPosition.

For example: MC_CamIn instruction starts execution time of the position of the spindle 100, ActivationPosition 1000, the actual position of engagement of the spindle at the start of 1100 (1100 + 100 = 1000).

MC_CamIn指令执行过程示意图

stage ①: Trigger MC_CamIn instruction is executed, this time to the absolute position of the spindle 100

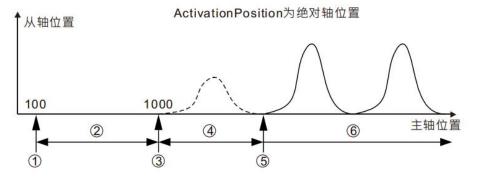
stage 2: Wait engagement start

stage ③: Engaging the spindle reaches the start position (1100), engagement operation started from the shaft

stage (4): During engagement

stage ③: Complete engagement, the main shaft from the synchronization

stage 6: Synchronized movement from the main shaft


• ActivationPosition the absolute axis position

When the parameter ActivationMode = 1, ActivationPosition axis position, and the position of the spindle MC_CamIn instruction starts execution time absolute relationship, i.e. the actual position of the spindle engaging at the start of ActivationPosition.

For example: MC_CamIn instruction starts execution time of the position of the spindle 100, ActivationPosition 1000, the actual position of engagement of the spindle at the start

of 1000 (1000 = ActivationPosition).

MC_CamIn指令执行过程示意图

464

stage ①: Trigger MC_CamIn instruction is executed, this time to the absolute position of the spindle 100

stage 2: Wait engagement start

stage³: Engaging the spindle reaches the start position (1000), engagement operation started from the shaft

stage 4: During engagement

stage (5): Complete engagement, the main shaft from the synchronization

stage 6: Synchronized movement from the main shaft

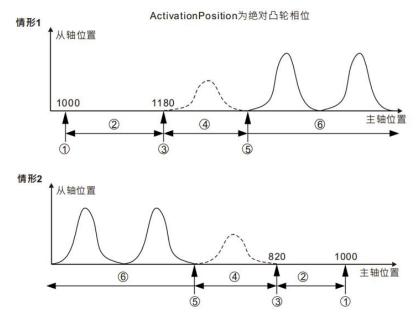
• Absolute phase axis ActivationPosition

When the parameter ActivationMode = 2, ActivationPosition absolute phase axis (axis absolute position of the absolute phase axis done modulo result of modulo arithmetic). The absolute phase when the spindle shaft is ActivationPosition, started from the shaft engagement operation.

The shaft having absolute phase characteristics cycles, during operation of the spindle, which is equal to the absolute-axis phase ActivationPosition case may appear several times, but only after MC_CamIn instruction starts execution, the absolute phase of the spindle axis is equal to the first ActivationPosition, beginning from the shaft perform engagement operation.

For example: mold of the main shaft 400, ActivationPosition = 100, MC_CamIn instruction starts execution timing of the main shaft position 1000, due to the timing of the spindle MC_CamIn instruction starts execution of the absolute phase of the shaft 200 (200 = 400 1000%), from the shaft does not execute the engagement action. Thereafter, when the position of the main shaft 1300 (the absolute phase of the shaft 100 1300 = 400%) or 900 (100 is the absolute phase axis 400 = 900%), from the shaft engaging operation started (% denotes a remainder operation)

465


- stage ①: Trigger MC_CamIn instruction execution, the absolute position of the spindle at this time is 1000 (the absolute phase of the shaft 200)
- stage 2: Wait engagement start
- stage ③: Engaging the spindle reaches the start position (1300 case 1, case 2 to 900), the shaft engagement operation started
- stage 4: During engagement
- stage ③: Complete engagement, the main shaft from the synchronization
- stage 6: Synchronized movement from the main shaft
- note: When ActivationPosition absolute phase axis, ActivationPosition effective range parameter is: 0 ~ mold (not including mold). If values are not within the valid range of the parameter ActivationPosition when MC_CamIn instruction execution, and the error fails!

• ActivationPosition absolute cam phase

When the parameter when ActivationMode = 3, ActivationPosition absolute cam phase (absolute phase of the cam axis absolute position its cam cycle do result of modulo operation). When the phase of the cam shaft ActivationPosition, started from the shaft engagement operation.

Cycles having cam phase characteristic, the main shaft during operation, it may appear more than equal to the phase of the cam

When ActivationPosition case, but only after MC_CamIn instruction execution starts, the spindle is equal to the first cam phase ActivationPosition, engagement operation started from the shaft. For example: the maximum range of the cam shaft value table 360, ActivationPosition = 100, MC_CamIn instruction starts execution timing of the main shaft position 1000, due to the spindle MC_CamIn instruction starts execution time absolute phase of the cam 280 ($280 = 360\ 1000\%$), from shaft engagement operation is not performed. Thereafter, when the spindle is 1180 when the position (the absolute phase of the cam 1180% 100 = 360) or 820 (100 is the absolute phase of the cam 360 = 820%), the engagement operation started from the shaft.

stage ①: Trigger MC_CamIn instruction execution, the absolute position of the spindle at this time is 1000 (the absolute phase of the cam 280)

stage 2: Wait engagement start

stage ③: Engaging the spindle reaches the start position (position 1180 of the spindle case 1, case 2 spindle position 820), the shaft engagement operation started

stage 4: During engagement

stage ③: Complete engagement, the main shaft from the synchronization

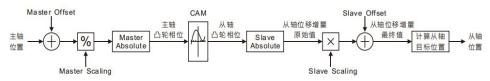
stage 6: Synchronized movement from the main shaft

note: When the absolute phase ActivationPosition cam ActivationPosition effective range parameter is: 0 to cam cycle (period not including the value). If values are not within the valid range of the parameter ActivationPosition when MC_CamIn instruction execution, and the error fails!

From the relationship between the master axis position

Relationship between pre-planning software cam master-slave relationship between the position of the axis, "position" herein from the main phase of the cam shaft, rather than the actual axis position. If the relationship between the cam as a function of pre-planned CAM, CAM input is a function of the phase of the cam shaft, the output shaft from the cam phase, as follows:

y = CAM(x)

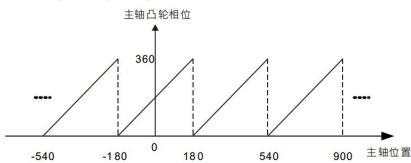

x: spindle cam phase

y: the phase of the cam shaft from

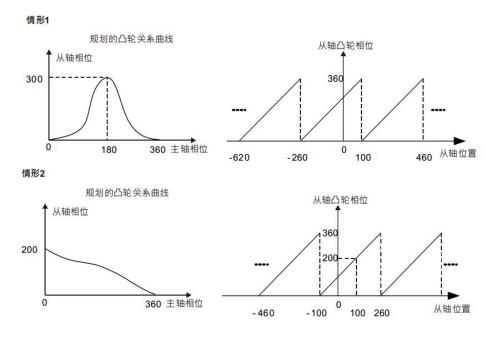
From the phase position of the cam shaft, there is a conversion between them. MasterAbsolute parameter conversion relationship between the shaft position and the cam phase, SlaveAbsolute, MasterOffset, SlaveOffset, MasterScaling, SlaveScaling, please refer to the relevant details.

Cam follower shaft from the spindle do MC_CamIn synchronized movement under the action of the instruction. Synchronous movement of the cam, Slave axis position of the main shaft of the cam to establish correspondence between pre-planning relationship (cam curve or cam table) based on the calculated position of the spindle axis from the position of the shaft

Process is shown below:

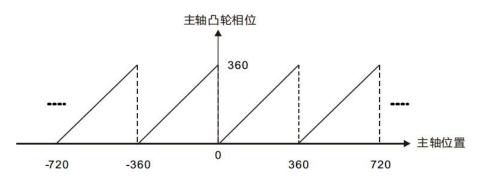

MasterAbsolute and SlaveAbsolute

MasterAbsolute correspondence relationship between the parameters used to specify the position of the spindle axis and its cam phase: When the parameter is TRUE, the absolute relationship; when the parameter is FALSE, the relative relationship. SlaveAbsolute MasterAbsolute parameters and empathy.


MasterAbsolute SlaveAbsolute parameters and acting on the engagement start timing, that is, a correspondence relationship between the shaft position and the cam phase to establish engagement start timing (note: the corresponding relationship is established by engaging actions of the start time, rather than MC_CamIn instruction starts execution time). After this, the cam phase calculation, in accordance with the correspondence relation.

• Relative mode

When MasterAbsolute axis position parameter is FALSE, between the axis position of the spindle relative to its cam phase relationship, i.e., start time of the spindle engaging a corresponding cam phase thereof is 0, and thereafter, the spindle cam phase is calculated, in accordance with the correspondence relation will be. For example: spindle relative mode, the relationship between the cam spindle 360 is the maximum range, the engagement start time axis position of the main shaft 180, the axis position of the spindle 180 which corresponds to the cam phase is 0, the position of the shaft 200 which corresponds to a phase of the cam 20 (20 = (200-180) 360%), and so on. In this case, the relationship between the cam and its phase axis position of the spindle (spindle position) as shown below:

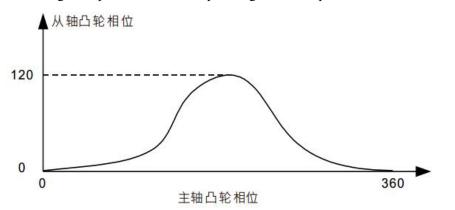


When SlaveAbsolute parameter is FALSE, the position of the shaft between the shaft and its opposing relationship to the cam phase, i.e. the phase of the engagement start timing of the cam shaft at the moment planning phase satisfy the relationship of the cam from the cam shaft. When the axis is in relative mode, the method determines Slave axis of the spindle cam phase different from the phase axis is determined when the cam must satisfy the condition: the engagement start timing phase from the cam shaft and the cam at the moment the phase of the cam shaft satisfies planning. For example: From axis relative mode, the cam shaft from the relationship between the maximum value of the range 360, from the start time of the engagement position of the shaft axis 100, at the moment when the spindle cam phase is 0 (according to the requirements from the phase relationship of the cam shaft of the cam is 0), shaft 100 from a position corresponding to which the cam phase is 0, as shown. 1 case; if by a cam shaft from the cam 200, as the case of FIG. 2 shows.

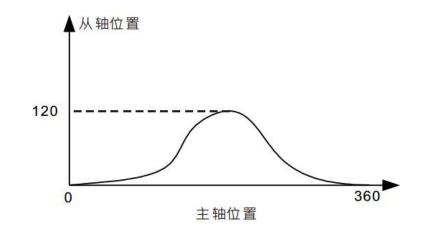
Absolute Mode

When the cam shaft position relationship MasterAbsolute parameter is TRUE, the position of the spindle shaft between the cam phase and its absolute relationship, at any time, the cam phase of the spindle is equal to the time the main shaft spindle maximum range value The result of the modulo operation. For example: spindle absolute mode, the cam spindle relationship is the maximum range 360, the axis position of the main shaft 100, a cam phase which is 100 (= 100% 100 360); the position of the shaft 500 of the main shaft, which cam a phase of 140 (= 500% 140 360), and so the relationship between the spindle axis position with its cam phase as shown.

When SlaveAbsolute parameter is TRUE, the position of the shaft between the shaft and its absolute cam phase relationship, at any time, from the phase of the cam shaft is equal to the time to make the position of the cam shaft from a relationship between the shaft axis from a maximum range value modulo result of the operation. When the absolute mode Slave axis, consistent with the correspondence relationship between the phase of its spindle axis position and its cam.

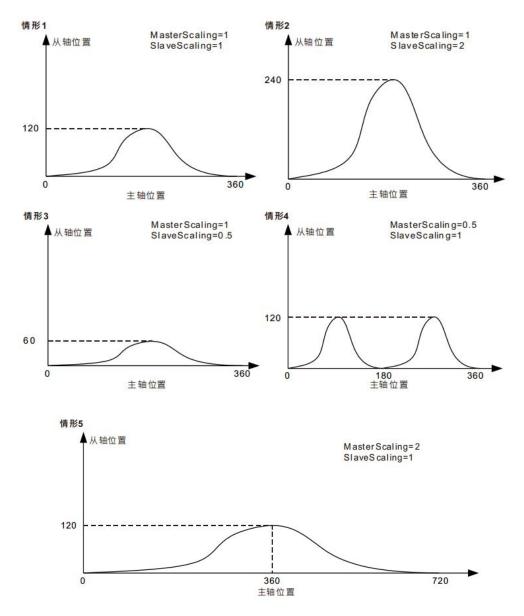

Scaling and position misalignment (Offset and Scaling)

From the relationship between the main axis of the cam advance planning, but the implementation of the cam, the position shift may be pre-planned based on a cam relationship


with the parameter "Offset" and "Scaling" position or scale, for example: the same processing products are several different sizes, the only one kind of cam planning relation, and by changing the parameters "Offset" and "Scaling" to accommodate the processing of switching between different sized products.

MasterOffset absolute mode parameters are valid for the relative or spindle; SlaveOffset parameter is valid only when the axis is absolute mode (SlaveAbsolute = TRUE), the invalid axis relative mode (SlaveAbsolute = FALSE).

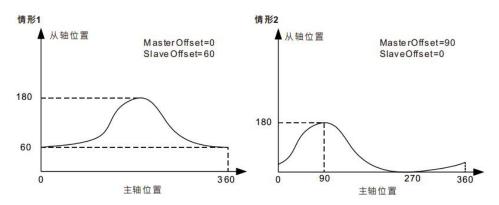
Together determine the relationship between the main cam and the actual execution of positional deviation from the scaling ratio of the shaft, which effects will be described by the following examples. Cam advance planning relationship as shown below:


When the main shaft when both the absolute mode, and performs the engagement operation, the main are 0, and scaling without using the offset from the position of the shaft axis (the default), the main execution of the real position of the cam shaft corresponding relationship As shown

below:

When the position of the offset or scale is not the default value, as the corresponding impact relations from the actual position of the main cam execution:

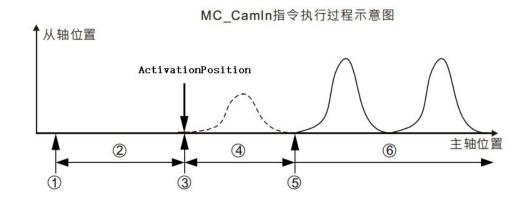
• From the main axis offset0Effect of the main axis of the zoom ratio from the relation of the actual implementation of the cam


Case 1:When the main shaft from the zoom ratio is 1, the offset is zero, consistent with the actual relationship between the cam and the pre-planned.

- **Case 2:**When the spindle is a scale, zoom ratio from the shaft 2, from the primary offset of 0, corresponding to the position of the spindle axis from the position to the pre-planned times.
- Case 3:When the spindle is a scale, the scale axis ratio of 0.5, a main axis offset from 0, corresponding to the position of the spindle becomes a pre-planned position of 1/2 Slave axis.
- Scenario 4: When the spindle zoom ratio of 0.5, the zoom ratio from the shaft 1, a main shaft cam offset from 0, the corresponding position of the spindle axis from the pre-planned position to 1/2. If from the perspective of the cam phase, the cam phase of the spindle is preplanned 1/2, i.e., the cam shaft 360 goes from 180 cycles (360 * 180 = 0.5), unchanged from the phase of the cam shaft.
- **Scenario 5:**When the scale of the spindle 2, the zoom ratio from the shaft 1, a main axis offset from 0, the corresponding position of the spindle axis from the position to

the pre-planned times. If from the perspective of the cam phase, the cam is twice the original phase of the spindle, i.e., the cam shaft 360 goes from 720 cycles (720 * 2 = 360), Slave axis of the cam phase constant.

• Scaling from affecting the main axis ratio of 1, the relationship between the main cam axis offset from the actual implementation of the


Spindle offset curve corresponds to the actual axis position to be performed when the cam moves laterally; axis offset Slave axis position corresponding to the execution of longitudinal movement of the cam curve.

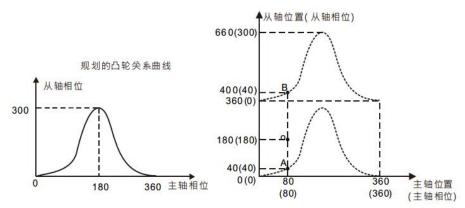
- **Case 1:**When the main shaft from the zoom ratio is 1, the spindle offset 0, offset from the shaft 60, the spindle 60 from the position corresponding to the coupled position are in the shaft based on the pre-planned. For example: a cam network plan, the position of the spindle shaft 180 from the shaft corresponding to position 180, the actual implementation, the corresponding position Slave axis of the shaft 240 (240 + 60 = 180).
- **Case 2:** When the main shaft from the zoom ratio is 1, the spindle 90 is offset Slave axis offset of 0, with the axis of the shaft from the main shaft axis position corresponding to a position shifted by 90 (plus the offset amount) on the basis of pre-planned. For example: a cam network plan, the spindle axis position 180 corresponding to the shaft position is 180, the actual implementation, a spindle axis position 90 corresponding to the shaft position 180, cam relationship i.e., pre-planned spindle axis position 180 (180 = 90 + 90) corresponding to the shaft position.

StartMode

Meshing process, the parameters can be specified by the operation mode StartMode axis, i.e. StartMode acting on the instruction stage MC_CamIn@,As shown below:

stage 1: Trigger MC_CamIn instruction execution

stage 2: Wait engagement start


stage ③: Engaging the spindle reaches the start position, the shaft engagement operation started

stage 4: During engagement

stage ③: Complete engagement, the main shaft from the synchronization

stage 6: Synchronized movement from the main shaft

Sync request from the master cam of the cam shaft of the cam phase satisfy the relationship defined by the engagement process was synchronized phase process from moving toward the axis of the spindle and the cam phase synchronous phase satisfy the relationship defined by the cam. Since the phase of the cam shaft having a cyclical characteristic, i.e., each cam has a plurality of phase-axis position corresponding thereto, when engaged, there are alternative desired synchronization position, there is such a wide selection of engaging manner. For example: the start of execution engagement cam from the phase of the main axis are 80 and 180 (e.g., O lower right in the drawing), but the requirements defined by the phase relationship of the cam from the cam shaft 40, the shaft from a desired moment the synchronization position 40 or 400 (e.g., the bottom right point a and point B), can be from O to a or B. O to the meshing process parameter selection StartMode

StartMode There are three modes available, namely: the shortest distance gradient (StartMode = 0), a positive gradient (StartMode = 1) and the reverse gradient (= StartMode -1), the user can select a different mode according to the actual needs of engagement.

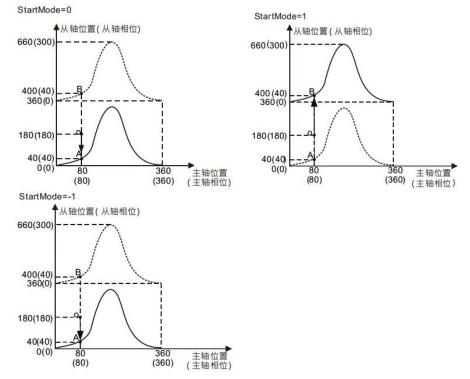
• StartMode = 0 (the shortest distance gradient)

If the parameter StartMode = 0, the engagement operation is executed, and the synchronization position Slave axis in the direction of the shortest distance, this time from the motion axis parameters Velocity, Acceleration, Deceleration affected by.

• StartMode = 1 (positive gradient)

If the parameter StartMode = 1, the engaging operation is performed, the forward toward the shaft from the synchronous position, this time from the motion axis parameters Velocity, Acceleration, Deceleration affected by.

• StartMode = -1 (inverse gradient)

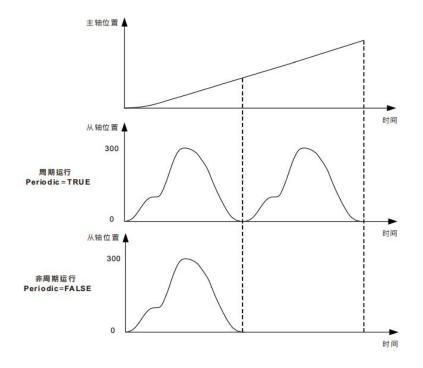

If the parameter StartMode = -1, the engagement operation is performed, the reverse position Slave axis toward synchronization,, Acceleration, Deceleration Effect this time from the movement of the shaft receiving parameters Velocity.

E.g:Starts performing engagement operation, the master from the cam phase axis, respectively 80 and 180 (below point O), The cam relation defined in claim spindle cam phase is 80, the phase Slave axis of the cam 40 (as in FIG. when point a or point B), then select a different mode StartMode engagement process, the operation mode from the shaft as shown.

StartMode = 0:Now gradient Slave axis O from the point A to the point A at the synchronization point, because the distance from point O to the point A is smaller than the distance between the point B is O;

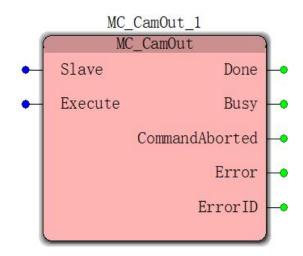
StartMode = 1:Now the axis positive gradient from point O to point B;

StartMode = -1:Now the reverse gradient Slave axis from the point A to the point O;


• Acyclic / cyclic execution cam (with the Periodic)

In practical applications, the electronic cam, and some may require circulation operation in cycles, while others may only need to run a cycle, i.e. for these two parameters Periodic selected situations.

When the parameter Periodic = TRUE, follow the master axis according to the execution


cycles of the cam until the cam releasing relationship;

When the parameter Periodic = FALSE, from the cam shaft and the spindle synchronization, performed when the end point of the cam cycle, the relationship between the cam shaft and is released from the spindle, and immediately stop the movement from the shaft.

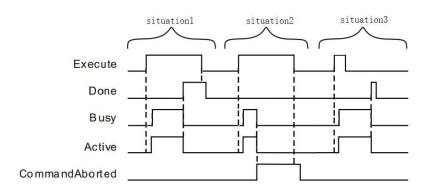
11.5.13 MC_CamOut (electronic cam departing instruction)

FB / FC	Explanation	Applicable model
FB	This instruction is used to release a relationship	VEC-VA-MP-005-MA
	between two electronic cam shafts established	

Input parameters

name	Features	type of data	Predetermine d area (Default value)	The timing of the entry into force
Slvae (Slave axis)	Set from the electronic cam shaft	USINT	Analog / Pulse: 0-4 (real axis) 5 to 11 (imaginary axis) CANopen mode: 0-15 (real axis / imaginary axis) (0)	Exexcute from FALSE to TRUE
Execute (Execute bit)	When the Execute FALSE to TRUE, the instruction execution starts	BOOL	TRUE or FALSE (FALSE)	

> Output parameters


name	Features	type of	Output range

		data	
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
CommandAborted (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

Function Description

MC_CamOut electronic cam instructions for releasing an established relationship. Directives continues to run at speed from the cam axis, and disengaged from the retaining shaft. For the control cam stop motion from the shaft, or may use MC_Halt MC_Stop instruction from the shaft. After completion of the instruction execution MC_Halt or MC_Stop Slave axis stops and the cam releasing relationship.

• FIG output timing parameters

Case 1: When the Execute FALSE to TRUE, after a period, Busy, Done becomes TRUE. After Execute a TRUE to FALSE, Busy and Done remains to TRUE.

Case 2: When the Execute is TRUE, if the instruction is interrupted by another instruction, CommandAborted becomes TRUE, the Busy and Done becomes FALSE; Execute when a TRUE to FALSE, after a period CommandAborted becomes FALSE.

Case 3: In the course of the instruction execution, when less than one cycle, the Execute a

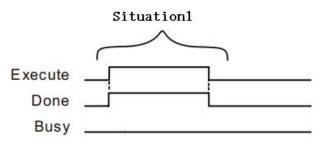
TRUE to FALSE, when reaching a cycle, the Done becomes TRUE, and Busy remains to TRUE.

11.5.14 MC_CamWritePoint (cam point information write

command)

FB / FC	Explanation	Applicable model
FB	This instruction is used to write the cam point	VEC-VA-MP-005-
	information	MA
	MC_CamWritePoint_1 MC_CamWritePoint Execute Done CamTable Busy CamPointNum Error MasterPos ErrorID SlavePos SlaveVel SlaveAcc	

> Input parameters


name	Features	type of data	Predeter mined area (Default value)	The timing of the entry into force
Execute (Execute bit)	When the Execute FALSE to TRUE, the instruction execution starts	BOOL	TRUE or FALSE (FALSE)	
CamTable (Electronic cam No.)	Establishing a main cam for setting table based on the relationship of the cam shaft from	USINT	0 to 31	Exexcute from FALSE to TRUE
CamPointNum (Cam point number)	Select the read point of the cam	UINT		Exexcute from FALSE to TRUE
MasterPos	Set read command spindle position of the electronic cam point	LREAL	A positive number, 0	MasterPos
SlavePos	Reading instruction is provided from an electronic point of the cam shaft position	LREAL	Positive, negative, 0	SlavePos

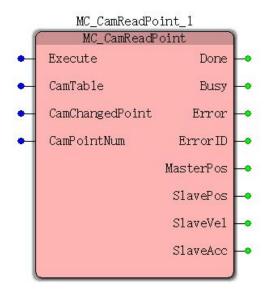
SlaveVel	Set read command from the electronic cam shaft speed point	LREAL	Positive, negative, 0	SlaveVel
SlaveAcc	Set read command from the electronic cam shaft acceleration point	LREAL	Positive, negative, 0	SlaveAcc

Output parameters

name	Features	type of data	Output range
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

> FIG output timing parameters

Case 1: When the Execute FALSE to TRUE, while Done becomes TRUE, and if the time Execute to FALSE, FALSE becomes Done


Function Description

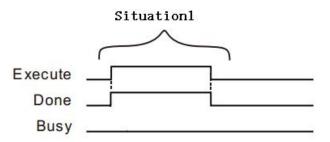
This instruction is used to write information in the electronic table cam of the cam point. After a successful write electronic cam point, the curve after the change does not take effect immediately, you need to change the instruction execution after MC_CamSet cam curve to take effect.

11.5.15 MC_CamReadPoint (cam point information reading

instruction)

FB / FC	Explanation	Applicable model
FB	This instruction is used to read the cam point	VEC-VA-MP-005-
	information	MA

name	Features	type of data	Predeter mined area (Default value)	The timing of the entry into force
Execute (Execute bit)	When the Execute FALSE to TRUE, the instruction execution starts	BOOL	TRUE or FALSE (FALSE)	
CamTable (Electronic cam No.)	Establishing a main cam for setting table based on the relationship of the cam shaft from	USINT	0 to 31	Exexcute from FALSE to TRUE
CamChangePoint (Cam point before or after the information selection change)	When is FALSE, the command to read information before the change point of the cam; When TRUE, the command reads the information after the change point of the cam.	BOOL	TRUE / FALSE	Exexcute from FALSE to TRUE


Input parameters

CamPointNum (Cam point number)	Select the read point of the cam	UINT		Exexcute from FALSE to TRUE
-----------------------------------	-------------------------------------	------	--	-----------------------------------

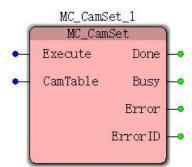
name	Features	type of data	Output range
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-
MasterPos	Set read command spindle position of the electronic cam point	LREAL	A positive number, 0
SlavePos	Reading instruction is provided from an electronic point of the cam shaft position	LREAL	Positive, negative, 0
SlaveVel	Set read command from the electronic cam shaft speed point	LREAL	Positive, negative, 0
SlaveAcc	Set read command from the electronic cam shaft acceleration point	LREAL	Positive, negative, 0

> Output parameters

> FIG output timing parameters

Case 1: When the Execute FALSE to TRUE, while Done becomes TRUE, and if the time Execute to FALSE, FALSE becomes Done

Function Description

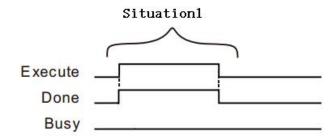

This instruction is used to read information in an electronic cam CAM table points. When

CamChangedPoint is FALSE, the read information before the cam point instruction MC_CamSet changes, when CamChangedPoint is TRUE, the read point of the cam changes MC_CamSet instruction information.

11.5.16 MC_CamSet (changes to take effect cam point

instructions)

FB / FC	Explanation	Applicable model
FB	This instruction is used to change the point of entry	VEC-VA-MP-005-
	into force of the cam	MA


> Input parameters

name	Features	type of data	Predeter mined area (Default value)	The timing of the entry into force
Execute (Execute bit)	When the Execute FALSE to TRUE, the instruction execution starts	BOOL	TRUE or FALSE (FALSE)	
CamTable (Electronic cam No.)	Establishing a main cam for setting table based on the relationship of the cam shaft from	USINT	0 to 31	Exexcute from FALSE to TRUE

> Output parameters

name	Features	type of data	Output range
Done (done bit)	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

> FIG output timing parameters

Case 1: When the Execute FALSE to TRUE, while Done becomes TRUE, and if the time Execute to FALSE, FALSE becomes Done

Function Description:

This instruction is used to change the point of entry into force of the cam. First instruction using MC_CamWritePoint electronic cam cam point information table corresponding write, and execute instructions MC CamSet, the change takes effect cam point information.

MC_CamSet instruction execution, the cam curve after the changes take effect immediately.

11.5.17 MC_ReadTappetStatus (read status command

FB / FC	Explanation	Applicable model	
FB	This instruction is used to read the	e state of a plurality	VEC-VA-MP-005-
	of points tappets		MA
	 TappetNum3 TappetNum4 TappetNum5 TappetNum6 		

TappetNum8

Status6 Status7 Status8

plurality of lifters points)

≻	Input par	rameters
-	input pai	ameters

name	Features	type of data	Predetermined area (Default value)	The timing of the entry into force
Execute (Execute bit)	When the Execute FALSE to TRUE, the instruction execution starts	BOOL	TRUE or FALSE (FALSE)	
CamTable (Electronic cam No.)	Establishing a main cam for setting table based on the relationship of the cam shaft from	USINT	0 to 31	Exexcute from FALSE to TRUE
TappetNum1 (Tappet point number)	Tappet set point number	UINT	(Non-defa ult)	Exexcute from FALSE to TRUE
TappetNum2 (Tappet point number)	Tappet set point number	UINT	(Non-defa ult)	Exexcute from FALSE to TRUE
TappetNum3 (Tappet point number)	Tappet set point number	UINT	(Non-default)	Exexcute from FALSE to TRUE

TappetNum4 (Tappet point number)	Tappet set point number	UINT	(Non-default)	Exexcute from FALSE to TRUE
TappetNum5 (Tappet point number)	Tappet set point number	UINT	(Non-default)	Exexcute from FALSE to TRUE
TappetNum6 (Tappet point number)	Tappet set point number	UINT	(Non-default)	Exexcute from FALSE to TRUE
TappetNum7 (Tappet point number)	Tappet set point number	UINT	(Non-default)	Exexcute from FALSE to TRUE
TappetNum8 (Tappet point number)	Tappet set point number	UINT	(Non-default)	Exexcute from FALSE to TRUE

name	Features	type of data	Output range
Valid	The parameter is TRUE outputs a command valid when executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error code when execution instruction	WORD	-
Status1 (1 point tappet state)	StateTappetNum1specifiednumberoftappet	BOOL	TRUE or FALSE
Status2 (2 tappet point state)	State TappetNum2 specified number of points tappet	BOOL	TRUE or FALSE
Status3 (3 tappet point state)	State TappetNum3 specified number of points tappet	BOOL	TRUE or FALSE
Status4 (4 tappets point state)	State TappetNum4 specified number of points tappet	BOOL	TRUE or FALSE
Status5 (Ram state point 5)	StateTappetNum5specifiednumberoftappet	BOOL	TRUE or FALSE
Status6 (6 points tappet state)	State TappetNum6 specified number of points	BOOL	TRUE or FALSE

> Output parameters

	tappet		
Status7 (Tappet state point 7)	State TappetNum7 specified number of points tappet	BOOL	TRUE or FALSE
Status8 (8 tappet point state)	StateTappetNum8specifiednumberoftappet	BOOL	TRUE or FALSE

Function Description

This instruction is used to read the state of eight points of the tappet. Each tappet point state spindle through the forward or reverse state point of the tappet, the tappet of each state point is determined by the setting of each lifter point. The status of each point in the tappet end of the cam shaft through the forward or backward through the cam start point to FALSE.

11.5.18 MC_ReadTappetValue (single read command tappet

point information)

FB / FC	Explanation			Applicable model
FB	This instruction is a sir	gle instruction f	for reading	VEC-VA-MP-005-
	information	appet point		MA
		e Busy		

Input parameters

name	Features	type of data	Predeter mined area (Default value)	The timing of the entry into force
Execute	When the Execute		TRUE or	
(Execute bit)	FALSE to TRUE, the	BOOL	FALSE	
(Execute off)	instruction execution starts		(FALSE)	
CamTable (Electronic cam No.)	Establishing a main cam for setting table based on the relationship of the cam shaft from	USINT	0 to 31	Exexcute from FALSE to TRUE
TappetNum (Tappet point number)	Read tappet point number	UINT	(Non-defa ult)	Exexcute from FALSE to TRUE

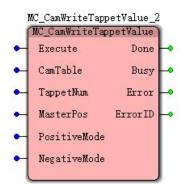
> Output parameters

name	Features	type of data	Output range
Valid	The parameter is TRUE outputs a command valid when	BOOL	TRUE or FALSE
Busy (execution)	executed This parameter indicates to TRUE output instruction is	BOOL	TRUE or FALSE
	executed		

Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-
MasterPos (Spindle position)	Display spindle position	LREAL	
PositiveMode (Forward through mode)	When the tappet axis positive rotation through point selection mode	INT	0: PositiveDisable 1: PositiveOn 2: PositiveOff 3: PositiveInvert
NegativeMode (After reverse mode)	After the tappet axis inversion point when the selected mode	INT	0: NegativeDisable 1: NegativeOn 2: NegativeOff 3: NegativeInvert

Function Description

Tappet point information includes the location of the main point of the tappet, the forward and reverse passes through the pattern mode. When the shaft forward tappet point may select modes are PositiveDisable, PositiveOn, PositiveOff or PositiveIvert; mode when the tappet axis inversion point may select are NegativeDisable, NegativeOn, NegativeOff or NegativeIvert. The meaning of each pattern represents the following table:


mode	Features	meaning	
PositiveDisable	shut	Spindle forward passes that point, to read the state of	
	down	the tappet point unchanged	
PositiveOn	Position	Spindle forward passes this point, the read state	
		when the tappet point set state.	
PositiveOff	Reset	Spindle forward passes this point, the read state	
		when the tappet point reset state.	
PositiveInvert	Negate	Spindle forward passes this point, forward after the	
		state before the set point, then the read state when the	
		reset state of the tappet point; forward state before the	
		point after a reset, the read state when the tappet point set	
		state.	
NegativeDisable	shut	Spindle reverse passes this point, the state of the read	
	down	point tappet unchanged	
NegativeOn	Position	The spindle back up through this point, the read state	
		when the tappet point set state.	
NegativeOff	Reset	The spindle back up through this point, the read state	
		when the tappet point reset state.	

NegativeInvert	Negate	The spindle back up through the point, after the
		reverse state before the set point, then the read state when
		the tappet point reset state; the state before the reverse
		point after a reset, the read state when the tappet point set
		state.

11.5.19 MC_WriteTappetValue (edit point information tappet

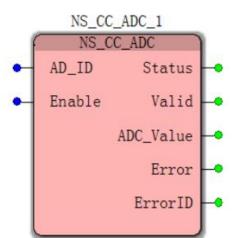
instruction)

FB / FC	Explanation	Applicable model
FB	This command is used to write, add, delete	VEC-VA-MP-005-
	information tappet point instruction	MA

Input parameters

name	Features	type of data	Predeter mined area (Default value)	The timing of the entry into force
Execute (Execute bit)	When the Execute FALSE to TRUE, the instruction execution starts	BOOL	TRUE or FALSE (FALSE)	
CamTable (Electronic cam No.)	Establishing a main cam for setting table based on the relationship of the cam shaft from	USINT	0 to 31	Exexcute from FALSE to TRUE
TappetNum (Tappet point number)	Read tappet point number	UINT	(Non-default)	Exexcute from FALSE to TRUE
MasterPos (Spindle position)	Tappet spindle position set point	LREAL		Exexcute from FALSE to TRUE
PositiveMode (Forward through mode)	Forward tappet axis point mode setting 0:Close 1: Set 2: Reset 3: Inversion	INT	0-3 (0)	Exexcute from FALSE to TRUE

NegativeMode (After reverse mode)	Mode setting tappet axis inversion point 0:Close 1: Set 2: Reset 3: Inversion	INT	0-3 (0)	Exexcute from FALSE to TRUE
---	--	-----	------------	-----------------------------------


> Output parameters

name	Features	type of data	Output range
Done (done bit)	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

11.6 special instructions

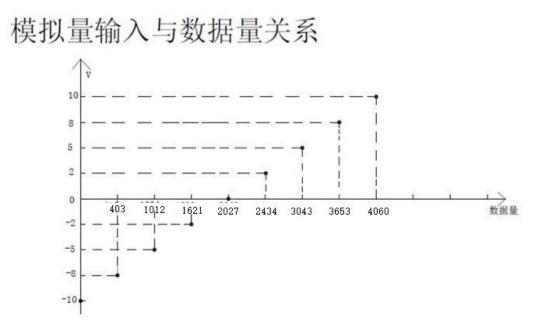
11.6.1 NS_CC_ADC (AD instruction)

FB / FC	Explanation	Applicable model
FB	This instruction is used to convert analog to digital	VEC-VA-MP-005-
	and outputs	MA

Input parameters

name	Features	type of data	Predeter mined area (Default value)	The timing of the entry into force
AD_ID (Analog input number)	Select the required analog rpm The amount of opening AI0 ~ AI3, wherein Numerical Simulation of 0 to 3 corresponding to the number of Input port AI0 ~ AI3	WORD	0-3 (Non-defa ult)	Enable is TRUE
Enable (Execute bit)	When Enable is TRUE, the instruction is executed	BOOL	TRUE or FALSE	

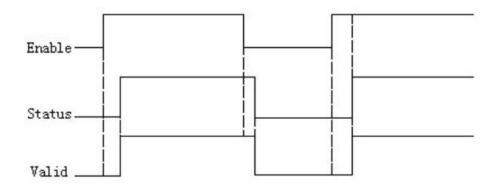
Description:


(1) The controller has four analog inputs $(\pm 10V)$ Shown relation between the analog and digital conversion of the following amounts:

name	Numerical
Analog input voltage (V)	0 ~ -10 ~ + 10
Digital	0 ~ 2048 ~ 4096

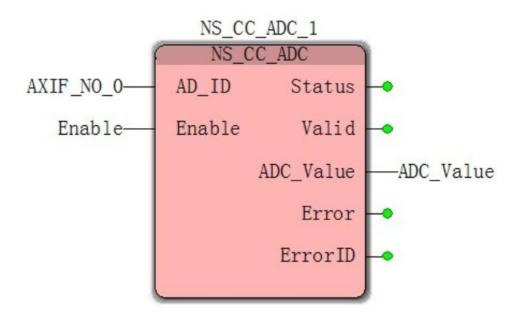
(2) The experimental results (due to the presence of an error, there will be fluctuations in the corresponding digital value for reference)

Input voltage(V)	Digital
0	2028
2	2434
5	3043
8	3653
10	4060
-10	0
-8	403
-5	1012
-2	1621
0	2027


(3)Test table obtained by the analog input and the amount of data relationship diagram

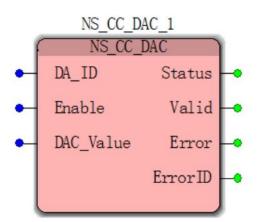
name	Features	type of data	Output range
Status (Status bit)	The output parameter is TRUE Representing instructions being executed in	BOOL	TRUE or FALSE
Valid (Significant Bit Enable)	When the output parameter is TRUE. Indicates that the instruction is controlling the axis	BOOL	TRUE or FALSE
ADC_Value (Analog current value of the amount of data transferred)	The current output is converted to analog. As the amount of data values	DINT	0~4096
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (Error code ID)	Error Error code when execution instruction	WORD	-

Output parameters


• FIG timing variation output parameter

Program Example

AI0 input 5V, instructions into the data amount value ADC_Value


variable name	type of data	The initial value
NS_CC_ADC_1	AXIF_NO_0	
AXIF_NO_0	WORD	0
Enable	BOOL	

Case 1: When the Enable FALSE to TRUE, the external input AI0 DC5V, the controller converts the 5V voltage into a digital output displays ADC_Vable 3070 (there may be errors to the actual subject)

11.6.2 NS_CC_DAC (DA instruction)

FB / FC	Explanation	Applicable model	
FB	The instructions for converting the data amount into	VEC-VA-MP-005-MA	
	an analog output		
	(Output voltage range of \pm 10V)		

> Input parameters

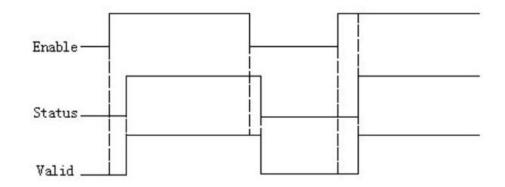
name	Features	type of data	Predeter mined area (Default value)	The timing of the entry into force
DA_ID (Analog input number)	Select the analog port as an output, The corresponding number of 0 to 3 AXIS0 ~ AXIS3 shaft	WORD	0-3 (Non-default)	Enable is TRUE
Enable (Execute bit)	WhenEnableisTRUE, the instructionisexecuted	BOOL	TRUE or FALSE	
DAC_Value (The quantity of data is provided)	Setting data value	DINT	-2048 to 2047	Enable is TRUE

Description:

(1) Digital-to-analog quantity corresponding to the following relationship:

Digital input : -2048 ~0 0~ 2047

Analog output :-10V ~ 0V \sim 0V ~ 10V

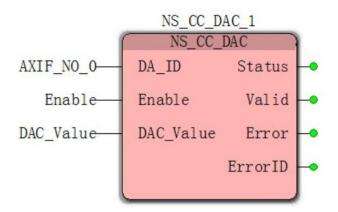

(2) when this instruction is executed, the variable value is 0 DAC_Value, standard analog output 0V.

(3) This is an open loop control instruction, the execution module, the input voltage according to the corresponding value DAC_Value.

name	Features	type of data	Output range
Status (Status bit)	The output parameter is TRUE Representing instructions being executed in	BOOL	TRUE or FALSE
Valid (Significant Bit Enable)	The output parameter is TRUE Is a command indicating the control shaft	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (Error code ID)	Error Error code when execution instruction	WORD	-

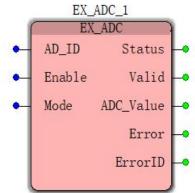
Output parameters

• FIG timing variation output parameter



Program Example

Meter testing the first channel DA output 5V


Variable name	type of data	The initial value
NS_CC_DAC_1	NS_CC_DAC	
AXIF_NO_0	WORD	0
Enable	BOOL	
DAC_Value	DINT	0

situation1: When Enable changes from FALSE to TRUE, Valid changes from FALSE to TRUE, and the next cycle, the analog quantity output 0V, the modified variable DAC_Value is 1024, the analog output 5V.

11.6.3 EX_ADC (AD extended instruction)

FB / FC	Explanation	Applicable model
FB	This instruction is used to convert the analog input	VEC-VA-MP-005-MA
	expansion module into AD and outputs the data amount	

> Input parameters

			Predeter	The timing
name	Features	type of data	mined area	of the entry
			(Default value)	into force
	Select the required			
AD ID	analog rpm.The amount of			
(Analog input	opening AI4 ~ AI36, value	WORD	4 to 36	Enable is TRUE
number)	of 4-7 corresponds to the		(Non-default)	
,	first extension module of			
	AD V0 ~ V4			
Enable	When Enable is		TRUE or	
(Execute bit)	TRUE, the instruction is	BOOL	FALSE	
	executed			
	Under different modes			
	EX_ADC			
	0, corresponding to			
	the input voltage of 0 to 5 0			
	to 4095			
	1, $0 \sim 10V$ input			
Mode (Mode)	voltage corresponding to 0	WORD	0-3	
, , ,	to 4095		(Non-default)	
	2, the input voltage			
	corresponding to 0 to 4095			
	\pm 10V			
	3, 4 ~ 20mA input			
	current corresponding to			
	819 to 4095			

Output parameters			
name	Features	type of data	Output range
Status (Status bit)	The outputparameterisTRUE.Representinginstructions being executed in	BOOL	TRUE or FALSE
Valid (Significant Bit Enable)	The output parameter is TRUE. Is a command indicating the control shaft	BOOL	TRUE or FALSE
ADC_Value (Analog current value of the amount of data transferred)	The current output is converted to analog. As the amount of data values	DINT	0~4096
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (Error code ID)	Error Error code when execution instruction	WORD	-

> Output parameters

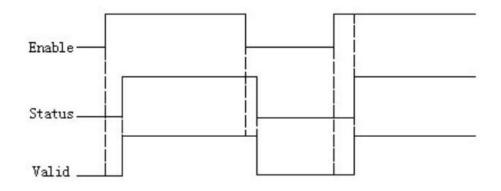
11.6.4 EX_DAC (DA expansion module)

FB / FC	Explanation	Applicable model
FB	The instructions for converting the data amount DA	VEC-VA-MP-005-MA
	expansion module into analog outputs	
	EX_DAC_2 EX_DAC DA_ID Status Enable Valid	

DAC_Value

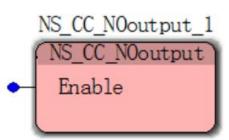
Mode

Error


Error ID

			Predeter	The timing
name	Features	type of data	mined area (Default value)	of the entry into force
AD_ID (Analog input number)	Select the required analog rpm. The amount of opening AI4 ~ AI36.Value of 4-7 corresponds to the first extension module of AD V0 ~ V4	WORD	4 to 36 (Non-default)	Enable is TRUE
Enable (Execute bit)	When Enable is TRUE, the instruction is executed	BOOL	TRUE or FALSE	
DAC_Value (The quantity of data is provided)	Setting data value	DINT	0 to 4095	Enable is TRUE
Mode (Mode)	Under different modes EX_DAC 0,0 to 4095 corresponding to the output voltage10V ~ + 10V 1,0 to 4095 corresponding to the output voltage -0V ~ + 5V 2,0 to 4095 corresponding to the output voltage -0V ~ + 10V	WORD	0-2 (Non-default)	

, ouput parameters			
name	Features	type of data	Output range
Status (Status bit)	The output parameter is TRUE Representing instructions being executed in	BOOL	TRUE or FALSE
Valid (Significant Bit Enable)	The output parameter is TRUE Is a command indicating the control shaft	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (Error code ID)	Error Error code when execution instruction	WORD	-


> Output parameters

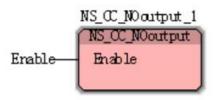
• Timing variation output parameter

11.6.5 NS_CC_NOoutput (prohibition command output QXX)

FB / FC	Explanation	Applicable model
FB	This command prohibits all QX output (X: represents	VEC-VA-MP-005-MA
	0 to 128)	

• Input parameters

name	Features	type of data	Setting range (Non-default)	The timing of the entry into force
Enable (Prohibition significant bit)	TRUE prohibit all QX output, FALSE is allowed QX output.	BOOL	TRUE or FALSE	


Function Description:

(1) This command disables all QXX output user selected according to site requirements.

(2) When Enable is TRUE when all of the DO, the output will be disabled when Enable is FALSE, the DO restored to the state before the execution of the module (all the QX is prohibited, can not specify a single QX.X);

Program Example

Variable name	type of data	The initial value
NS_CC_NOoutput	NS_CC_NOoutput	
Enable	BOOL	

situation1:whenEnablebyFALSEChanges toTRUEWhen allDigitalOutput will be banned output, whenEnable byTRUEChanges toFALSETime,QXXTo restore the state before.

11.6.6 NS_CC_Counter (High-Speed Counter)

FB / FC	Explanation	Applicable model	
FB For countir	ng the number of pulses, the counting	VEC-VA-MP-005-	
method is not a	ffected by a hardware counter scanning	MA	
period, the maxim	period, the maximum count frequency is 1MHz		
	NS_CC_Counter_2		
	AXIF_no AXIF_no_out		
	Active_Axis Status		
	- Enable Valid		
	DI_Start_Valid Start_Valid		
	← Start Dir_out ←		
	 DI_Reset_Valid_Level Count_out 		
	JI_Reset_Valid_DEdge Error		
	DI_Reset_Valid_UEdge ErrorID		
	 DI_Reset_No 		
	 DI_Reset_Len_Valid 		
	 DI_Reset_Len_Min 		
	 DI_Reset_Len_Max 		
	- Reset		
	← Mode		
	•U_D		
	Count_Cycle_Valid		
	- Count_Cycle		
	 Set_Count_Valid 		
	 Set_Count 		

Input parameters

name	Features	type of data	Range setting (default value)	The timing of the entry into force
AXIF_no (Count axis number)	Set number counter shaft	WORD	0-6 (0)	Enable TRUE when the FALSE to
Active_Axi s (Current count axis)	Pulse count setting Source: 0: AXIS0; 1: AXIS1; 2: AXIS2; 3: AXIS3 4: AXIS4	WORD	0-4	Enable TRUE when the FALSE to

	1			,
Enable (Execute bit)	When Enable by FALSE Changes toTRUE When the instruction is executed.	BOOL	TRUE or FALSE	-
DI_Start_Valid (External DI start significant bit)	When the DI_Start_Valid When becomes FALSE TRUE, it allows you to specify the external DI active, high-speed counter starts (DI has been specified, be described in detail down)	BOOL	TRUE or FALSE	-
Start (Start bit)	When Start is TRUE, start high-speed counter	BOOL	TRUE or FALSE	-
DI_Rest_Valid _Level (External active-high bit is cleared DI)	When DI_Reset_Valid_ Level is TRUE, DI is cleared to clear high	BOOL	TRUE or FALSE	-
DI_Rest_Valid _DEdge (External DI cleared falling Significant bit)	When DI_Reset_Valid_ Dedge is TRUE, DI cleared the falling edge clear	BOOL	TRUE or FALSE	-
DI_Rest_Valid _UEdge (Rising external DI cleared Significant bit)	When DI_Reset_Valid_ Uedge is TRUE, DI cleared to rising cleared	BOOL	TRUE or FALSE	-
DI_Reset_No (External input DI cleared number)	Specifies the external clear signal terminal, the input value of 0 to 7 corresponding to the input point $I0 \sim I7,8 \sim 15$ corresponding to the input point $I10 \sim I17$	WORD	TRUE or FALSE	-
DI_Rest_Len_ Valid (External DI clearing interval significant bit)	When DI_Rest_Len_Valid When TRUE, DI clear signal only effective in clearing the zone	BOOL	TRUE or FALSE	-
DI_Reset_Len	Setting a valid range	WORD		-

_Min	limit signal DI is cleared			
(External DI				
cleared range				
floor)				
DI_Reset_Len				
_Max	The upper limit is set			
(External DI	valid interval signal DI is	WORD		-
cleared range	cleared			
ceiling)				
	When Reset is TRUE,			
Reset	clears the counter current	BOOL	TRUE or FALSE	-
(Clear bit)	value			
Mode				
(Mode selection)	Retention	DINT	Retention	-
· · · · · · · · · · · · · · · · · · ·				
U_D		דאות		
(Counting	Retention	DINT	Retention	-
direction)				
	When is Count_Cycle_			
	Valid is TRUE, start the			
	counting cycles when the			
Count_Cycle_	counter value reaches the	BOOL TRUE or FALSE		
Valid	counter Count_Cycle set		TDUE or EALSE	
	value, the new count is		TRUE OF FALSE	-
(Cycle Count	automatically cleared,			
Valid bits)	constant cycle.			
	Count_Cycle_Valid to			
	FALSE when not enable			
	this feature.			
	When is Count Cycle			
	Valid is TRUE, start the			
	counting cycles when the			
Count Cycl	counter value reaches the			
e (Saturala)	counter Count_Cycle set	דאות	Desitions	
(Set pulse	value, the new count is	DINT	Positive, negative,	-
loop counter	automatically cleared,			
value)	constant			
	cycle.Count_Cycle_Valid			
	to FALSE when not enable			
	this feature.			
Set Count Valid	When the Set_Count_			
	Valid is TRUE, the			
(Pulse current	High-speed counter current	BOOL	TRUE or FALSE	-
count value set	value is set to Set_Count			
valid bit)	value			
		1	1	1

Set_Count				
(Set the current count of	High-speed counter current value setting	DINT	Positive, negative, 0	-
pulses)	current value setting		negative, o	

Description:

(1) 5-way motion controller integrated with hardware high speed counter respectively port AXIS0 \sim AXIS4 (currently only supports the AB phase signal), the counting is not affected by a pure hardware scan cycle, the maximum count frequency is 1MHz. 5-way counter port 7 can be called high-speed counter module AXIF_no (counter number) from 0 to 6, respectively, are opposite to each other counting methods, without disturbing each other.

(2) This command integrates feature-rich, containing DI external start, the counter is cleared, and clearing the counter variable start, cycle counting function, set the number of functions,

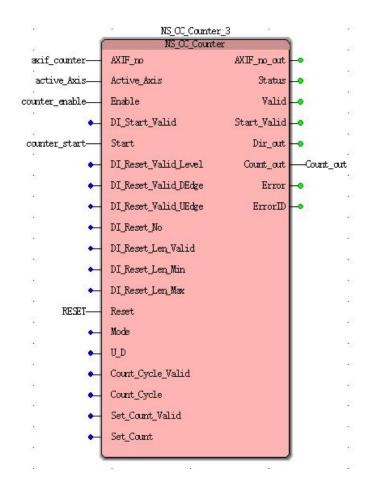
(3) sources by pulse counter Active_Axis (axis current count) is selected, any given, but also cross-axis counting function.

(4) high-speed counter-rich functional integration, can be selected according to requirements, function of the input parameters to an unused blank.

(5) Start the external terminals DI internal high-speed counter has been specified, when a high number counter, when DI_Start_Valid is TRUE, the terminal being used as the external DI start high-speed counter input terminals, when DI_Start_Valid is FALSE, but when an ordinary I / O using the following specific distribution

AXIF_no (axis number)	Specifies the external	DI_Reset_No
	terminals DI as the start	
	counter signal high	
0	DI0.3	Optional (not allowed to repeat with
		DI start)
1	DI0.5	Optional (not allowed to repeat with
		DI start)
2	DI0.7	Optional (not allowed to repeat with
		DI start)
3	DI1.1	Optional (not allowed to repeat with
		DI start)
4	DI1.3	Optional (not allowed to repeat with
		DI start)
5	DI1.5	Optional (not allowed to repeat with
		DI start)
6	DI1.7	Optional (not allowed to repeat with
		DI start)

Output parameters

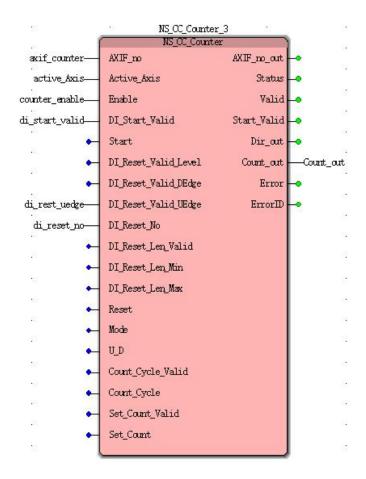

name	Features	type of data	Output range
AXIF_no_out	No current count output	WORD	0-6
(Output axis number)	shaft	WORD	0-0
Status (Status bit)	The output parameter isTRUE.Representinginstructions being executed in	BOOL	TRUE or FALSE
Valid (Significant Bit Enable)	The output parameter is TRUE. Is a command indicating the control shaft	BOOL	TRUE or FALSE
Start_Valid	Retention	BOOL	-
Dir_out	Retention	BOOL	-
Count_out	Current count of pulses	DINT	Positive, negative, 0
Error	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID	Error Error code when execution instruction	WORD	-

Demonstration program I

Example: Variable start pulse and clears the count shaft axif_counter

1. Variables, and procedures

Variable name	type of data	The initial value
NS_CC_Counter_3	NS_CC_Counter	
axif_counter	WORD	0
active_Axis	WORD	0
counter_enable	BOOL	1
counter_start	BOOL	1
RESET	BOOL	

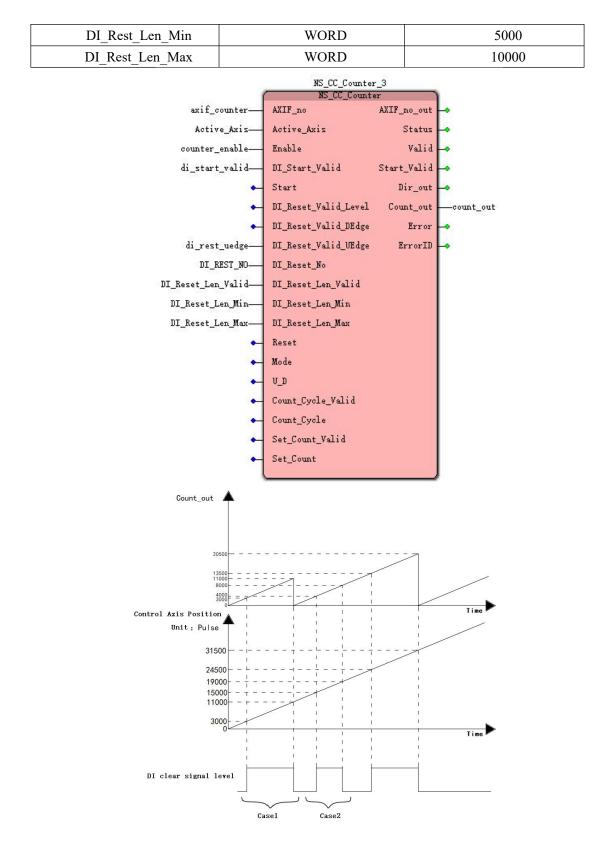

Case 1:When counter_enable from FALSE to TRUE, and held, counter_start from FALSE to TRUE starts allows high-speed counter, Count_out display the current count of pulses. When the RESET FALSE to TRUE, Count_out display the current pulse count is 0, then the number of the input pulse, Count_out display the current pulse count remains at 0 when the RESET TRUE to FALSE, allowed to continue to start counting.

🧹 Demonstration Program II

Example: external terminal DI3 counter is cleared and the start pulse number axif_counter outer shaft DI0

Variable name	type of data	The initial value
NS_CC_Counter_3	NS_CC_Counter	
axif_counter	WORD	0
active_Axis	WORD	0
counter_enable	BOOL	1
di_start_Valid	BOOL	1
di_reset_uedge	BOOL	1
di_reset_no	BOOL	0

1. Variables, and procedures


Case 1:When counter_enable FALSE to TRUE grounds, and maintained. di_start_Valid becomes TRUE, and if the external signal DI3 signal is valid, the counter 3 starts counting the number of high, Count_out display the current pulse when the rising edge DI0 di_reset_no specified, the current value of the high-speed counter is cleared.

🗹 Demonstration program 🎹

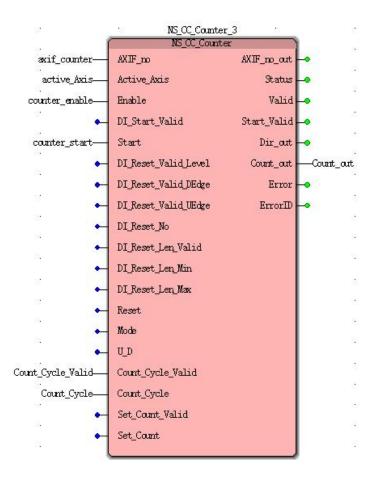
Example: outer boot and the external terminals DI0 DI3 is cleared, and sets the number of pulses axif_counter external shaft section DI valid counter is cleared

Variable name	type of data	The initial value
NS_CC_Counter_3	NS_CC_Counter	
axif_counter	WORD	0
active_Axis	WORD	0
counter_enable	BOOL	1
di_start_Valid	BOOL	1
di_reset_uedge	BOOL	1
di_reset_no	BOOL	0
DI_Rest_Len_Valid	BOOL	1

1. variables, and procedures

Case 1:When counter_enable FALSE to TRUE grounds, and maintained. di_start_Valid becomes TRUE when the external signal DI3 signal is valid, the counter 3 starts counting the number of high, Count_out display the current pulse, when the designated DI0 di_reset_no from FALSE to TRUE again until DI0 becomes FALSE, the controlled axis through this period

displacement (pulse) 8000 (11000-3000), $DI_Rest_Len_Min \sim DI_Rest_Len_Max$ within the set range, so again when DI0 to FALSE, the operation of Count out cleared.

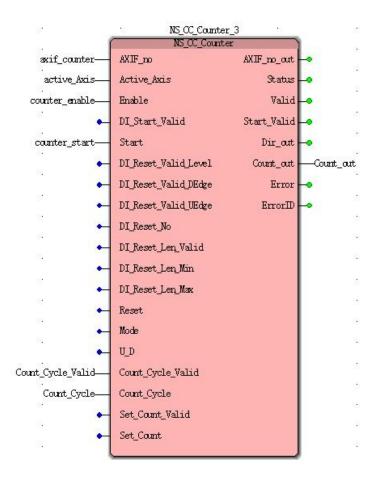

Case 2:When counter_enable FALSE to TRUE grounds, and maintained. di_start_Valid becomes TRUE when the external signal DI3 signal is valid, the counter 3 starts counting the number of high, Count_out display the current pulse, when the designated DI0 di_reset_no from FALSE to TRUE again until DI0 becomes FALSE, the controlled axis through this period displacement (pulse) 4000 (19000-15000), is not within DI_Rest_Len_Min ~ DI_Rest_Len_Max set interval, and therefore becomes FALSE when DI0 again, will not be cleared Count_out operation.

Demonstration program IV

Example: loop count mode pulse number counter shaft axif counter

Variable name	type of data	The initial value
NS_CC_Counter_3	NS_CC_Counter	
axif_counter	WORD	0
active_Axis	WORD	0
counter_enable	BOOL	1
counter_start	BOOL	1
Count_Cycle_Valid	BOOL	1
Count_Cycle	DINT	5000

1, variables, and procedures

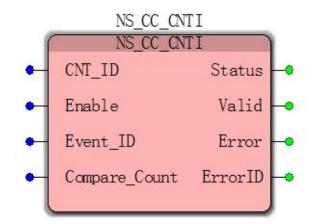

Case 1:When counter_enable from FALSE to TRUE, and held, counter_start from FALSE to TRUE starts allows high-speed counter, Count_out display the current count of pulses. When the high-speed counter current value of 5000, the counter is automatically cleared recount, constant cycle.

Oemonstration program V

Modes Number of pulses counter shaft axif_counter

r, vuluolos, una procedulos			
Variable name	type of data	The initial value	
NS_CC_Counter_3	NS_CC_Counter		
Axif_counter	WORD	0	
active_Axis	WORD	0	
counter_enable	BOOL	1	
Star	BOOL	1	
Set_Count_Valid	BOOL		
Set_Count	DINT	10000	

1.	variables.	and	procedures
	, an access	wiite	procedates



Case 1:When counter_enable a FALSE to TRUE, counter_start from FALSE to TRUE starts allows high-speed counter, Count_out display the current count of pulses. When Set_Count_Valid variable from FALSE becomes TRUE, high-speed counter Count_out current value is modified 10,000, and kept 10,000, when Set_Count_Valid variable by TRUE becomes FALSE, when a pulse comes in, counts the number of pulses will continue to increment the basis of 10,000 or on decremented.

11.6.7 NS_CC_CNTI (high-speed counter interrupt

instruction)

FB / FC	Explanation	Applicable model
FB	This instruction is used to generate an interrupt when	VEC-VA-MP-005-MA
	the pulse number reaches the set current value of the	
	high-speed counter, interrupt routine is entered	

• Input parameters

• Input paramete	.1.5			r
name	Features	type of data	Setting range	The timing of the
			(Non-default)	entry into force
CNT_ID	High count	WORD	0 to 1	Execute from
(Associated counter	associated with		(Indispensable)	FALSE to TRUE
number)	the specified			
	number, which			
	is automatically			
	associated with			
	the counter			
	number is equal			
	to			
Enable (execute bit)	When the	BOOL	TRUE or	Execute from
	Enable FALSE		FALSE	FALSE to TRUE
	to TRUE, the			
	instruction is			
	executed.			
Event_ID	Set interrupt	WORD	0-5	Execute from
(interruption)	event number			FALSE to TRUE
	(0-5) is			
	consistent with			
	the interrupt			
	routine event			

	number.			
Compare_Count	Set interrupt	DINT	A positive number	Execute from
(Set pulse number)	pulse number		(Non-default)	FALSE to TRUE

• Output parameters

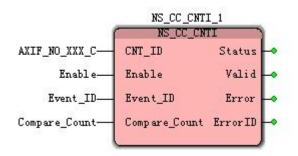
name	Features	type of data	Output range
The Status (Status bits)	This parameter indicates when the output instruction is being executed is TRUE	BOOL	TRUE or FALSE
Valid (valid bit)	RepresentstheoutputparameterisTRUEinstructioniscontrollingshaft	BOOL	TRUE or FALSE
Error (error)	Retention	BOOL	TRUE or FALSE
ErrorID (error code)	Retention	WORD	Retention

Description:

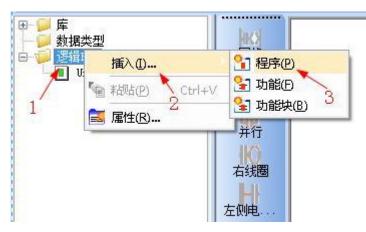
(1) NS_CC_CNTI command (count interrupt instruction) needs to be associated NS_CC_Counter instruction (high-speed counter) used together, whether the person can not be achieved.

(2) NS_CC_CNTI command (interrupt instruction count) is associated NS_CC_Counter instruction (high-speed counter), it is necessary CNT_ID (counter associated axis number) to fill the same with the high-speed counter AXIF_no (counts axis number) to

(3) Counter interrupt instruction currently supports two-way, high-speed counter current numbers 0 and 1 support this feature, and the remaining 2-6 count yet support interrupt function.



Program example (0 high counter interrupt setting)


Variable name	type of data	The initial value
NS_CC_CNTI_1	NS_CC_CNTI	
AXIF_NO_XXX_C	WORD	0
Enable	BOOL	1
Event_ID	WORD	0
Compare_Count	DINT	5000

Step 1: High-speed counter call NS_CC_Counter_1 (refer to Note 1.4.4 counter shaft and the present instruction signal wave consistent, will not be repeated here, a high number of write counter variable)

Step 2: Call NS_CC_CNTI_1 module, as follows

Step 3: The establishment of an interrupt routine in the "Project Tree Window" right "logic POU" select "Insert" and then select "Programs" in the window that pops up to interrupt program named "EN1" (no user name), and choose to write an interrupt routine language "LD language" below 10-10.

Srep 4: When finished, click OK, will automatically add the "logic the POU" to a "EN1" is the name of the program shown in Figure 10-11

Step 5: Just inserted "EN1" belongs to the category of the main program or program, as the new "the POU" software automatically selected when loaded into the new project "Task" CYCLIC type; 10-13 shown in FIG.

-

Step 6:Select under "Project Tree Window", "Hardware", under Resources "task", right-delete "EN1" program and click "OK" we need another new "task type", as shownure 10-14

□ 参 物理硬件 □ 参 配置 : eCLR □ 参 资源 : ARM_LE_GCC3* □		
Global_Variables	144 (@/	•
	删除(D)	Delete
1	👆 剪切(C) 📐	Ctrl+X
	計 复制(0)	Ctrl+C
	「 非初点(P)	Ctrl+V
	从外部变量创建	全局变量(G)
	从全局变量中更	新外部疫量(⊻)
	📑 属性(R)	

Step 7: New "Task Type" right "Tasks" click "insert", and then select the "Tasks" shown in Figure 10-15

● 物理硬件 ● ● 配置: eCLR ● ● 资源: ARM_LE_GCC3* ● ● ● Tasks ● ● ● 任务: CYCLIC				K)
🗌 🗌 🌇 titled :	插入①		任务①	
Global Variables	删除(D)	Delete	程序实	/ 10
1 1	☆ 剪切(C)2 ○2 ○2 ○2 ○2 ○2 ○3 ○3 ○3 ○4 ○4 ○4 ○4 ○4 ○5 ○4 ○5 <td>Ctrl+X Ctrl+C Ctrl+V</td> <td>3</td> <td>右线圈</td>	Ctrl+X Ctrl+C Ctrl+V	3	右线圈
	ा ा ा ा ा ा ा ा ा ा ा ा ा ा ा ा ा ा ा			左侧电
				触点类型

Step 8: In the pop-up to "Insert" dialog box, fill in "ZD" in the name (no user name) Task Type Select "EVENT" are finished, click "OK." FIGS 10-16 shown in FIG.

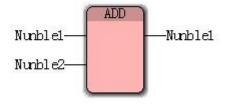
名称(N):	类型	确定
ZD	1	取消
程序类型(M):	 ○ 资源(R) ● 任务(T) ● 程序实例(P) 	帮助(H)
任务类型(Y):	○ 福述(D) ○ 变里(V)	<u></u>
EVENT	-	
	模式:	
	 ○ 插入(I) ◎ 追加(A) 	

Step 9: In the pop up "ZD task settings" Pick selection event number "0 Event" "Event_ID" is determined by the value on the interrupt module fill, Pick 0 (exemplary program "Event_ID = 0") 10-17 in FIG. as shown in (special attention not interrupt priority and the priority of the main program as whether those compiled by not downloading or 97% reported error)

'ZD'的任务设置		23
事件(E):	事件0	•
优先权(P):	0	
监视定时时间(W):	100	臺秒 🔽 使能监视定时器(N
	确定	取消

Step 10:After the insertion procedure of example, the right task, "the EVENT", select "insert" and then select the "program example" 10-18 shown in FIG.

Company of the Party of the Par		网右痛
ZD EVENT	插入①	任务①
IO_C_nfigurat	删除(D) Delete	程序实例(P)
E	• 剪切(C) 2 Ctrl+X 2 复制(Q) 2 Ctrl+X 6 复制(Q) 2 Ctrl+C 6 末訳(C) Ctrl+V	3 左侧
	属性(R))设置(S)	右侧


Step 11:In the pop-up to "insert box", for the example program named "ZD1 is", select the new program type "EN1"

Click "OK" to the final result shown in Figure 10-19

Step 12: "Project" Return "Project Tree Window" in the window, double-EN1 at POU join a summing module (purpose is to verify whether the interrupt routine is executed correctly)

variable name	type of data	The initial value
ADD	ADD	
Nunble1	INT	
Nunble2	INT	1

Interrupt this program to create and association has been completed, the following is the analysis process interrupt routine is executed.

Case 1:Start the high counter, allowing it to count, when the module is NS_CC_CNTI_1 Enable changes from FALSE to TRUE, the interrupt allowed to open, when the current value of the counter reaches the number of high set value 5000 interrupt, the interrupt program is executed once, this time variable Nunble1 a value of 1, after the completion of jump interrupt routine returns to the main. High again becomes the current value of counter 5000, the interrupt routine is executed again, this time is variable Nunble1 2.

11.6.8 NS_CC_CNT_Out (comparison output instruction

section)

FB / FC	Explanation	Applicable model
FB	The instructions for the high-speed counter current	VEC-VA-MP-005-
	value reaches the set interval immediately output, DO	MA
	outputted from the scan cycle Effect	
	NS CC CNT Out 1	

110	NS_CC_CNT_0		
- 1	NS_CC_CNT_(Dut	
•	CNT_ID	Status	•
•	Enable	Valid	•
•	DO_Valid	Out	•
•	Compare_Count1	Error	•
•	Compare_Count2	ErrorID	•
		1	

• Input parameters

name	Features	type of data	Setting range	The timing
			(Non-default)	of the entry
				into force
CNT_ID	Associated with a	WORD	0-6	-
(Counter associated axis	respective number of		(Non-default)	
number)	high-speed counter shaft			
Enable	When the Enable	BOOL	TRUE or	-
(Execute bit)	FALSE to TRUE, the		FALSE	
	instruction is executed.			
DO_Valid	When the value is	BOOL	TRUE or	-
(Allowing the Q output	TRUE, the Q output to		FALSE	
valid bit)	allow effective			
Compare_Count1	Min Min pulse interval	DINT	A positive	-
(Minimum value	is set (unit:)		number	
setting section min)				
Compare_Count2	Setting a maximum	DINT	A positive	-
(Setpoint interval	value Max pulse interval		number	
maximum value Max)	(unit:)			

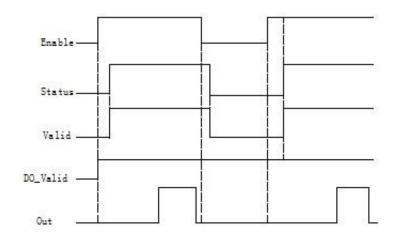
Description:

(1) NS_CC_CNT_Out instruction (instruction comparison output section) needs to be associated NS_CC_Counter instruction (high-speed counter) used together, no meaning when used alone.

(2) NS_CC_CNT_Out instruction (output instruction section compare) instruction correlation NS_CC_Counter (high-speed counter), needs to be provided CNT_ID (number associated with a

counter shaft) filled with the high-speed counter AXIF_no (counts axis number) can be consistent.

(3) comparing the output section of the scan signal is not QXX cycle impact, using the internal FPAG satisfy the condition after the count output.


(4) DO_ID output number counter section, inside of which has specified, the specified relationship is as follows (designated DO_ID, when allowed to use a common DO)

CNT_ID (counter associated axis number)	QXX (output)
0	Q0.0
1	Q0.1
2	Q0.2
3	Q0.3
4	Q0.4
5	Q0.5
6	Q0.6

• Output parameters

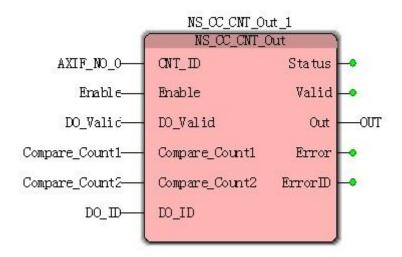
name	Features	type of data	Output range
The Status (Status	This parameter	BOOL	TRUE or FALSE
bits)	indicates when the		
	output instruction is		
	being executed is		
	TRUE		
Valid (valid bit)	Represents the	BOOL	TRUE or FALSE
	output parameter is		
	TRUE instruction is		
	controlling the shaft		
Out (Output signal)	This parameter	BOOL	TRUE or FALSE
	indicates the output		
	being TRUE Q		
	output		
Error (error)	Retention	BOOL	Retention
ErrorID	Retention	WORD	Retention
(error code)			

• FIG timing variation output parameter

Case 1:When the Enable FALSE to TRUE, Status Valid and becomes TRUE after a period and, FALSE when Enable changed from TRUE, Status Valid and from FALSE to TRUE and after a cycle.

2. When the case DO_Valid FALSE to TRUE, the conditions are satisfied by the Out FALSE to TRUE, while the output Q0.0, when the condition is not met by the automatically Out TRUE to FALSE while Q0.0 no output.

Program Example


Example: high speed counter range between 1000 to 5000 output Q0.0;

variable name	type of data	The initial value
AXIF_NO_0	WORD	0
Enable	BOOL	
DO_Valid	BOOL	1
Compare_Count1	DONT	1000
Compare_Count2	DONT	5000
DO_ID	WORD	0
OUT	BOOL	

1, variables, and procedures

Step 1: High-speed counter call NS_CC_Counter_1 (refer to Note 11.7.7 counter shaft and the present instruction signal wave consistent, will not be repeated here write counter variable)

Step 2 : NS_CC_OUT_1 recall module configured as follows

Case 1:Start NS_CC_Counter_1 (high-speed counter module), when the Enable FALSE to TRUE, the execution instruction module, when the current value of the pulse high-speed counter at 1000 and 5000, Q0.0 will output, OUT will be FALSE to TRUE, the current pulse values outside 1000 and 5000, Q0.0 is not output, OUT by TRUE to FALSE.

11.6.9 NS_CC_DI_Counter (DI-speed count instruction)

FB / FC	Explanation			Applicable model	
FB	This instruction for counting high-speed pulse port			VEC-VA-MP-005-MA	
		DI			
		NS CC DI	_Counter_1		
	- 1		I_Counter		
	•	AXIF_no	Status	-	
	•	Enable	Valid	-	
	•	Active_DI	Count_out	-	
	•	Start	Err or	-	
	•	Reset	ErrorID	-•	
	•	DI_Reset_Valid	Level		
		DI_Reset_Valid	_DEdge		
	•	DI_Reset_Valid	_UEdge		
	•	DI_Reset_No			
		U_D			
		Count_Cycle_Va	lid		
		Count_Cycle			
	Set_Count_Valid				
		Set_Count			

Input parameter	S
-----------------	---

name	Features	type of data	Predetermined area (Default value)	The timing of the entry into force
AXIF_no (Count axis number)	Set number counter shaft	WORD	0-6	Enbale is TRUE
Enbale (Execute bit)	when Enable by FALSE Changes toTRUE When the instruction is executed.	BOOL	TRUE or FALSE	
Active_DI (DI input channel number)	Set high-speed counting port DI	WORD	0~15	
Start (Start bit)	When Start is TRUE, DI start high-speed counter	BOOL	TRUE or FALSE	
Reset (Clear bit)	When Reset is TRUE, clears the counter current value	BOOL	TRUE or FALSE	
DI_Reset_Valid_ Level (External DI cleared	When DI_Reset_Valid_ Level is TRUE, DI cleared level Clears	BOOL	TRUE or FALSE	

valid bit level)				
DI_Reset_Valid_ DEdge (External falling edge bit is cleared)	When DI_Reset_Valid_ Dedge is TRUE, DI cleared the falling edge clear	BOOL	TRUE or FALSE	
DI_Reset_Valid_ UEdge (External DI clearing rising significant bit)	When DI_Reset_Valid_ Uedge is TRUE, DI cleared to rising cleared	BOOL	TRUE or FALSE	
DI_Reset_No (External DI cleared)	Specifies the external clear signal terminal, the input value of 0 to 7 corresponding to the input point $I0 \sim I7,8 \sim 15$ corresponding to the input point $I10 \sim I17$	WORD	0~15	
U_D (Bit counting direction)	Counting direction specified counter 0: Negative counting direction 1: positive counting direction	DINT	0 or 1	
Count_Cycle_Va lid (Cycle Count Valid bits)	When Count_Cycle_Valid is TRUE, start the counting cycles when the counter value reaches the counter Count_Cycle set value, the new count is automatically cleared, constant cycle. Count_Cycle_Valid to FALSE when not enable this feature.	BOOL	TRUE or FALSE	
Count_Cycle (Setting DI loop counter value)	When Count_Cycle_Valid is TRUE, start the counting cycles when the counter value reaches the counter Count_Cycle set value, the new count is automatically cleared, constant cycle. Count_Cycle_Valid to FALSE when not enable this feature.	DINT	Positive, negative,	

Set_Count_Valid (Set the current count valid bit DI)	When the Set_Count_Valid is TRUE, the High-speed counter current value is set to Set_Count value	BOOL	TRUE or FALSE	
Set_Count (Set the current count value DI)	High-speed counter current value setting	DINT	Positive, negative, 0	

Description:

(1) body motion controller has 16 digital inputs DI, pure hardware count from the influences of the scan cycle, the maximum input frequency is 5KHz. 8 can be called high-speed counter modules AXIF_no (counter number) from 0 to 6, respectively, are opposite to each other counting methods, without disturbing each other.

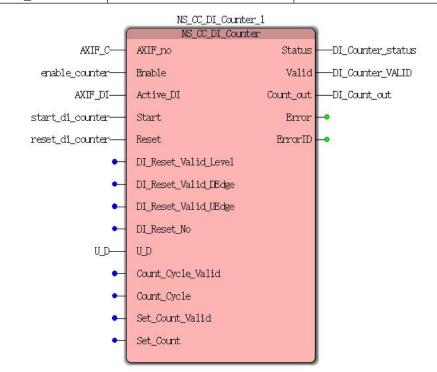
(2) This command integrates feature-rich, with variable start / reset, the count is cleared and the external DI counting direction, cycle counting function, set the number of functions,

(3) sources of counter pulse can be selected by Active_DI (DI input channel number), specified in any of 0 to 15.

(4) DI-rich integration speed counter function, may be selected according to requirements, function of the input parameters to an unused blank.

name	Features	type of data	Output range
Status (Status bit)	The output parameter is TRUE Representing instructions being executed in	BOOL	TRUE or FALSE
Valid (Significant Bit Enable)	The output parameter is TRUE Is a command indicating the control shaft	BOOL	TRUE or FALSE
Count_out	Current count of pulses	DINT	Positive, negative, 0
Error	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID	Error Error code when execution instruction	WORD	-

Output parameters


Demonstration program I

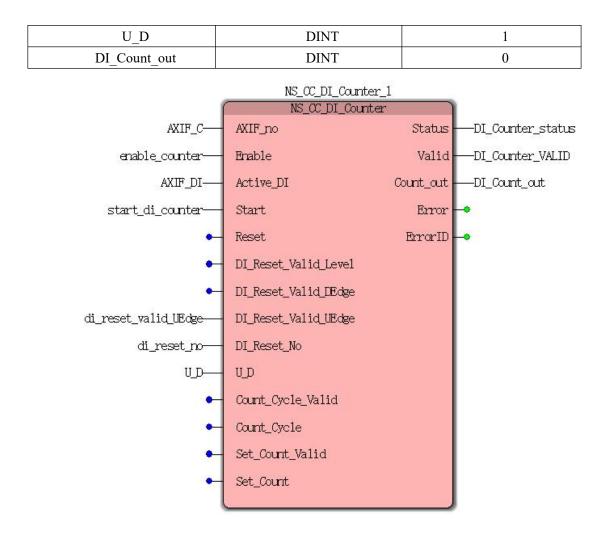
Variable-speed counter start and reset DI

1, variables, and procedures

	Variable name	type of data	The initial value
--	---------------	--------------	-------------------

NS_CC_DI_Counter_1	NS_CC_DI_Counter	
AXIF_0	WORD	0
enbale_counter	BOOL	FALSE
AXIF_DI	WORD	11
start_di_counter	BOOL	FALSE
reset_di_counter	BOOL	FALSE
U_D	DINT	1
DI_Count_out	DINT	0

Case 1:When enable_counter from FALSE to TRUE, and held, start_di_counter start permission from FALSE to TRUE DI-speed counter, DI_Count_out display the current count of pulses. When reset_di_counter a FALSE to TRUE, Count_out display the current pulse count value is 0, then the count pulse input DI, Count_out display the current pulse count remains at 0 when the Reset TRUE to FALSE, allowing counting resumes .


🚺 De

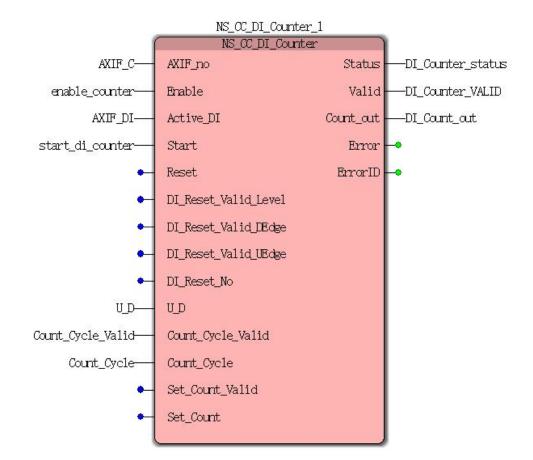
Demonstration program II

Start and external variables DI DI perform high-speed counter reset

1. Antalos, and procedures				
Variable name	type of data	The initial value		
NS_CC_DI_Counter_1	NS_CC_DI_Counter			
AXIF_0	WORD	0		
enbale_counter	BOOL	FALSE		
AXIF_DI	WORD	11		
start_di_counter	BOOL	FALSE		
di_reset_no	BOOL	0		

1. variables, and procedures

Case 1:When enable_counter from FALSE to TRUE, and held, start_di_counter start permission from FALSE to TRUE DI-speed counter, DI_Count_out display the current count of pulses. When the rising edge of DI di_reset_no specified, Count_out current pulse count value is cleared.

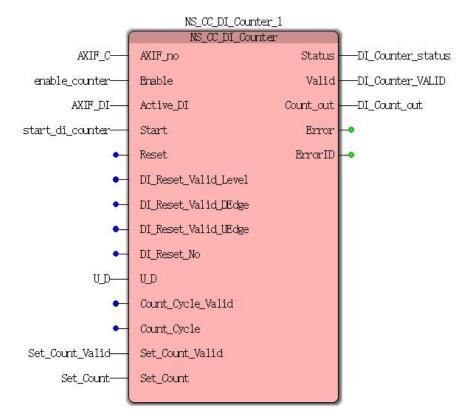

Demonstration program III

Cycle-count mode for carrying out high-speed counter DI

Variable name	type of data	The initial value
NS_CC_DI_Counter_1	NS_CC_DI_Counter	
AXIF_0	WORD	0
enbale_counter	BOOL	FALSE
AXIF_DI	WORD	11
start_di_counter	BOOL	FALSE
U_D	DINT	1
Count_Cycle_Valid	BOOL	TRUE
Count_Cycle	DINT	1000

1, variables, and procedures

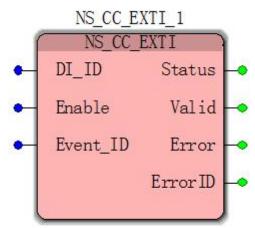
	DI_Count_out	DINT	0
--	--------------	------	---


Case 1:When enable_counter from FALSE to TRUE, and held, start_di_counter start permission from FALSE to TRUE DI-speed counter, a pulse to DI11, DI_Count_out display the current pulse count is incremented, up to 1000 when DI_Count_out recounting is automatically cleared.

Demonstration program IV

Set the number of modes for carrying out high-speed counter DI

Variable name	type of data	The initial value
NS_CC_DI_Counter_1	NS_CC_DI_Counter	
AXIF_0	WORD	0
enbale_counter	BOOL	FALSE
AXIF_DI	WORD	11
start_di_counter	BOOL	FALSE
U_D	DINT	1
Set_Count_Valid	BOOL	TRUE
Set_Count	DINT	1000
DI_Count_out	DINT	0


1. variables, and procedures

Case 1:When counter_enable a FALSE to TRUE, start_di_counter start permission from FALSE to TRUE DI-speed counter, DI_Count_out display the current count of pulses. When the change from FALSE to TRUE Set_Count_Valid variable, high-speed counter current value be modified Count_out 1000, and 1000 remain, a TRUE when Set_Count_Valid variable becomes FALSE when DI11 pulse is received, will continue to count the number of pulses on the basis of 1000 increments.

11.6.10 NS_CC_EXTI (DI interrupt instruction)

FB / FC	Explanation	Applicable model	
FB	An interrupt is generated when the specified effective	VEC-VA-MP-005-	
	DI, correlate events program will be executed once	MA	

• Input parameters

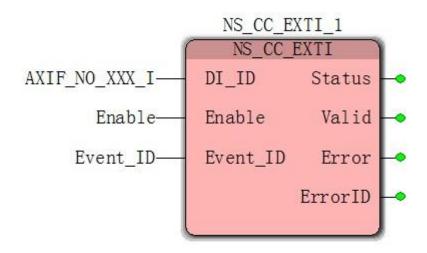
name	Features	type of data	Setting range	The
			(Non-default)	timing of
				the entry
				into force
DI_ID	When	WORD	Currently only	
	specifying DI active		supports two interrupt	
	interrupt, the input		DI0 and DI1	
	value of 0 to 7		0 to 1	
	corresponding to the		(Non-default)	
	input points I0 ~ I7,8			
	\sim 15 corresponding			
	to the input point I10			
	~ I17			
Enable	When the	BOOL	TRUE or FALSE	
	Enable FALSE to			
	TRUE, the command			
	execution (open			
	interrupts allowed).			
Event_ID	Set interrupt	WORD	0-5 (non-default)	
	event number (0-5)			
	is consistent with the			
	interrupt routine			
	event number.			

Description:

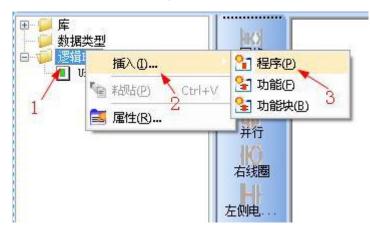
(1)Currently only supports two interrupt DI, respectively external terminals DI0 and DI1

(2) NS_CC_EXTI instruction belongs to an interrupt instruction, when an interrupt is opened, designated DI0 or DI1 effective when an interrupt occurs, the program will branch to the interrupt to the program execution returns to the main program after the completion of the cycle continues to run.

• Output parameters


name	Features	type of data	Output range
The Status	This parameter	BOOL	TRUE or FALSE
(Status bits)	indicates when the output instruction is being executed is TRUE		
Valid (valid bit)	Represents the output parameter is TRUE instruction is controlling the shaft	BOOL	TRUE or FALSE
Error (error)	Retention	BOOL	TRUE or FALSE
ErrorID (error code)	Retention	WORD	Retention

Program Example


Example: Specify the external interrupt setting DI0

Variable name	type of data	The initial value
NS_CC_EXTI_1	NS_CC_EXTI	
AXIF_NO_XXX_I	WORD	0
Enable	BOOL	1
Event_ID	WORD	0

Step 1: Call NS_CC_EXTI module, programmed as follows

Step 2: Interrupt program established in the "Project Tree Window" right "logic POU" select "Insert" and then select "Programs" in the window that pops up to interrupt program named "EN1" (no user name), and choose to write an interrupt routine language "LD language" as shown below.

Step 3: When finished, click OK, will automatically add the "logic the POU" to a "EN1" is the name of the program as shown.

Step 4: Just inserted "EN1" belongs to the category of the main program or program, as the new "the POU" software automatically selected when loaded into the new project "Task" CYCLIC type; as shown.

Step 5: Select under "Project Tree Window", "Hardware", under Resources "task", right-delete "EN1" program and click "OK" we need another new "task type", as shown below.

Step 6: New "Task Type" right "Tasks" click "insert", and then select the "Tasks" as shown.

Step 7:In the pop-up to "Insert" dialog box, fill in "ZD" in the name (no user name) Task Type Select "EVENT" are finished, click "OK." As shown below

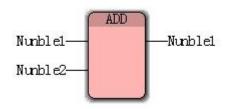
插入		×
名称(N):	类型	确定
	1 O 配置 (C) 〇 资源 (R)	取消
程序类型(M):	● 任务(T) ● 程序实例(P)	帮助(H)
任务类型(Y):	○ 描述(D)	
EVENT	▼	
	模式:	
□排除在编译之外(X)	◎ 插入(I) ◎ 追加(A)	

Step 8: In the pop up "ZD task settings" Pick selection event number "0 Event" "Event_ID" is determined by the value on the interrupt module fill, Pick 0 (exemplary program "Event_ID = 0") 10-17 in FIG. as shown in (special attention not interrupt priority and the priority of the main program as whether those compiled by not downloading or 97% reported error)

事件(E):	事件0	
优先权(P):	0	
监视定时时间(W):	100	 臺秒 ☑ 使能监视定时器(N

Step 9: After the insertion procedure of example, the right task, "the EVENT", select "insert" and then select the "program instances" as shown.

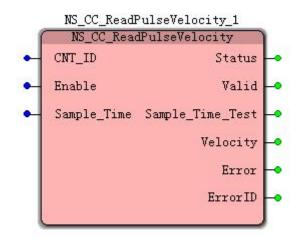
 ● 物理硬件 ● 配置: eCLR ● 资源: ARM_LE_GCC3* ● ● Tasks ● ● 任务: CYCLIC ● ● Untitled: Untitled 	阿维
TD EVENT	任务①
IO_Chfigurat 删除(D) Delete	程序实例(P)
1 * 剪切(C) 2 Ctrl+X	白线
	3 左侧电
「日本初占(P) Ctrl+V	
属 性(R)	右侧电
没置 (S)	-18
	触点药


Step 10: In the pop-up to "insert box", for the example program named "ZD1 is", select the new program type "EN1"

Click "OK" in the final results are shown in FIG.

Step 11: "Project" Return "Project Tree Window" in the window, double-EN1 at POU join a summing module (purpose is to verify whether the interrupt routine is executed correctly)

variable name type of data		The initial value
ADD ADD		
Nunble1	INT	
Nunble2	INT	1


Interrupt this program to create and association has been completed, the following is the analysis process interrupt routine is executed.

Case 1:When there is a NS_CC_EXTI Enable module FALSE to TRUE, the interrupt allowed to open, when the external DI0 effective when: interrupt routine is executed once, when the variable value is 1 Nunble1, out after the completion of the interrupt routine returns to the main routine. When the external DI active again when the interrupt routine is executed again, this time is variable Nunble1 2.

11.6.11 NS_CC_ReadPulseVelocity (read-axis pulse rate

controlled)

FB / FC	Explanation	Applicable model
FB	This instruction is used to read the number of	VEC-VA-MP-005-MA
	motor encoder pulses at the set sampling period	

• Input parameters

name	Features	type of data	Setting range	The timing of
			(Non-default)	the entry into
				force
CNT ID	To specify the	WORD	0-4	Enable
(Axis No.	number of motor		(Indispensable)	change from
ID)	shaft speed		(FALSE TRUE
	Mining			THESE TROL
	(Corresponding			
	-			
	AXIS0-AXIS4)			
Enable	When the	BOOL	TRUE or	-
(execute bit)	Execute FALSE		FALSE	
	to TRUE, the			
	instruction			
	execution starts			
Sample_Time	Set the	REAL	A positive	With
(sampling	sampling time		number	immediate
time)	(unit: ms)			effect
	This parameter			
	should			
	MC_AXIS_REF			
	(parameter			

setting axis)	
coincides	
Sample_Time.	

Description:

(1) when the instruction starts execution Enable changes from FALSE to TRUE.

Unit reading speed is controlled axis Pulse / s, the sampling period is Sample_Time parameter, calculated from the current shaft speed:

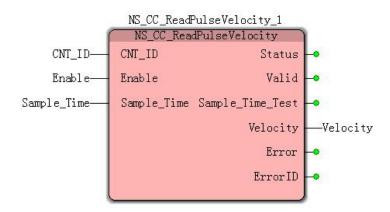
Assumptions: display means of the terminal speed n units / s, the read pulses per second Velocity = 10000 Pulse / s, the number of pulses per motor revolution (moter_PPC) = 10000 Pulse / rad, the terminal mechanism Screw Lead lead of 1000 units the reduction gear ratio of 1: 2

then:

n = unit / s
$$\frac{Velocity}{motor_PPC}$$
 * Screw_Lead * $\frac{1}{2}$
= 500 units / s

• Output parameters

name	Features	type of data	Output range
Status (state)	Retention	BOOL	TRUE or FALSE
Valid (effective)	Retention	BOOL	TRUE or FALSE
Sample_Time_Test	Retention	REAL	
Velocity	Display speed of	REAL	Real
(current rate)	the current sample		
	(unit: Pulse / s)		
Error (reserved)	Retention	BOOL	Retention
ErrorID (reserved)	Retention	WORD	Retention


Program Example

Example: Read the current speed shaft AXIS0;

1. variables, and procedures

variable name	type of data	The initial value
NS_CC_ReadPulseVelocity_1	NS_CC_ReadPulseVelocity	
CNT_ID	WORD	0
Enable	BOOL	1
Sample_Time	REAL	10
Velocity	REAL	

Step 1: Following programming instructions call NS_CC_ReadPulseVelocity_1 module

Case 1:In the servo axis operation when the Enable FALSE to TRUE, the output module Velocity servo axis current operating speed, if you want to interrupt the conversion speed consistent actuator need to be converted according to the above formula.

11.6.12 MC_PID (PID instruction)

FB / FC	Explanation				Applicable models	
FB	This command is used to specify the PID			VE	EC-VA-MP-005-MA	
	control variable					
	NS_MC_PID_1					
	1	NS_MC	PID			
		Enable	Error	-•		
	•	Input	ErrorID	•		
	•	Feedback	Output	-•		
	•	Kp				
	•	Ki				
	•	Kd				
	•	Deadband				
	•	MaxError				
	•	CycleTime				

• Input parameters

name	Features	type of data	Setting range (Non-default)	The timing of the entry into force
Enable (Execute bit)	When the Enable FALSE to TRUE, the instruction is executed.	BOOL	TRUE or FALSE	Enable from FALSE to TRUE
Input (Desired point)	Setting the reference value	LREAL	Real	-
Feedback (feedback value)	Feedback value	LREAL	Real	-
Kp (Scale factor)	Proportional control	LREAL	Real	-
Ki (Integral coefficient)	Integral control	LREAL	Real	-
Kd (Differential coefficient)	Differential Control	LREAL	Real	-
Deadband (PID	PID deadband value	LREAL	Real	-

dead band)	represents a set value in the PID operation is not performed;			
MaxError (maximum cumulative error)	The maximum cumulative error	LREAL	Real	-
CycleTime (PID sampling period)	PID sampling cycle unit (ms)	LREAL	Real	-

Description:

1) PID control principle

PID regulation is Proportional (ratio), Integral (Integral), abbreviation Differential (differential) of the three, is the most widely used system of continuous adjustment method. The essence of PID regulator, according to a function of proportional, integral and differential value is calculated based on the deviation input, for outputting the calculation result controlled to achieve regulation.

Incremental PID control algorithm

 $\Delta u(n) = u(n) - u(n - 1)$ $\Delta u(n) = K_p * [e(n) - e(n - 1)] + K_i * e(n) + K_d * [e(n) - 2 * e(n - 1) + e(n - 2)]$ or $\Delta u(n) = P_{val} + I_{val} + D_{val}$ among them: Kp: proportional coefficient, the ratio of the field practice of using Kp = 100; Ki: integral coefficient; $K_i = K_p * T/T_i$ Kd: differential coefficient; $K_d = K_p * T_d/T$ Pval: the ratio of action; $P_{val} = K_p * [e(n) - e(n - 1)]$ Ival: integral role; $I_{val} = K_i * e(n)$ Dval: differential effects; $D_{val} = K_d * [e(n) - 2 * e(n - 1) + e(n - 2)]$ Wherein U (n 1) is the actual control of the amount of time n 1 \triangle u (n) to control

Wherein U (n-1) is the actual control of the amount of time n-1, \triangle u (n) to control the amount of incremental time n, e (n), e (n-1) and e (n-2) are n, n-1 and n-2 time amount of the offset control and the actual value, Ti, Td, and T is the integral time, and derivative time sampling period (CycleTime), wherein the predetermined deviation as follows: setpoint deviation = -Measurements.

• Output parameters

name	Features	type of data	Output range
Output (output)	After the PID	REAL	Float
	output		

11.6.13 RTC_S (special register clock)

address	Explanation	Applicable models
Special register	And reading the motion controller	VEC-VA-MP-005-MA
	for modifying an internal clock	

Write clock address

Special register address	Write Functions	Value range
% MB3.9543	year	0 to 255
% MB3.9544	month	0 to 255
% MB3.9545	day	0 to 255
% MB3.9546	week	0 to 255
% MB3.9547	Time	0 to 255
% MB3.9548	Minute	0 to 255
% MB3.9549	second	0 to 255

Special Note:Due to the special register address of byte type, maximum value is larger than the value of the register 255 overflows, a modulo operation need to be greater than the value of If. For example, 2018, 2018 can not be filled, it is necessary to 100% by 2018 (modulo)% MB3.9543 to address this in the values into the register address is the address value in the display 18;

Read clock address

Special register address	Read function	Value range
% MB3.9550	year	0 to 255
% MB3.9551	month	0 to 255
% MB3.9552	day	0 to 255
% MB3.9553	week	0 to 255
% MB3.9554	Time	0 to 255
% MB3.9555	Minute	0 to 255
% MB3.9556	second	0 to 255

Perform the modification Clock Address

Special	Features	Value
register address		range
% MB3.9542	1 when the value of the clock execution modification	0 to 255
	(the need to maintain an approximately 1s, the clock needs	
	to modify the bytes successfully written as 0)	

11.7 G code instructions

G code input format

Support code	Functional Description	Support axes
G0	Rapid positioning	3-axis
G1	Linear interpolation	3-axis
G2	Clockwise circular	3-axis
	interpolation	
G3	Counterclockwise circular	3-axis
	interpolation	
G4	Timed pause	
G17	Processing the XY plane	
G18	Processing the XZ plane	
G19	Processing the YZ plane	
G90	Absolute size	
G91	Relative size	
M0	The program stops	
M1	Conditional program stop	
M2	End of program	
M30	End of program and return	
	to the program head	

Our VA motion controller supports input format of the G code and the following table:

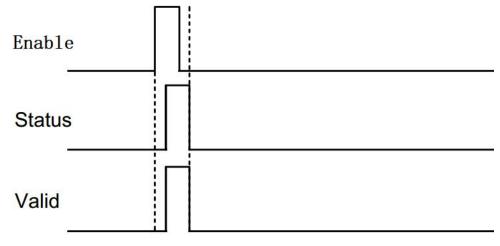
11.7.1 NC_GroupEnable (ENABLE command axis group)

FB / FC	Explanation		Applicable model
FB	This instruction is used to enable the shaft group		VEC-VA-MP-005-MA

Axis_Num_Z

	Input parameters			
name	Features	type of data	Range setting (default value)	The timing of the entry into force
AxesGroup (Axis group number)	Purports to set the axis of the group can	USINT	0	When Enable is TRUE
Enable (Enable)	When Enable is TRUE, the instruction is executed	BOOL	TRUE or FALSE	
Axis_Num_X (X-axis number)	X axis number setting must be set to 0	USINT	0	When Enable is TRUE
Axis_Num_Y (Y-axis number)	Set the Y axis number, it must be set to 1	USINT	1	When Enable is TRUE
Axis_Num_Z (Z-axis number)	Axis Z axis is set number must be set to 2	USINT	2	When Enable is TRUE

> Input parameters


Description: It must be set to the control shaft after the shaft is enabled for the corresponding set of operation, when the shaft so that the group can not, linear interpolation (NC_MoveLiner), circular interpolation (NC_MoveCircula), Cartesian robots (NC_CartesianCoordinate) instruction can not be executed.

Output parameters

name	Features	type of data	Output range
Status	This parameter indicates when the instruction is TRUE control shaft	BOOL	TRUE or FALSE

Valid	The output parameter represents the effective output command is TRUE	BOOL	TRUE or FALSE
Error This parameter indicates the instruction execution error to TRUE		BOOL	TRUE or FALSE
ErrorID	Instruction execution error code error	WORD	-

> FIG timing variation output parameter

> Function Description

1, when the Enable FALSE to TRUE, a delay period, Status, Valid TRUE simultaneously

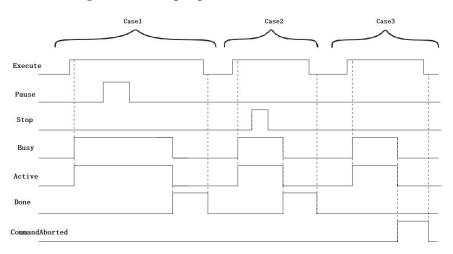
2, when the Enable TRUE to FALSE, a delay period, Status, Valid simultaneously FALSE

3. The instruction set for the servo axis controlled release enabled or enabled;

FB / FC	Explanation				Applicable model
FB	This instruction is used to control axis linear			near	VEC-VA-MP-005-
		interpolation f	unction		MA
		NC_Mov NC_Mov AxesGroup Execute Stop Pause MoveMode Pos_Dis_X Pos_Dis_Y Pos_Dis_Z Velocity Acceleration Deceleration Jerk CoordSystem	unction elinear_1 velinear Done Busy Active CommandAborted Error ErrorID	• • •	MA
	•	BufferMode			
	-	TransitionMode TransitionParame	əter	ļ	

11.7.2 NC_MoveLiner (linear interpolation)

Input parameters ۶


Name	Features	type of data	Predetermin ed area (Default value)	The timing of the entry into force
AxesGroup (Axis group number)	Purports to set the axis of the group can	USINT	0	When the Execute from FALSE to TRUE
Execute (Execute bit)	When the Execute FALSE to TRUE, the execution instruction	BOOL	TRUE or FALSE	-
Stop (Stop Bit)	When a Stop FALSE to TRUE, the command to stop.	BOOL	TRUE or FALSE	-
Pause (Pause position)	When Pause is TRUE, suspend execution of the instruction	BOOL	TRUE or FALSE	-
MoveMode (Movement	When is MoveMode When TRUE, the target	BOOL	TRUE or FALSE	When the Execute

pattern)	position X / Y / Z-axis of the absolute position When FALSE, the target position X / Y / Z-axis relative position			from FALSE to TRUE
Pos_Dis_X (X-axis target position)	X axis target position setting Unit: unit	LREAL	Positive, negative, 0	When the Execute from FALSE to TRUE
Pos_Dis_Y (Y-axis target position)	Y-axis target position setting Unit: unit	LREAL	Positive, negative, 0	When the Execute from FALSE to TRUE
Pos_Dis_Z (Z-axis target position)	Setting a Z-axis target position Unit: unit	LREAL	Positive, negative, 0	When the Execute from FALSE to TRUE
Velocity (speed)	Synthesis of three axes set maximum speed unit: unit / min	LREAL	A positive number	When the Execute from FALSE to TRUE
Acceleration (Acceleration)	Set the maximum value of the three-axis composite acceleration Unit: unit / min2	LREAL	A positive number	When the Execute from FALSE to TRUE
Deceleration	Retention	Retention	Retentio n	Retenti on
Jerk	Retention	Retention	Retentio n	Retenti on
CoordSystem	Retention	Retention	Retentio n	Retenti on
BufferMode	Command transfer mode can only be set to 1	INT		
TransitionMo de	Retention	Retention	Retentio n	Retenti on
TransitionPar ameter	Retention	Retention	Retentio n	Retenti on

name	Features	type of data	Output range
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborted (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

Output parameters

> FIG timing variation output parameter

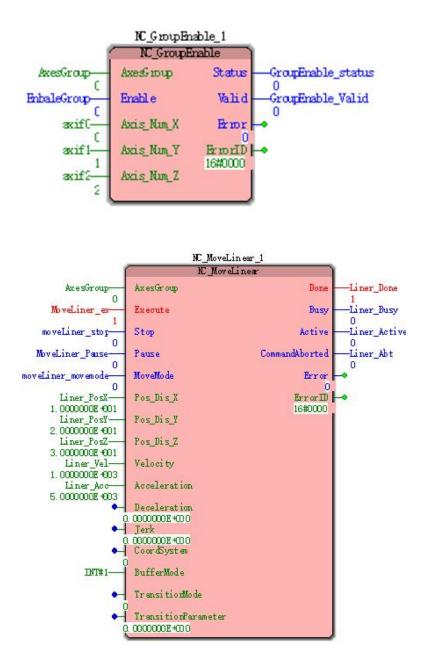
Case 1:When the Execute FALSE to TRUE, after a period, and Busy Active simultaneously become TRUE, during execution of instructions, a Pause FALSE to TRUE, the operation of the pause instruction is executed, but still Busy Active TRUE and, when changed from TRUE Pause after it is FALSE, the controlled shaft work to finish the operation. When the instruction is complete, Busy and Active becomes FALSE, while Done becomes TRUE. After the Execute cycle by TRUE to FALSE, Done becomes FALSE.

Case 2:When the Execute FALSE to TRUE, after a period, Busy becomes TRUE and Active Meanwhile, during the execution of instructions, Stop by the FALSE to TRUE, the end of the execution of instructions, but Busy and Active remains TRUE until the controlled axes stop, Busy and Active becomes FALSE, while Done becomes TRUE. After the Execute cycle by TRUE to FALSE, Done becomes FALSE.

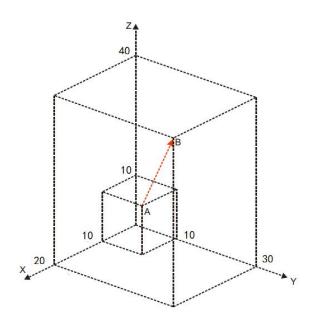
Case 3:When the Execute FALSE to TRUE, the instruction is interrupted by another instruction, CommandAborted becomes TRUE, and the Busy Active becomes FALSE; Execute when a TRUE to FALSE CommandAborted becomes FALSE.

Function Description

This command is used to set linear interpolation axis, a shaft may be controlled in a group or more axes.


1, the parameter Velocity NC_MoveLiner target speed instruction terminating mechanism, the relationship between the terminal velocity of each shaft speed mechanism is as follows: the terminal means square of the speed of each shaft speed = sum of squares. The command parameter Acceleration, Deceleration target acceleration and target deceleration terminal means, the relationship between the acceleration and deceleration of the terminal means and the addition, the deceleration of each axis are: the terminal means plus (deceleration) = each axis plus (minus) and the square of the speed.

Examples of a program


Relative mode execution NC MoveLiner

leuures	
type of data	The initial value
NC_MoveLiner	-
USINT	0
BOOL	
BOOL	
BOOL	
BOOL	
LREAL	10.0
LREAL	20.0
LREAL	30.0
LREAL	1000.0
BOOL	5000.0
BOOL	
BOOL	
BOOL	
	type of data NC_MoveLiner USINT BOOL BOOL BOOL BOOL LREAL LREAL LREAL LREAL BOOL BOOL BOOL BOOL BOOL

1, variables, and procedures

2, after the instruction is executed, the entire movement as shown below:

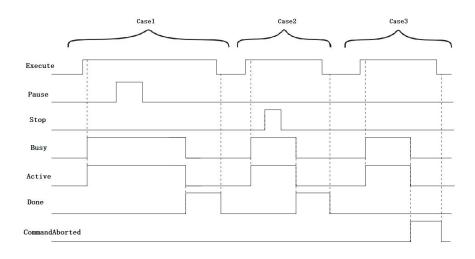
FB / FC	Explanation			Applicable model	
FB	This instruction is used to control axis linear			VEC-VA-MP-005-MA	
	i	interpolation fu	inction		
	NC_MoveCircular_1				
	- (NC_Mov	eCircular		
	•	AxesGroup	Done	-•	
	•	Execute	Busy	-	
	•	Stop	Active	-	
	•	Pause	CommandAborted	-	
	•	MoveMode	Error	-•	
	•	Pos_Dis_X	ErrorID	-•	
	•	Pos_Dis_Y			
	•	Pos_Dis_Z			
	•	CircMode			
	•	PathChoice			
	•	Param_R			
	•	Param_I			
	•	Param_J			
	•	Param_K			
	•	Arc_Tolerance			
	•	Junction_Deviat:	ion		
	•	Velocity			
	•	Acceler ation			
	•	Deceler ation			
	•	Jerk			
	•	CoordSystem			
	•	BufferMode			
	•	TransitionMode			
	•	TransitionParam	eter		

11.7.3 NC_MoveCircula (circular interpolation)

> Input parameters

name	Features	type of data	Predeter mined area (Default value)	The timing of the entry into force
AxesGroup (Axis group number)	Purports to set the axis of the group can	USINT	0	When the Execute from FALSE to TRUE
Execute (Execute bit)	When the Execute FALSE to TRUE, the execution instruction	BOOL	TRUE or FALSE	-

~				
Stop	When a Stop FALSE to	BOOL	TRUE or	-
(Stop Bit)	TRUE, the command to stop.		FALSE	
Pause	When Pause is TRUE,		TRUE or	
(Pause	suspend execution of the	BOOL	FALSE	-
position)	instruction			
	When is MoveMode			
	When TRUE, the target			When
MoveMode	position X / Y / Z-axis of the			the Execute
(Movement	absolute position	BOOL	TRUE or	from
	When FALSE, the	BOOL	FALSE	FALSE to
pattern)	target position X / Y / Z-axis			
	relative position			TRUE
	-			
				When
Pos Dis X	X axis target position		D	the Execute
(X-axis target	setting	LREAL	Positive,	from
position)	Unit: unit		negative, 0	FALSE to
1)				TRUE
				When
Pos Dis Y	Y-axis target position			the Execute
(Y-axis target	setting	LREAL	Positive,	from
position)	Unit: unit	Literit	negative, 0	FALSE to
position	Ont. unit			TRUE
				When
Pos Dis Z	Setting a Z-axis target			the Execute
(Z-axis target	position	LREAL	Positive,	from
position)	Unit: unit	LKLAL	negative, 0	FALSE to
position)	Ont. unit			TRUE
	Set Circular			IKUE
CircMode	interpolation			
(Circular	0: XY plane circle	INT	0-2	
interpolation)	1: ZX plane circle	1111	0-2	
interpolation)	-			
	2: YZ plane circle The direction of circular			
PathChoice				
(Arcuate	interpolation	INT	0,1	
direction)	0: clockwise			
	1: counterclockwise			
	Planar circle radius			
	method set radius and when		Positive,	
Param_R	Preferably selected arc	LREAL	negative, 0	
(radius)	radius is negative;		(0)	
	Select inferior arc		~ /	
	radius is positive;			


	Method selected radius			
	center circle is 0:00			
Param_I (X-axis center offset)	When setting method center circle, the center shift amount in the X-axis current position	LREAL	Positive, negative, 0 (0)	
Param_J (Y-axis offset center)	When the circle center setting method, the current center position of the Y-axis offset	LREAL	Positive, negative, 0 (0)	
Param_K (Z-axis center offset)	When setting method center circle, the circle center in the Z-axis offset current position	LREAL	Positive, negative, 0 (0)	
Arc_Toleranc e (Arc chord tolerance)	The interpolation process of setting the maximum allowable arc chord tolerance. Arc chord tolerance interpolation = arc length of each segment - the chord length of each segment interpolation	LREAL		
Junction_Dev iation (Angle deviation)	Setting each piece of circular interpolation the maximum deviation angle	LREAL		
Velocity (speed)	Maximum speed setting three axes Synthesis Unit: unit / min	LREAL	A positive number	When the Execute from FALSE to TRUE
Acceleration (Acceleration)	Set the maximum value of the three-axis composite acceleration Unit: unit / min2	LREAL	A positive number	When the Execute from FALSE to TRUE
Deceleration	Retention	Retention	Retentio n	Retenti on
Jerk	Retention	Retention	Retentio n	Retenti on
CoordSystem	Retention	Retention	Retentio	Retention

BufferMode	Command transfer mode can only be set to 1	INT		
TransitionM	Retention	Retention	Retentio	Retenti
de	Ketention	Ketention	n	on
TransitionPa	Retention	Retention	Retentio	Retenti
ameter	Ketention	Ketention	n	on

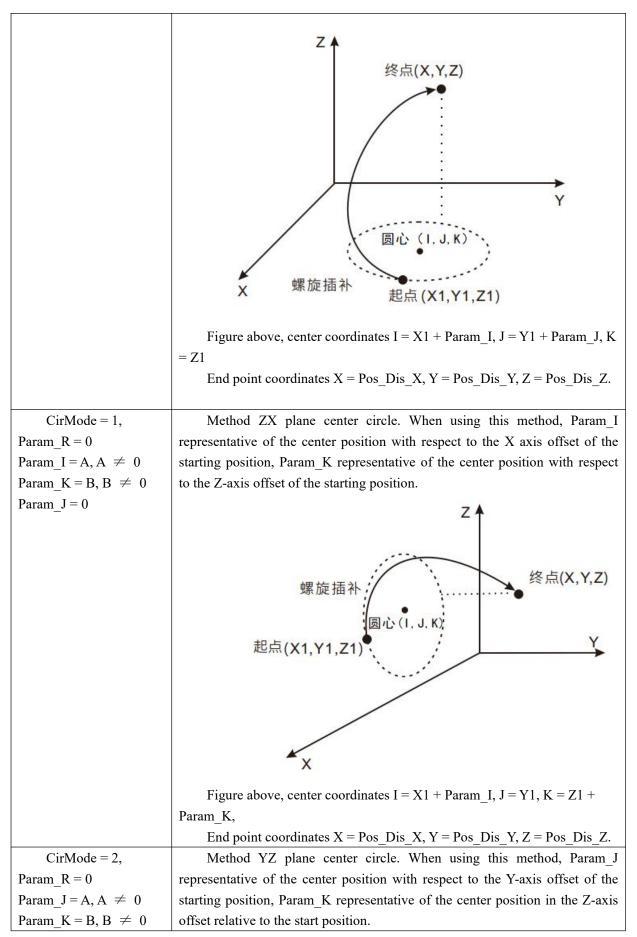
> Output parameters

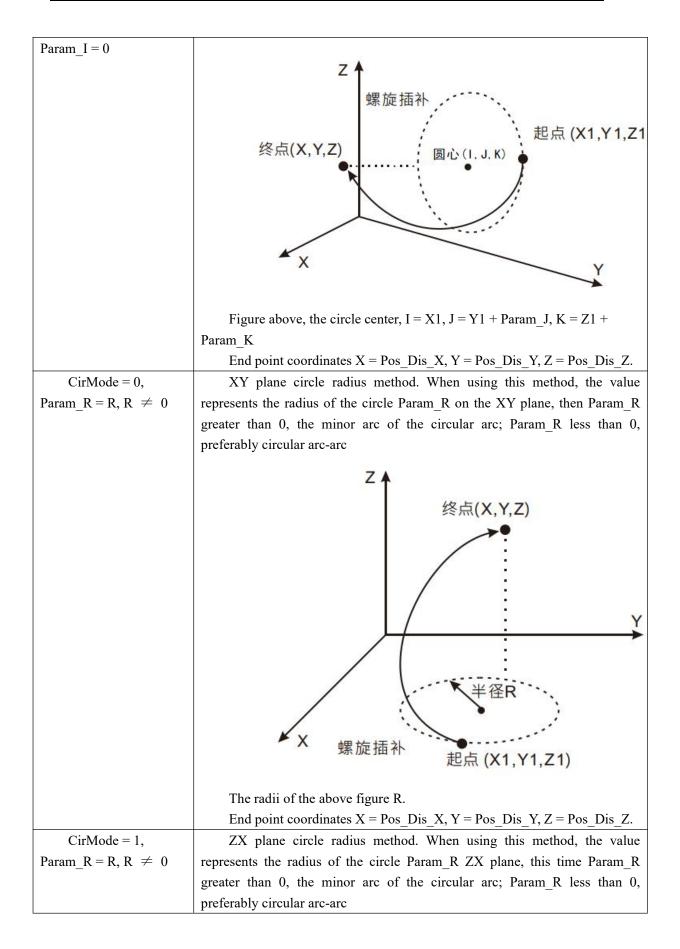
name	Features	type of data	Output range
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborte d (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-

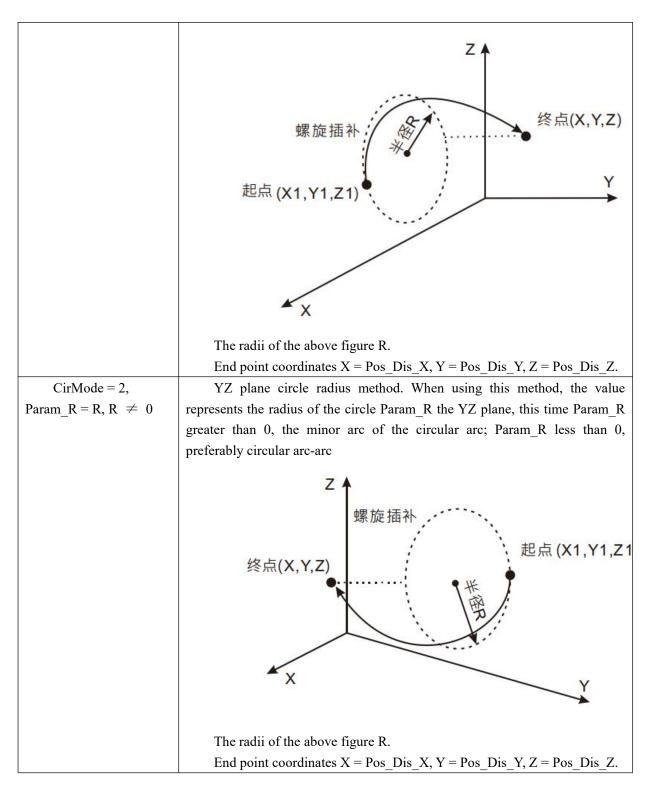
> FIG timing variation output parameter

Case 1:When the Execute FALSE to TRUE, after a period, and Busy Active simultaneously become TRUE, during execution of instructions, a Pause FALSE to TRUE, the operation of the pause instruction is executed, but still Busy Active TRUE and, when changed from TRUE Pause after it is FALSE, the controlled shaft work to finish the operation. When the instruction is complete, Busy and Active becomes FALSE, while Done becomes TRUE. After the Execute cycle by TRUE to FALSE, Done becomes FALSE.

Case 2:When the Execute FALSE to TRUE, after a period, Busy becomes TRUE and Active Meanwhile, during the execution of instructions, Stop by the FALSE to TRUE, the end of the execution of instructions, but Busy and Active remains TRUE until the controlled axes stop, Busy and Active becomes FALSE, while Done becomes TRUE. After the Execute cycle by TRUE to FALSE, Done becomes FALSE.

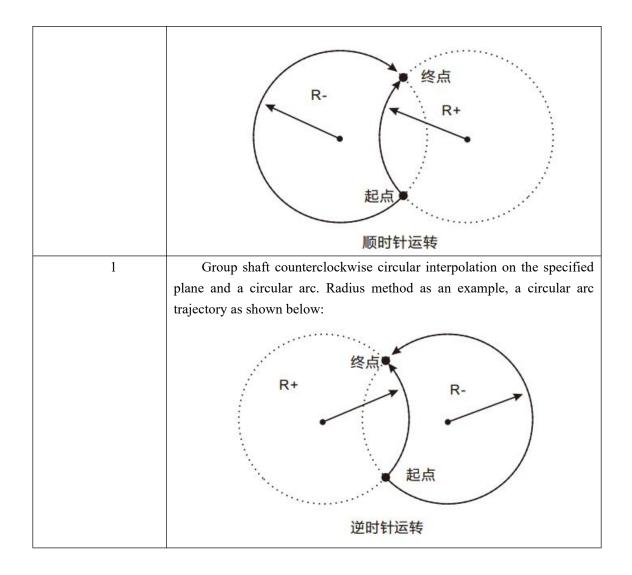

Case 3:When the Execute FALSE to TRUE, the instruction is interrupted by another instruction, CommandAborted becomes TRUE, and the Busy Active becomes FALSE; Execute when a TRUE to FALSE CommandAborted becomes FALSE.


Function Description:


This set of instructions for circular interpolation axis

CirMode, Param_R, Param_I, Param_J, Param_K joint decision circular interpolation mode

Combinations	Explanation
CirMode = 0, Param_R	Method XY plane circle center. When using this method, Param_I
=0	representative of the center position with respect to the X axis offset of the
Param_I = A, A $\neq 0$	starting position, Param_J representative of the center position with respect to
Param_J = B, B $\neq 0$	the Y-axis offset of the starting position.
$Param_K = 0$	



PathChoice

This parameter determines the direction of circular interpolation

Parameter Value	Explanation
0	Group shaft clockwise circular interpolation on the specified plane
	and a circular arc. Radius method as an example, a circular arc trajectory
	as shown below:

11.7.4 NC_CartesianCoordinate (Cartesian robot command)

FB / FC	Explanation				Applicable model
FB	This instr	uction is used t	to control the mot	tion	VEC-VA-MP-005-
	interpolated C	Cartesian axes a	according to G co	ode	MA
		NC_Cartesia	arCoordinate_1 LarCoordinate Done Busy Active CommandAborted Error ErrorID OurrentLine	• • •	1111
	•	Arc_Tolerance			
	:	Mode			

			Predeter	The
namo	Features	type of data	mined area	timing of
name	reatures	type of uata	(Default	the entry
			value)	into force
	When the Execute			When
Execute		BOOL	TRUE or	the Execute
(Execute bit)	FALSE to TRUE, the execution instruction	BOOL	FALSE	FALSE to
	execution instruction			TRUE-
Pause	When Pause is TRUE,		TDUE of	
(Pause	suspend execution of the	BOOL	TRUE or FALSE	-
position)	instruction		FALSE	
Stop	When a Stop FALSE to	BOOL	TRUE or	
(Stop Bit)	TRUE, the command to stop.	BOOL	FALSE	-
VelOverride	Speed overshoot		1≤	
(Speed	value	LREAL	VelOverride	
overshoot value)	(%)		≤500	
	Depth buffer (provided			
Depth	2 represents 1, 16 represents			
(Depth	15 is provided). 16 normal	UINT		
buffer)	setting, if each small			
	segment wants to start and			

Input parameters

	stop speed setting 2 0			
NCFile (NC file)	NC file selection	UINT		
AxesGroup (Axis groups)	Axis Group number must be set to 0	USINT	0	
G0_Velocity (G0 speed)	Maximum speed setting command G0 Unit: unit / min	LREAL		
Acceleration_ X (X-axis acceleration)	Setting the maximum X-axis acceleration Unit: unit / min2	LREAL		
Acceleration_ Y (Y-axis acceleration)	Set the maximum Y-axis acceleration Unit: unit / min2	LREAL		
Acceleration_ Z (Z-axis acceleration)	Set the maximum Z-axis acceleration Unit: unit / min2	LREAL		
Junction_Dev iation (Angle deviation)	Setting each piece of circular interpolation the maximum deviation angle	LREAL		
Arc_Toleranc e (Arc chord tolerance)	The interpolation process of setting the maximum allowable arc chord tolerance. Arc chord tolerance interpolation = arc length of each segment - the chord length of each segment interpolation	LREAL		
Mode (End processing mode)	When the value is 0, no interpolation processing of the small end of each segment. When the value is 1, the processing of the small end of each interpolation segment	INT	0,1	

> Output parameters

name	Features	type of data	Output range
Done	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
CommandAborted (interruption)	The output parameter is TRUE representing instructions is interrupted	BOOL	TRUE or FALSE
Error (error)	It represents execution of the faulting instruction when the output instruction is TRUE	BOOL	TRUE or FALSE
ErrorID (error code)	Error Error code when execution instruction	WORD	-
CurrentLine	G code number of the currently executing row	UDINT	

XII Communication Settings

12.1 motion controller and HMI communication

12.1.1 motion controller and human-machine wiring shown below

	HMI		
		RS485-2	
	SG+ SG-	Terminals	definition
		SG +	RS-485 signals
RS485-2		50 -	are being
		SG-	RS-485 signals
		50-	negative

12.1.2 HMI and motion controller communication format

function name	format	Factory settings		
PLC communication protocol	MODBUS RTU	MODBUS RTU		
Communication Interface Type	RS 485-2	RS 485-2		
Baud Rate	9600	9600		
Data bits 8 8				
Parity Even parity Even parity				
Stop bits 1 1				
Station No 111 111				
Default factory settings when communicating with the peripheral controller operation, the				
user can modify the station number and baud rate via a special register;				
Special Registers:% MB3.4010 (station number);% MB3.4011 (baud rate);				
Special Note: * = 4800 baud rate input value (e.g.: 9600% MB3.4011 then the filler 2;				

then the baud rate of 19200% MB3.4011 fill 4, and so on)

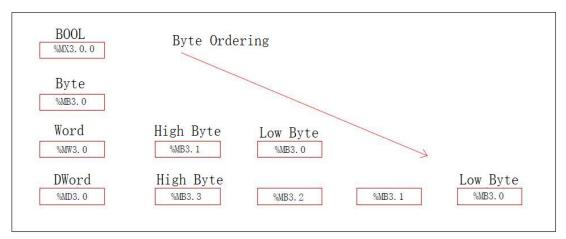
For example: the station number 10 to 19200 baud other formats remain unchanged. Programming the following initial value% MB3.4010 filler 10;% MB3.4011 initial value fill 4; download compiled, after power controller station number and baud rate modification after successful completion.

Note: When using RS 232 communication, you can select whether RS 232

communication shares a memory address with RS 485 by setting the value of the special register %MB.4019, set 0 for no (MODBUS-232 communication first address man-machine 0 corresponds to our shared memory address 15000, i.e. %Mx3.15000), set 1 for yes. If you need to use this function and the value of %MB.4019 needs to be set to 0, older versions of the software need to be updated with the SHM_LIB.dll file, please contact a WKD technician to update it.

12.1.3 motion controller and human-machine communication

address correspondence address


(1) addresses the relationship between motion controller

Data access must specify the address, the beginning address% MX3, wherein "X" may be a bit "% MX3."; May be byte "% MB3."; The word may be "% MW3."; May also be double word "% MD3."; "." integer plus a decimal point with stored address, expressed as% MX3.0.0 data area memory map byte 0 bit 0, the characteristic data table address

No.	Prefix		Agreed definitions	type of data
1		Ι	Input mapping area	
2	2 Location prefix 3	Q	Output mapping area	
2		М	Intermediate variables	
5			mapping area	
4		Х	Place	BOOL
5		В	Byte (8 bits)	BYTE
6	The size prefixes	W	Word (16 bits)	WORD
7		D	Double word (32)	DWORD
8		L	Long (64-bit)	LREAL

(2) the relationship between the motion controller address

The relationship between the address byte, word and double word is a double word contains two words or four bytes comprising, in the following% MX3.0.0,% MB3.0,% MW3.0 and% MD3.0 an example of the relationship between an address byte, word and double word and the data arrangement as shown below:

Such as: a hexadecimal number stored in 16% MW3.0 # 1234 in the presence of 16% MB3.0 # 34, the # 12 is stored in 16% MB3.1 in. If the procedure for bit operations, it will affect the place where the byte, word and double-word and vice versa.

Examples of variable address

- % IX1.3 denotes digital input bit map area 3 of a byte;
- % QX0.0 digital output mapping area indicates the first byte 0 bit 0;
- % MX3.0.0 represents the variable region of the intermediate byte 0 bit 0;
- % MD3.4 represents the variable region of the intermediate 4 1 byte double word;
- (3) motion controller and human machine address correspondence:

Motion controller address = (HMI address -1) * 2 (Wei-lun pass easily and Traditional HMI)

Bit operation:

PLC Address Type	HMI Address Type	
% IX0.0	no	
% QX0.0	no	
% MX3.0.0 0X		
Evenuela: DI C address true 0/MY2 6.0 someon and to UMI address True 0Y Address 4		

Example: PLC address type %MX3.6.0 corresponds to HMI address :Type 0X Address 4

Byte operation:

PLC Address Type	HMI Address Type	
% IB0.0	no	
% QB0.0	no	
% MB3.0.0 4 (3) X		
Example: PLC address type %MB3.10 corresponds to HMI address : Type 4(3)X Address 6		

Word operation:

PLC Address Type	HMI Address Type
% IW0.0	no
% QW0.0	no
% MW3.0.0	4 (3) X

Example: PLC address type %MW3.14 corresponds to HMI address : Type 4(3)X Address 8

Double operation				
PLC Address Type	HMI Address Type			
% ID0.0	no			
% QD0.0	no			
% MD3.0.0	4 (3) X			
Example: PLC address type %MD.20 corresponds to HMI address : Type 4(3)X Address 11				

Double operation

12.2 Change the type of expansion module

12.2.1 Automatic recognition of expansion types

Address type	Assignment
%MB3.9800	0

12.2.2 Manual selection of expansion type

Address type	Assignment
%MB3.9800	1
%MB3.9801 (The first expansion type of	Set 3 for 8DI8DO,
expansion)	Set 4 to 16DI,
	Set 5 for 16DO,
	Set 6 for analog,
	Set 7 for PT100,
	Set 8 for Weighing ,
	set 9 for thermocouple,
	Set 10 for IOT
%MB3.9802 (expansion type for the	Same as %MB3.9801
second expansion)	
%MB3.9803 (extension type for the third	Same %MB3.9801
expansion)	
%MB3.9808 (expansion type for the	Same as %MB3.9801
eighth expansion)	

Appendix I Programming Considerations

When using the ladder programming language, to avoid many of the same variable operation with the same instruction. Scan sequence ladder program, the program is from top to bottom, left to right. When programming, do not copy and paste commands in the editing area (function blocks), or compiler errors, you can drag the editing area from the right side of the Edit wizard, or type the command (function blocks) name directly in the editing area.

The following command does not support: GET_CHAR GET_ERROR GET_ERROR CATALOG GET_SYM CLR_OUT COLD_RESTART CONTINUE HO_ RESTART WRITE_RETAIN WARM RESTART

Written instructions PDD variables, such as WR_BOOL_BY_SYMFOR cycle: the number of steps can not be too long, such as 15,000, or may error, a program can not be more larger the FOR loop (such as 10,000 steps) appears, or it may be wrong. The maximum length of the array ARRAY is 32767.

Appendix II ASCII Code Table

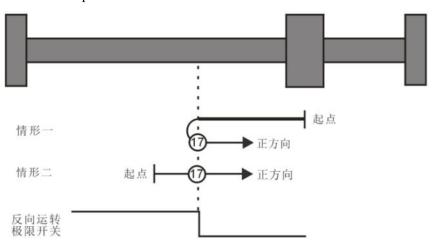
ASCII stands for American Standard Code for Information Interchange, is the American Standard Code for Information Interchange acronym, letters or numbers or symbols ASCII code definitions from one hundred twenty-eight numbers 0-127 of the representatives of all computers use the ASCII between each other in the same document can be read without the different results and significance. Since only seven bits (BIT) can represent from 0 to 127, most computers use to access 8-bit characters (CHARACTER SET), in Table 1 and Table 2. A number between 128 to 255 can be used to represent another group of one hundred twenty-eight symbols, called EXTENDED ASCII, see Table 3. Table 1 decimal 0 to 31 and 127 to control the character table 232 for the printable character to 126; 128 to 255 in Table 3 for the extended ASCII code.

Dec	HX	character	description	Dec	Hx	description
0	0	NULL	Null / null character	17	11	Device Control 1/1 Control Device
1	1	SOX	Start Of Heading / title start	18	12	Device Control 1/2 Control Device
2	2	STX	Start Of Text / text start	19	13	Device Control 1 / controlling apparatus 3
3	3	ETX	End End Of Text / text	20	14	Device Control 1/4 control device
4	4	ЕОТ	End Of Transmission / End of Transmission	twenty one	15	Negtive Acknowledge / reject
5	5	ENO	Enquiry / Request	twenty two	16	Synchronous Idle / sync idle
6	6	ACK	Acknowledge / notified	twenty three	17	End of Trans. Block / End transport block
7	7	BEL	Bell / Bell	twenty four	18	Cancel / Cancel
8	8	BS	Backspace / Backspace	25	19	End of Medium / medium interrupted
9	9	HT	Horizontal Tab / horizontal tab	26	1A	Substitute / replacement
10	OA	LF	NL line feed, new line / line feed	27	1B	Escape / overflow
11	OB	VT	Vertical Tab / vertical breaks	28	1C	File Separator / file delimiter

Table 1 control character (Table Hx hexadecimal, Dec decimal)

			ma	ade tab	le								
Dec	Hx	control	Dec	N₽ fo	rition	rol	De	ec	Hx	Control	Dec	Hx	control
12	OC	sys fe m	feed	, new p	a gle ar	acter289		11	þ	GrchapaStepara	tor / pa	acket i	deynticfiær
		word		/ feed									word
1.2		symbol CR		Carria	age	30		-1		Record S	eparat	or / ree	ondinbol
$\frac{13}{32}$	OD 20	(Space)	5®Reti	ar3n8/Er	nt ð r	50	80) 11	50	P s	ep@#ato	r \$ 8	h
33 14	twenty OE one	! SO	57 stop	SHAft C switcl		31	81	11	51 F	Q Unit Separ	105 ator / se	69 eparate	i or unit
³⁴ 15	twenty 0F two	" SL	58 ena	Shift] ble swi		127	82	7	52 F	R De	106 lete / D	6A elete	j
35	twenty	#	59	D ₽ta I	ink		83		53	X	107	6B	k
16	th ł@	DLE	Esc	ape / D	ata								
36	twenty	\$	60 Lir	k3Esca	pe		84		54	Т	108	6C	1
	four												
37	25	%	61	3D	=		85		55	U	109	6D	m
38	26	&	62	3E	>		86		56	V	110	6E	n
39	27	,	63	3F	?		87		57	W	111	6F	0
40	28	(64	40	@		88		58	Х	112	70	р
41	29)	65	41	A		89)	59	Y	113	71	q
42	2A	*	66	42	В		90)	5A	Z	114	72	r
43	2B	+	67	43	C		91		5B	[115	73	s
44	2 C	,	68	44	D		92		5C	/	116	74	t
45	2D	-	69	45	Е		93		5D]	117	75	u
46	2E		70	46	F		94		5E	^	118	76	v
47	2F	/	71	47	G		95		5F	-	119	77	w
48	30	0	72	48	Н		96		60	,	120	78	x
49	31	1	73	49	Ι		97	,	61	а	121	79	у
50	32	2	74	4A	J		98		62	b	122	7A	z
51	33	3	75	4B	K		99		63	с	123	7B	{

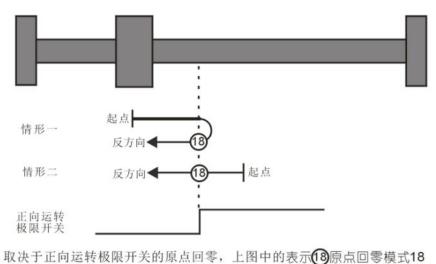
52	34	4	76	4C	L	100	64	d	124	7C	
53	35	5	77	4D	М	101	65	e	125	7D	}
54	36	6	78	4E	Ν	102	66	f	126	7E	~
55	37	7	79	4F	0	103	67	g			


Table 2 printable characters (Table Hx hexadecimal, Dec decimal)

Appendix III Homing Mode Description

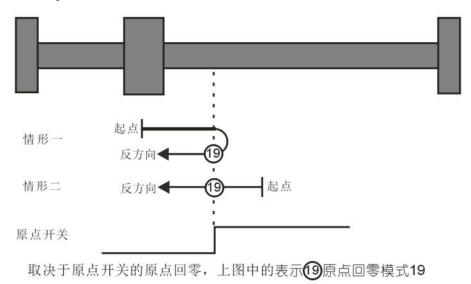
Our motion controllerThere are many back homeReturnmode. The user can select the appropriate mode depending on the origin of the reset to zero field conditions and process requirements.

• Homing mode operated in reverse limit switch 17 depending on the origin regression


- Case 1: MC_Home instruction execution when the reverse limit switch is in the low state, the shaft starts to first speed reverse movement, when the reverse limit switch is encountered high, changing the direction of motion and starts to move to 2nd speed, when faced with the reverse limit switch is in the low position is the home position.
- Case 2: when the reverse limit switch is performed at a high state MC_Home command axis starts moving forward 2nd speed, when reverse limit switch is encountered in the low position is the home position.

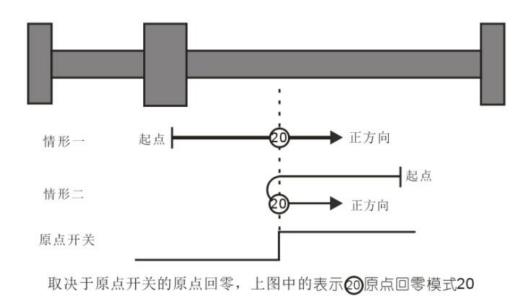
取决于反向运转极限开关的原点回零,上图中的表示(7)原点回零模式17

• Homing mode operation 18 depends on the forward limit switch Homing

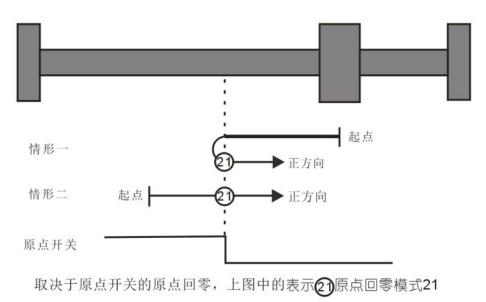

- Case 1: when a forward instruction execution MC_Home in the low limit switch, starting with the shaft moving forward first speed, when it encounters a forward operation at a high limit switch, changing the direction of movement and starts to move to 2nd speed, in the forward position limit switch operation state is in the low position of the origin.
- Case 2: MC_Home instruction execution when a forward operation limit switch at a high state, the shaft directly in 2nd speed start reverse motion, the forward operation limit position when the switch is in the low state origin position

•

• Homing mode switch 19 depending on the origin of the OPR

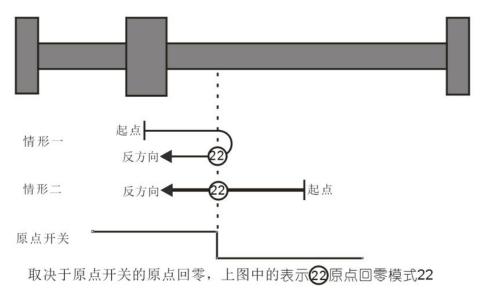

- Case 1: When performed at a low MC_Home home switch command axis starts forward motion to first speed, when it comes at a high origin switch, changing the direction of motion and starts to move to 2nd speed, when faced origin switch is in the low position is the home position.
- Case 2: When performed in a high MC_Home home switch command, the shaft directly in 2nd speed reverse movement begins, when it comes to the home switch in the low position is the home position.

• Homing mode switch 20 depending on the origin of the OPR

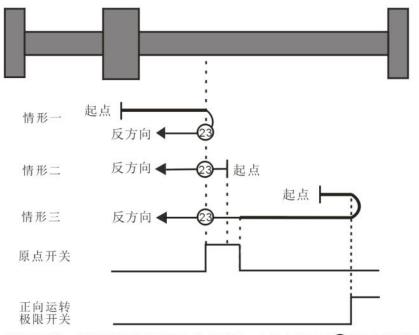

Case 1: When performed at a low MC_Home home switch command, the shaft starts first speed forward motion, when faced with the origin position is the home position switch is high.

Case 2: When performed in a high MC_Home home switch command, the shaft directly in 2nd speed reverse movement begins, the home switch changes encountered when the movement direction and are low in 2nd speed starts to move. When faced with the origin switch again at a high position is the home position.

Homing mode switch 21 depending on the origin of homing

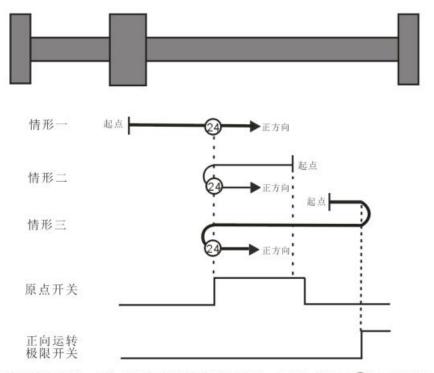

- Case 1: When the instruction execution MC_Home home switch is low, the shaft starts to first speed reverse movement, when the switch is in the home encounters high, changing the direction of motion and starts to move to 2nd speed, when faced origin switch is in the low position is the home position.
- Case 2: When performed in a high MC_Home home switch instruction, the start of direct axis 2nd speed forward motion, when faced with the home switch in the low position is the home position.

• Homing mode switch 22 depending on the origin of the OPR


Case 1: When performed in a high MC_Home home switch instruction, the start of direct axis 2nd speed forward motion, when the home switch is encountered when changing the direction of motion and at a low speed starts to move the second segment. When faced with the home switch in the high position is the home position.

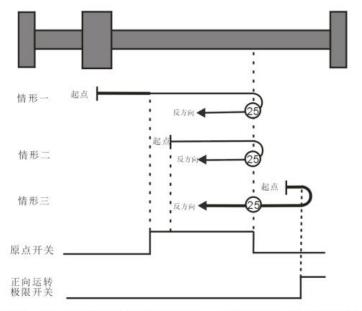
Case 2: When the instruction execution MC_Home home switch is low, starts moving shaft is the first speed reverse, when the home switch is encountered when a high position is the home position.

• Homing mode Homing 23 depending on the origin switch, Forward limit switch


- Case 1: When performed at a low MC_Home home switch command axis starts forward motion to first speed, when it comes at a high origin switch, changing the direction of motion and starts to move in 2nd speed, the switching state at the origin position of the origin is in the low position.
- Case 2: When performed in a high MC_Home home switch command, the shaft directly in 2nd speed reverse movement starts at the home switch is in the low position is the home position.
- Case 3: When the instruction execution MC_Home home switch is low, the shaft starts moving forward first speed, when the switch is in the home and encounters a low forward operation at a high limit switch, changing the direction of movement and in the first stage movement start speed, when it comes at a high origin switch, starts to move in 2nd speed, the home switch is in the low position is the home position.

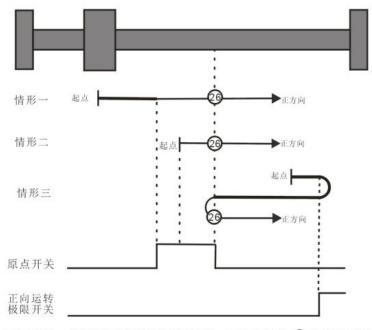
取决于原点开关、正向运转极限开关的原点回零,上图中的表示23原点回零模式23

• Homing mode Homing 24 depending on the origin switch, Forward limit switch


- Case 1: When performed at a low MC_Home home switch command, the shaft starts first speed forward motion, when faced with the origin position is the home position switch is high.
- Case 2: When performed in a high MC_Home home switch command, the shaft directly in 2nd speed reverse movement begins, the home switch changes encountered when the movement direction and are low in 2nd speed starts to move. When faced with the origin switch again at a high position is the home position.
- Case 3: When the instruction execution MC_Home home switch is low, the shaft starts moving forward first speed, when the switch is in the home and encounters a low forward operation at a high limit switch, changing the direction of movement and in the first stage movement start speed, when it comes to the home switch high, first speed is still moving, when the home switch is low, the direction of movement and at first speed change starts to move, the high position of the origin is found in the home switch position.

取决于原点开关、正向运转极限开关的原点回零,上图中的表示24原点回零模式24

• Homing mode Homing 25 depending on the origin switch, Forward limit switch

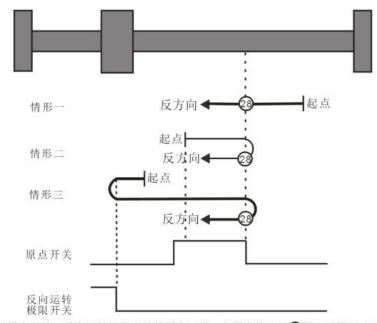

- Case 1: When performed at a low MC_Home home switch command axis starts forward motion to first speed, when it comes at a high origin switch, start 2nd speed forward motion, when the home switch is encountered when low, changing the direction of motion and starts to move to 2nd speed, when it comes to the home switch in the high position is the home position.
- Case 2: When the instruction execution MC_Home home switch is high, axis starts moving forward 2nd speed, when it comes to the home switch is low, and changing the direction of movement in 2nd speed starts to move, when encountering origin when the switch is in the upper position is the home position.
- Case 3: When the instruction execution MC_Home home switch is low, the shaft starts moving forward first speed, when the switch is in the home and encounters a low forward operation at a high limit switch, changing the direction of movement and in the first stage movement start speed, when it comes to the home switch in the high position is the home position.

取决于原点开关、正向运转极限开关的原点回零,上图中的表示25原点回零模式25

• Homing mode Homing 26 depending on the origin switch, Forward limit switch

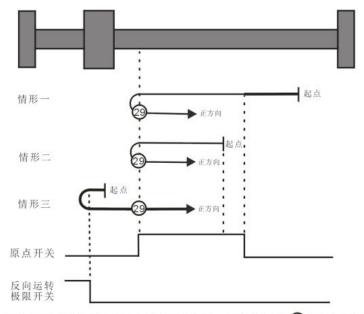
- Case 1: When the instruction execution MC_Home home switch is low, the shaft starts moving forward first speed, when it comes to the home switch is high, starts to move to 2nd speed when it encounters the home switch in the low the position is the home position.
- Case 2: When the home switch performed at a high MC_Home command axis starts moving forward 2nd speed, when faced with the origin position switch is in the low position of the origin.
- Case 3: When the instruction execution MC_Home home switch is low, the shaft starts moving forward first speed, when the switch is in the home and encounters a low forward operation at a high limit switch, changing the direction of movement and in the first stage movement start speed, when it comes to the home switch is high, and once again changing the direction of movement in 2nd speed starts to move, when the home switch in the low position is the home position.

取决于原点开关、正向运转极限开关的原点回零,上图中的表示26原点回零模式26


- Homing mode switch 27 depending on the origin and reverse operation of the limit switch Homing
- Case 1: When the instruction execution MC_Home home switch is low, the shaft speed begins to reverse movement of the first segment, when faced with the home switch is high, the direction of motion and changes in motion in 2nd speed, the home switch position of the origin is in the low position.
- Case 2: When performed in a high MC_Home home switch instruction, the start of direct axis 2nd speed forward motion, the home switch is in the low position is the home position.
- Case 3: When the instruction execution MC_Home home switch is low, starts moving shaft is the first speed reverse, when the home switch is in the low and reverse operation encountered when the limit switch is high, and to change the direction of movement of the first section movement start speed, when it comes at a high origin switch, starts to move in 2nd speed, the home switch is in the low position is the home position.

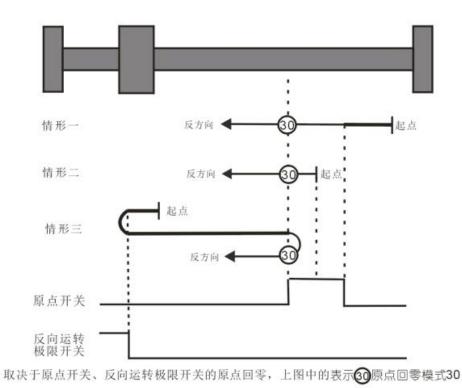
取决于原点开关、反向运转极限开关的原点回零,上图中的表示27原点回零模式27

• Homing mode switch 28 depending on the origin and reverse operation of the limit switch Homing


- Case 1: When the instruction execution MC_Home home switch is low, the shaft starts to first speed reverse movement, when the switch is in the home position encounters the origin position is high.
- Case 2: When performed in a high MC_Home home switch instruction, the start of direct axis 2nd speed forward motion, to change the direction of movement in the home switch in the low speed and at the second section starts to move, when the home switch is high position is the home position.
- Case 3: When the instruction execution MC_Home home switch is low, starts moving shaft is the first speed reverse, when the home switch is in the low and reverse operation encountered when the limit switch is high, and to change the direction of movement of the first section movement start speed, when it comes to the home switch high, first speed is still moving, when the home switch is low, the direction of movement to change the first speed and starts to move, the home switch is in the high position is the home position.

取决于原点开关、反向运转极限开关的原点回零,上图中的表示28原点回零模式28

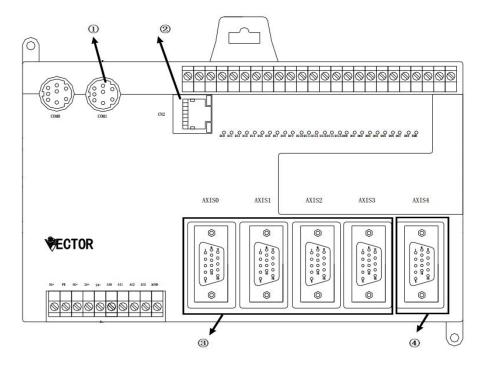
• Homing mode switch 29 depending on the origin and reverse operation of the limit switch Homing


- Case 1: When the instruction execution MC_Home the home switch in the low to first speed reverse movement, when the home switch is high encounter, 2nd speed starts to move, when the shaft begin to encounter the home switch in the low changing the direction of movement and runs in 2nd speed, when the switch is again encountered in the home position when the home position is high.
- Case 2: When the instruction execution MC_Home home switch is high, the shaft speed begins to reverse movement of the second segment, to change the direction of the origin when the switch is in a low encounter and 2nd speed starts to move, when the home switch is encountered high position is the home position.
- Case 3: When the instruction execution MC_Home home switch is low, starts moving shaft is the first speed reverse, when the home switch is in the low and reverse operation encountered when the limit switch is high, and to change the direction of movement of the first section movement start speed, encountered when an origin position switch is in the home position is high.

取决于原点开关、反向运转极限开关的原点回零,上图中的表示29原点回零模式29

• Homing mode switch 30 depending on the origin and reverse operation of the limit switch Homing

- Case 1: When the instruction execution MC_Home the home switch in the low to first speed reverse movement, when the home switch is high encounter, 2nd speed starts to move, when the shaft begin to encounter the home switch in the low the position is the home position.
- Case 2: When the instruction execution MC_Home home switch is high, the shaft speed begins to reverse movement of the second segment, when faced with the home switch in the low position is the home position.
- Case 3: When the instruction execution MC_Home home switch is low, starts moving shaft is the first speed reverse, when the home switch is in the low and reverse operation encountered when the limit switch is high, and to change the direction of movement of the first section movement start speed, when it comes to the home switch is high, and the direction of movement changes again begins to move to 2nd speed when it encounters the home switch in the low position is the home position.


• The current position of the origin return mode, the shaft 35 is considered a position OPR

In mode 35, the instruction execution MC_Home, the shaft is not moving, the current position of the axis is considered to be the position of the OPR.

Appendix IV CANopen Instructions

1. CANopen communication connection

1.1 Description Motion Controller Connection Ports

As the picture shows:

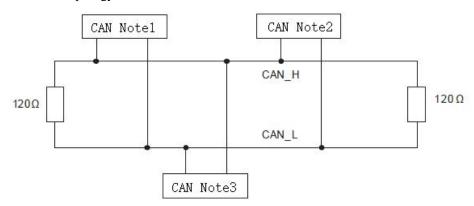
① CANopen communication port, through this interface the data exchange with the slave node, and a transceiver transmitting a synchronization signal sync packet;

(2) 100M Ethernet port, through this interface to upload and download programs online monitoring;

③AXIS0 ~ AXIS3 invalid type for CANopen;

④ AXIS4 spindle interface axis number is 16, only instructions for the spindle to make a multi-axis (or the encoder connected to the pulse generator), it is noted that the same analog with other interface functions.

		stitch	definition
		1	NC
		2	NC
DC 000	$ \begin{pmatrix} 8 & 7 & 6 \\ 0 & 0 & 0 \\ 0 & 5 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $	3	NC
RS-232 (COM1)		4	NC
(COMI)		5	NC
		6	CANL
		7	CANH
		8	GND


1.2 CANopen communication port pin definitions

CANL signal corresponding to the negative (-); CANH signal corresponding to the positive (+); GND signal, the signal needs to be connected in common with the device, please note that the boss pins and the bonding wire direction.


1.3 CANopen communication port LAN

CANopen bus terminal and the network topology:

To enhance the stability CANopen communication, two terminals CANopen bus network for an access terminal 120 ohm resistor. The following figure shows a schematic view of the basic CANopen network topology.

CANopen bus network topologies

1.4 CANopen communication port communication speed and

communication distance

Supported CANopen communication speed: 20K, 50K, 125K, 250K, 500K, the maximum transmission 1Mbps, the communication rate of each frequency band with a communication distance, the distance corresponding to FIG.

Transmission speed (bits per second)	20K	50K	125K	250K	500K	1M
Maximum communication distance (m)	2500	1000	500	250	100	25

2. CANopen protocol basics

2.1 Network management (NMT)

Support NMT (Network Management Object: Network Management Objects) Master services, including resetting the network, stop, pre-operation, start and so on.

Support NMT error control, NMT error control station for monitoring whether from dropped. NMT Error Control Heartbeat and NodeGuarding into two types, native support Heartbeat.

2.2 Service data (SDO)

Support the use of the ladder in the PLC ladder in non-real time data read from the service station, reference should be read-write area defined by the manufacturer.

2.3 Process data (PDO)

Support PDO (Process Data Object: Process Data Object) services:

RxPDO maximum support 200, the amount of data to support the maximum 1000 bytes

TxPDO maximum support 200, the amount of data to support the maximum 1000 bytes Each configurable TxPDO up to four and four slaves RxPDO

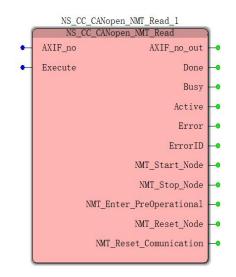
PDO transmission types: support event-triggered, time-triggered, periodic synchronization, synchronous aperiodic

PDO mapping: PDO mapping may each be a maximum of 32 bytes

Support for mapping data type:

storage space	type of data
1bit	BOOL
8bit	SINT USINT BYTE
16bit	INT UINT WORD
32bit	DINT UDINT REAL DWORD
64bit	LINT ULINT LREAL LWORD

Please refer to the standard CANopen DS402 protocol DS301v4.02 and on motor-driven sub-protocol.


3. Software Features

3.1 Bus Initialization Configuration Module

3.1.1. NS_CC_CANopen_NMT_Read(Network status read

instruction)

FB / FC	Explanation	Applicable model
FB	Network state This instruction is used to read	
	the current network device is located	

Input parameters

name	Features	type of data	Range setting (default value)	The timing of the entry into force
	To control			
AXIF no	node setting instruction, the			
(node	master reading	WORD	18	Excute to
number)	function only	W OND	10	TRUE
,	supports (18) of			
	the network state			
	When			
Excute	Excute is True,	BOOL	TRUE or	Excute to
(execute bit)	the instruction is	BOOL	FALSE (FALSE)	TRUE
	executed.			

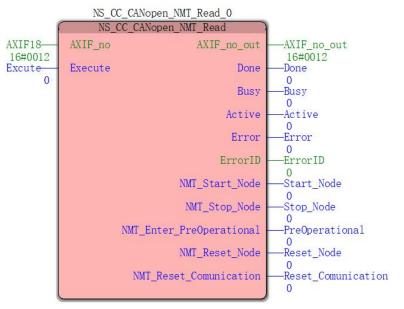
> Output]	parameters			
name	Features	type of data	Output range	
AXIF_no_out	This parameter is the			
(node number	output node number of	WORD	18	
output)	instructions executed			
	The output parameter to			
Done	TRUE indicates instructions	BOOL	TRUE or FALSE	
	are executed		FALSE	
	This parameter indicates		TDUE or	
Busy (execution)	to TRUE output instruction is	BOOL	TRUE or FALSE	
	executed		FALSE	
	When this parameter is			
The Active	TRUE indicates output	BOOL	TRUE or	
(control)	command under the control	BOOL	FALSE	
	shaft			
Emer (amor	This parameter indicates		TRUE or	
Error (error	the instruction execution error	BOOL	FALSE	
output)	to TRUE		FALSE	
ErrorID (error	Instruction execution	UDINT		
code)	error code error	UDINI	-	
NMT_Start_Nod	This parameter indicates		TRUE or	
e (network node	the status of the network node	BOOL	FALSE	
starts)	is a start-up state is TRUE		FALSE	
NMT_Stop_Nod	This parameter indicates		TRUE or	
e (network node	the status of the network node	BOOL	FALSE	
stops)	in a stopped state is TRUE		FALSE	
NMT_Enter_Pre	This parameter indicates			
operational (pre	the status of the network node	BOOL	TRUE or	
network entry mode	is TRUE when the	BOOL	FALSE	
of operation)	pre-operation state			
NMT_Reset_No	This parameter indicates		TRUE or	
de (network node	the network node is TRUE	BOOL	FALSE	
reset)	state to the reset state		171202	
NMT_Reset_Co	This parameter indicates			
mmunication	the status of the	BOOL	TRUE or	
(communication reset)	communication network when	DOOL	FALSE	
	the reset state is TRUE			

> Output parameters

Function Description

A given number axis (including the Master station number), the trigger module can read the

current status of the network in which the network master device, the read module will be reflected on the output terminal when the corresponding state successfully read, the output bits Done becomes Ture, the current status of the corresponding output BOOL variable becomes TRUE.

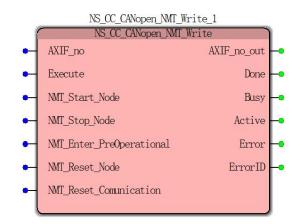


Program Example

In the example below when NS_CC_CANopen_NMT_Read instruction execution alone.

3 Variables and procedures

variable name	type of data	The initial value
NS_CC_CANopen_NMT_	NS_CC_CANopen_NMT	
Read_0	_Read	
AXIF18	USINT	18
Excute	BOOL	FALSE
AXIF_no_out	WORD	1
Done	BOOL	0
Busy	BOOL	
Active	BOOL	
Error	BOOL	
ErrorID	USINT	
Start_Node	BOOL	
Stop_Node	BOOL	
PreOperational	BOOL	
Reset_Node	BOOL	
Reset_Comunication	BOOL	



4、Timing diagram

Excute	
Done	
Busy	
Active	
Preoperational	
Start_Node	
Stop_Node	

3.1.2. NS_CC_CANopen_NMT_Write(Network state write command)

FB / FC	Explanation	Applicable model
FB	This instruction is used to write the current	
	status of network devices in which the respective	
	network node in the network	

-	-		Range	The
name	Features	type of data	setting (default	timing of the
		· · · · · · · · · · · · · · · · · · ·	value)	entry into force
AXIF_no (node number)	To control node setting instruction	WORD	1 to 16, 18	Excute to TRUE
Excute (execute bit)	When Excute is True, the instruction is executed	BOOL	TRUE or FALSE (FALSE)	
NMT_Start_ Node (start node)	This parameter is TRUE, start the network node	BOOL	TRUE or FALSE (FALSE)	
NMT_Stop_ Node (stop node)	This parameter is TRUE, the network node is stopped	BOOL	TRUE or FALSE (FALSE)	
NMT_Enter_ Preoperational (pre	This parameter is	BOOL	TRUE or FALSE (FALSE)	

Input parameters

network entry	TRUE, into the			
mode of operation)	pre-operational			
	state of the			
	network			
	When this			
NMT Deset	parameter is		TRUE or	
NMT_Reset_	TRUE, the	BOOL		
Node (reset node)	reset network		FALSE (FALSE)	
	node			
NMT Deset	When this			
NMT_Reset_ Communication	parameter is		TRUE or	
	TRUE, the	BOOL		
(reset	reset network		FALSE (FALSE)	
communication)	traffic			

> Output parameters

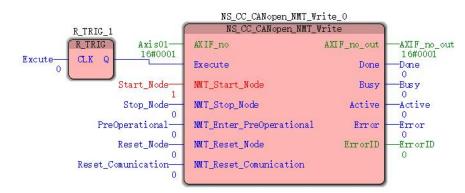
name	Features	type of data	Output range	
AXIF_no_out	This parameter is the			
(node number	output node number of	WORD	1 to 16, 18	
output)	instructions executed			
	The output parameter to		TRUE or	
Done	TRUE indicates instructions	BOOL	FALSE	
	are executed		FALSE	
	This parameter indicates		TRUE or	
Busy (execution)	to TRUE output instruction is	BOOL	FALSE	
	executed		TALSE	
	When this parameter is			
The Active	TRUE indicates output	BOOL	TRUE or	
(control)	command under the control	FALSE		
	shaft			
	This parameter indicates		TRUE or	
Error	the instruction execution error	BOOL	FALSE	
	to TRUE		FALSE	
ErrorID	Instruction execution	WORD		
EIIOIID	error code error	WORD	-	

Function Description

1, a given number of nodes (including the Master station number), the first trigger node status, and then Excute trigger (the rising edge of input), can be written in the network status of the network node corresponding to the device, after writing is completed, the output becomes the Done Ture ;

2, NMT_Start_Node (start node), NMT_Stop_Node (stop node), NMT_Enter_Preoperational

(pre network entry mode of operation), NMT_Reset_Node (reset node), NMT Reset Communication (reset communication), any two or more inputs can not trigger;


3, the instruction must trigger the triggering edge module, it is not always Excute TURE; Done when the output signal indicating write completion status of the selected network.

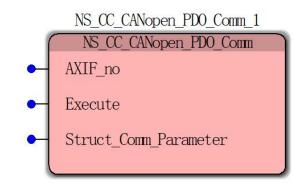
Program Example

 \sim

In the example below when NS_CC_CANopen_NMT_Read instruction execution alone. **1**, variables, and procedures

variable name	type of data	The initial value
NS_CC_CANopen_NMT_	NS_CC_CANopen_NMT	
Read_0	_Read	
AXIF18	USINT	1
Excute	BOOL	FALSE
Start_Node	BOOL	FALSE
Stop_Node	BOOL	FALSE
PreOperational	BOOL	FALSE
Reset_Node	BOOL	FALSE
Reset_Comunication	BOOL	FALSE
AXIF_no_out	WORD	
Done	BOOL	
Busy	BOOL	
Active	BOOL	
Error	BOOL	
ErrorID	USINT	

2, a timing diagram


As shown, a given mode of operation, such as Start_Node turned Excute trigger module, the master node of the network 1 will be a start-up operation, the output operation is successful "Done" signal.

Excute	
Start_Node	
Done	l
Busy	
Active	

3.1.3 NS_CC_CANopen_PDO_Comm(PDO process data

communication configuration parameters)

FB / FC	Explanation	Applicable model
FB	This command is used to configure the	
	communication parameters PDO process data	

≻	Input param	eters
---	-------------	-------

name	Features	type of data	Range setting (default value)	The timing of the entry into force
AXIF_no (node number)	To control node setting instruction	WORD	1 to 16	Excute to TRUE
Excute (execute bit)	When Excute is True, the instruction is executed	BOOL	TRUE or FALSE (FALSE)	Excute to TRUE
Struct_Com m_Parameter (structure parameter)	Structure parameters, see the functional description format	ANY		Excute to TRUE

> Function Description

1, the instruction must trigger the triggering edge of the module, it is not always Excute TURE;

2, "Struct_Comm_Parameter" data structure as that defined in accordance with the contents specified content DS301 protocol, defined after completion trigger module, i.e. a communication parameter from the subject into the corresponding dictionary station, the communication parameters corresponding to the object dictionary is "0X1400H \sim 0X14FF "or" 0X1800H \sim

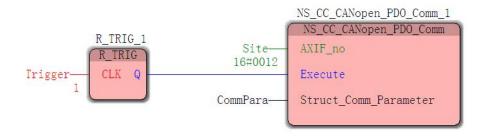
0X18FF "," CommPara "structure as the data structure, protocol defines fixed format do not make changes.

```
TYPE
AIXComm:
STRUCT
Index:UINT ;
Num_Of_SubIndex:BYTE ;
CobID:UDINT ;
Transmission_Type:BYTE ;
Inhibit_Time:UINT ;
Compatibility_Entry:BYTE ;
Event_Timer:UINT ;
END_STRUCT;
END_TYPE
```

Program Example

NS_CC_CANopen_PDO_Comm as shown in the example of instruction execution when alone.

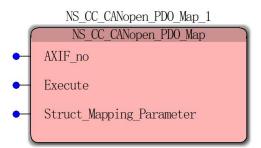
1		J	
1,	variables,	ana	procedures


variable name	type of data	The initial value
Config_Com_1	Config_Com	
Motion_assignments_1	Motion_assignments	
R_TRIG_1	R_TRIG	
NS_CC_CANopen_PDO_Com	NS_CC_CANopen_PDO_Com	
1	m	
SLVCom	VAR_OUTPUT	
CommPara	VAR_INPUT	

Config_Com_1	Motion_assignments_1
Config_Com	(Motion_assignments)
SLVCom	CommPara

Config_Com_1 configuration is as follows:

```
TRUE IF Trigger = TRUE THEN (*配置主站对从站的RPDO通信参数*)
6144 SLVCom. Index := UINT#16#1800;
16#02 SLVCom. Num_Of_SubIndex := INT_TO_BYTE (2);
385 SLVCom. CobID := UDINT#16#180 + WORD_TO_UDINT(AXIF_no+WORD#1);
16#01 SLVCom. Transmission_Type := INT_TO_BYTE (1);
0 SLVCom. Inhibit_Time := INT_TO_UINT (0);
16#00 SLVCom. Compatibility_Entry := INT_TO_BYTE (0);
0 SLVCom. Event_Timer :=INT_TO_UINT (0);
```


Motion_assignment_1 configured as follows:

3.1.4 NS_CC_CANopen_PDO_Map(PDO process data

configuration parameter map)

FB / FC	Explanation	Applicable model
FB	This instruction is used to process data PDO	
	configuration parameter map	

\triangleright	Input	parameters
------------------	-------	------------

name	Features	type of data	Range setting (default value)	The timing of the entry into force
AXIF_no (node number)	To control node setting instruction	WORD	1 to 16	Excute to TRUE
Excute (execute bit)	When Excute is True, the instruction is executed	BOOL	TRUE or FALSE (FALSE)	
Struct_Map ping_Parameter (structure parameter)	Structure parameters, see the functional description format	ANY		Excute to TRUE

> Function Description

1, the instruction must trigger the triggering edge of the module, it is not always Excute TURE;

2, "Struct_Mapping_Parameter" data structure as that defined in accordance with the contents specified content DS301 protocol module departure Once defined, i.e. a communication parameter from the subject into the corresponding dictionary station, the communication parameters corresponding to the object dictionary is "0X1600H \sim 0X16FF "or" 0X1A00H \sim 0X1AFF "," MapPara "structure as the data structure, protocol defines fixed format do not make changes.

```
TYPE

AIXMap:

STRUCT

Index:UINT;

Num_Of_SubIndex:BYTE;

SubIndex_Mapping_1:UDINT;

SubIndex_Mapping_2:UDINT;

SubIndex_Mapping_3:UDINT;

SubIndex_Mapping_4:UDINT;

SubIndex_Mapping_5:UDINT;

SubIndex_Mapping_6:UDINT;

SubIndex_Mapping_7:UDINT;

SubIndex_Mapping_8:UDINT;

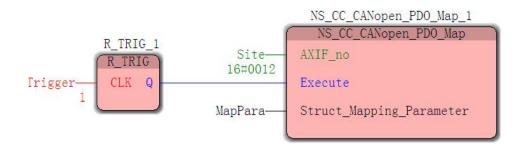
END_STRUCT;

END_TYPE
```


Program Example

1, variables, and procedures

In the example below when NS_CC_CANopen_PDO_Map instruction execution alone.


variable name	type of data	The initial value
Config_Map_1	Config_Map	
Motion_assignments_1	Motion_assignments	
R_TRIG_1	R_TRIG	
NS_CC_CANopen_PDO_Map_1	NS_CC_CANopen_PDO_Map	
MSTCom	VAR_OUTPUT	
MapPara	VAR_INPUT	

CC_CANopen_PDO_Map_1	NS_CC_CANopen_PDO_Map	
MSTCom	VAR_OUTPUT	
MapPara	VAR_INPUT	
Config_Map_1 Config_Map MSTCom	Motion_assignments_1 Motion_assignments MapPara	

Config Map 1 configuration is as follows:

```
TRUE IF Trigger = TRUE THEN
5120 MSTCom. Index := UINT#16#1400 + WORD_TO_UINT(AXIF_no * WORD#2) ;
16#02 MSTCom. Num_Of_SubIndex := INT_TO_BYTE (2);
385 MSTCom. CobID := UDINT#16#180 + WORD_TO_UDINT(AXIF_no+WORD#1);
16#01 MSTCom. Transmission_Type := INT_TO_BYTE (1);
0 MSTCom. Inhibit_Time := INT_TO_UINT (0);
16#00 MSTCom. Compatibility_Entry := INT_TO_BYTE (0);
0 MSTCom. Event_Timer :=INT_TO_UINT (0);
```

Motion_assignments_1 configuration is as follows:

3.1.5 NS_CC_CANopen_RPDO(PDO data mapping area read

command)

FB / FC	Explanation			Applicable model
FB	This command is us	sed to map th	e data area read	
	command PDO			
		- Manual Annual Statement of St	lopen_RPDO_1	
		NS_CC_CA	Nopen_RPD0	
	•	AXIF_no	AXIF_no_out	
	•	Enable	Done —•	
	•-	Index	Busy —	
	•-	DataType	Active —	
			Error —	
			ErrorID —	
			Data —•	

> Input parameters

name	Features	type of data	Range setting (default value)	The timing of the entry into force
AXIF_no (node number)	To control node setting instruction	WORD	1 to 16	Enable is TRUE
Enable (execute bit)	When Enable is True, the instruction is executed	BOOL	TRUE or FALSE (FALSE)	
Index (Index)	Data mapping area index	WORD	0000 ~ FFFF	Enable is TRUE
DataType	type of data	WORD	0000 ~ FFFF	Enable is TRUE

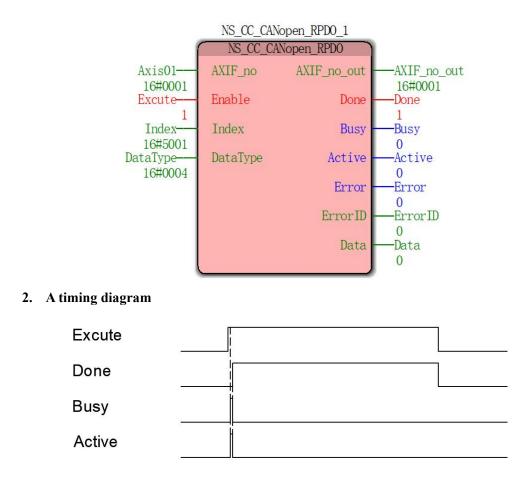
> Output parameters

name	Features	type of data	Output range
AXIF_no_out (node number	This parameter is the output node number of	WORD	0~16
output)	instructions executed		
Done (execution	The output parameter to	BOOL	TRUE or

is complete)	TRUE indicates instructions		FALSE
	are executed		
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
Error (error output bit)	This parameter indicates the instruction execution error to TRUE	BOOL	TRUE or FALSE
The ErrorID (error code)	Instruction execution error code error	WORD	0000 ~ FFFF
Data (data content)	Data output content	WORD	0000 ~ FFFF

Function Description

Function module for reading map data content from a certain sub station node TPDO index data mapping stored in the address zone data, when the state of the corresponding successful reading, the output becomes the Done Ture.

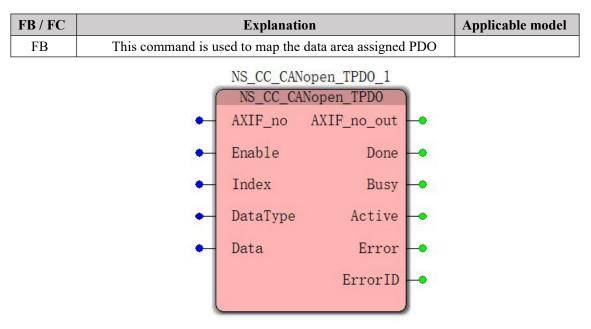


Program Example

In the example below when NS_CC_CANopen_RPDO instruction execution alone.

1, variables, and procedures

variable name	type of data	The initial value
NS_CC_CANopen_RPDO	NS_CC_CANopen_RPD	
_1	0	
AXIF01	USINT	1
Excute	BOOL	FALSE
Index	WORD	16 # 5001
DataType	WORD	16 # 0004
AXIF_no_out	WORD	
Done	BOOL	
Busy	BOOL	
Active	BOOL	
Error	BOOL	
ErrorID	USINT	
Data	UDINT	


As shown, 0X60FF TPDO mapping data mapping area, the index 0x5001 (master defined), then the "Index = 16 # 5001", Type "DataType" is defined as follows:

数据类型表示:
 02 signed8
 03 signed16
 04 signed32
 05 unsigned8
 06 unsigned16
 07 unsigned32

Because 0X60FF to DINT type, the "DataType = 16 # 04", the trigger module reads the corresponding profile of the velocity set value.

3.1.6 NS_CC_CANopen_TPDO(PDO data mapping area

assignment instruction)

Input parameters

name	Features	type of data	Range setting (default value)	The timing of the entry into force
AXIF_no (node number)	To control node setting instruction	WORD	1 to 16	Enable is TRUE
Enable (execute bit)	When Enable is True, the instruction is executed	BOOL	TRUE or FALSE (FALSE)	Enable is TRUE
Index (Index)	Data mapping area index	WORD	0000 ~ FFFF	Enable is TRUE
The DataType (data type)	type of data	WORD	0000 ~ FFFF	Enable is TRUE
Data (data content)	Data content	WORD	$0000 \sim FFFF$	Enable is TRUE

> Output parameters

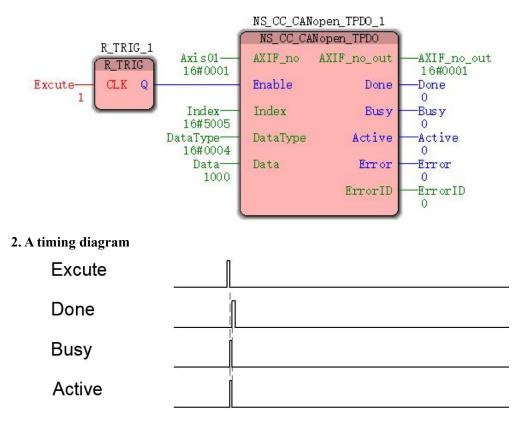
name	Features	type of data	Output
name	i catures	type of data	range

AXIF_no_out	This parameter is the			
(node number	out node number of	WORD	1 to 16	
output)	tructions executed			
Dana (avagution	he output parameter to		TDUE on	
Done (execution	indicates instructions	BOOL	TRUE or	
is complete)	are executed		FALSE	
	nis parameter indicates		TDUE	
Busy (execution)	E output instruction is	BOOL	TRUE or	
	executed		FALSE	
	When this parameter is			
The Active	UE indicates output	DOOL	TRUE or	
(control)	and under the control	BOOL	FALSE	
	shaft			
Γ (nis parameter indicates			
	ruction execution error	BOOL		
output bit)	to TRUE		FALSE	
The ErrorID	Instruction execution	WODD		
(error code)	error code error	WORD		
The Active (control) Error (error output bit) The ErrorID	executed When this parameter is UE indicates output and under the control shaft his parameter indicates ruction execution error to TRUE	BOOL		

Function Description

1, the function of this module, the address assignment to the data from a certain sub station node RPDO index data mapping stored in the area;

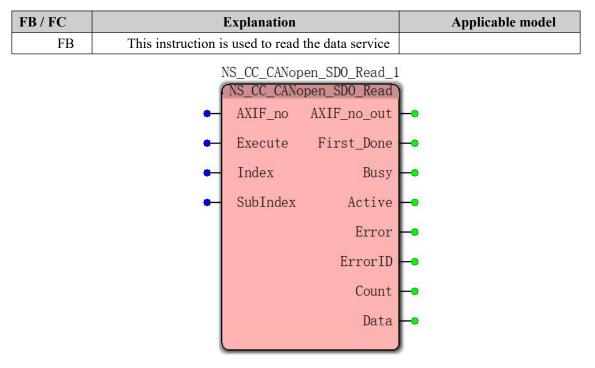
2, the instruction must trigger the triggering edge module, it is not always Excute TURE.



Program Example

In the example below when NS_CC_CANopen_TPDO instruction execution alone.

i, variables, and procedures					
variable name	type of data	The initial value			
NS_CC_CANopen_TPDO	NS_CC_CANopen_TPD				
_1	О				
AXIF01	USINT	1			
Excute	BOOL	FALSE			
Index	WORD	16 # 5001			
DataType	WORD	16 # 0004			
Data	UDINT	1000			
AXIF_no_out	WORD				
Done	BOOL				
Busy	BOOL				
Active	BOOL				
Error	BOOL				
ErrorID	USINT				


1, variables, and procedures

As shown, 0X60FF RPDO mapping data mapping area, index 0X5005 (custom master station), then the "Index = 16 # 5005", due to DINT 0X60FF type, the "DataType = 16 # 04", "Data = 1000 "1000 will be assigned to the trigger module node address 0X60FF, it indicates that the current node profile speed setting value is set to 1000.

3.1.7 NS_CC_CANopen_SDO_Read(Service data reading

instruction)

Input parameters

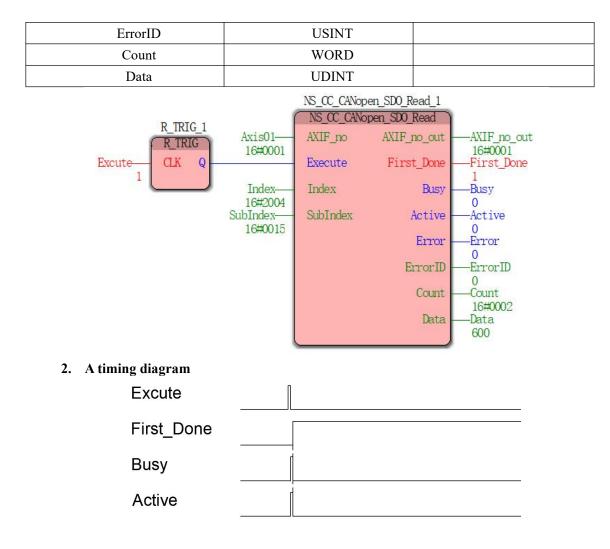
name	Features	type of data	Range setting (default value)	The timing of the entry into force
AXIF_no (node number)	To control node setting instruction	WORD	1 to 16	Excute to TRUE
Excute (execute bit)	When Excute is True, the instruction is executed	BOOL	TRUE or FALSE (FALSE)	
Index (Index)	Inode address	WORD	$0 \sim FFFF$	Excute to TRUE
SubIndex (sub-index)	Subindex node address	WORD	$0 \sim FFFF$	Excute to TRUE

> Output parameters

name		Features	type of data	Output range
AXIF_no_out		This parameter is the	WORD	0~16
(node nu	ımber	output node number of	WORD	0 ~ 10

output)	instructions executed		
output)			
First_Done (first execution is complete)	The output parameter to TRUE represents the first instruction execution is complete, the trigger again, the parameter is still Ture	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
Error (error output bit)	This parameter indicates the instruction execution error to TRUE	BOOL	TRUE or FALSE
The ErrorID (error code)	Instruction execution error code error	WORD	
Count	Byte length	WORD	0000 ~ FFFF
Data	Output Data	UDINT	0000 ~ FFFF

> Function Description


Service data read module, and read by the specified index subindex manner a node address in the contents of the address Youwenyouda, slow reading speed, reading normally takes a period of two sync, applied to non-real time data read operation.

Program Example

In the example below when NS_CC_CANopen_SDO_Read instruction execution alone.

variable name	type of data	The initial value
NS_CC_CANopen_SDO_	NS_CC_CANopen_SDO	
Read_1	_Read	
AXIF01	USINT	1
Excute	BOOL	FALSE
Index	WORD	16 # 2004
SubIndex	WORD	16 # 0015
AXIF_no_out	WORD	
Done	BOOL	
Busy	BOOL	
Active	BOOL	
Error	BOOL	

1, variables, and procedures

As shown, the servo read parameter P04.21 Vector (the current rotation speed, the unit r / min), the corresponding index: 2000 + # 16 # 16 16 # 4 = 2004, corresponding to the sub-index 21 16 # 15, the trigger module No. 1 reads the current speed of the servo node 600r / min.

3.1.8 NS_CC_CANopen_SDO_Write(Service Data assignment

instruction)

FB / FC	Explanation			Applicable model
FB	This command i	s used to assig	n data service	
		NS_CC_CANor	oen_SDO_Write	_1
		NS_CC_CANo	pen_SDO_Write	
	•-	AXIF_no	AXIF_no_out	- •
	•	Execute	First_Done	-
	•	Index	Busy	-•
	•	SubIndex	Active	-
	•	Count	Error	-
	•	Data	ErrorID	
				J

> Input parameters

name	Features	type of data	Range setting (default value)	The timing of the entry into force
AXIF_no (node number)	To control node setting instruction	WORD	1 to 16	Excute to TRUE
Excute (execute bit)	When Excute is True, the instruction is executed	BOOL	TRUE or FALSE (FALSE)	
Index (Index)	Inode address	WORD		
SubIndex (sub-index)	Subindex node address	WORD		
Count	Byte length	WORD		
Data	data input	UDINT		

> Output parameters

name	Features	type of data	Output range
AXIF_no_out	This parameter is the		
(node number	output node number of	WORD	0~16
output)	instructions executed		

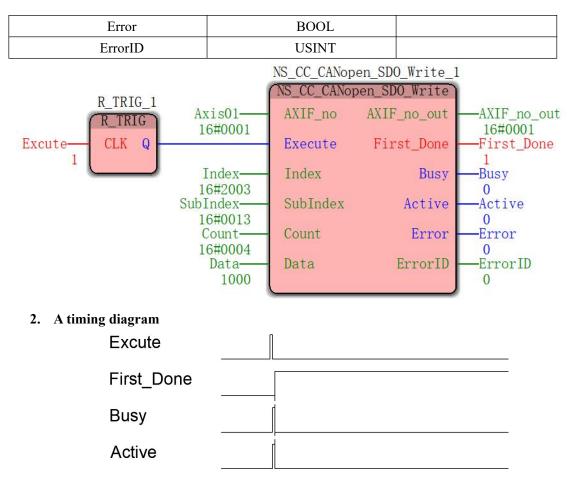
Done (execution is complete)	The output parameter to TRUE indicates instructions are executed	BOOL	TRUE or FALSE
Busy (execution)	This parameter indicates to TRUE output instruction is executed	BOOL	TRUE or FALSE
The Active (control)	When this parameter is TRUE indicates output command under the control shaft	BOOL	TRUE or FALSE
Error (error output bit)	This parameter indicates the instruction execution error to TRUE	BOOL	TRUE or FALSE
The ErrorID (error code)	Instruction execution error code error	WORD	-

Function Description

1, the service data assignment module to assign the address specified by the index address and a node index from a direct manner, Youwenyouda, assignment slow speed, reading normally takes a period of two sync, applied to non-real time data write operations.

2, the instruction must trigger the triggering edge module, it is not always Excute TURE;

3, differs from that of the read module, a multi-byte variable "Count" (byte length), and "Data" (variable data), the byte length is defined as follows:


11 数据字节长度表示:
 12 1,2,3,4 COUNT数

Program Example

 $NS_CC_CANopen_SDO_Write$ as shown in the example of instruction execution when alone.

variable name	type of data	The initial value
NS_CC_CANopen_SDO_	NS_CC_CANopen_SDO	
Write_1	_Write	
AXIF01	USINT	1
Excute	BOOL	FALSE
Index	WORD	16 # 2004
SubIndex	WORD	16 # 0015
Count	WORD	
Data	UDINT	
AXIF_no_out	WORD	
Done	BOOL	
Busy	BOOL	
Active	BOOL	

1, variables, and procedures

When the above, the servo parameter assignment Vector P03.19 (position error value is too large), the corresponding index: 2000 + # 16 # 16 16 # 3 = 2004, corresponding to the sub-index 19 16 # 13, a length of 4 bytes, the current No. 1 trigger module assignment node position is too large value.

3.2 Motion Control Module

. A module when the servo parameters P08.42 = 0, the default of the servo motion controller bus VEC support for Vector brand: MC_AXIS_REF MC Power MC CamIn MC CamOut MC CombineAxes MC_GearIn MC GearOut MC Halt MC Home MC MoveAbsolute MC MoveAdditive MC MoveRelative MC_MoveVelocity MC Stop NS_MC_StopByPos MC SpecialMoveAbsolute NS MC RotaryCutIn NS_MC_SpecialCamIn NS MC SpecialCombineAxes MC_HaltSuperimposed MC MoveSuperimposed MC_Phasing NS MC Jog MC SetOverride MC SetPosition MC TouchProbe MC_AbortTrigger NS MC CamReadPoint NS_MC_CamReadTappetStatus NS MC CamReadTappetValue NS_MC_CamSet NS MC_CamWritePoint NS MC CamWriteTappetValue MC ReadActualPosition MC ReadActualVelocity MC ReadMotionState MC ReadStatus NS_MC_ReadParameter

MC_Reset

39 related to the motion control module, the maximum control shaft 16.

Bus motion controller first edition is to increase the CANopen protocol layers based on the analog version of the launch of an upgraded version of the product, the product uses the motion control function module is consistent with the analog products, the description does not function module then repeat, please refer to the "VA series motion controller programming Manual," a book to learn more about.

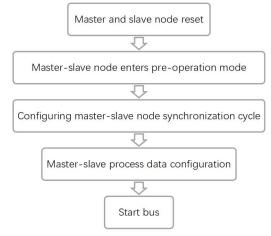
b. When the servo parameter P08.42 = 1, A2 series Delta default servo CANopen

By Delta DVP15MC11T motion controller Motion test, VC bus servo suitable for most applications function sets up the controller. Motion port can not be used a total of six functions:

MC SetPosition (position setting command);

The MC ReadAxisError (read axis error command);

MC_TouchProbe (position capture command, when capturing the servo position is defined by different terminals DI can not be used);


DMC_NC (G instruction code analysis);

DMC_ControlAxisByPos (NC shift instruction);

In addition to the main function NC function is not available, the other out of the listed functions tested, can be used.

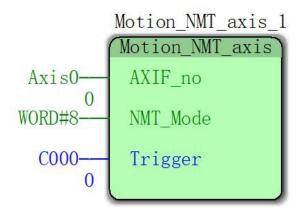
4. Example Configuration

Process describes the software configuration of the bus when the motion controller using the Vector CANopen servo, configuration process is as follows:

4.1 Motion Control Shaft Arranged

The main job is to process the configuration data PDO, network synchronization period, following the second package module through the gradual movement of the shaft describes the configuration process, the process of configuring a servo, the node number is 1.

4.1.1 Communication Configuration

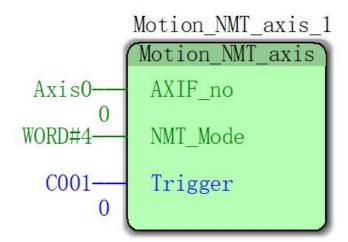

According to the hardware topology to build a good network, start building communication:

1, the slave set, the servo P08.41 = 1 (node number), P08.40 = 800 (baud rate);

2, the master station is provided, the motion controller in the master station 18 is the default number, register address:% MB3.4012, communication baud rate register address:% MW3.4013, set up as follows

variable name	type of data	The initial value	address
BaudRate	WORD	800	
Com_BaudRate	WORD		% MW3.4013
MainSite	Byte	18	
Com_ MainSite	Byte		% MB3.4012
BaudRate———Com_BaudRate MainSite———Com_MainSite 800 800 18 18			

4.1.2 Reset the Master-slave Node

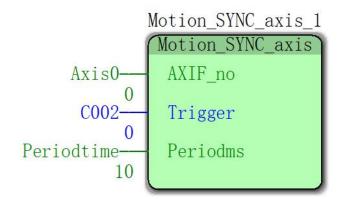

Input parameters

variable name	Features	type of data	The initial value
Axis0 (axis number)	Node number = axis number +1	USINT	0
C000 (execute bit)	When the Execute FALSE to TRUE, the instruction is executed	BOOL	FALSE

1, NMT_Mode (network model) is customizable, template is defined as: 1 (Start Network), 2 (stop the network), 4 (the network into a pre-operation), 8 (reset node), 16 (reset communication), this selected at NMT_Mode = 8, reset the network;

2, the internal module functions NS_CC_CANopen_NMT_Write two modules, one master station 18 is reset, one pair of the station 1 is reset from the node number, the condition "C000" trigger time delay waiting for approximately 1s and then go to the next step. (See detailed configuration template "Vector CANopen Configuration")

4.1.3 Master-slave Node Enters the Pre-main Operation


> Input parameters

variable name	Features	type of data	The initial value
Axis0 (axis number)	Node number = axis number +1	USINT	0
C001 (execute bit)	When the Execute FALSE to TRUE, the instruction is executed	BOOL	FALSE

1, NMT_Mode (network model) is customizable, template is defined as: 1 (Start Network), 2 (stop the network), 4 (the network into a pre-operation), 8 (reset node), 16 (reset communication), this selected at NMT_Mode = 4, the network into a pre-operation;

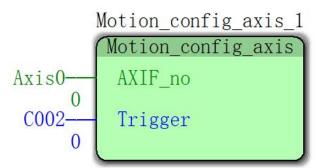
2, the internal module functions NS_CC_CANopen_NMT_Write two modules, one master station 18 is pre-operation, operation from one pair of pre-node station No. 1, the condition "C001" trigger delay waiting for the same time is probably 1s, then go Next. (See detailed configuration template "Vector CANopen Configuration")

4.1.4 Configure the Synchronizing Cycle of Master-slave Node

Input parameters

variable name	Features	type of data	The initial value
Axis0	Node number = axis number +1	nUSINT	0
(axis number)		nosini	0
C002	When the Execute FALSE to	BOOL	FALSE
(execute bit)	TRUE, the instruction is executed	BOOL	FALSE
Periodtime	Provided from the master node		
(synchronization	synchronization period (unit: ms)	Time	10
period)			

1, the master and slave are the next pre-operational mode, the configuration synchronization cycle at this step, internal modules respectively of the master set from 1006H target station with NS_CC_CANopen_SDO_Write module, the primary must be the same synchronization cycle station is provided from, otherwise lead to control errors!


2, C002 trigger condition, configure synchronization cycle to enter the next step without delay;

3, setting the reference standard isochronous period 1006H:

Periodtime = (0.114 * 1.3 * Number of PDO * 1000 / * baud +1+ axes 0.125), the number of templates configured for PDO 4;

(See detailed configuration template "Vector CANopen Configuration")

4.1.5 Configure the Process Data of Master-slave Node Master

Input parameters

variable name	Features	type of data	The initial value
Axis0 (axis number)	Node number = axis number +1	USINT	0
C002 (execute bit)	When the Execute FALSE to TRUE, the instruction is executed	BOOL	FALSE

This step is a step PDO data configuration communication parameters and mapping parameters, must be configured in a servo interpolation position required by the model object and the format, or can not use the motion control module functions, this step configuration requires careful estimated time configuration consumed to delay, delay time is too short to make some axis configuration fails, making it impossible to control, affect the efficiency too long. (See detailed configuration template "Vector CANopen Configuration")

4.1.6 Start Bus

Input parameters

variable name	Features	type of data	The initial value
Axis0 (axis number)	Node number = axis number +1	USINT	0
C000 (execute bit)	When the Execute FALSE to TRUE, the instruction is executed	BOOL	FALSE

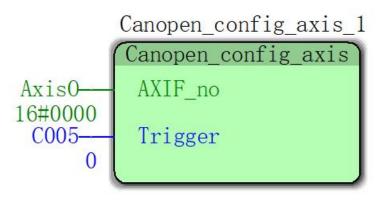
1, NMT_Mode (network model) is customizable, template is defined as: 1 (Start Network), 2 (stop the network), 4 (the network into a pre-operation), 8 (reset node), 16 (reset communication), this selected at NMT_Mode = 1, start the network;

2, there are two internal module NS_CC_CANopen_NMT_Write functional modules, each of the master station 18 and the start node number 1, the condition "C004" trigger the bus run mode, then using the motion control module can be controlled from the shaft. (See detailed configuration template "Vector CANopen Configuration")

If you are interested in more detail the configuration process understanding, please refer to the configuration template program.

4.2 tension control shaft arranged

4.2.1 Communication configuration-----same as: 4.1.1 Communication configuration


4.2.2 Reset the master-slave node ------ same as: 4.1.2 Reset the master-slave node

4.2.3 Master-slave node Enters the pre-main operation ------ same as: 4.1.3 Master-slave node Enters the pre-main operation

4.2.4 Configure the synchronizing cycle of master-slave node------ same as: 4.1.4 Configure the synchronizing cycle of master-slave node

4.2.6 Start Bus ----- 4.1.6 Start Bus

4.2.5 Configure the Process data of master-slave node master

5. Key Considerations

. A set of reference standards 1006H synchronization cycle: synchronization period = (0.114 * 1.3 * Number of PDO * 1000 / baud +1+ axes * 0.125) ms;

. B setup software CYCLETIME, scan cycle = (+1 synchronization period or 2) ms;

. C configuration data time: Processed tension axis = * 26 * 2ms synchronization period; motion axis = * 12 * 2ms synchronization period;

. D Bus JITTER * 3.56 / 1000 = MS synchronization period;

. E velocity source electronic gear% MB3.9690; CANopen communication baud rate% MW3.4013;

f. If the green light flashes motion controller, the controller and each check station communication station and baud rate settings are correct, or to check the line is disconnected, or there is no terminating resistor connected check or check the signal ground there is no communication together, or to check whether the servo grounded;

. G program modules (except read bus is not encapsulated, write, configuration module) Axis number less than the number corresponding to the station 1, for example, module 0 axis, the actual operation of the station 1;

. H called read bus is not encapsulated, write, configuration modules, and the one-axis number, a so-axis corresponds to a station;

j. spindle default station number 1, i.e. 1, the node can do this as a motion of the spindle axis and the axis number, the tension shaft speed Station No. 1 are read values are stored P14.63 used for tension control, data without master station, receiving from the hair;

I. reliable grounding system requirements, preventing interference.

Appendix V Register Description

Register Category:

- 1, 0-1999 power-down does not save;
- 2, 2000-3999 power-down save;
- 3, 4000-4095 power-down save of special registers;
- 4, 4096-9499 power-down does not save;
- 5, 9500-9999 down does not save special registers;
- 6, 10000-19999 down without saving.

Special registers:

Special registers.				
% MB3.4010	MODBUS communication station number			
% MB3.4011	MODBUS communication baud rate baud rate of 4800 *% MB3.4011 in			
	value			
% MB3.4012	CAN Communication station number			
% MD3.4013	CAN communication baud rate, for example, 500K to 500,000			
% MB3.4015	EtherNET IP address of the last 192.168.1.% MB3.4015 number in the rang			
	of 93-124			
% MB3.4016	7 MODBUS data length of seven eight 8			
% MB3.4017	MODBUS 0 Even 1 Odd Parity None 2			
% MB3.4018	MODBUS Stop bits 0 1 stop bit for the two stop bits			
% MB3.4019	For 0 :MODBUS-232 communication first address man 0 corresponds to th			
	VA shared memory address 15000 which is %MX3.15000			
	For 1 :MODBUS-232 and Modbus485 manipulate the same shared memor			
	address.			
% MB3.4020	MODBUS communication delay 2-100 default 2 ms			
% MW3.4021	Cycle time, unit: subtle			
% MW3.4023	Absolute encoder forward and reverse for each axis; axes 0-4 correspond to			
	bits 0-4; corresponding bits 0 for normal counting, 1 for reverse counting			
% MW3.4024	This special register is set to 1 when the VA motion controller is the master,			
	and to 0 when it is the slave. Valid after re-powering.			
% MB3.9720	The number of cycles required to perform a calculation, Unit:			
% MB3.9721	Axes for participating in the operation, the value of at least 5			
% MB3.9536	By default, left untouched			
% MB3.9538	The value of the assigned register section 2000 to 3999,4000 to 4095 for all			
	registers 0			
% MB3.9542 ~	Clock register, see 11.6.10 RTC_S (special register clock)			
% MB3.9556				
% MB3.9654	Encoder direction, can not be used together with the shaft information.			
	Setting a corresponding bit corresponding to the encoder shaft reverse			
% MW3.9690	Source encoder provided in bits 0-4			
	ShaftBit4Bit3Bit2Bit1Bit0			
	mouth			

	Α	0	0	0	0	0
	4	0	0	0	0	0
	0	0	0	0	0	1
	1	0	0	0	1	0
	2	0	0	0	1	1
	3	0	0	1	0	0
	DI 8-12 prov		-			
	0 0	-	I bit to 0 ind	icates an inva	alid by the ex	ternal signal
0/ NOV2 0/02	becomes acti		1	1' 1 DI	(7	1.6
% MW3.9692	-			-		16 represents
	a point) 13 is disposed rim edge bit 0 indicates invalid DI by the externa signal becomes active				the external	
% MD3.9694	The number	of pulses bet	ween two sig	nals (the puls	se source regi	ister which is
	set by the sa	ampling sign	al DI MW3.	9690, need t	o be used in	conjunction
	with MW3.9	690)				
% MD3.9704	The number	of pulses bet	ween two sig	nals (the puls	se source regi	ister which is
	set by the s	ampling sig	nal DI MW.	3.9692, be u	used in conj	unction with
	MW3.9692)					
% MB3.9698	0 to 1 over n	ormal Conna	ught			
% MB3.9702	0 is the over	current protect	ction DO, DC	1 is not prot	ected	
% MB3.9710	0 off pulse f	unction virtu	al imaginary	v axis, an im	aginary axis	for the open
	dummy pulse	0 off pulse function virtual imaginary axis, an imaginary axis for the open dummy pulse function				
% MB3.9711	Pulse genera	Pulse generating imaginary axis designated virtual axis number				
% MB3.9722	With the special cam command, the corresponding bit of the axis is set to 1 to					
	indicate that the position loop gain of the reduction section is automatically					
	disabled for that axis in this function					
% MB3.9723	The continuation %MB3.9722 indicates that after the end of the deceleration					
	segment, the	delay %MB3	3.9723 of the	bottom cycle	e reverts to ac	tive gain
% MB3.9724	The bits corresponding to the 0-4 axes (bits 0-4) are set to 1 and the pulses					
	are sent with compensation					
% MB3.9800	A value of 1 selects manual selection of extensions A value of 0 means that					
	the extension type is automatically recognized					
% MB3.9801	First extension type (set 3 for 8ID8DO, set 4 for 16DI, set 5 for 16DO, set 6					
	for analogue	, set 7 for PT	100, set 8 for	r weighing, s	et 9 for therm	nocouple, set
	10 for IOT)					
% MB3.9802	Extension type for the second extension, same as 9801					
% MB3.9803	Extension type for the third extension, same as 9801					
% MB3.9804	Extension type for the fourth extension, as 9801					
% MB3.9805	Extension ty	pe for the fift	h extension,	same as 9801		
% MB3.9806	Extension ty	pe for the six	th extension,	same as 980	1	
% MB3.9807	Extension type for the seventh extension, as 9801					
% MB3.9808	Extension type for the eighth extension, as 9801					
% MB3.9809	VA controller hardware 0~3 axis port pulse receiving and sending control					
	bits, $0 \sim 3$ axis corresponding bit is 0 means $4 \sim 7$ axis receiving pulse; $0 \sim 3$ axis					

	corresponding bit is 1 means 4~7 axis sending pulse.
	(Example: change the value of %MB3.9809 to 0, i.e. "0000", 4~7 axes
	receive pulses; change the value of %MB3.9809 to 15, i.e. "1111", 4~7 axes
	send pulses)
% MW3.9995	ARM version number
% MW3.9997	FPGA version number

Appendix VI Error Codes

0x1001	Axis axis number is set beyond the permitted range	
0x1002	Acceleration Acceleration setting beyond the permitted	
	range	
0x1003	Deceleration deceleration setting beyond the permitted	
	range	
0x1004	Jerk Jerk is set outside the permitted range	
0x1005	Velocity speed setting beyond the permitted range	
0x1006	Location PositionOutside the allowable range is set	
0x1007	Direction setting direction beyond the permitted range	
0x1008	Outside the permitted range set BufferMode	
0x1009	ReferenceType setting function beyond the permitted range	
	SetPosition	
0x100b	Electronic cam beyond the permitted range table	
0x100c	Spindle axis number MasterSetting error	
0x100d	Electronic Cam Start Mode StartModeOutside the allowable	
	range is set	
0x100e	Electronic cam beyond the permitted range set MasterScaling	
0x100f	Electronic cam beyond the permitted range set SlaveScaling	
0x1010	Spindle Source MasterValueSourceOutside the allowable range	
	is set	
0x1011	From the main shaft number conflicts	
0x1012	Electronic gear numeratorRatioNumeratorOutside the	
	allowable range is set	
	(≥0)	
0x1013	Electronic gear denominatorRatioDoutside the permitted	
	range set enominator	
	(> 0)	
0x1014	VelFactor MC_SetOverride parameter setting function outside	
	the permitted range (0 to 500)	
0x1015	Range Error electronic cam SlaveRange	
0x1018	TriggerInput MC_TouchProbe feature set of range	
	(0 ~15)	
0x1019	Mode MC_TouchProbe function setting error	
0x1021	RotaryAxisRadius set out of range (> 0)	
0x1022	FeedAxisRadius set out of range (> 0)	
0x1023	CutLength set out of range (> 0)	
0x1026	SyncAngle setting out of the allowable range (0 $^{\sim}360$)	
0x1027	Peeling is no such function parameters	
0x1028	RotaryAxisKnifeNum set outside the permitted range (1-16)	
0x1045	NS MC SpecialCamIn is equal to 1/2 Mode, MaterValueSource	
	not be 0	

	When the mode is equal to 2/3/4 NS_MC_RotaryCutIn,	
	MaterValueSource not be 0	
0x1046	MC_AXIS_REF, Sample_Time set beyond the permitted range	
0x1047	MC_AXIS_REF, Closed_Loop_Scaling set beyond the permitte	
	range	
0x1048	MC_AXIS_REF, Reductor_Den set beyond the permitted range	
	(> 0)	
0x1049	MC_AXIS_REF, Reductor_Num set beyond the permitted range	
	(> 0)	
0x1050	MC_AXIS_REF, Screw_Lead beyond the permitted range, and	
	setting Disc_Circumference	
	(> 0)	
0x1051	MC_AXIS_REF, Revolving_Axes 1 is set beyond the permitte	
	range Modulo	
	(> 0)	
0x1052	MC_AXIS_REF, ControlMode set beyond the permitted range	
0x1053	MC_AXIS_REF, Moter_Max_V set beyond the permitted range	
0x1054	MC_AXIS_REF, Moter_PPC set beyond the permitted range	
0x1055	MC_AXIS_REF, Offset_Max_V set beyond the permitted range	
	MC_CamIn, ActivationMode is 2, ActivationPosition less tha	
0 1050	0 or greater than the mold	
0x1056	NS_MC_SpecialCamIn, ActivationPosition setOut of the	
	allowable range (≥ 0)	
0x1057	NS_MC_SpecialCamIn, DistanceOffset_Master setOut of the	
	allowable range (≥ 0)	
0x1058	DistanceAdd set outside the permitted range (≥ 0)	
0x1059	DistanceSync set outside the permitted range (≥ 0)	
0x1060	DistanceDec set outside the permitted range (≥ 0)	
0x1061	NC_CartesianCoordinate beyond the permitted range setting	
	module Depth	
0x1062	NC_CartesianCoordinate beyond the permitted range settin	
	module Junction_Deviation	
0x1063	NC_CartesianCoordinate beyond the permitted range settin	
	module Arc_Tolerance	
0x1064	NS_MC_SpecialCombineAxes beyond the permitted range settin	
	<pre>module Cam_DistanceOffset_Master</pre>	
	(> 0)	
0x1068	NS_MC_SpecialCombineAxes module Cam_Pulse_Per_Unit_M set	
	outside the permitted range (> 0)	
0x1069	NS_MC_SpecialCombineAxes module NCFile specified file wa	
	not found	
0x1070	NC_MoveCircular, CircMode set out of the allowable range (
	to 2)	

0x1071	NC_MoveCircular, PathChoice set out of the allowable range	
0,10,11	(0 to 1)	
0x1072	NC MoveCircular module, Param R, Param I, Param J, Param K	
	all 0	
0x1073	NC_GroupEnable, the current state of the shaft when the shaft	
	is not present $0/1/2$ as Standstill, the shaft can not enable the	
	group	
0x1074	NC_MoveLinear / NC_MoveCircular/ NC_CartesianCoordinate	
	when executed, not using NC_GroupEnableEnable axis groups	
0x1075	NC_GroupEnable beyond the permitted range setting module	
	Axis_Num_X	
	(0)	
0x1076	NC_GroupEnable beyond the permitted range setting module	
	Axis_Num_Y	
	(1)	
0x1077	NC_GroupEnable beyond the permitted range setting module	
	Axis_Num_Z	
	(2)	
0x1078	NS_MC_RotaryCutIn, cut length is set smaller than the knife	
	CutLength circumference $\frac{1}{10}$	
0x1079	NS_MC_RotaryCutIn, Cut_DI_Num set beyond the permitted	
	range	
	(0~15)	
0x1080	NS_MC_RotaryCutIn, Mark_DI_Num set beyond the permitted	
	range	
	(0~15)	
0x1081	MC_CombineAxes, CombineMode set beyond the permitted range	
	(0~1)	
0x1082	NS_MC_SpecialCombineAxes, Periodic_Master_Units input out	
	of range (> 0)	
0x1083	This information shaft axis error command charged	
0x1084	Spindle axis information corresponding to the instruction	
	of this error	
0X2001	The MC_Power, servo master slave returns a status word, a	
	failure message from the station	
0x2002	The MC_Power, there is an error on the bus, interference su	
	as a bus, unequal baud	
0x2003	NS_CC_CANopen_NMT_Read, read the state does not make sense	
0x2004	NS_CC_CANopen_NMT_Write, write the state does not make sense	
0x2005	NS_CC_CANopen_SDO_Read, NS_CC_CANopen_SDO_Write, over	
	buffer	
0x2006	NS_CC_CANopen_SDO_Write wrong data type, only 1,2,4	

0x2007	NS_CC_CANopen_SDO_Read, NS_CC_CANopen_SDO_Write slave
	reply timeout
0x2008	NS CC CANopen TPDO, NS CC CANopen RPDO index out of bounds
0x2009	NS_CC_CANopen_TPDO, NS_CC_CANopen_RPDO type of error,
	normal range of 2, 3, 4, 5, 6, 7
0x2401	Axis no sets the function block out of the allowable range
	(0-6)
0x2402	Active_Axis sets the function block beyond the permitted
	range
0x2403	Outside the permitted range set CNT_ID
0x2404	Outside the permitted range set Event_ID
0x2405	Outside the permitted range set DI_ID
0X4000	The same axis with the same module exceeds a predetermined
	number, please refer to allowed number range <u>Precautions:</u>
0X4001	NS NC ReadParameterP modulearameterNoutside the permitted
	range set umber
0x4101	The current operating state of the shaft to ErrorStop or
	Disabled, can not perform any movement instruction.
0x4102	Axis current operating state of the Stopping, can not be
	performed in addition to MC_Any movement commands other than
	Stopping.
0x4103	Execution MC_Home instruction requires the axis to
	StandStill state
0x4104	MC_CamOutOnly modules in the currently running
	instructionMC_CamIn when to run
0x4105	MC_GearOut module only if the current command is runMC_GYou
	can run the earIn
0x4106	Current operating status of the shaftHoming, can not be
	performed in addition to MC_SAny motion command other than
	topping
0x4107	Current BufferMode cache beyond the permitted range, please
	readBufferMode cache description
0x4108	RunCommandUnder no pointer command, the bottom part of the
	error
0x4150	Error current state of the shaftStop state, can not be
	executed NS_MC_Jog
0x4151	Disabled axis current state of the state, not performing
	NS_MC_Jog
0x4152	Homing axis current state of the state, not performing
	NS_MC_Jog
0x4153	Axis current state of the Stopping state, can not be executed
	NS_MC_Jog
0x4201	Error current state of the shaftStop/ Disabled, can not

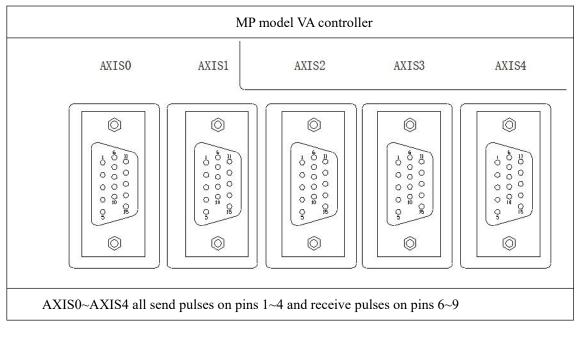
	perform MC_Phasing instruction		
0x4202	Axis current state of the Stopping, M can not be		
	performedC_Phasing instruction		
0x4203	This shaft MC_CamIFollowing spindle, M n next		
	instructionC_PMaster hasing spindle specified instructions		
	follow the master axis according to the present non-		
0x4205	This shaft MC_GeanIFollowing spindle, M n next		
	instructionC_PMaster hasing spindle specified instructions		
	follow the master axis according to the present non-		
0x4207	This follows the spindle axis at NS_MC_RotaryCutIn		
	instruction, MC_PMaster hasing spindle specified instructions		
	follow the master axis according to the present non-		
0x4209	MC_Phasing command setting spindle shaft from the Master and		
	Slave master-slave follower relationship, this instruction is		
	executed Invalid		
0x4210	This axis NS_MC_SpecialCamIFollowing spindle, M n next		
	instructionC_PMaster hasing spindle specified instructions		
	follow the master axis according to the present non-		
0x4211	This shaftNS_MC_SpecialCombineAFollowing spindle, M xes		
	next instructionC_Phasing instruction specifies a spindle shaft		
	according to the present non-Master following spindle		
0x4212	This shaft is in Mode 1, NS_MC_SpecialCombineAFollowing		
	spindle, M xes next instructionC_Phasing instruction can not be		
	executed		
0x4251	Error current state of the shaftStop/ Disabled, can not		
	perform MC_MoveSuperimposed instruction		
0x4252	Axis current state of the Stopping, M can not be		
	performedC_MoveSuperimposed instruction		
0x4351	MC_Home, FirstVecocity set out of range (> 0)		
0x4352	MC_Home, SecondVecocity set out of range (> 0)		
0x4353	MC_Home, Mode setting is outside the range		
0x4400	Mode rotating shaft (Revolving_Axes =TRUEUnder), StopByPos		
	set position is out of range		
0x4500	The controller is a normal PLC function and this function		
	cannot be applied		

Appendix VII Difference between economy and MP model VA controllers

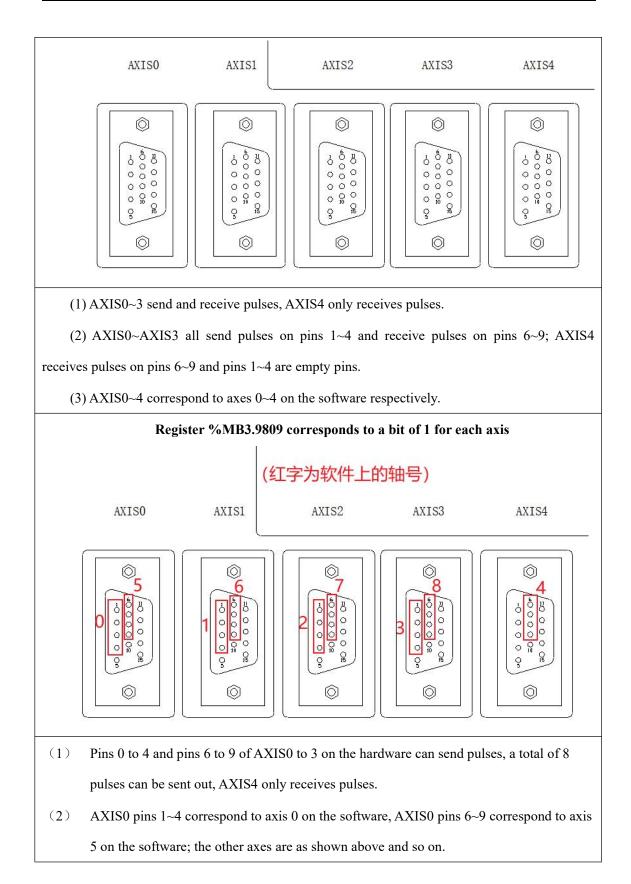
MP model VA controller	SP Economy VA Controller		
Sending and receiving	Register %MB3.9809 controls the sending and		
pulses from 0 to 4 axes.	receiving of pulses from the 0 to 3 axis ports:		
	When the corresponding bit value for each axis 0 to 3 is		
	1 (example: change the value of %MB3.9809 to 15, i.e.		
	"1111"), the pulse receiving pins of the 0 to 3 axis port of the		
	VA controller hardware will change to pulse sending		
	(corresponding to 5 to 8 axes respectively in software). Up		
	to 8 axes (0 to 3, 5 to 8) can be pulsed.		
	When the corresponding bit value of each axis 0 to 3 is		
	0 (example: change the value of %MB3.9809 to 0, i.e.		
	"0000"), the 0 to 3 axes will be able to send and receive		
	pulses.		
	Parton		
	Caution:		
	(1) The last axis port on the hardware receives pulses		
	only.		
	(2) The last axis port on the hardware is axis 4 on the		
	software.		

1. The use of pulses

2. Use of analogue quantities


MP model VA controller	SP Economy VA Controller
(1) 0 to 3 axes can be controlled by	(1) Only analog quantities (AO0~AO3)
sending analog control axes for motion control.	can be sent from axes $0\sim3$, and motion control

(2) Digital input -2048~0 0~2047	cannot be performed through analog quantities.
corresponds to analog output -10V~0V	(2) The correspondence between the
0V~10V	analogue and digital outputs of one of the axis
	ports is -10V~0V and 0V~10V corresponding
	to the digital quantities -32768~0 and 0~32767
	respectively.


3. Expanding the use of IO

MP model VA controller	SP Economy VA Controller
The possibility of automatically identifying the type of expansion IO or setting	can only be set manually, see the detailed
it manually.	operation and description in <u>12.2.2 Manual</u> selection of expansion type

4. Difference between hardware axis port pulse control

SP Economy VA Controller		
Register %MB3.9809 corresponds to each axis bit when it is 0		

5. The difference between high-speed counters

MP model VA controller	SP Economy VA Controller
NS_CC_Counter : Counting axis	NS_CC_Counter:
number is 0~6, counting axis is	Counting axes numbered 0 to 3.
AXIS0~AXIS4	Counting axes:
NS_CC_DI_Counter: Counting axis	AXIS4 can always be used as a counting
number 0 to 6, with 16 counting DIs	axis.
	AXIS0 to AXIS3: can be used as a counting
	axis when the corresponding bit of
	register %MB3.9809 is 0, and cannot be used as a
	counting axis when the corresponding bit of
	register %MB3.9809 is 1.
	NS_CC_DI_Counter:
	Counting axis number 0 to 3, with 16
	counting DIs

6. Use of special function blocks

MP model VA controller	SP Economy VA Controller
In analogue control mode: Various modes of the WKD special function block are available;	NS_MC_RotaryCutIn: Mode 2, mode 3, mode 4 not available. NS_MC_SpecialCamin: Mode 1, mode 2 not available.
In pulse and CANOpen control mode: NS_MC_RotaryCutIn: Mode 2, mode 3, mode 4 not available.	NS_MC_SpecialCombineAxes: Mode 1 is not available.
NS_MC_SpecialCamin: Mode 1, mode 2 not available.	
NS_MC_SpecialCombineAxes:	

Mode 1 is not available.	

Welcome your valuable feedback!

We would like to wholeheartedly serve you, and strive to improve the already white. As the editor is limited, mistakes are inevitable urge readers to hesitate to correct me. We hope that you read this book, when using the product, such as an error is found, discusses the use of unknown or can not find the appropriate interpretation, please call us or fill in the feedback form send it to us, we sincerely look forward to your comments. Call us:

Customer service hotline: 40008-50004