sepiecey ' lewayi3 1v)4eyid

VEC-VE Controller Programming
WWW.szvector.com

Application Manual

>))

VYECTOR

VE Controller Programming Manual A T

Foreword
Thank you for purchasing a VE motion controller! The VE
Motion Controller is a high-performance EtherCAT bus-based
controller developed by our company. This manual describes the
VE Motion Controller software and the quick application of the
motion control functions. For more detailed function descriptions

users can go to the Viktor website athttp://www.szvector.com/.

http://www.szvector.com/

VE Controller Programming Manual A T
PLCOPEN INTRODUCTION TO THE CODEc.oiuiiieeeeeeeeeeee ettt ne s en e 10

2 VEC-VE AND CODESYS .ottt 11
2.1 VEC-VE CONTIOIIBT .o ettt 11

2.2

3.1
3.2

33

4.1

4.2

43

2.1.1 Product OVEIVIEWc.ooveveeeeeeeeeeeeeeeeeeeeeeee e, 11

2.1.2 Product configuration and module description....

CODESYS SOfIWEAIrE OVEIVIEW ...t 16
221 CODESYS Introduction t0 the SOtWATIEc.cireereiiceireeecee e ssessssssss s 16
222 Software access and installation reqUIrEMENTES 16
2.2.3 The software installation ProCEAUIEcooiiii e 17
224 INSEAIL PACKAGE ..o 19
2.2.5 Install the device deSCriptioN fil oo 21
2.2.6 UNINSEAIl CODESYS ...oouiieiieeeeiee st eesssseesesss st ses st 22
THE MOTION CONTROL SYSTEM IS COMPQSED OF PROCEDURES.........c.ovovevevereeeeieeeeeeseseseseseeeeeeeeeenenens 23

The motion control system of the VE controller consists Ofcccccocoeieicviceccccee 23

The VE controller motion control program CONnSiSts Of ... 25
3.2.1 The user program of the VE controller is composed Of ... 25
322 The type of task in the VE CONTIOHEN ... ssesssssesssssssseseens 26
323 The benefits of a user program consisting of multiple PUSccooooiinnis 26
3.24 How the user program can do both logical control and motion control.............ccccceeeneeene. 27

Typical Steps tO WIIte @ USEr PrOGramc.ccuiiiieieieiieeeieeieeesieetssse st 28
3.3.1 The configuration Of the USET SYSTEM ... 28
332 The Writing Of the USEI PrOgIramot 29
333 The user program variable is associated wWith the POrt...........cccooiiiiinines 29
334 How the user program is executed and how it is configured tO ruNc..cccooeveonerernrceerneneenn: 30
3.35 Program compilation and 10gin dOWNIOAd ... s 31
A SIMPLE USER PROGRAMccotutiutirtireitieites ettt sse sttt nees 33

Create a project and download debugging ... 33
4.1.1 Create @ NEW StANAAIT PrOJECT ... oottt 33
4.12 System configuration and parameter SETLNG ..o 34
4.13 The user controls the Program WIINGo 39
4.14 BUS @NA TASK CYCIE ..ot 41
4.1.5 MISSION SUD = COTE ... vvvievireeiieeeieeess st ess s s 43
4.1.6 SIGN N T0 ThE ABVICE ...t 44
4.1.7 SEAT AEDUGGING ettt 47
4.1.8 A @ TIANCE TrACE ...t 48
4.1.9 SEOP AEDUGGING et 50

Common configuration iNStructions fOr AeVICES..........ccceveveeiveeeieeeeeee e, 51
42.1 Device tree and device editor
422 Device deviCecoreinrrernnens
423 Library Manager Library Man@gQET ...t 59

EtherCAT busses are COMMONIY USEA ..o 61
43.1 EtherCAT_Master Main SEAION ..o neeen 61
432 EtherCAT_ slaveslave from the STAtiON ... 65

433 SM_Drive_GenericDSP402 Shaft configurationS ... 77

VE Controller Programming Manual A T
434 EtherCAT DUS CYClE DENAVION ... 82
435 Ether CAT SPECIfiC VANADIES ...t 83
4.3.6 EENEICAT LIDIATY oo 83

5.1

5.2

53

54
55

6.1

43.7 IODIVELNEICAT .ot en s reenene 89
4.3.8 SOftMOtION GENETAl AXIS POON ... 98

VE CONTROLLER PROGRAM EXECUTION MECHANISMooviiirrrieieisesieeseseseeesesesesesesesesesesesesenesenen s enanns 101

User engineering tasks and configurationcc.occeeceeceeceeee e 101
5.1.1 Key points Of task CONFIGUIATION ...t 102
5.1.2 PriOritiSATION OF TASKSvvrurerierereeeieeeiseeesise st ssess sttt 102
5.13 Execution cycle setting in task CONfIQUIration ..o 102

Data flow analysis in EtherCAT bus NEtWOIKScc.ccviiieiieceeee e 103
521 Network overview Of the EtNErCAT DUSc..vrenerieecisseeieseiseesseessessssssssessssesseens 103
522 Synchronous clocking of the EtNErCAT DUSocerercereesreeneressesssesssesssesessesesssns 104

Communication flow between VE controller and servo slaves..........coovvvenniincnens 106
5.3.1 Step-by-step description of the control iNformation ProCess............cmeereneeenerennnns 106
532 CiA402 Data Object Dictionary and Servo Common OBJeCtS ... 110
533 Configuration of servo shaft Motor PAramMELers. ... sseenns 112
534 EtherCAT network state initialization and management.........c.ccooincioncneerssiecenne 115
535 Detect the EnerCAT cOMMUNICATION STATUSc.rvvrrmreermerereeeereeesssesssesesesesssssssssssssssessssssssssnnes 117

The MC motion controls the timing of the transmission of the data........c..ccccccevae. 121

The processing mechanism of the MC function bIOCK ..., 122
5.5.1 Cycle synchronization POSItIoN MOGE ... esessssssssssssssssesens 122
552 The data Structure Of the SEIVO @XIS ... wrrireerrereresiereesess st sssss st esssssseens 122
553 Servo axis status machine and transfer CONAItIONS ..o 124
554 The execution logic of the MC function BIOCK: ... 126
555 Data interactions between different priority tasks POU ... 127
PROGRAMMING LANGUAGES AND REFERENCESc.cvcvoviviieteeeeceeeeeeeeseteses et seseseses et st sesesenesesasesns 129

DIATA TYPES ..ot 129
6.1.1 BOOL BOOIBAN TYPES ...ttt 129
6.1.2 L B G BT oSSR 129
6.1.3 REAL/LREAL FIOGUNG POINT TYPE oot esseeesseeesseessseeseeesssoes ettt 130
6.1.4 STRING SNG YD ceoreereeseeseeseeseceeseesseeesseees oo sseee oot eeees ettt 130
6.1.5 WVSTRING <.ttt 130
6.1.6 TIME £IMIE LY oot snensens 131
6.1.7 LTTIMIE o8 131
6.1.8 UNION JOINT STAEEMENT ..ottt 131

6.1.9 5 I o T OO .. 132

6.1.10 __UXIN and __XWORD are pseudo-data types..... ..132
6.1.11 POINTERS POINtEr....coovvvveerinrrrreeecenirsreereeeneeens ..132
6.1.12 REFERENCE REFEIEINCEooouurveerireieiis et sees st 134
6.1.13 ARRAY GITAY ..ottt s s 134
6.1.14 SEIUCKUIE STIUCTUIE 1ovovuceeeeeereeesseesiseeeste e ess st 139
6.1.15 ENUMEIATIONS cveooveieeiseeeis et es s s 141

6.1.16 SUDIANGE TYPES ..ottt 142

VE Controller Programming Manual A T
6.2 RV =T E=1 o] [OOSR 144
6.2.1 LOCAI VarIADIE =VAR ...t 144

6.2.2 Enter the variable = VAR _INPUT ...t 144

6.3

6.4

6.5

6.6

6.7

6.2.3 Output variable - VAR_OUTPUT 144

6.2.4 Input and output variables -VAR_IN_OUT .. . 145
6.2.5 Global variable - VAR_GLOBAL......c.c........ .. 145
6.2.6 Temporary variable = VAR_TEMP ... sesssssssssssssssssssssssssssess 146
6.2.7 STAtiC VANIADIE = VAR _STAT ..ot 146
6.2.8 External variable - VAR_EXTERNAL ..o 146
6.2.9 INStAaNCe Variable = VAR_INST ... 147
6.2.10 Configuration variable = VAR_CONFIG ...t 148
6.2.11 Constant variable = VAR CONSTANTorreeieresseesseesssssesssssessssssssssssssssssssssssssssssssssess 148
6.2.12 Persistence variable ~PERSISTENTcoiesesiseeesssesssseesssesssesssssssssssssssssssssseens 149
6.2.13 Reserved variable = RETAIN ...t sssss s ssssssssssssssssnns 151
6.2.14 Special variables =SUPER ...t sssssssssss s ssssssssssssssssessssnns 152

OPDBIBLONS .ottt 152
6.3.1 FAN G ol 0 g A Tol 0] oT=Y =] o OO 155
6.3.2 Bit=SErial OPEIALOIS ...ttt 158
6.3.3 SHIFE OPEIATOIS ... 160
6.3.4 SEIECHION OPEIATOIS ...ttt 162
6.3.5 COMPAIISON OPEIALOISeooiereriieeeeis ittt 164
6.3.6 ACAIESS OPEIATOIS ..ottt ettt 166
6.3.7 CalliNG OPEIALOIS ...t 168
6.3.8 NUMEICAI OPEIATOIS ...t 168
6.3.9 TYPE CONVEISION OPEIATOISoovieiiiiiiiiei et 173

STIUCTUIEA TEXE(ST). ittt 179
6.4.1 ST E QIO ettt R 179
6.4.2 TNE ST EXPIESSION ..ot 180
6.4.3 ST aSSIGNMENT METNOM ...t 181
6.4.4 ST SYNEAX ettt f R 182

Continuous function diagrams (CFC) oo 188
6.5.1 CFC EAITON vttt s 8 188
6.5.2 The order in which the CFC data flow iS @XECULEdccoovwerrenrerirreeeeeeseesieeeeseeeneeeens 190
6.5.3 CFC @IBIMENTS ..ot ess st 191

Sequential fFuNCtioNMAP (SFC). ..o 196
6.6.1 SFC EAITON ettt 8 196
6.6.2 Theorder in which S FCs are processed 197
6.6.3 SFC Action conditionsS198
6.6.4 SFC Implicit variables and flags...... ..199
6.6.5 SFC EIBIMENT .-ttt 201

CFC/LD/IL ottt 208
6.7.1 FBD / LD /1L QIO ettt sees s s 208
6.7.2 FBD/LD/IL EIEIMENT oottt sees st 209
MOTION CONTROL INSTRUCTIONSviiereeieerisitee e e s eteseses s s eseseseses s s s s s s s s s s s enesesesens s s s snnenennans 215

VE Controller Programming Manual A T
7.1 Motion control programming for single-axis MC iNStruCtions ..., 215
7.1.1 MC instruction Programming POINTSoeiieriiieeeeeeeeeeees st 215
7.1.2 MC function blocks commonly used for single-axis CONtrol ..., 216
7.1.3 MC commands and PDO/SDO configuration ... L2217

7.2 Motion control programming for multi-axis CAM cam synchronization..................... 219
7.2.1 Characteristics of the cam table221
7.2.2 CaM tADIE INPUL ettt 222
7.2.3 The internal data structure and array of the CAM cam table ..., 223
7.2.4 Reference and dynamic switching of CAM table ... 224

7.3 SINGIE @XIS COMMANTAS ..ottt 226
7.3.1 IMIC _POWET ...ttt 226
7.3.2 IVIC_STOD cvvvvevrevetsaeeeeesisee s s8R 229
7.3.3 IVIC_HAIE s 232
734 IMIC_HOIME ettt 235
7.3.5 MOC_MOVEVEIOCILY ..ot 238
7.3.6 MC_MOVEADSOIULE ..o 241
7.3.7 MC_MOVEAGITIVE ... 247
7.3.8 MC_MOVEREIBLIVE ...t 251
7.3.9 MC_MOVESUPEITMPOSEA ...ttt 254
7310 MC P OSIIONPIOTHIE .ottt ee et s et es e eee e s eses s 257

T 311 MO _RESEL cocveviteeeeei st 260
7.3.12 MC_REAAACLUAIPOSIION ..o 262
7313 MO REAUAKISEITON ..ottt eee e ene e eeneeen 264
7.3.14 MC_REAABOOIPAIAMELEN ..o 266
7315 M _REAASTATUS ...oooveeieeeeeiereesteeeess st 268
7.3.16 MC_REAAPAIAMEBLET ... 270
7.3.17 MC_ACCEIEratIONPIOFIE ... 272
7318 MC _VEIOCIYPIOTIE ..o 275
7.3.19 MC_WItEBOOIPAIAMELET ..ot 278
7320 MO _WIIEEPAIAMETEL ... 280
S T SV (O N oo Y I e o =Y SO 282
7322 MC_REAAACTUAITOIGUE ...ttt 284
7.3.23 MC_REAAACLUAIVEIOCILYooooeeeeeeeee e 286
T.3.24 IMIC _SEEPOSITION .ottt ee et en s ee e 288
T.3.25 MO _TOUCHPIODE ...ttt e e 290
7.3.26 SMC_MoVECONtINUOUSADSOIULE ..o 301
7.3.27 SMC_MoveContinuousRelative... .304
7328 MC_Jog......306
7.329 SMC_Inch... .309
7.3.30 SMC3B_PEISISTPOSITION ..ot 312
7.3.31 SMC3_PersistPOSIHIONSINGIETUINoocveeeeeeee e 315
7.3.32 SMC3_PersiStPOSIHIONLOGICAL ..o 318
7.3.33 SIMC_HOMING covtevitieeeesie st eess st s 321

7.4 Axis group instructions (primary/from-axis iNStruCtioNS).ccccoeveurirereeneeisieieseeenens 327

VE Controller Programming Manual A T
7.4.1 SIMC_CAMREGISTEN ..ot 327
7.4.2 SMC_GEtCamSIAVESELPOSILION ...t 332
743 SMC_GEITAPPELVAIUE ... 335

7.5

7.6

8.1

7.4.4 MC_CamTableSelect.. ..338
7.4.5 MC_Camin..... ...343
7.4.6 MC_CamOut..... ...365
7.4.7 IMIC_GBAIIN ..o 369
7.4.8 IMIC_GBAINOUL ... en e en s en s aeneen 372
7.4.9 MC_GEAINPOS ... 374
TATO MO _PRASING i 379
TALL SMC_CANMBOUNGS c.ooouieveetaereestresesssseeesssse st s 384
7412 SMC_CANMBOUNGS_POS ..ccveviieeiessieeessssseesssseesessssesssssssssssss s ssssssssssssssssssssssssssssssesssssssssssssssseses 387
TA 13 SMOC _WIECAM ..ottt s 389
7414 SMCS_PEISISTPOSITION ..ot 391
TALS SMC_FOIOWVEIOCITY w.oouueveriiceceiieeecesiseeseisse st 393
TA16 SMC_FOIOWSEIVAIUES ...t 395
TA1T SMC_SEtCONLIONEIMOUE ...t e 398
TA L8 SIMC_CINECKLIMILS ..vveettereeeiaereessa s eses st 401
7419 SMC_GEMAXSEIACCDECcvveviieeeeiseeeesieeseessss st st 403
7.4.20 SMC_GEIMAXSELVEIOCITY ..rvvorrerreeerreeiseesieressessssessssessse s ssesssssesssssssss s ssssss st sessssessssessssnns 405
TA21L SMC_INPOSITION .ot ne e 407
7.4.22 SMC_REAASEIPOSITION . ..ot 411
A T |V, (O 1= o] o [1O 413
7.4.24 SMC_BacklashCOMPENSALION ... 415
7.4.25 SMC3_PersistPOSIHIONSINGIETUIN c.....oocveeeeeeeee e 419
7.4.26 SMC_CheckAXISCOMMUNICATIONoevecveceeete e 421
TA2T SMC_FOIOWPOSITION ...t 424
7.428 SMC_FOIOWPOSIIONVEIOCITY ..ot 430
7429 SMC_AXISDIAQNOSICLOQ vvvvtuuireersameeeesseeesessseeseessssesessssssesssssssesssssssessssssse s sssssssesssssssessssssseseens 432
7.4.30 SMC_ChangeGeariNnGRATIO ... sssess st sssss st ssssssssssesenns 435
TA31 SMC_REAAFBEITON w...coocotrveeieeieesiseeeess s sesess st 438
TA.32 SMOC_CIEAIFBEITON ..ot 442
VeCtOr SPECIAl INSITUCTIONS ... 443
7.5.1 VECNSMC. VECChECKHAIAWAIE ...t ssesssses st 443
7.52 VECNSMC.NS_MC_SPECIAICAMIN w..oooorreiiiierieiiseeeessesecessseseesssse s sssessssssssssssessesssssessesssseeees 444
7.5.3 VECNSMC.NS_IMC_ROTAIYIN cooootiivirieeeesseecesieeseessseseesssseessssssessessssssssss s sssssssesssssssssssssssssssssns 449
CINC INSTIUCTIONS ...ttt
7.6.1 SMC_ReadNCFile2......
7.6.2 SMC_NClinterpreter....
7.6.3 SIMC_INEEIPOIATON .o
COMPREHENSIVE CONFIGURATION DEBUGGINGvoucerriceneereineesesesseseesssssesessessssssssssssssssssssesssenas 469
MOdBUS COMMUNICATIONSeoice et 469
8.1.1 MOABUSRTU_SIBVE ...ttt s 469

8.1.2 MOABUSTCP_SIAVE ...t 477

VE Controller Programming Manual A T
8.1.3 MOABUSRTU_IMASEET ...ttt enaen 485

8.1.4 MOADUSTCP_IMASEET ... 498

8.1.5 OPCSBIVET ...ttt E st 504

8.2 Simulation and deDUGZINGcc.cocovivviiiiiieeeeeeeeeeeeee e 510
8.2.1 Simulate the VE controller... .510

8.2.2 Simulate servo drives............. .511

83 Security management and USer rights SEHINGS ..o 512
8.3.1 Device 10gin PErmIiSSIONS SEHLINGS ...t eees 512

8.3.2 Project file SECUITY SETLINGS ... vttt 516

833 POU PEIMISSION SETLINGS ... vvviiieieei ettt 517
APPENDIX A VECSERVO SUPPORTED ORIGIN REGRESSION MODELSovvieiieeeeceeeeeeeeesesee e sesesnenenes 521
APPENDIX B QUICK REFERENCE LIST OF CIA402 COMMON OBJECTS SUPPORTED BY VECSERVO................ 544

APPENDIX C ERROR CODE DESCRIPTIONSvvtveeeeeeeeeteeeeeeeeeeeeeeeeeeeee et eeeeeeeseeeeeeeeeeeeetaseeesaseseeseseeeeeeseessesananananas 550

VYECTOR

VE Controller Programming Manual A T

Thank you for purchasing VE series motion controller! VE series controller is a
high-performance EtherCAT bus type motion controller developed by our company. This
programming manual describes the VE motion controller programming software and the
use of motion control functions. The user should read this manual carefully before using the
controller and software, and operate correctly under the premise of full attention to safety.

User-oriented
This manual is provided to the following readers: persons with electrical professional
knowledge (qualified electrical engineers or persons with equivalent knowledge).
In addition, the readers of the programming language are those who understand the
content of the international standard IEC 61131-3.

Target product
VE series: VEC-VE-MU

Change time version number Change Description

June 2020 Version 001 First edition released

Version update record

VE Controller Programming Manual A T

1 PLCopen Introduction to the Code

PLCopen is an independent global organisation that delivers industrial
automation efficiency according to user needs. It was founded in 1992 and is based
in the Netherlands with support offices in the USA, Japan, China and Korea. PLCopen
follows the requirements of market demand and its main focus is to improve automation
efficiency by defining common standards. PLCopen and its members focus on technical
specifications around the IEC 61131-3 standard to reduce the cost of industrial
engineering.

The syntax of the IEC 61131-3 specification presents a set of mechanisms for
implementing programmable controllers across different target platforms. Through
modular planning and design, the specification divides control actions into two
parts: logical operations and hardware actions. The logical part unifies the syntax
defined in IEC 61131-3 in a common description format and implements it, while the
hardware actions are designed with a proprietary firmware library for each hardware,
allowing the control logic to use hardware resources on each target platform. This
design allows different control chips to execute control actions designed in the
IEC 61131-3 syntax, and designers only need to learn the IEC 61131-3 syntax to use
the supported control chips for programmable controller design. The IEC 61131-3
standard defines six standard programming languages.

184 # (Instruction List, IL)

#IE K (Ladder Diagram, LD)

IhEeE & (Function Block Diagram, FBD)

ZERMW T (Structured Text Language, STL)

i Shae AL B (Sequential Function Chart, SFC)

ES: TR (Continuous Function Chart, CFC)

The VE motion controller uses the CODESYS programming platform, which fully
supports the PLCopen specification and allows the user to refer to many standard
function libraries; the high—level language programming method makes it easy for
PLC manufacturers and users to develop their own proprietary function blocks and
instruction libraries, and to borrow similar control programs to form
industry-specific “process packages”, which can significantly improve the user’ s

programming efficiency.

VYECTOR

VE Controller Programming Manual A T

2 VEC-VE AND CODESYS

2.1 VEC-VE controller

2.1.1 Product overview

The VEC-VE series controller (hereinafter referred to as VE controller) is a
programmable logic controller designed with a modular structure to provide users with
intelligent automation solutions.The VE controller adopts the IEC61131-3 programming
language system and supports the PLCopen standard 6 programming languages. The
system uses a rack layout and each rack supports local expansion modules and remote
expansion of the rack via the EtherCAT bus. local expansion modules of the VE controller
allow 10 expansion via internal bus protocols and support a wide range of functional
modules such as digital input/output modules, analogue input/output modules and
temperature modules. High performance motion control functions can be realised via
EtherCAT bus; single axis acceleration/deceleration control functions, electronic gear
functions, electronic cam functions, CNC functions and Robotic functions etc,;
communication functions such as RS485, Ethernet and USB are also supported to meet the
diverse application requirements of users. The VE controller has the following functional
advantages:

® Multiple motion control functions
Support for a larger number of 1/0 points;

Larger program capacity and data storage areas;

Faster instruction execution;

support for more EtherCAT buses, Modbus communication;
easier-to-use software for different user application requirements;

support for online editing mode

VE Controller Programming Manual BOM oA MK

2.1.2 Product configuration and module description

A schematic diagram of the VE controller architecture integration is shown below:

’ E Switches -

PC HMI

VE controller Local 10

Servo motor 1 Servo motor 1 Servo motor 1

VE controller hardware port description:
(1) Host Interface

(1) | RS232/485 @ MicroSD card
@ |usB @ Ethernet
®) | EtherCAT ©® Power supply modules

(2) Power Module Indicator

VE Controller Programming Manual

5V

Exp Act

ECT Run

Q ® O

® ® ® ©6

©

Sys Run

24V
Status
ECT Err

Sys Err

Number Always bright Always Blinking
extinguished
1 sV power The main unit is | The host does not
supply powered properly have power
@ Extend the Local extensions are | Extended access locally
mesh light not accessed
(2) EtherCAT EtherCAT RUN EtherCAT STOP
RUN
(3 Run&Stop Run Stop
B 24V power | IO power supply | IO power supply not
supply access 24V connected to 24V
(6)CODESYS In progress/dead In progress/dead CODESYS software in
operation
(7)EtherCAT Error | EtherCAT Error EtherCAT Not Error
(8Error System failure No system failure

(3) Reset and IP setting buttons

VYECTOR

VE Controller Programming Manual A T
— - LI
——— 1
%
ENl=
L O —
L]
oo | B
D I:l 1
_
=
ao
00
[10]
Number Name Description
@ Reset button | After powering up and running, press and hold the button for 3
seconds, then power up again, which will clear the user
program as well as restore the controller's default IP
(192.168.1.123)
@ IP setting | After powering up and running, press and hold the button for 3
button seconds, then power up again, the last digit of the controller IP

address will be minus one, for example, the default IP minus
one will be: 192.168.1.122

(4) Power Module Wiring

)

!

== e = = =

feucien [on

=
2
<

1

IC TR]

L

T
m
T
mj

]

5 e

Number

Interface name | Interface role

VE Controller Programming Manual

Mainframe 24V input

Mainframe power supply 24V

Mainframe QV input

Mainframe power supply OV

IO power supply 24V

Local 1O supply 24V

IO power supply OV

Local 10 supply OV

PE

Ground line

Extended power supply
24V

Local 10 supply 24V, connected to (3

SEGIEIEEES

Extended power supply OV

Local 10 supply 0V, connected to @)

VYECTOR

VE Controller Programming Manual A T

2.2 CODESYS Software overview

2.2.1 CODESYS Introduction to the software

CODESYS software is standard software for the development and application of VE
programmable motion controller products. CODESYS software platform provides VE
controllers with a complete configuration, programming, debugging, monitoring
environment, flexible and free to handle the powerful IEC language.

The codesYS software enables the management of engineering and equipment,
providing the following configurations for VE controller products:

® (CPU configuration;
I/O module configuration;
EtherCAT bus;
ModbusRTU/ModbusTCP bus;
Standardized programming (IEC61131-3 compliant).
Supports all six programming languages: Structured Text (ST), Function Block Chart
(FBD), Instruction List (IL), Keystone (LD), Sequential Function Map (SFC), and
IEC61131-3 Extended Programming Language Continuous Function Map (CFC)

® Flexible and comprehensive feature block libraries and support user-defined
libraries

® Offline simulation function, do not need to connect PLC hardware, complete the

program simulation debugging

Intelligent debugging error check function

Compile errors, quickly locate programming errors, and diagnose logs

Sample tracking

The time series chart of the process variable is established

2.2.2 Software access and installation requirements

(1) Software acquisition
VE programmable motion controller user programming software CODESYS for free
software, installation packages as well
Information on VE controller-related products is available to users through:
® On the official website of Wykoda (www.wikoda.com) szvector.com”page of the
"Services and Support” and "Material Downloads" page for download
® Available for download onCODESYS's official website codesys.cn .4000

(2) Software installation environment requirements

® Windows XP/Windows 7/Windows 8 or Windows 10 operating system
® (CPU master frequency: 2GHz or more (recommended)

® Memory: 2GB or more

VE Controller Programming Manual

® Space: More than 5GB of available hard drive memory
® Other: There is an idle LAN port in the local network (with LAN network cable

connection controller)

2.2.3 The software installation procedure

CODESYS Development System is an |EC 61131-3 programming tool for industrial
control and automation technology, with 32-bit and 64-bit versions where users choose
according to the number of system bits on their computer and then start installing (64 bits

are shown here).
1) Double-click to open the installation software icon and start the installation, as shown

in the following image

CODESYS 64 3.5.15.10.exe

2) When the prompt screen appears, click "Next"as shown in the following image

ﬁ CODESYS 64 3.5.153.10 - InstallShield Wizard

Welcome to the InstallShield Wizard for
CODESYS 64 3.5.15.10

LD R Bl Pl The InstaliShield(R) Wizard will install CODESYS 64 3.5.15.10 on
your computer. To continue, click Next.

WARNING: This pragram is protected by copyright law and
international treaties.

3) Select "l accept... ", click next; .

ﬁ CODESYS 64 2.5.15.10 - InstallShield Wizard X
License Agreement
Please read the following license agreement carefully. CODESYS

License Agreement
for the usage of a CODESYS Software or CODESYS

Software Package

General Terms of License (End User License Agreement) for the
supplied Software. Please read this Software User Agreement
carefully before using the supplied Software. Downloading or
installation of the Software constitutes recognition by the customer
of the conditions of this Agreement.

The fallowinn eonditions are anreed hetween voil A the anfware

I@Iaccept the terms in the license agreement I Print

(T do not accept the terms in the license agreement
Open Source Licenses

InstallShield

< Back Cancel
4) Select "l have..." " and then click "Next"

VE Controller Programming Manual A T
15! CODESYS 64 3,5.15.10 - InstallShield Wizard x
Very important information . .
L]
Please read the following information carefully. CODESYS
COMPATIBILITY_INFORMATION ~

CDS-67712 CODESYS Gateway Win32/x64: Add Edge functionality
[[GENERAL]]

\We strongly recommend to replace all existing CODESYS Edge Gateway -
BETA VERSIONSs by the CODESYS Gateway V3.5.15.10 or higher.

CDS-62029 Active content in library documentation may be used fo execute
hostile code

Print

O 1Thave not read the information yet

InstallShield —

5) Select the installation location, select the default bit here, click "Next"
15! CODESYS 64 3.5.15.10 - InstallShield Wizard x

Destination Folder
L]
Click Next to install to this folder, or click Change to install to a different folder. CODESYS

Install CODESYS 64 3.5.15.10 to:
C:\Program Files\CODESYS 3.5.15.10

InstallShield —

Cancel

< Back

6) Installation type Select "Complete”, install all, click "Next"

ﬁ CODESYS 64 3.5.15.10 - InstallShield Wizard X
Setup Type
l'r
Choose the setup type that best suits your needs. CODESYS

Please select a setup type.

@ Complete
@ All program features will be installed. (Requires the most disk space.)
() Custom
Choose which program features you want installed and where they will
@ be installed. Recommended for advanced users.
InstallShield
< Back Cancel
H " n H H H
7) Click "Install" and the software will start installing
5 CODESYS 64 3.5.15.10 - InstallShield Wizard x
Ready to Install the Program .ﬂ
9
The wizard is ready to begin installation. CODESYS

Click Install to begin the installation.

¥f you want to review or change any of your installation settings, click Back. Click Cancel to exit
the wizard.

InstallShield

Cancel

< Back

VE Controller Programming Manual

8) After waiting for the installation to be completed, click "Finish" to complete the
installation, click on the desktop icon "CODESYS V3.5" to enter the CODESYS programming

environment

InstallShield Wizard Completed

Ll e b Pl The InstaliShield Wizard has successfully installed CODESYS 64

CODESYS

3.5.13.0. Click Finish to exit the wizard.

9) The software interface operating language defaults to Chinese Simplified, and if =
you need to switch to a different = language,click: Tool Options Language Settings(Select:
Tools Options=> International Settings),click on the language=> drop-downmenu, and select

the language you want

224

Install Package

Before the software can connect to the controller, You need to install Package, and you
don't need to install it again after the installation is complete.
Open: CODESYS >Tools=>Package Manager 2 Install, Open file browsing

1)

Tools | Window Help

Package Manager...

)
i
@
&
o
W

Library Repaository...
Device Repository...
Visual Element Repository

Visualization Style Repository...

License Repository...
License Manager...
Scripting
Customize...
Options...

Import and Export Options...

Device Reader...

 Package Manager X
Currently installed packages
Refresh Sortby |Name v Install...

Name Version Installation date Update info License info

@ coDESYS SoftMotion 45,10 2020/1/18 Free version 4.6. 1.0 avalablel Searching...

Updates

Search Updates

CODESYS Store

CODESYS Store

[] Display versions search updates in background

Close

VE Controller Programming Manual

2) Find the downloaded CODESYS Control RTE SL.package andopen the installation

Y

25k B EEs el
P CODESYS Control RTE SL 3.5.14.20.package 2019/4/16 11:10 CODESYS Pack:
3) Check "l have read..." ", click "Next" as shown in the following image

£ Installation - License Agreement X
CODESYS Control RTE SL [2.5.14.20] :
1

Flease carefully read the license agreement below. You must accept the @
license agreement to continue with setup,

License Agreement PN
for the usage of a CODESYS Software or

CODESYS Software Package

General Terms of License (End User License Agreement)

for the supplied Software. Please read this Software User
Agreement carefully before using the supplied Software.
Downloading or installation of the Software constitutes
recognition by the customer of the conditions of this v
Agreement.

Ihaveread, understand, and accept the license agreement displayed above.
Checksum: 25F39F686DB3191D2635FCBD11DA3DTC4FAGTE3D

Cancel Lo Next =

4) Select Complete setup for the full installation, click Next, and wait for the installation

to complete, as shown in the following image

@ Installation - Choose Setup Type

CODESYS Control RTE SL [3.5.14.20]
Please selectthe typeof setup youwould liketo perform. :B

(® Completesetup
All package components will beinstalled.

(O Typical setup
The most commonly used package components will be installed.

Cancel < Back Next =

5) Once the installation is complete, click "Finish" as shown in the following image

VE Controller Programming Manual

the summary.

f Installation - Setup Completed

CODESYS Control RTE SL [3.5.14.20]

The package has been successfully installed. Click Finish to exit the wizard or Next to see

Next >

2.2.5 Install the device description file

Before using a VE controller or VC servo drive, you need to install the motion controller
and the servo drive XML description file, file acquisition please log on to the Wykoda
Technology website: www.szvector.com download, Once the installation is complete, the

controller or servo does not need to be installed repeatedly.

] VECServoOML20200702.xml

#] Vector ARM Cortex-Linux-SM-CNC-TV-MC.xml

Here is a demonstration of how to install the XML description file: Open CODESYS
—>Tools=> Device repository—=>Install, Find theE therCAT bus servo description file and click

Open

Tools | Window Help

Package Manager...
Library Repository...

Device Repository...

= =@ BER G

Visual Element Repository
Visualization Style Repository...
License Repository...

License Manager...

Scripting 3
Customize...

Options...

Import and Export Options...

http://www.szvector.com

. VYECTOR
VE Controller Programming Manual : .

¥ Device Repository

Location: System Repository ~ Edit Locations...
(C:\Programbata\CODESYS\Devices)

Installed device descriptions:

‘Str\ng for a fulltext search Vendor: I

Name

e j Fieldbuses
® QHMI devices
+ [@ pcs

+ 0 SoftMotion drives

Vendor Version Description

Note the settings add file type: EtherCAT XML Device Description Description
Configuration Files (x*.xml), the device description file is requested from the servo vendor,
and the Wykoda EtherCAT bus servo description file is"VECServoOML.xml".

® Install Device Description

X

& v 4 | «3Sx. > CODESYS_Control RTES.. v ®| | #%"CODESYS Control RTE.. 2

= o @

=m

BR-

@ Onebrive toEm s E
S [VECServoOML.xml 2018/9/30 9:01 XML 8%
B 3D 0%

& wm

= EH

[5 o

¥ =

) &R

W =E Vo< 3

STHE(N): | "IS620N-Ecat_v2.5.8xml" "VECSer v‘ [EtherCAT XML Device description Configuration Files (*xml) |

[All supported description files (*xml*. eds;*.dcf:*.gs?)
Device description files (*.devdesc.xml)
EDS and DCF files (*.eds, *.dcf)

10-Link Device Description (IODD) (*IODD1.1.xml;*IODD1.0.1.xml)
PROFIBUS DP V5.0 Configuration Files (*.gs?)

PROFINET 10 Configuration Files (GSDML*.xml)

Sercos XML Device description Files (*.xml)

When the installation is complete, the following image shows

S i] D:\software\WECServoOML20185M(1).xml
@ i E"VECServo BRET B ETFHME.

2.2.6 Uninstall CODESYS

Uninstall CODESYS using the standard Windows system uninstall software method, as
follows:
® Exit the CODESYS software to confirm that Gateway is turned off and, if the

operating system taskbar has a CoDeSys icon, right-click the mouse on that icon
and select Exit to turn off Gateway

Choose“Start—=>Settings=> Control Panel”

Click "Add/Delete Program"

Select the software you need to uninstall and find CODESYS
Right-click to "uninstall" and confirm

VYECTOR

VE Controller Programming Manual A T

3 The motion control system is composed of

procedures

3.1 The motion control system of the VE controller

consists of

The VE controller is a universal programmable controller with SoftMotion motion
control (CAM/CNC/ROBOT) that controls multiple motion axes via the EtherCAT bus, as
shown below for a typical control bus network. The servo uses a VEC-VC bus-controlled
servo, and the IO expansion rack is also connected to the CPU module of the VE controller
via the EtherCAT bus.

As shown in the typical motion control network, where the VE controller is the control
master, servo axis, remote |O, etc. for the access station. The EtherCAT bus is a real-time bus,
and its first station clock will serve as a reference synchronization clock for the entire network,
so the servo should be installed at the front end of the EtherCAT bus network, i.e. the 1-way
reference of the network must be servo, while the EtherCAT remote module does not have a
clock unit inside, and is typically installed in the middle or back end of the network in a
network that requires motion control.

VE Controllers

=~ Local Expansion 10

Remote Expansion 10
VEC-VC

Servo Drives

Servo motors

G

Motion Control is characterized by the controller through software calculations, digital
commands through the EtherCAT real-time bus to control servo operation, the Use of
EtherCAT bus high-speed (100Mbps), high frequency (up to 1ms communication once) to
interact, compared to traditional pulse control methods, motion control can be more timely
and accurate. Some of the resulting programming methods are also different from the
previous keystone logic controls, requiring the use of "function blocks" with more underlying
functionality.

VYECTOR

VE Controller Programming Manual A T

VE Controller Programming Manual A T

3.2 The VE controller motion control program consists of

VE controller is a controller developed based on multi-tasking operating system, the
system runs multiple functional modules in a multi-tasking manner, for user programs, can
also be divided into multiple tasks, according to the user-set task priority, respectively.

When writing a user program for a VE controller, the user can divide into several
program organization units according to the different types of tasks and urgency processed
in the application system, and can specify different execution trigger conditions for each task,
or the corresponding execution interval (also known as execution cycle), so that the control
response of the application system can be optimal.

3.2.1 The user program of the VE controller is composed of

Ve controllers can use a multitaste execution pattern, in which several tasks can be
performed "at the same time", each of which can have several user program organizational
units (CALLEDUs),typicalof which are shown below:

s G
User Engineering

Exc s ibrary

- o
ek] FB
- —
f_',.- e Ld:.kl..-"‘_"—.___
U) A T Cra) Yy [ow
T~ o))
ey CHC
. S

User engineering consists of several OUUs, which are divided into task groups according
to POU execution characteristics, configuring their execution characteristics, and POU that is
not included in the task configuration will not be executed.

In addition, there are some objects supporting the user program, such as library
functions, global variable gVL, function block FB, cam definition CAM curve, multi-axis
interpolation track definition CNC curve, etc., as part of the user program.

VYECTOR

VE Controller Programming Manual A T

3.2.2 The type of task in the VE controller

Task configuration is to divide the user program into several task groups according to
execution requirements, each of which can set different execution trigger conditions,
execution intervals, priorities, and so on. VE controllers Common tasks are: EtherCAT tasks,
main loop tasks, etc., where the motion control-related user program body is scheduled to
be performed under the EtherCAT task.

The EtherCAT task is one of the most important tasks in the VE controller, and the
real-time processing of motion control functions is done in this task, it is a clock-interrupted
task with a short interval and the highest priority, and once the time conditions are met, it
can unconditionally interrupt other tasks and start performing the EtherCAT task until all the
POU is configured for that task.

In each task, you can specify that multiple user program units (i.e. PUS) are executed in
sequence, in order of task configuration, as shown in the following illustration:

e — = = e e - S —

= & ManTask | = PO

Order of execution
&) PLC_PRG &1 mc_PrRG (1)
&) PoUL 4] poul ()
<] POU2 2] pou2 (3)

3 EtherCAT_Master_SoftMotion (EtherCAT N

In the figure, the three POUes are executed in the order of PLC_PRG, POU1,POU2, and
when there are global variable update operationsand judgments, care needs to be taken to
arrange the appropriate order.

There is also a EtherCAT _Task task in the figure, which isadded automatically when the
EtherCAT_ Master_SoftMotion device is added, which, depending on the priority, can be
understood as default processing of bus communication tasks performed by the system
when entering the EtherCAT task, including the primary station sending and receiving from
all the PDO of the host station, the update processing of the data structure of each servo axis,
and so on.

3.2.3 The benefits of a user program consisting of multiple PUS

Handlers for different execution cycles should be written in different PUS. For example, a
POU executed by EtherCAT cycle, an external interrupter POU, and a program POU
processed at 20ms time must be written into separate PUS.

In order to improve the readability of the program, according to different control
process segments, different operating objects, different physical structure parts, etc., each
POU is handled with different POU, each POU is named easy to understand the name;

When multiple people work together on programming, each programmer writes and
debugs the POU of the process segment under his or her responsibility, which eventually
becomes a user program project; CODESYS programming software supports 6
programming languages, depending on the type of processing logic required, a language

VYECTOR

VE Controller Programming Manual A T

may be more convenient, while in general, each POU can only be written in one
programming language, and if multiple programming languages need to be used
simultaneously, it is also a good countermeasure to write multiple PUs.

3.2.4 How the user program can do both logical control and motion

control

Application system synchronization control, track control, often have high real-time
requirements, and the timeliness requirements of logical control is relatively low, in the VE
controller user program, the motion control (MC) POU can be executed in the EtherCAT task
cycle, and logical control POU can be executed in the ordinary task cycle. If a specific
program variable is declared as a global variable, the coordinated action with logical control
can be implemented in motion control.

For single-axis MC control, which is mainly controlled by servo driver and motor, servo
enablement, origin regression, positioning control, speed control, torque control, stop and
reset, and for applications of multi-axis synchronous MC control, such as cam control, track
interpolation control, etc., the controller provides corresponding MC function blocks to
complete these operations. Therefore, function blocks are commonly used control
commands in motion control programming, just as prefabribored parts are used in buildings
instead of gravel cement to improve construction efficiency.

The user program can according to the control logic of the application system, control
the function block's operation trigger, terminate execution, etc., at the same time can judge
the function block's execution state, whether there is an error, etc, in the PLCopen
specification, also introduces the axis state data structure, the controller system has
established a corresponding data structure for each servo axis that the user has configured,
and automatically updates its state in time in each EtherCAT cycle, and the user program can
access the variables of the data structure. The operating state of the servo axis can be
monitored and the state variables can be used as the basis for logical control, which makes
logical control and motion control easily implemented in a user program.

VE Controller Programming Manual A T

3.3 Typical steps to write a user program

A complete user program, writing generally takes 5 steps, users need to pay attention
to.

1) According to the PLC module hardware connection mode of VE controller application
system, the hardware system configuration is carried out.

2) According to the control process of the application system, the user program is
written. Programming user program data storage width, use range, from the defined
variables, can be independent of the hardware configuration;

3) associate the input port variable () and output port variable (Q) corresponding to
each hardware port in the system composition with the variable in the user program;

4) Configure the synchronization cycle of network communication (e.g. EtherCAT bus),
according to the real-time requirements of each task, configure the execution cycle of the
user program unit;

5) In the CODESYS programming environment, log on to the VE controller, download
the user program, simulation and debugging modifications, until accurate operation.

3.3.1 The configuration of the user system

In the main screen of CODESYS software, through the right-click left tree
window"Device" item,that is, to enter thedevice add interface, according to the actual
application system used module model, installation order, in turn from the interface of the
device library, double-click selected, or drag placed under "Device", to delete a module, after
selecting the module, press Del key can be deleted.

Placement screen:

L Lo E
Dewice

X Derurs 23 400 B - p——y

VE Controller Programming Manual A T

3.3.2 The writing of the user program

Double-click on the"PLC_PRG (PRG)" item in the left tree window to open the user
programming interface, which is ST (selected when creating a new project), as shown in the
following image. Similar to C language programming, each variable needs to be declared
before it can be used, if you write the program statement directly, when entering, the
programming environment will automatically pop up the declaration box, let the user fill in,
once click "OK", the variable declaration window will automatically increase the variable
declaration statement, simplifying programming.

Dervices - a Device B P PRE W = | Tooiks -0
s 3 adFREST Tu} FROGRAM FLE_FEG ¥
= 3 Durwice [pcton AR Corte - Line SM-CHE - T-ME by (|
8 PLC Logc EMD_WAR
= 0 Applcation
i Litrary Mg
Droude chek Variable declaration area
= (i Tk COnirur st
& e Pl (15 Tasdin)
& PC_PRG L0 % [,
B Softonon General fas Pool [T T, '

Programming area

Ao Declane x
Autarmatic variable declaration pop-ups
g i Type
VAR L T
Dbt IR raisn A

PLC_PE [Appienton]

Fags Comamerk
| CONSTANT
JETAN
FERSISTENT
]
LR
=3 (="
o
Eymbal POU Wariabls Acien Type Address L *
- Sl e S izt P e P :
3 Dewvives |1 Fois Bwsecn 1 [Cros Reference Lt 5 Cal

3.3.3 The user program variable is associated with the port

On the local bus configuration page, the required hardware ports are associated with
variables in the user program, and the variable valueof "QB00" is shown below, output on
the output port of the first DO module, as follows:

VE Controller Programming Manual

Devices -~ 2 x E PLCPRG ¥ VEC VEEXDO_16DO x ~ || TooBox -8 x
B FARAREE ~ || General Process Data EtherCAT Parameters = EtherCAT I/O Mapping EtherCAT IEC Objects Status {_} Information
@ Device (Vector ARM Cortex-Linux-SM-CNC-TV-MC)| | Find / Filter showall - 4 Add FB for 10 Channe|
=Bl PLC Logic - 7 = — —_
O Rssiion Variable May(g Channel Address Type Unit Description
) Lbrary Manager k. Output %QXx0.0 BIT Output
PLC_PRG (PRG) _ OUfpit. |01 AT Offpet
=-(#4 Task Configuration Input Assistant X
L L
& EtherCAT_Task (IEC-Tasks) | Text Search| Gt
=-¢& MainTask (IEC-Tasks) -
B PLC PRE Variables - Name Type Address Origin
= 1 = ¥ Application
= [@ EtherCAT_Master_SoftMotion (EtherCAT Master| = E] pLc_PRG
= @& VEECPR_3Ports (VEECPR_3Ports)
s Port1 A
E VEC_VEEXDT_16DT (VEEXDI_16DT_NPN).
B VEC_VEEXDO_16D0 (VEEXDO_16D0_Nen)|| W « {¥ gFrog
‘3 softMotion General Axis Pool #{) b
* @ IoConfig G...
& 1) IoDrvEther
+ 4} tostandar
+ 1} sm3_gasc
4} sm3_mah
+ 4} RaF0
ouf
2 [structured view Filter None &
®
Insert with a\uments Insert with namespace prefx =~ m——————1
<| e |8 visualza...
[?q QBOO: BOOL; ~ ‘ v & x
(VAR)
D ‘ = =] [&
Sy bject -]
Smpnere
< 3| LS >
32 Devices | POUS =1 9
I@ Messages - Total 0 error(s), 0 warning(s), 1
I_IEI i \body) [}

3.3.4 How the user program is executed and how it is configured to

run

When the program is complete, you need to add the program to the task and configure
the task, which defaults to 4 ms once, and if you want to change to other execution methods,
such as repeatedexecution, scheduled execution, execution cycles, and so on, you can set it
separately, as shown in the following image:

H mcme W VEC VERDO_ 1800
CordiGuration

| Do
ooz
|3 Gewice (ector AR Cortes L -SH-O0 TV
= [FLC Loge
= 0 Application
i Lty Manager
A] PLC_PREG [PRG)
= G Tank Configuraton

5 ExherCAT Tank (IEC-Taks)
_

| T
|# (@ EsrenCAT _Master_SoftMonon {EchenCAT Mater 4
'S SoftHobion General Axis Pool

& painlask x

|-

Pricaity { 831 1 1 Tash feoop | BEC-Tasis

i

Inbervad {e.g. ta00mS) i .

cycle

Type of task

Add Call * Remove Call (# Change Call toree
o]

& AC_PRG

Camment

VE Controller Programming Manual A T

3.3.5 Program compilation and login download

Once the program is written, click Compile ** .Generate the user application, check if

there are errors and if so, click on the error message line to locate the error reporting point
of the user application for easy modification until all errors are eliminated.
The relevant compilation information will be displayed in the following compilation

information

box:

Messages - Total 0 error(s), O warning(s), 1 message(s) - B X
Build - [@ oerror(s) [© 0 warning(s) [@ 0 messages) | % ¥ |
Description Project Object Position

-—-—- Buid started: Application: Device.Appiication -—---—

Typify code...
‘ Compie complete — 0 errors, 0 warnings ‘

Once compiled, click on "Online % "-“Lloginto ", The following dialog box pops up,

select "Yes" "No" "...... Do you wish to create and continue the download?" , select

CODESYS X

Warning: An application 'Applcation’ is currently in RUN mode on the PLC. As there is
no matching compile information, this existing application needs to be replaced.

Click 'Yes' to download the latest code or 'No' to abort.

2 R
y

| 3

"Yes

Once the download is complete, click on "Run . Run and debug the program.

VE Controller Programming Manual

VECTOR

B
]
B
b
R

The following image shows the monitoring screen of a running user
program.

S A K Ul o s x W yEC vERKDO 1600

& PC_PRG |
+ L5 5 EtherCAT_Maiter_Sofoton (EtherCAT Maiter &=
T Sl Genersl Ao Pool |

100 %

| #opication: Appication [Device: PLE Loge]
POU Location imstance Path Tasks

15 | L b

|2 Devices) Poan

B hessages - Total 0 mvoi(s] 0 wammngdal, & mesage(s] |

v ume s AndTyTas. (P-4] Precoemple "

Honch i B

| mim Program el

Controller status is displayed as "RUN"
Program anchanged

owipes ek
: - el R A
Condition Hit Count Conditi.. Cument Hit Count Watched Values Laj

3

Project umer: (nokosy] T

VE Controller Programming Manual

4 A simple user program

In order to make users more familiar with the software and hands-on programming, this
section will demonstrate how to useCODE SYS to build a simple EtherCAT bus project, using
a VE motion controller, through the EtherCAT bus, control VECServo (Wykoda bus servo), to
complete the enable, position mode operation and stop and other actions.

Note: Engineering is not a standard template and the content is for informational

purposes only.

4.1 Create a project and download debugging

4.1.1 Create a new standard project

1) Once the software is open, click on “File"=>“New Project”, A dialog box pops up and
select “Projects”, Select "Standard Project” as the project type, choose your own project path,

name the project "ASimpleProject”, and click
"OK".
® CODESYS "
[Fde Jedin View Pioject Build Online Debug Tooks Window Help T
3 1 culen | - " - I
o Cerley |
i ; l Tk -3
] Mew Project e
Profect Archive Caegues Templates
Gemaren Ul ﬁ & o E m _ﬂ
" 2 | - Emphy HME proecy Ranled Sandard
e e el ot vd..
3
Roecons Projects
Exit
W EIOeCT CrnEaring O device, DN AppRcation, and @ empty mpementaton for PLC_PRG
4 - s
e project name . T
Locce Storage path =) o
TEIEIEF

- EOe==

address Locst

¥

2) Entering the standard project screen, the user can select the device type and

programming language for that project. The image below:

VECTOR

VE Controller Programming Manual B

]
B
b
R

Standard Project X

X You are about to create a new standard project. This wizard will create the following objects
@ within this project:

- One programmable device as specified below

- A program PLC_PRG in the language specified below

- A cydic task which calls PLC_PRG

- A reference to the newest version of the Standard library currently installed.

Device | Vector ARM Cortex-Linux-SM-CNC-TV-MC (Shenzhen Vector Science AndTech ~ |
PLC_PRGIn |Structured Text (ST) -
oK Cancel

Device: Select the model of the main module, select Vector ARM
Cortex-Linux-CNC-TV-MC (embedded platform controller, need to install the XML
description file first: Vector ARM Cortex-Linux-SM-CNC-TV-MC.xml, please refer to the
installation method Install the device description file), or CODESYS Softmotion RTE V3
x64(Soft platform controller for real-time control).

Programming language: ST, other programming languages are also available to the
user. The selection can still be modified after entering the project.

Click on "OK", and when it is finished, it will look like
this
B ASimpletromct prodect® - CODESYS
Ele Edit Yiew Project Buld QOnline Debug Took Window Help T
D E S oo X B RS R YT R 8 Application [Device PLCLogie] - WE o K DG F ¢ W ow 8
S v i1
ppr——— =l

= [Devioe (Veoior ARM Cormex-Unum-SH=-ChC-Ty-HC)

[

Adding user umits
B i
ﬁ User programs

= @ Tk Configuraio
Task configuratio
i PLE_PRG i

u Sofuten General Ao Pocl

i‘ Tool., B8 frope O vrasatstion T,

r—"H—' Pk T — =i

o Rheicn ek ===—SS=7 = e R

Dievior Appicaion Cafack_ ManTask A Fe] e oy syl o |] =% [=] [

Symbal Pou T Nasistle " Mccess Type ad

« T fAS : e

15 aves Y POUY Emfﬂmmm.é&mu-—

T e ey
Lt bkl @0 0 Precomplie -] Progect s {nobody) L

4.1.2 System configuration and parameter setting

Add EtherCAT_Master_Softmotion

The EtherCAT Master Softmotion is an EtherCAT master module with real-time motion

VE Controller Programming Manual

)
M

ECTOR

& #

control. How to add it: Right click “Device=>Add Device>EtherCAT Master Softmotion=>0K”,

Adding an EtherCAT master

Fie Edit WView Project Build Online Debug Tools Window Helo

Vierdos Weddion Do A

EtherCAT Master SoftMotion
35 - Gevaey Softwane Solationd GrbH L8 150

EthaaCy

35 - S Softwane Soiptions GmbH - 35150 Ethenly

] rnp by cotepory) Evsplay o versiess (lor mgerts ooly) [Dtspiey ooutiiated verson

Mame: EtterCAT Mimter Softionen. Equipment-related-descriptions

=

ek R & igmx AR TYTYa R
_m- ¢ = Heama :E'Em\‘.AT_Hﬂd_Wm
duices LA
3 - Aeten
[& Device (ectir ARM Cortex-Lrus-5M-CHC-Tvac) | & Append devce
k. Loge [& 3]
- O Apphaation | Copy 1. Right click Srng foe 4 e seaech
.l:l'l'l' B Pwe . Nata
B s Delets Device o 3 scetanecus
) i:" Redpctaing ; o L
= g ManTml o i AR
anc) = o ErhercAT
S Sofraoton Gener L Add Object * -3 3.
Al Foader... -
2. Add Al Deevice.
3 Updpte Device., T
Device |5 rdit otjen] -a:m: i
Edlit Object with_. o i
Felit) rapging
Import mappings fromn CSV.
Exporl mappings bo CEV._ @A
% Onloe Config Mode., Wiendor: Y& - S Seitwine RS Gestel
Revet Origin Device [Device] Cakrgorivss Hate
Simulation Wiersloas 1.5.15.0
iclrer T
Dhimabe
< B)i
2 Deviciss) PO [+1"

& ([You o sseo snother tanget node in The navigater whde ths wndos B open.)

j'E M - Torul © esorn], O vawrngi]. O mesages] |

4. Sure add

ose.

Once added, as shown in the figure, an EtherCAT_Task is assigned at the same time and
the EtherCAT task-related parameters can be configured.

|2 ASimpleProfect

=8 PLC Logic
= &) Application
(il Library Manager
[PLC_PRG (PRG)
=-[# Task Configuration
| EtherCAT_Task (TEC-Tasks) |
=% MainTask (IEC-Tasks)
& pLC PRG

=[] Device (Vector ARM Cortex-Linux-SM-CNC-TV-MC)

| | EthercaT_Master_SoftMotion (EtherCAT Master SoftMotion)

"3 SoftMation General Axis Pool

<
22 pevices [} POUS

\;rsc'ron

VE Controller Programming Manual oa M

Add VECServo

After adding the master device, add the slave device below the master, in this case
"VECServo (Viktor EtherCAT Servo)". The servo device description file (XML) must be
installed before adding the device. Installation process reference :2.2.5 Install the device
description file, This is added as follows:

1) |If you are offline without a connection to the master, you can access it by
right-clicking “ EtherCAT_Master_Softmotion = Add Device ", Find the corresponding
manufacturer and device model in the device pop-up window
“SZVector=>SSC_Device>VECServo”, Click on Confirm to add the device.

- | 13 Addd Device x
Fle Edit View FProject Bulld Online Debuog To{ r
1@ = - R T T R qm ¥ o
Action
Devers LR @ Append dieace. () Inesert devace Otpdmedeme 3 colo b CrVactor él
- ASTpPet =] - —
=) Copvice [Wenctor MBI Coortecs-Linces -SM-CNE-T-MC) |sarwg hew i Pulbeat search Vendar Im o I
= B PLC Lo Marne Wendor Wenion Dersediption
© Applcation 3 Feiibuses
' Libwary Manager " .:Eml
i) re_phc i) = o2 v
* i Tk Configuraton = [Sriecey
W ExtrCAT_Tiek (EC-Tieka) * L Mok 4. VECServo
= o v Tank (B0 Tans)
) e MR |Sovectr Revmon= 16900000000 EtherCAT Shve mgcrtesd]
3 ExterCAT_Master_SoftMotion (EthenCAT Master = + [SPeector - S5C_Device |
SoltHolon Gererd Arl K Cult f
reight
. oy Y S —— *
Eay 'E' "L_ click fousp by ctegary [Dipliry il versions (for experts oaly] [Diapley cutitatng weenans |
Refacianing [I H.l.quE-WM &
G Properies Wendor: Shieco
Al bt i : | et
Add Folder... [e e RIS = .
2. Select Add I Add Device... 'Luuuwwuumu |
et Device ErCAT_Master_SoltHotion]
Device Scan For Dedces... YA o ST ot b Tt Mecae i Ches rugastol wile- e AN B O} kil
] Dibabde Device | = k
£ - ———
: e 5 e f
5 Devices 1) ok | B otgect . Sure Add
Bl mhawmaces - Tots & grecaty), O i Eclit Cloject with...
[efit K3 mapping Lot bkl © 0 D0 Precomple o o Pegpect user: {nobody) L)

If you are online while logged into the main site, you can also right-click
“EtherCAT_Master_Softmotion=>Scan For Devices”, Add by scan.

Devices ~ax| Wc
=5 example_02 [~ —
= - @ Device [connected] (CODESYS Softmotion RTE | "8

= Bl PLC Logic
= & Application [run] e

i) Ubrary Manager I

PLC_PRG (PRG)

= [Task Configuration | Ether
& EtherCAT Task

= & MainTask I

B) PLC PRG
{58 ethercaT master softmotion (ethercar wa] |5“"IL
S@S Cu
' sofifBa Copy
@ Paste
X Delete
Refactoring ,
2 Properties...
@ Add Object
© Add Folder...
Add Device...
Insert Device...
Scan For Devices...
Disable Device
Edit Object
Edit Object With...

Cy

Edit 10 mapping
Import mappings from CSV...
Export mappings to CSV...

VE Controller Programming Manual

\?ECTOR

Note: The node address of the device, by default, is automatically assigned, i.e. the node
address is assigned from near to far from the host, this example is not modified and is set by

default.
Address Additional - i
i = EtherCAT. ™
AutoInc Address a = [Enable Expert Settings
EtherCAT Address [1001 B [Optional

If you need to assign node addresses manually, you can refer to the following method,
using the VC bus servo as an example:

a)

Assign the address as shown below: check "optional” in the additional field for the

slave station, then fill in the station number (1-65535) in the configured station alias

I > B X 5 VECServo X
B ~|| General processData Startup Parameters log EtherCAT Parameters
[Device (vector ARM Cortex-Linux-SM-CNC-TV-MC) Address Additional
=0 pLctogic Autolncaddress 0 ¢ [] Expert settings
= o Application -
.n EtherCAT address 1001 z Optional
Library Manager

|E] PLC_PRG (PRG)
i) pou F8)
= ﬁ Task Configuration
= @ EtherCAT Task (IEC-Tasks)
&) PLc_PRG

F
& MainTask (IEC-Tasks)
= [{]_EtherCAT Master SoftMotion (Eth: Master Softiv
¥ VECServo (VECServa)

4 Distributed Clock

Select DC DC-Synchron

Sync unit cycle (ps)
ynco
Enable Sync 0

Cych time (ps)

Shift thne (ps)

= EtherCATI/OMapping ¥ EtherCAT IEC Objects Statu

EtherCAT *

Sync unit cycle x1 4000
er- 0
HgP Axis1 (SM_Drive_GenericDSP402) Lxe deiinec
=48 VECServo_5 (VECServo) Syncl
Hg Axis2 (SM_Drive_GenericDsP402) Enable Sync 1
'3 SoftMotion General Axis Pool Syncunit cyde [4000
User-defined
Identification
Disabled
(®) Configured station alias (ADO 0x0012) Value
= Bxplicit device identification (ADO 0x0134)
ices |} POUS Data Word (2 Bytes) ADO (hex)
es - 3 % B6 VECServo ' VECServo 5 X
) B ¥|| General processData Startup Parameters Log
L L—ﬂ Device (Vector ARM Cortex-Linux-SM-CNC-TV-MC) Address
=80 pLc Logic AutoInc address -1 £
=) Application
EtherCAT address 1002 =

.ﬂ Library Manager
E] PLC_PRG (PRG)
39 pou (FB)
= E Task Configuration
= EtherCAT Task (IEC-Tasks)
@] pLc_PrG
& MainTask (IEC-Tasks)

= [EtherCAT_Master_SoftMotion (EtherCAT Master So

- B VECServo (VECServo)
HgP Axis1 (SM_Drive_Gener
B Axis2 (SM_Drive_GenericDSP402)
2 softMotion General Axis Pool

4 Distributed Clock
Select DC Thron
Enable

Sync0
Enable Sync 0

Sync unit cycle x1
User-defined
Syncl
Enable Sync 1
Sync unit cycle x1

User-defined

Identification
Disabled

(®) Configured station alias (ADO 0x0012)

> Explicit device identification (ADO 0x0134)

wvices ([Pous

Data Word (2 Bytes)

EtherCAT Parameters
Additional

[] Expert settings

4000
0 3 shift
4000 -
0
Value

ADO (hex)

Cyde time (p:

= Shift time (ps)

B EtherCATI/OMapping ™= EtherC/

EtherCAT +

Cy¥e time (ps)

U
. VECTOR
VE Controller Programming Manual BOM oA MK

b) Set the parameters P08.41 (servo station number) of 1 and 3, respectively, to reset
the servo or power up again.

c) Then log in to the device Download the program, and if the first connection is not
successful, reset and run again.

d) As long as the alias from the station is the same as the alias configured for the
backgroundproject, it will work regardless of the order.

Add CiA402 Axis

1) The device runs in association with the axis, adding method: right-click
"VECServo—~>Add SoftMotion CiA402 Axis"to add the motion control axis, as shown below.

% SoftMotion General Axs Poci | - €01
1. right click o
B Pate
* Delete
Refactoring [
& Properties..,
Add Object
O Add Folder...
Insert Device...
Dasable Device
Update Device...
T Edit Object
Edit Object with...
Edit ¥ mapping
Import mappings from C5V..
Expart mappings to C5V..
2. Select Add | Add SoftMotion CiR402 Axis
Add SoftMotionUight ClAS02 Axts

After adding the following image, rename the axis "Axisl" for programming
convenience

=] EtherCAT Master_SoftMotion (EtherCAT Master SoftMotion)
| = B VECServo (VECServo)
: LA SM_Drive_GenericDSP402 (SM_Drive_Gener|
"% softMotion General Axis Pool

' ‘ =i Rename 'SM Drive GenericDSP402'...

2) Set the control related parameters, double-click Axisl, open the parameter
configuration page, set the gear ratio

Devees S e mm x
* [ASmpbFroect = Genera| ScakyMapony [rommesonng | SH_Drive_ETC_ GererclISP40Z: Farameters ' 5M_Dewe ETC_Gene
= Device (Vector ARM CortesLinux-S4-CHC-TV-HC) Sealey -
= ¥ PLC Logc [ievert divetion Set gear ratio

* 0 Applcation Reotary [10000 PR a s MO AT n |

M vy basragee 1

] PLC_PRG (PG 1| O e _I. | MIOREH LHTES < v (e CULPAT TS _I |

= @ Yaik Condguaten 1 pear GUtpaR Tumms <== unis In Bpplaton @ |

B D CAT_ Tk (C-Tanks)

= g M Tk (IEC- Tiika)
M PLC_PRG
= {§ EtherCAT_Mamter_SoftMoton (EtherCAT ‘SoltHoton) EJAADaR: THppeg

VECSeve Inputs:
iUMmemmmf ol ol Otgect nember Adderss Tyee

wordl FrowSiahenterd] 15 T Ty . T
£ Softhston Gl A Pocl st woed (nowSisheSondl Loa G0 - | B0 =il L)
AU PO (AT PO | P L S e i i e

VE Controller Programming Manual BOM oA MK

4.1.3 The user controls the program writing

Write a program here that enables the controller to control the servo motor to perform
absolute position commands and make round-trip movements.

Create an object

As shown below, right-click the mouse "Application 2 Add Project > POU",name the
newPOU "MoveAbsolute"in the spring window, type select "Program”, programming
language select "Structured Text (ST), click "OK" to complete the addition.

Add POU x
=80 PLC Logic . @ Create a new POU (Program Organization Unit)
1 F £} Application
i) Library Ma 4 Cut
pi_prc (B COPY Name
- @ Taskconfig = Pt Wﬂ\b@o\utﬂ | |
& Etherc ¥ Delete L
=& MainTas Refactoring » Type 5
H PO Properties... 2
Mgt) Add Object ’ Alarm Configuration... LS e
o m EtherCAT_Master S Addfolder.. © Application.. Extends
SRECSSONE Object & Axis Group... Implements
B ML it Object with.. Cam table... Abstract
"3 softMotion Gener. At SeHEE
Login ol Pro?’ram"' Access specifier
Delete application from device ENGsatlings::

= Data Sources Manager...

&
é
&
=]
% DUT..
<
g

Method implementation language

External File. S e
Global Variable List... O Function
Image Pool... Return type
Interface...

@ Network Variable List (Receiver)... 6

@ Network Variable List (Sender)... Imwgws

| T_ Persistent Variables... | | Structured Text (5T) =
3 [& rou.
[POU for implicit checks... I i Cancel

& Recipe Manager...

Open the programming environment

Double-click to open MoveAbsolute, as shown below, and the programming interface
includes the variable declaration area and the programming area.

e ."-.E. ,_ﬂml K =
EOnGTi A
= 9 Aegaie T - FROCIUAR b velbrclaneld]
W e (TS S Snftrandnn &TF W8 aied] I'Im:': - i
= [mC Lege
1 Al st n wanatie oeclaration ares

' i ﬁ"'"" i . 100 5
Crouble

“lick _:,I PG (PR
A Tl Coalipasmmn
e EerCAT_Tah
= i e Tk
1 PG
T Tetwal AT ddamier fanfiofine (P AT My
+ I FeCervs (sl
W Lawl (BH Drivn GavsricTRP4d]
B ST G S

S rogramming area

LoD il

VE Controller Programming Manual A T

Define variables

Add variables in the variable declaration area, and the variable declaration code is as
follows.
PROGRAM MoveAbsolute 1
VAR
iStatus:INT;
Power:MC_Power; //[Enable module
MoveAbsolute:MC_MoveAbsolute; //Absolute displacement module
p:REAL:=180; // Displacement value
ActPos:LREAL; //The actual location value
END_VAR

It's important to note here that engineering i) Library Manager \yhether the library

"SM3_Basic"is added to the library is generally added by default, if not, you need tomanually
right-click "Library Manager=>Add Library" find the library "SM3_ Basic" and then choose
toadd,or you can add morelibraries in this way.

Devices - X PLC_PRG) i Library Manager x ~
=5 ASimpleProject ~ | E3 Add Library X Delete Library = Properties ® Details 51 Placeholders (il Library Repository |
= Device (Vector ARM Cortex-Linux-SM-CN(~
=B PLC Logic
=k Application
| Library Manager |

=] PLC_PRG (PRG)
= [Task Configuration
& EtherCAT_Task (IEC-Tasks)
= g2 MainTask (IEC-Tasks)
8] PLC_PRG

< >
=- [EtherCAT_Master_SoftMotion (EtherCA
2 VECServo (VECServo) =) SM3_Basic, 4.6.0.0 (35 - Smart Software 5 ¥ | ~ | Inputs/Outputs Graphical Documentation
H4P Axis1 (SM_Drive_GenericDspag| * = Images AT
s SoftMotion General Axis Pool *2 Project Information —Axis Statust—
=+ SM3_Basic —Enable bRegulatorRealState —
+ (2 DataTypes —bRegulatoron 7. bDriveStartRealState —
s . — bDriveStart Busy —
2 Drivelnterface Errorl—
+ 1 Globals ErrorID [—
= & Pous
+12 Additional
= 1 Administrative/Configuration
MC_Power

IC_Reset

IC_SetPosttion

MC3_BrakeControl
MC3_PersistPosition
MC3_PersistPositionLogical
MC3_PersistPositionSingleturn o

o S o

< >

Cross Reference List
< >

|% pevices [Pous A watch 1| B Cross Reference List [& Cal Tree

Program writing

The program is added in the programming area as follows. (Program function: when the
program is executed, immediately enable servo, and so on servo enable success, control
motor between position P and starting point O to do round-trip movement.))

CASE iStatus OF

0: // Power-on automatic enable servo
Power(Axis:=Axis1, Enable:=TRUE , bRegulatorOn:=TRUE, bDriveStart:=TRUE);
IF Power.Status THEN

VYECTOR

VE Controller Programming Manual A T

iStatus:=iStatus+1;
END_IF
1: /l Walk absolute displacement and run to P
MoveAbsolute(Axis:=Axis1, Execute:=TRUE, Position:= p, Velocity:=100 , Acceleration:= 100,
Deceleration:=100);
IF MoveAbsolute.Done THEN
MoveAbsolute(Axis:=Axis1, Execute:= FALSE);
iStatus:=iStatus+1;
END_IF
2: / Walk absolute displacement and run back to 0
MoveAbsolute(Axis:=Axis1, Execute:=TRUE, Position:= 0, Velocity:=100 , Acceleration:= 100,
Deceleration:=100);
IF MoveAbsolute.Done THEN
MoveAbsolute(Axis:=Axis1, Execute:= FALSE);
iStatus:=1;
END_IF
END_CASE

ActPos:= Axis1.fActPosition; /I Read the actual location value

Messages - Total 0 error(s), 0 warning(s), 0 message(s)

Build - |& 0 error(s) |® 0 warning(s) |6 0 message(s) | X ¥
Description

| --—— Build started: Application: Device.Application -—-—

Typify code...

Compile complete — 0 errors, 0 warnings

4.1.4 Bus and task cycle

Bus task cycle

When you add EtherCAT Master SoftMotion,the project automatically adds bus tasks
EtherCAT_Task,setting bus execution and cycle times, and taskpriority (0 to 31,0 isthe most
advanced), where EtherCAT _Task priority isset to 0, and other tasks, such as
Main_Taskpriority, are set to 1 to 31.

VE Controller Programming Manual

BHE MR
-8 % & EtherCAT_Task x -
T| Configuraticn
A G E0E S SO HIE G 4) Pricrity =
« i PLC Loge Prionty {031 3 |:|
= £ Appleation
0 Litwary Maruger Tvpe
] Hoved Byt T —
X PLC_PRG (PRG)
= 3 Task Configuration &
Double | @[Etheear Tak i Lm“g
g = g8 ManTask
LII:"‘ i‘ﬂt PRG THE (2.0, T8 5 =
= 5] EtherCAT_Master_Softotion (EenCaT Masty
= B VECServo (VECServa) | SonsE iy
B Axisl (SM_Drive_GenercDSP402)
s SoftMotion General Axis Pool
= Add Call = Resnove Ca Change Ca Moe Lig i Do I w

The program task cycle

Once the program is written, you need to add the program to the task and configure it.

Motion-related POU recommendations are added toEtherCAT _Task, and logic or
computational-related POU recommendations are added to other Tasks (e.g. Main_Task, a
program "PLC PRG" and a task "Main Task" have been established by default when the
project is started, and "PLC PRG" has been added to "Task Task".),

The new POU object "MoveAbsolute” needs to be manually added to theEtherCAT

. . " " H
_Task task bydouble-clicking EtherCAT_Task Add > Call" selecting
" " RPN " n
MoveAbsolutel"andclicking "OK".
| Devices ~ # x| & EthercAT Task x|
=5 AsimpleProject || Configuration Input Assistant X
={#) Device (CODESYS Softmotion RTE V3 x64) e
Text Search
= B0 pLC Logic :
= € Application LIRS E Programs ~ Name Type Origin
T = I3 Application
0 Ubrary Manager épe 3 ‘]
MoveAbsolutel (PRG) Cydic %] PLC_PRG
PLC_PRG (PRG)
1 jeiTasksnnligaton Watchdog
8] MoveAbsolutel
= ¢ ManTask Time (e.g. t#200ms)
&) PLC_PRG
- @ EtherCAT_Master_SoftMotion (EtherCAT Masty| >t
= M8 VECServo (VECServo)
Mg Axis1 (SM_Drive_GenericDSP402) 2
‘3 softMotion General Axis Pool + Add Call B Remove
POU
3] Moveabsolutel 4 Structured view
Insert with arguments Insert with namespace prefix
Documentation
PROGRAM MoveAbsolutel
4 oK Cancal

In addition to the default tasks, you can add new tasks yourself, as follows: right-click

Task Configuration, select Add Project=> Task,you can add newtasks,and double-click tasks
to configure tasks.

VE Controller Programmi

ng Manual

= AsimpleProject
= [Device (Vector ARM Cortex-Linux-SM-CNC-TV-MC)

= &) PLC Logic
- =& application
| i Library Manager

~B PcPRG(PRG)
I-' Task Configuration
5% EtherCAT_Task (1'
= MainTask (IEC-Ta¢ -,
i &) PLC_PRG >L<
=-[EtherCAT_Master_SoftMoti
. = ¥8 VECServo (VECServo)

Cut

Copy
Paste

B %<

Delete

Properties...

"W ms1 (sM_Drve_cf - _Add Object ' &

Task... ”

"% SoftMotion General Axis Po¢ /=) Add Folder...
[1° Edit Object
Edit Object with...

4.1.5 Mission sub-core

The VE motion controller is designed with a four-core core, which allows the bus to be
sub-coreed for smoother operation. The steps are as follows

(1) Open Task Configuration, click Add Group, Add NewGroup

* 2 X Li_g Task Configuration X

|| TaskGroups Monitor Variable Usage System Events Properties

ce (Vector ARM Cortex-Linux-SM-CNC-TV-MC) &k Add Group| Remove Group
iy Logic-) iGroup name Core Priority
© Appication = IEC-Tasks Fixed Pinned
;m Loy Mensges @ EtherCATNask 1
::=.I FLC PRG (PR) $& MainTask 1
%]_ PO FE) NewGroup Fixed Pinned
[#8 Task Configuration
= rCAT_lasl Tasks)
8] pLc_PrG
§& MainTask (IEC-Tasks)
(2) Add other tasks to a new group, and EtherCAT_Task a separate group
5 @ Task Configuration X @ Ma'nTaj:.k _
'-| Task Groups Monitor Variable Usage System Events Properties
ok Add Group < Remove Group
Group name Core Priority
= IEC-Tasks Fixed Pinned
§&2 EtherCAT_Task 1
=" MNewGroup / Fixed Pinned
& MainTask 2

(3) EtherCAT Taskassigned to the 3rd core

the stable operation of the EtherCAT mission

and other tasks to the 2nd core to ensure

VE Controller Programming Manual A T

|_§ Task Configuration X @ MainTask
Task Groups Monitor Variable Usage SystemEvents Properties

gk Add Group Remove Group
Group name Core Priority
= IEC-Tasks 3 |
@ EtherCAT Task 1
= MNewGroup Fixed Pinned v |
£ MainTask Fixed Pinned 2
Sequentially Pinned
Free Floating
0
Attention:

When the Modbus device sets up tasks, it cannot be addedto the _Task and needs to be
added to other tasks.

4.1.6 Sign in to the device

Connect the controller

The environment in which CODESYS is run on a PC, communication with the VE
controller, user-ordered downloads, start-stop and monitor the operation of user programs,
parameter viewing or modification, and so on.

The VE controller can currently be logged in via the LAN LAN network, a 1-to-1
direct connection between the PC computer and the VE controller can be made over a
network cable, or online via a router or hub, in which case one PC can be connected to
multiple VE controllers or multiple PCs can access the same VE controller.

'®
|

@

The IP address of both the PC computer and the VE controller must be the same
network segment by default to log on to the VE controller, otherwise the VE controller will
not be scanned in CODESYS. The factory default IP address for VE controllers is 192.168
1. . 123,if the IP address of the PC is 192.168. 1.xxx, (here xxx represents the range of 1 to
254, but not the same as the END address of the VE controller IP), then CODESYS can
scan to the VE controller, and can interact with the data, download the user program, run

VE Controller Programming Manual A T

monitoring, etc. If the IP of the VE controller has been man-made, its address is not in the
IP address segment where the PC is located, the PC cannot be accessed, the VE controller's
[P address can be restored to the factory default IP address:192.168 1. 123,and then
change the address of the PC machine to 192.168. 1.xxx, with which you set up a 1-to-1
online, you can modify the address of the VE controller to the desired IP segment
address.

Scan the network

Double-click "Device" in the engineering tree and pop up the following interface

Devices -~ 7 x| (i Device x
= '3 AsimpleFroject — @Communicaﬂon Settings | Applcations Backup and Restore Fles Log PLC Settings
|- 3 |Device (vector ARM Cortex-Linux-SM-CNC-Tv-MC) | | [[Scan Netwark... | Gateway - Device -
= 8l PLC Logic
=1 Application
@0 Uibrary Manager 0

PLC_PRG (PRG)
= @ Task Configuration

& EtherCAT_Task = ®
= & MainTask G
&1 PLC_PRG
=[] EtherCAT Master_SoftMotion (EtherCAT Master SoftMa ~
= 8 VECServo (VECServo) IP-Address:
- B Axisl (SM_Drive_GenericDSP402) localhost
3 SoftMation General Axis Pool S

1217

On this screen, the mouseclicks on the "Communication Set Scan—> network" tab, pops
up the following interface, scans to the ~ VE controller, clicks on its name on the left side
of the window, can see its introduction information on the right side of the window, click OK,
can connect the device:

Select Device bed

Select the network path to the controller:

= d¥e Gateway-1 (scanning... Device Name: fad Scan Network
|) \VEME64 [0065] I VEMESA
Wink
Device Address:
0065
Block driver:
UDP
Number of
channels:
"
'Serial number:
000102030406
Target ID:
173E 0001 i
=] o=

After logging in, you can modify the device name according to your own needs, change
to a device name that is easy to identify, can be easily identified, in the application of
multiple controllers, very helpful.

VE Controller Programming Manual

o
Pt
fatier- 1]
1P
bocalunk
fot Green light indicates

that the gateway is

operating normally

Set the bus control gate

L]
LODES] (actve)
Drevice Hame:
WM

Do Ades '3rEEn light means the
055

LA contraller has been scanned

1T

Tarpet Type
4102

and the connection is 0K

Double-click "EtherCAT_Master_SoftMotion"to set up the EtherCAT network card, as
shown, click on"Browse" select the Name of the EtherCAT network card in the spring window

(connect to the servo endnetwork port), click "OK"

[Device (D EtherCAT_Master_SoftMotion x

Autoconfig Master/Slaves

EtherCAT NIC Setting

EtherCAT~

[] Enable Redundancy

@® Select Network by MAC

Destination Address (MAC) FF-FF-FF-FF-FF-FF Broadcast
Source Address (MAC) [o0-00-00000000 | | || Browse... ||
Network Name

(O Select Network by Name:

[

Select Network Adapter

MAC address Name Description

2 | 00R209173008 | AMIERE 4 |CoDeSys Etherfapress CEit FCI Ethernet Adapter #4

00E269173C6C AMERE 3 Intel(R) I211 Gigabit Network Comnection #3

2 OF Abort

Sign in to download

Click on "Build."** ", compile the error-corrected, and then click "Login." %
Build | Online Debug Tools Wind« Debug Tools Window Help
o — %% Login Alt+F8 I
Build Fi1 | % Logout Ctrl+F8

Rebuild
Generate code
Generate runtime system files...

Clean

Clean all

Create boot application

Download

Online Change

Source download to connected device

Multiple Download...

Reset warm

Pop up the dialog box, select Yes, and download the program to the controller.

VECTOR

a
s
B
S
=

VE Controller Programming Manual

CODESYS X

Warning: An application ‘Application’ is currently in RUN mode on the PLC. As there is
no matching compie information, this existing application needs to be replaced.

Click 'Yes' to download the latest code or 'No' to abort.

w petis..

4.1.7 Start debugging

After the login is successful, select‘Debug=>Start *”, The controller is up and running.
Debug | Tools Window _Help
il » start F5
m Stop Shift+F8
Single Cycle Ctrl+F5
il New Breakpoint...
&M New Data Breakpoint...
& Edit Breakpoint...
Toggle Breakpoint F9
» Disable Breakpoint
® Enable Breakpoint

Open MoveAbsolute, the program runs as shown in the following image, after the
program performs servo enabling, the motor between position P and starting position 0 to
do round-trip movement.

Devices ~ & x| [E MoveAbsolutel x -

=) Asmperroject Bl peviceapplication MoveAbsoluter
= 3 Device [connected|] (CODESYS Soft | o recsion Type Value Prepared value Address Comment =]
= BIpLC Logic # istatus wr 2 o
- © Applcation [run] = iR MC_Povier R
i Library Manager + % MoveAbsolute MC_MoveAbsol... R IBIER
) Moverbsolte1 (°RG) . ReAL 180 aBE
{81 PLC_PRG (PRG) # ActPos LREAL 62.526 FRE
= (@ Task Configuration

= O EtherCAT_Task
|

= & ManTask
&) PLC_PRG B
= @ EtherCAT_Master_SoftHoton (€| _
= £ VECServo (VECServo)
H Axs1 (SM_Drive_Generit
3 softMotion General AxisPool ||
Je=1 1 =1 L
2]
B
TO—]:= 100, Deceleration W _J:=100);
o
istatus[2]
™
o
2 s
1 Actos[B 3= Axisl.fActrosition] @5 7
100 % |&
5

<

Modify the value of location P online: Click the preset value of "Prepared Value" for the
variable "P" to enter thevalue "360" and then select"DebugWrite Values" or the shortcut
"Ctrl-F7" to write the value to "Value" to modify the value of the variable=> "P" online.

VE Controller Programming Manual

Debug | Tools Window Help

p Start F5
m Stop Shift+F8
Single Cycle Ctrl+F5

il New Breakpoint...

5 Edit Breakpoint...

Toggle Breakpoint F9
Disable Breakpoint

® Enable Breakpoint

Step Over F10
Step Into F8
Step Cut Shift+F10

*£ Run to Cursor
Set next Statement

% Show next Statement

[I Write Values Ctrl+F7
Force Values F7
Unforce Values Alt+F7

= Toggle Flow Control Mode
Core Dump 3

4.1.8 Add a Trance trace

Add Trance

To more intuitively observe changes in the position of the servo axis, a logic analyzer is
added to record the motion curve. Right-click "Application”, select "Add object 2>
Trance",pop up the dialog box, name it and then click"Add" to add Trance(tracking), as

shown below.

() Device [connected] (CODESYS Softmotion RTE V3 x64)

1 = @) PLC Logic Add Trace x
- & Application [run] it
D Library Manager
& Copy
MoveAbsolutel i : :
PLC.PRG (PRG Paste Atool to monitor variables graphically.
b Delete
= 8 Task Configurati
& EtherCAT. Refactoring K
&) Moverbsi(z Properties... 2 Name of the Trace
& f i
% ManTask [Aad Object » [l Alarm Configuration... [rrace1 |
&) PLC_PRGTS Add Folder.. Application...
[EtherCAT Master S = £qit Object Axis Group... 4
B VECServo (VECS gt Object with... Cam table...
MO ASEEM Qe it CNC program...
‘3 softMotion General 3 sien CNC settings...
Ot e Data Sources Manager...
Delete application from device e
: External File...
W :New Breakpoint.. Global Variable List...
Toggle Breakpoint Image Pool...
Unforce All Values of 'Device.Application’ Interface...

Configure Trance

JEPFEEABRIEEE S ABGORC

Network Variable List (Receiver)...

Network Variable List (Sender)...
Persistent Variables...

POU...

PQU for implicit checks...
Recipe Manager...

Redundancy Configuration...
Symbol Configuration...

Text List...

Trace...

slale

Trend Recording Manager...

1) Click on add_Variable(add variables) and select the buttonE, Find the variable

"ActPos" in the variable pop-up window, click "OK" and add it to the tracker.

VECTOR

VE Controller Programming Manual BOM oA MK
& Tracel x| -
Configuration
o Trace Configuration Add Variable I
10 - |m= MoveAbsolutel.ACtPOS =

al

+ g toconti_Globk
* {} wonethercatit

Trace Record M
= Tracel Variable -0
Inpur Assistant x
Text Search Categiories
l
Trace Varabis] < MName Type Address Origin
Traceabl parameters = 3 sopliation]
el
| # acros |
T TSRt
- & MoveAbsohte
v
£ @ poner
o A) Loy
+ {3 oeD

& # {) tos@ndard
+ {) sm3_Basc
+ A} sM3_path
+ 4} TRar0.
1 Structured view
Insert Wih arguments. Insert wh namespace prefx
Documentation
ActPos: LREAL;
(VAR)
FEITHLEE I | ‘ e
Cancel
T T T T T T T T
1s 2s 3s 4s 55 65 Ts 8s 9s 10s

2) Click "Configuration™ and select"Main

Task" inthe Taskoption, click "OK";

@ Tracel x[E PLCPRG |

|| Configuration

Add Variable

10 /
« Trace Configuration X
Trace Record REERL iR
= Tracel Enable Trigger O
== PLC_PRG.ACtPoS Trigger variable - ‘ I
Trigger edge
Post trigger (samples 0 200ms
Trigger Level
Task
0 Record condtion | e L
Presentation (diagrams) Comment
Time axis
= Diagram 1
Y axis
= Shown variables
== PLC_PRG.ACtPOS Resolution ms b
Automatic restart O
\ Advanced.
Add Variable Reset Display settings
-10

3) Right-click on the oscillostor blank interface, select "Download Trace", download

tracking;

VE Controller Programming Manual

Add Variable

s R A RS

| i=. Download Trace
B Start Trace

Stop Trace

Reset trigger

Autoscroll

Cursor

Mouse Zooming

Reset View

AutoFit

Compress

Stretch

Convert to single channel
Convert to multi channel
Online List ...

Upload Trace
Configuration

Load Trace...

Save Trace...

Export symbolic trace config

Statistics

05 |

4) Axisl's actual position curve is printed below.

& Tracel x -
Configuration
A Add Variable
4 w= MoveAbsolutel ActPos =
300

100

4.1.9 Stop debugging

Once the commissioning is complete, click "Debug-> Stop."

program

, Stop executing the

VE Controller Programming Manual A T
Debug | Tools Window Help
b Start F5
[a Stop Shift+F8 ||
Single Cycle Ctrl+F5
Wl New Breakpoint...
7 Edit Breakpoint...

4.2 Common configuration instructions for devices

4.2.1 Device tree and device editor

The device tree

In device views, also known as device trees, applications can be organized based on the
target device. In this view, you can view PLC hardware and field bus systems, configure
hardware communication, and assign applications.

The root node of the device tree is a symbol nodeentry: Here's what it is

Devices - 3 %

I' ﬂ ASimpieProject I >
=) Device [connected] (CODESYS Softmotion RTE
= B PLC Logic

=-ICk Application [run]
i Library Manager
- [2) Movesbsoiute1 (PRG)

Insert a device object, also known as a target system, under this node of one or more
PLCs. Each device object represents a specific hardware component, such as a controller,
field bus, bus coupler, driver, I/0 module, or monitor. If you are already connected to a
controller network, you can scan the hardware to find available devices and save them to the
currently configured device tree, as shown.

+ A [FtherCAT Master SoftMotion (EtherCAT =
ol & Cut
Bz Copy
4 Paste
¥ Delete
Refactoring 3
Properties...
Add Object
D Add Folder...

Add Device...
Insert Device...

Scan For Devices...

Disable Device
Edit Object
Edit Object With...

L‘J

Edit 10 mapping
Import mappings from CSV...
Export mappings to CSV...

Each device is defined by the device description file and must be installed on the local
system to be plugged into the device tree. Device description files define device properties
for configurability, programmability, and possible connections to other devices.

Example of a device tree:

VE Controller Programming Manual A T
Devices - ax
=[] Device (CODESYS Softmotion RTE V3 x64)
= B0 PLC Logic

=1k Application
i) Library Manager
[£] Moveabsolutel (PRG)
2] PLC_PRG (PRG)
= (&8 Task Configuration
=-$B EtherCAT Task
8] MoveAbsolutel
=g MainTask
&) PLC_PRG
& Tracel
= [EtherCAT_Master_SoftMotion (EtherCAT Master SoftMation)
= #8 VECServo (VECServo)
W Axisi (SM_Drive_GenericDSP402)
"3 SoftMotion General Axis Pool

Device entries in the device tree consist of device symbols, device names, and device

types, such as:

W& Axisl (SM_Drive_GenericDSP402)

Device communication, number of participants, and IO mapping can be configured in
the device editor dialog box. Double-click the device object to open the editor.

s :
3 AT =] e SeneMuey Commsionng | SM_Dive_ETC_CerencDRid: Pammetes = SM_Dvwer_ETC Ganmelspas): [0 Magprg = 247 |+
* @ Dever [CODESYS Softecton RTE W xid} Mk gt i i [———
8N PLC Lioge 3 B Stvare mEy i Trapescid
0 Agpkeation T At Mengalier [l T ;
- Hodudy = i
Pove | B fuad
il Movekbsoise] (PRI} i ity ¢ Jul i
] PR () o £ Qi [moni)
= [Tk Confignration L -
Deoseration {u's' |]
B EthenAT_Tamk EmRrfieaen
B sk} M, datance [} -.- o 0
= & T i
B A DryTuba” el P) T
o Tracet ey [Actrieesten [WHE Decteration [l ek fui] deartsed
= (3 EUrCAT_Murite_SofMeton DI TAT Ml 0 a0 1000 e g et]
W VECHenvn [VECSena]
Clich N Aan1 [5M_Dewe GerencDaruny) |
T
B ften Gove i Aan P
Crond Refpepnde Lad -

The device tree in online mode

When CODESYS is in online mode, the current symbol of the device bar indicates the
device state:

:‘The PLC is connected, the application is running, the device is running, and the data is
being exchanged.
3 The PLC is connected and in the STOP state.
% The PLC is connected and the application is running. Diagnostic information is available.
£ The device is in pre-operation mode and is not yet running. Diagnostic information is
available.
& The device did not exchange data, the bus was incorrect, and it was unable to enter
configuration or simulation mode.
%3 The device runs in demo mode for 30 minutes. After this time, the demo mode will

https://help.codesys.com/webapp/_cds_device_tree_device_editor;product=codesys;version=3.5.15.0

VE Controller Programming Manual A T

terminate and the field bus will end the data exchange.
& The device is configured, but not fully operational. There is no data exchange.
i Redundancy mode is active. The field bus master does not send any data because the
other master is active.
@ The device description could not be found in the device repository.

4. The device itself is running, but the child device is not running. The child device is not
visible because the device tree is collapsed.

The names of all connected devices and applications are highlighted in green

= [MyPlc [connected] (...)
e Fél] Pl Logic
- “’:; Application [run]

The name of the device running in analog mode is displayed in

italics:| = [M. |

Additional diagnostic information is located on the Status status tab of the device
editor.

The device editor

Double-click the device object in the device tree to open the editor. The editor includes
regular labels and specific labels, and its title contains the device name. Click
Tools = Options Device = Editorin the toolbar to open the device editor option to set the
style or content of thedevice editor.

Options X
@ crc editor "
Composer
Debugging i
Declaration Editor Show generic device configuration views
Device description download Create Cross References for IEC addresses (Clean necessary)
Device editor
Communication page Simple mode v~
FBD, LD and IL editor 5
Help Show impicit fies for appication Cassic mode
International Settings Show access rights page

Libraries
Library download
Load and Save

Use horizontal tab pages

Monitoring

PLCOpenXML

Proxy Settings

Refactoring

SFC editor

SmartCoding

Store v

~ldEsSkHENEBRBBRECERaE de

e

VE Controller Programming Manual

4.2.2 Device device

CommunicationSetting communication settings

In this tab of the Universal Device Editor, you define the connection between CODESYS
and the device in which the application should run.

Scan network: Scan

The scan network steps are as follows, click "Gateway-1"(gateway) and click "Scan

the network

network" to scan the network

Communication Settings 2 I Scan r\etwork...l Gateway - | Device -

Appl \canonsl

Backup and Restore
Files
Log
PLC Settings
PLC Shell
Users and Groups

| Access Rights

| Symbol Rights
Task Deployment
Status

Information

Select Device

Select the network path to the controler:
- dholGatevay1 |

[pC[000A]

x

Device Name: % | Scan network |

y-1

Driver:
TCR/P

IP-Address:
localhost

Port:
1217

Cancel

Click on the scanned device name, such as"PC

.. .000A"and then click OK

Select Device

Select the network path to the controller:

x

= Gateway-1
Hiz

Device Name: il
PC

Scan network

Wink

Device Address:
000A

Block driver:
UDP

Encrypted Communication:
TLS supported

Number of channels:
8

Serial number:

\94AF370F-FD19269C-CABCD73
v

6

Cancel

When the device status light is green and the status is described as Active, the PC is

connected to the device

VE Controller Programming Manual A T

. i
Gateway

E: 000A] (active)] =
1p-Address: Device Name:
localhost PC
port Device Address:
1217 000a
Target ID:
0000 0022
Target Type:
4102

Target Vendor:
35 - Smart Software Solutions GmbH

Target Version:
3.5.14.20

Gateway Gateway:
Scan network... ||Gateway ~| Device -
| Add new gateway...
Manage gateways...

Configure the local Gateway...

You can add, manage, or configure a local gateway

Device:

Device -

| Options 4 Add current device to favorites
Rename active device... Manage favorite devices...
Wink active device Fitter network scans by target ID
Send echo service... Confirmed online mode
Encrypted communication Store communication settings in project
Change communication policy...

Filter network scans by target ID: Filter network scans via device ID (unchemed).
Store communation settings in project:Save communication settings to project (check).

Applications app

On this tab of the Universal Device Editor, you can see which applications exist on the
device. Depending on the system, you can remove the application from the device or
retrieve details about the application.

3 pevice x| -]
Communication Settings Appiications Backup and Restore Fles Log PLC Settings PLC Shel Usersand Groups AccessRights SymbolRights = It * ||

Applications on the PLC
Appiication Remove

Remove Al

Detais...

Content...

Refresh List

VE Controller Programming Manual

Backup and Restore backup restore

.Ba:ckup .| Restore - Backup - |Restore -
4 Read backup information from device =
|| Create backup file and save to disc... Target In
| Save backup file to device... | bl O ('

Load backup file from disc...
& Load backup file from device...

Restore backup to device...

Read Backup Information fromDevice: Read backup information from the device The
command searches for application-specificfiles from the PLC's PlcLogicdirectory and lists

them in a table at the bottom of the tabbed page.

Create Backup File and Save to Disk: Read backup information commands from your

device to determine which files are relevant to the backup. This command compresses the
files and meta.info information files in the table set to Active into backup zip files. The file

extension is tbf ("target backup file").

Save Backup File to Device: Save backup files to disk. This command saves the backup

file to the TBF directory of the PLC.

Load Backup File from Disk: This command opens a dialog box to navigate through the

file system for saved backup files.

Load Backup File from Device: This command generates a list of all backup files found
on the PLC. Select one of these files to view its contents in a table on a tabbed page.

Restore backup to

Device: If at least one component of the backup file currently

loaded on the tabbed page is set to active, this command is available and prompts to restore

the state of the application on the device.

Files file

In this tab of the Device device editor, files can be transferred between CODESYS(PC
host) and PLC. If the communication is set up correctly and the PLC is online, CODESYS

automatically establishes a connection to the PLC during file transfer.

(@ Device x
Communication Settings Applcations Backup and Restore Fles Log

Host | Location - o Runtime | Locaton | [/

PLC Settings PLCShel Users and Groups Access Rights Symbol Rights = IEC Objects Task Deployment Status () Information

- @ X e

Name size
= C\
s [D2\

Modified Name
3 cert
4 PicLogic
[3sdat
|] copesyscontrol.cfg
[7] CoDESYSControl_3.55P15PatchL.cfg
[7] copbesysControl_3.55P15Patch2.cig
@) PicLog.csv
@) PlcLog_o.csv
@) Plclog_1.csv
) Plclog_2.csv
@) PicLog_3.csv
>> |@] PicLog_4.csv
[targetvisuextern 3.55P15PatchL.cfg
[] targetvisuextern 3.55P15Patch2.cfg
[] targetvisuextern.cfg
) AV

Size

335 bytes

1.97 KB (2,021 bytes)
1.81 KB (1,855 bytes)
1.81 KB (1,855 bytes)

0 bytes

48.85 KB (50,021 bytes)
48.86 KB (50,029 bytes)
48.86 KB (50,030 bytes)
48.89 KB (50,062 bytes)
48.84 KB (50,013 bytes)
744 bytes

744 bytes

744 bytes

373.00 KB (381,952 byt..

Modified

2020/5/4 14:24
2020/5/4 14:25
2019/12/11 16:26
2020/2/25 15:39
2020/5/4 15:40
2020/5/4 14:24
2020/5/4 15:40
2020/4/25 11:42
2020/4/28 18:50
2020/4/30 6:04
2019/8/23 2:52
2019/8/21 12:41
2019/2/15 10:59
2020/2/13 14:36

VYECTOR

VE Controller Programming Manual A T

Log log

View the PLC log. It lists the events logged on the target system. This involves:

® Fvents during system start-up and shutdown (loaded components with version
number)

Download and load the launch application

Custom entries

Logs from 1/O drivers

Logs from the data source

PLC Settings PLC settings

Basic settings for PLC widding, such as the processing of inputs and outputs and bus
cycle tasks.

Update IO while in stop:When checked, CODESYS refreshes the values of the
input and output channels even if the PLC is stopped. If the gate keeper detects a fault, the
output is set to a predefined default. When not checked, CODESYS does not refresh the
values of the input and output channels when the PLC is stopped.

Behavior of the outputs at stop:The processing of the output channel when the
controller enters a stop state

® Retain values: Keep the value, keep the current value.

® All outputs to default value: All outputs are default, and the default values are
assigned based on /O mapping.

® [Execute program: Executes the program, controls the processing of output
valuesthrough the program contained in theproject, and CODESYS executes the
program at STOP. Enter the name of the program in the field on the right.

Always updatevariables: Define whether CODESYS updates the /O variables in the bus
cycle task. This setting is valid for the I/O variables of the from the station and module only if
it is defined as Disabled in the update settings for the station and module.

® Deactivated (update only if used in a task): Deactivated (updated only when used in

tasks),CODESYS is updated only when the 1/0O variable is used in tasks.

® Activates 1 (use bus cycle task if not used in another task): Activate 1 (use bus

loop tasks if they are not used in other tasks) and codeSYS update the I/O variables
in bus loop tasks if they are not used in other tasks.

® Activate 2 (always in bus cycle task): Activate 2 (always in the bus loop task):

CODESYS updates all variables in each loop of the bus loop task, whether or not
they are used and mapped to the input or output channels.

Bus cycletask: The task of controlling bus cycles. By default, enter tasks defined by the
device description.
By default, the bus cycle settings for the parent bus device (the cycle usage settings for

VYECTOR

VE Controller Programming Manual A T

the parent bus) are applied, i.e. the device tree is scanned up to find a valid bus cycle task
definition.

Users and Groups users and groups

On this tab of the Universal Device Editor, you can edit the controller's device user
management. Depending on how the device is supported, you can define user accounts and
groups of users. Combined with the configuration on the Access tab, you can control
access to control objects and files at runtime.

EISync:Turns synchronization between editor and user management on the device on
and off, and if the button is not pressed, the editor is blank. If you press this button,
CODESYS continuously synchronizes the display in the editor with the current user
management on the connected device.

=
Import fromdisk: Used to select and import user-managed configurations from the

hard disk.

Users

‘}Add:Open the Add User dialog box to create a new user account

G Import:Open the dialog box to import the user.

Groups

‘}Add:Open the dialog box to add groups. Define a new group name, and select the

users that belong to that group from the list of defined users.

G Import:Open the dialog box to import the user.

Access Rights access

On this tab of the device editor, define device user access to the device for objects on
the controller. As with project user management, users must be a member of at least one
user group and can only grant certain access rights to user groups.

Symbol Rights symbol permissions

In this tab of the Universal Device Editor, different user groups (clients) are defined for
access to the individual symbol sets available on the controller.
Requirements: User management must be set up on the PLC. An application has been

VYECTOR

VE Controller Programming Manual A T

downloaded to a controller that defines a set of symbols for it in the CODESYS project. They
have access data to log on to the controller.

In the Symbol Set view, all symbol sets are listed under the Application node, the
definition of which is downloaded to the controller with the application. In the Permissions
view, the user groups defined in the controller's user management are listed in the list of
tables. When you select a symbol set, you'll see the user group's access to that symbol set,
¥ Grant access; =: No access rights have been granted. Access rights can be changed by
double-clicking on the symbol.

Click ™ button to save the current access configuration to an XML file. The file type is

device symbol management file (*+ .dsm).Click @ button to read such a file from the hard
drive.

Task deployment task deployment

The device editor's sub-dialog box displays the input and output tables and their
assignments to defined tasks.

This information becomes visible only after the code is generated for the application. It
is used for troubleshooting because it shows where inputs or outputs are used in multiple
tasks with different priorities.

Status status

This tab for the Universal Device Editor displays status information, such as Running or
Stopped, as well as specific diagnostic messages from individual devices, as well as
information about the internal bus system.

Information

This tab for the Universal Device Editor displays general information from the device
description file: name, vendor, category, version, order number, description, and so on.

4.2.3 Library Manager Library Manager

i Library Manager

The library manager lists all the libraries integrated in the project to create applications.
It provides information about library types, properties, and content, and can expand or
collapse a list of integration libraries.

VE Controller Programming Manual A T

| 0 Library Manager x -
|%2Add library X Delete library % Properties Details 51 Placeholders i Library repository |

Name Namespace

Effective version o
NSE 3.5.1

35.14.0

=) SM3_Basic, 4.5.1.0 (35 - Smart Software Solutions GmbH)
+ 0 Images

Inputs/Outputs Graphical Documentation

R MC_Jog
(2 Project Information I BEy)—
= (2 SM3_Basic —logForvward CommandAbortedf—
+ & DataTypes —logBackward Errorf—
—Velocity Errorid|—
+ 3 Drivelnterface [l
+ 2 Globals —Deceleration
= @ pous —lerk
* 2 Additonal
22 Adminitrative/Configuration
ER=1e]

+ £ Dagnostics
23 Help functions
= © Movement
+ 2 Direct
+ 3 Master/Siave
[E) MC_AccelerationProfie
8 mc_Ha
8 MC_Home
(8] MC_log
[8 MC_Moveabsolute

< >

v

A list of all libraries integrated in the project. If one library depends on another, the
referenced libraries are automatically integrated. The library manager contains three views:

Top view: Integrated library list

Bottom left view: Tree structure, all modules of the library are selected in the view above

Bottom right view: Documentation for the module selected in the tree

VYECTOR

VE Controller Programming Manual A T

4.3 EtherCAT busses are commonly used

4.3.1 EtherCAT Master main station

General(General).

(I EtherCAT_Master_SoftMotion x -

—
General Autoconfig Master/Slaves EtherCcAT. ™

Syt Asnnent EtherCAT NIC Setting

EtherCAT Parameters Destination Address (MAC) FF-FF-FF-FF-FF-FF Broadcast [Enable Redundancy
EtherCAT I/Q Mapping Source Address (MAC) Bl
Metwork Mame AR 4
EtherCAT IEC Objects
® Select Network by MAC (O Select Network by Name
Status
Distributed Clock Options
Information
Cycle Time A00 T s [use LRW instead of LWR/LRD

— Enable messages per task
Sync Offset 20 = % H e

S Automatic Restart Slaves
[Sync Window Monitoring

Sync Window 1 = T

< >

Autoconfig Master/Slaves:Auto-configuration mode (Autoconfig Master/Slaves option)
is active by default and is available for standard applications. If this mode is not activated, all
configuration settings for the host and the machine must be done manually, which requires
expertise. When checked, most master-from configurations are automated, depending on
the device description file and implicit calculations. Check by default.

EtherCAT NIC setting(EtherCAT NIC settings).

Destinationaddress: TheMAC address of the device in the EtherCAT network to receive
the telegram.

Broadcast:Broadcast without specifying a destination address(MAC). Check by default.

Enable redundancy:Activate the feature if the bus is constructed as a ring topology and
redundancy is to be supported. With this feature, the EtherCAT network works even when
the cable is disconnected. If this feature is activated, parameters must be defined in the
Redundant EtherCAT NIC Settings area. The default does not tick.

Sourceaddress: The MAC address or network card name (i.e. PLC) of the source address
controller (target system). Click onB rowse to select.

Network name:The name of the network, depending on which of the following
options is activated, depending on the Source address.

Browse:Scans the network for the MAC-ID or name of the target device that is currently
available.

VE Controller Programming Manual A T

Distributed Clocks(Distributed Clock).

Cycle time: The interval at whichnew data messages are assigned on the bus. If the
distributed clock function is activated in the from the station, the master cycle time specified
here is transferred to the master clock. In this way, accurate synchronization of data
exchange can be achieved, which is especially important when the process of spatial
distribution requires simultaneous action. For example, simultaneous action is an application
in which multiple axes must perform coordinated motion at the same time. In this way, a very
precise full-network time base can be achieved, with jitters of less than 1 microsecond.

Note: Distributed clock time settings are consistent by default with EtherCAT_Task time
settings, such as modifying distributed clock time or EtherCAT_Task task time.

1] EtherCAT_Master_SoftMotion X

ral | Sync Unit Assignment Log EtherCAT Parameters ¥R EtherCATI/OMapping ¥ EtherCAT IEC Objects

[] Autaconfig master/slaves EtherCAT_‘=
EtherCAT NIC Settings
Destination address(MAC) FE-FFFF-FEFEFF Broadcast [| Redundancy
Source address (MAC) |DD431~02{J34J4—06 | Browse...
Metwork name ethd
(@) Select network by MAC () Select network by name
Distributed Clock Options
Cycle time 4000 ps

%

Akf

Sync offset 20
[] Sync window monitoring

Sync window 1 us

4

£ EtherCAT Task X -

Configuration

Priority (0..31): 1 Task group | IEC-Tasks

Type
| Cydic v Interval (2.g. t2200ms)

'
- |
"

Watchdog

-

Syncoffset: Allows the time delay of the sync interrupt from the EtherCAT station to be
adjusted to the cycle time of the PLC. Typically, the PLC cycle starts 20% later than the
synchronization interruption from the station. This means that the PLC loop may delay the
cycle time by 80% without losing any messages.

Sync windowmonitoring: You can monitor synchronization from the slave.

Syncwindow: The time that the sync window monitors. If all synchronizations from the

VYECTOR

VE Controller Programming Manual A T

station are within this time window, the variable xSyncinWindow (loDrvEthercat) is set to
TRUE, otherwise it is set to FALSE.

Options(option).

Use LRW instead of LWR/LRD:Direct communication from the station to the source is
possible. Use a combination of read/write commands (LRW)instead ofseparate read(LRD)
and write commands (LWRs).

Send/Receive per task:Read and write commands, that is, the processing of input and
output messages, can be controlled by a variety of tasks.

Automatically restart slaves:If communication is interrupted, the primary station
immediately attempts to restart the slave.

Sync Unit Assignment

([EtherCAT_Master_SoftMotion x =

General Device name Sync Unit
Sync Unit Assignment
EtherCAT Parameters

EtherCAT 1/0 Mapping
EtherCAT IEC Objects

Status

Information

4 Add Delete

Sync Unit
defauft

This tab displays all the stations inserted below a particular primary station and assigns a
synchronization unit.

With EtherCAT synchronization units, multiple stations can be configured as groups and
then subdivided into smaller units. For each group, you can monitor the work counters to
improve and more accurate error detection. Once one of the stations is missing from the
synchronization unit group, the other stations in the group also appear to be missing.
Because the work counter is continuously checked, it is detected immediately in the next bus
cycle. Device diagnostics allow you to correct missing groups as quickly as possible.

Unaffected groups continue to function without any interference.

VE Controller Programming Manual A T
Parameters
(1 EtherCAT_Master_SoftMotion x -
General Parameter Type Value Default Value Unit
| % Autoconfig DWORD 1 .
Sync Unit Assignment % MasterCyckTime DWORD 4000 4000
% MasterUseLRW BOOL False FALSE
EIMGICAT Perameters # SaveAutorestart BOOL True FALSE
EtherCAT 1/0 Mapping # Keep last input data BOOL TRUE TRUE
% OnlyArpBroadcasts BOOL TRUE TRUE
EtherCAT IEC Obijects % SlaveCheckMode USINT 0 0
NetworkName STRING(100) FtiEE 4° "
Status # NetworkName 'WSTRING(100) "R 4"
SelectNetworkByName BOOL FALSE FALSE
Information ® EnableTaskMessage BOOL False FALSE
DisableTaskGeneration BOOL FALSE FALSE
FrameAtTaskStart BOOL TRUE TRUE
waitForPacket BOOL FALSE FALSE
SpitFrame BOOL FALSE FALSE
% ScanForAlasAddress BOOL TRUE TRUE
DCSyncInWindow WORD 50 50
SyncOffset SINT 20 20
syncwindowMonitoring UDINT 1] 0
+ -4 Diagnosis
NumberOfOutputSlaves DWORD 0 0
NumhernfinnitShves NWORN n n
<
‘Send frame at task cydle start
< >

This tab contains the main parameters defined in the device description file.

If automatic configuration mode is activated in the Main dialog box, parameters are
automatically set here based on the device description file and the specifications in the
network topology. Nothing should be changed in the Universal Editor because invalid
configurations can be set here.

VYECTOR

VE Controller Programming Manual A T

4.3.2 EtherCAT_ slaveslave from the station

Object: EtherCAT from the station
The basic settings for the EtherCAT from the station are configured in this option. The
device description file is preset to basic settings.

General(General).

B0 VECServo x -
General Expert Process Data Process Data Startup Parameters Online COE Onine EtherCAT Parameters = EtherCAT [/O Mapping = EtherCAT IEC Objects Status () Information
Address Additional

o
z = EtherCAT. ™
AutolInc address > - Enable expert settings
EtherCAT address 1006 = Optional
Distributed Clock
Diagnostics
Current State Operational
Startup Checking Timeouts
DC Cydic Unit Control: Assign to Local pC
Watchdog
Identification
Disabled
Configured station alias (ADO 0x0012) Value 1006
Actual address I:l
Explicit device identification (ADO 0x0134)
Data Word (2 Bytes) ADO (hex) 1640
Address(address).

Fields can only be edited if the automatic configuration mode of the EtherCAT master is
disabled.

Autolnc address:The self-added address (16 bits) is generated by the location of the
from the station in the network. Addresses are used during system startup only when the
primary station assigns the EtherCAT address to its base station. ~ When the first message
passes through the station for this purpose, the Autolnc address for each station adds 1.

EtherCAT address:The final address assigned to the master in the startup, the address is
independent of the location from the stand in the network.

Additional

Enable Expert Settings:Expert settings. Additional settings are available when starting
checks and time monitoring (see below). When checked, the Expert Process Data tab is
available in the device editor, however, expert settings are not required for standard
applications.

Optional:Optional. The from the station is defined as optional and does not generate
an error message when a device is missing from the bus system. Note: If the from the
station is defined as Optional, the from the station must have a unique identity. ~ You can
change this by changing three possible settings in the Identification section. This feature is

VYECTOR

VE Controller Programming Manual A T

only available if the master/master automatic configuration option is activated in the
EtherCAT master and the EtherCAT from the master supports the feature.

Distributed Clocks(Distributed Clock).

Select distributed clocks:A down-to-back list of all settings for distributed clocks in the
device description file.

Activate: Displayed in the synchronization unit cycle (s), the cycle time used for data
exchange is determined by the cycle time of the primary station, so that the master time can
synchronize the data exchange in the network.

The Sync0O and Syncl settings described below are dependent:

Sync0
Activate [use the synchronisation unit SyncO. The synchronisation unit describes a
Sync0 string of synchronously exchanged process data.

_ [¥] . The master cycle time (multiplied by the factor selected from the
Synchronise o . :
4 unit cveles drop-down list) is used as the slave's synchronous cycle time and the cycle
unit cyc

Y time (us) shows the currently set cycle time.

_ [¥]: User defined cycle times (in milliseconds) can be specified in the cycle time
User defined

(us) field.
Syncl
Activate [use the synchronisation unit Syncl. The synchronisation unit describes a
Syncl string of synchronously exchanged process data.

_ M . The master cycle time (multiplied by the factor selected from the
Synchronised L . -
it ovel drop-down list) is used as the slave's synchronous cycle time and the cycle
unit cycles , .
y time (us) shows the currently set cycle time.

[¥]: User defined cycle times (in milliseconds) can be specified in the cycle time
(us) field.

User defined

Process Data GEA2EEE)

This EtherCAT configurator option displays the process data for the slave inputs and
outputs, which are derived from the device description

VE Controller Programming Manual

| /8 EtherCAT_Master_SoftMotion

General
I Process Data

Startup Parameters
| EtherCAT Parameters
| ethercar 1/0 Mapping
[Er— Oblects
VSCatus

Information

file.f

1 VECServo x

Select the Outputs

¥ 16#1701 258th receive PDO
Controlword
Target position
Touch probe function
Physical outputs
16#1702 259th receive PDO

Controlword

Max prc

ity
16#1703 260th receive PDO

UINT 16#6040:0
DINT 16#607A:
UINT 16#60B8
UDINT 16#60FE:0

UINT 16
DINT
DINT
N
SINT
UINT
UDINT

UINT 16
DINT
DINT
SINT
UINT
UINT
UINT

UINT 16
DINT
DINT

Digital inputs
¥l 16#1B01 258th transmit

Error code
Statusword
Position actual value
Torque actual value
Following error actual value
Touch probe status
Touch probe post pos value
Touch probe pos2 pos value
Digital inputs

116#1B02 259th transmit

Error code

Digital inputs
[16#1B03 260th transmit

Error code

Select the Inputs
Name Type Index Name Type Index
16#1600 1st receive PDO Ma 116#1A00 1st transmit PD
d UINT 16#6040:0 st rd UINT
DINT DINT 1
Tol e function UINT UINT

UINT 16#603F:
UINT 16#6041:
DINT 16#6064
INT 16#6077:
DINT 16#60F4:
UINT 16#60B9:
DINT 16#60BA:
DINT 16#60BC:
UDINT 16#60FD

UINT
UINT
DINT 1
INT

SINT
UINT
DINT
DINT 1

Selectoutputs: The table shows the output name, type, and index address from the

station. If the device output here (for writing) is activated, these outputs can be assigned to

the list of items in the EtherCAT I/O mapping dialog box.

Selectinputs: The table shows the inbound name,

type,and index address from the

station. If the device inputs here (for reading) are activated, these inputs can be assigned to

the list of items in the EtherCAT I/O mapping dialog box.

Expert Process Data (& it f2#1E)

To set this option, you need to check the box set by the expert from the station

first

provides a different and more detailed view of the process data.

Enable expert settings

. When checked, a new tab appears, as shown below, which

VE Controller Programming Manual A T

General Expert Process Data Process Data Startup Parameters EtherCAT Parameters = EtherCAT /O Mapping = EtherCAT IEC Objects Status

Sync Manager 4= Add [#Edit ¥ Delete
SM Size Type PDO List
9 0 Mailbox Qut Index Size MName Fl.. SM
1 0 Mailbox In 16#1600 8.0 1st receive PDO Mapping 2
2 8 Qutputs 16#1701 12.0 258th receive PDO Mapping F
3 28 Inputs 16#1702 19.0 255th receive PDO Mapping ~ F
16#1703 17.0 260th receive PDO Mapping F
16#1704 23.0 261th receive PDO Mapping F
16#1705 19.0 262th receive PDO Mapping F
16#1A00 22.0 1st transmit PDO Mapping
16#1B01 28.0 258th transmit PDO Mapping F 3
PDO Assignment (16#1C12): 4k Insert [Edit ¥ Delete Move Up & Move Down
vl 1641600 PDO Content (16#1600):

EATUAL Index Size O.. Name Type
|16#6040:O 2.0 0.0 Controlword UINT
16#607A:0 4.0 2.0 Target position DINT
16#60B8:0 2.0 6.0 Touch probe function UINT

8.0

Download
PDO Assignment PDO configuration

SyncManager: A list of sync managers with data size and PDO type

PDO Assignment: A list of PDOs assigned to the Selected Sync Manager, and if
check box isselected, activate the PDO and create an I/O channel.

PDO List: The list of PDOs assigned to the Selected Sync Manager can add
newPDOs or edit and delete existing PDOs by executing different commands in the
command bar or shortcut menu (add, delete, edit).

PDOContent: Displays the selected PDOs content in the PDO list. You can add new
entries or edit and delete existing ones by executing different commands in the command
bar or shortcut menu (Insert Add, Delete, Edit Edit Edit). You can change the PDO order by
clicking Move Up and Move Down To move.

Attention:

When the project requires a custom PDO, the Wykoda Bus Servo offers two sets of
PDOs that can be customized by the user: 16 s 1600 and s16 s1A00. How to add: Select
16-1600 or 16-1A00 on PDO List, then click Insert To add, pop up the selection dialog box,
which contains all the objects of the servo, the user can choose according to the needs of the
project, and then click OK to insert, customize the addition of PDO.

VE Controller Programming Manual

Select Item from Object Directory

Index:Subindex Name Flags Type Default ~
+- 16#2007:16#00 Control Loop Parameter
+- 16#200C:16#00 VDIVDO Parameter
+- 16#200E:16#00 Tension Control Parameter
16#0040:16#00 Control Word RW UINT 16#0000
16#6060:16#00 Modes of operation RW SINT
16#0065:16#00 Following error window RW UDINT 16#00000030
16#0067:16#00 Position window RW UDINT 16#00000000
16#6068:16#00 Position window time RW UINT 16#0010
16#606D:16#00 Velocity window RW INT
16#606E:16#00 Velocity window time RW UINT
16#606F:16#00 VelocityThreshold RW UINT
16#6071:16#00 Target torque RW INT
16#6072:16#00 Max Torque RW INT
16#607A:16#00 Target position RW DINT
16#607C:16#00 Home offset RW DINT
+- 16#607D:16#00 SOFT_POSTION_LIMIT o
Sraree SR e R m o arsnn
Name Modes of operation
Index: 16# 6060 = Bitlength 8 z
SubIndex: 16% 0 = 0 E el
Datatype |SINT

Download:

PDO
Assignment

[¥]: Generate specific CoE commands for initialising the 0x1cxx object

and write them to the slave.

PDO
Configuration

[¥]: Generate a CoE command for 0x16xx or Ox1axx to load the PDO
mapping to the slave. As a rule, the default value is taken from the ESI
file and the device must support this function.

Loading PDO
information from
a device

Read the current PDO configuration from the slave and enter the
configuration. Then delete the list in the top and bottom right corner and
fill it with the read data. This is particularly effective when the ESI file is
incomplete and the configuration is only available on the slave.

Startup Parameters (IB&1&#])

Define in this option for the current slave the transfer of the specified parameters to the
SDO (Service Data Object) of the device at system start-up or as described in the EDS file
referenced in the XML file.

Requirements:
EtherCAT

Device

supports

CAN

over

EtherCAT

or

Servodrive

over

VE Controller Programming Manual

VECTOR

(@ EtherCAT Master_SoftMotion
General

Process Data

Startup Parameters

EtherCAT Parameters

EtherCAT 1/O Mapping

EtherCAT IEC Objects

Status

Information

(@ vECservo x -

& Add [Edit X Delete_ MoveUp & Move Down
Line Index:Subindex Name Value Bitlength Abortiferror Jump to lineiferr... Nextline Comment
1 16#6060:16#00 Command 0 8 8 O O 0
Select Item from Object Directory
Index:Subindex Name Flags Type Default (ol
16#10F1:16#00 Error Settings
+ 16#1600:16#00 The fist RPDO Mapping
#16#1A00:16#00 The first TPDO Mapping
+ 16#1C12:16#00 RPDO ASSIGNS
+ 16#1C13:16400 TPDO ASSIGNs
+ 16#1C32:16#00 SM OUtpUL parameter
+ 16#1C33:16500 SM input parameter
% 16#2000:16#00 Motor and Encorder Parameter
+ 16#2001:16#00 Driver Hardware Parameter
+ 16#2002:16#00 Basic Control Parameter
- 16#2003:16#00 Postion Mode control paramter
+ 16#2004:16#00 Speed Mode control paramter
+ 16#2005:16#00 Torque Mode Parameter
% 16#2006:16#00 DI_DO_ALAO_Para
+ 16#2007:16#00 Control Loop Parameter
+ 16#2008:16#00 Communication Parameter
v
Name
Index: 16# 0 Bitlength: 8
SubIndex: 16# 0 Value: 0 o
[Byte Array

Note: Some of the modules inserted under the slave have their own start-up
parameters. These parameters are then displayed in this list, but cannot be modified. These

parameters can be changed in the editor of the relevant module.

The order in the SDO table (from top to bottom) specifies the order in which the SDOs are

transferred to the module.

line

Line number

Index: Subindex

Index number and sub-index number of SDO

Bit Length

Bit length of SDO

Abort on error

[I: In the event of an error condition, the transmission is interrupted.

Jump to Line on

M. 10 prevent errors, restore the SDO pass on the specified line.

Error
Next Line [¥]: Resume the transfer using SDO in the next line.
Comment Input fields for comments
Move Up Move the selected row up one line
Move Down Move the selected row down one line
Opens a dialog box to select an entry from the object catalogue where
Add the SDO parameters can be changed before the SDO is added to the
configuration. By specifying a new index/sub-index entry, new objects
can be added to the SDO that are not already described in the EDS file.
Delete Removes the selected entry.
Opens a dialog box to select an entry from the object catalogue for the
Change

selected SDOs parameter in the table.

VE Controller Programming Manual

VECTOR

EtherCAT Parameters (EtherCAT $:#%)

| [EtherCAT_Master_SoftMotion @ vEcservo x

General

Process Data

Startup Parameters
EtherCAT Parameters
EtherCAT I/O Mapping
EtherCAT IEC Objects
Status

Information

<

Parameter Type
+ [General

+ [SyncManager

[FMMUs

- RxPDO

+-3 TxPDO

+ [Distributed_Clocks

+ [d spos

Value

Default Value Unit Description

>

This option contains the frombound parameters defined in the device description file.

If the automatic configuration mode of the primary station is activated, these

parameters are automatically set here according to the specifications of the device

description file and the network topology.

be modified.

EtherCAT I/0 Mapping(EtherCAT Input and Output Map).

Standard applications generally do not need to

The inputs and outputs from the station selected in the Process Data option are listed

here, which shows the available channels and allows the controller's input, output, and
memory addresses to be mapped to the variables of the application or the entire function
block. In this way, you can create so-called "I/O mappings.”

= [RxPDO 1631400

RxPDO 16#1401
RxPDO 16#1402
RoPDO 1681403
TxPDO 1641800
SDORead 1645500

VYR

+

% CAM_Local_Device_Digital_Cutputse_1
4% CAN_Local_Device_Digital_Outputsz_2
4% CAM_Local_Device_Digital_Cutputs? 3
A% CAM_Local_Device_Digikal_Cukputsz_ 4

"% CAM_Local _Device_ParamRangel_1
" CAM_Local Device_ParamRangel 2
" CaM_Local_Device_ParamRangel 3
K:? CAM_Local_Device_ParamPangel_4

@ Digital _Cutputsz_1 IW0
'@ Digital _Cutputsz_2 a1
'@ Digital_Cutputsz 3 alW2
"@ Digital_Cutputsz_4 alW3

@ ParamR.angel 1 Bl
) ParamRangel_2 B2
T ParamRangel_3 B3
Y ParamRangel_4 B4

INT
INT
INT
INT

LISINT
LISINT
LISINT
LISINT

Find @ Filter |5how all @-I- Add FB forI0 channel... *=Goto instance®
Vo
o
Wariable u] =

@ing Channel: Addre@ Type Uni Description@

16#3000sub001
16#3000sub002
16#3000sub003
16#3000sub004

16#5800sub001
16#5800s5ub002
16#5800sub003
16#5800sub004

m

‘g = Create new variable

Bus Cyde Options

@ Reset Mapping | Alwaysupdate variabl@Use parent device setting
10

" = Mapto existing variable

Bus Cycle Task Use parent bus cyde setting

VYECTOR

VE Controller Programming Manual A T

(1) Find

The mapping table searches for strings in the input fields.

Drop-down list for filtering | / O mappings listed in the mapping table.
Show all

Show outputs only

Show inputs only

(2) Finter _
Show only unmapped variables
Show only mapped variables
Show only mapped to existing variables
Show only mapped to new variables
(11) Add|Depending on the device, a channel entry is available if it is selected in the
FB for I/O | mapping table. Open the "Select Function Block" dialog to select the function
Mapping |block that should be linked directly to the channel.
(12)go to| Available if the entry is selected in the mapping table. Jump to the
Instance |corresponding entry in the <Device Name> |IEC Objects tab.
Depending on the device, the inputs and outputs of the device are displayed as
nodes with indented associated channels below the nodes or, depending on the
device, only implicitly created instances of the device are displayed. The
symbols indicate the type of channel.
L input
¥ output
Variabl Double-clicking on a cell will open an input field.
ariable
Option 1: The variable already exists; specify the full path: <application name>.
<module name>. <variable name>; e.g.: appl.plc_prg.ivar; by typing help Do
Option 2: The variable does not yet exist; enter a simple name; it is
automatically created internally as a global variable.
Depending on the device, the input or output can be linked directly to a
function block. In this case, the activation of the * 9 Add FB" button for the | /
O channel.
Map type:
“#. The variable already exists
(3)
Mapping #: The new variable
FE, .
#: Map to a feature block instance
(4) .
The symbolic name of the channel.
channel

(5)

The channel address, e.g. %IWO0.

VE Controller Programming Manual

VYECTOR

BME M

Address

Address strikethrough: indicates that you should not assign any other variables
to this address. Reason: Although the variables specified here (as already
existing variables) are managed in different storage locations, ambiguity may

arise during the writing of values, especially for output.'m' . Indicates that this

address has been edited and repaired. CODESYS does not automatically adjust
this address if the arrangement of device objects in the device tree is changed.

(6) Type

The data type of the channel, e.g. BOOL.

Structures or bit fields defined in the device description are only displayed if
they belong to the IEC standard and are identified in the device description as
an IEC data type. Otherwise, the table cells remain empty.

When mapping structure variables, the editor prevents the simultaneous entry
of structure variables (e.g.) QB0 and individual structure elements (e.g. %QBO0.1
and QBO0.2). Therefore, if a master entry with a subtree of bit channel entries
exists in the mapping table, the following condition applies: a variable can be
entered in the row of the master entry or in the row of the child element (bit
channel) , but not both.

Default
Value

Default values for the parameters applicable to the channels: only displayed if
the option "Set all output to defalt” is activated in "PLC Setting" for the output
behaviour at stop.

(7) Unit

The unit of the parameter value, e.g. ms milliseconds.

(8)

Description

A brief description of the parameters.

Current
Value

The actual value of the parameter applied to the channel; displayed in online
mode only.

(9) Reset
Mapping

CODESYS resets the mapping settings to the default values defined in the
device description file.

(10)
Update
Variables

Definition of the device object regarding the update of the | / O variable. The
default value is defined in the device description.

Use parent device setting Use parent device setting: Updates according to the
settings of the parent device.

Enable 1 (use it if not in any task): CODESYS updates the | / O variables in the
bus cycle tasks if they are not used in any other task.

Enable 2 (always in the bus cycle task): CODESYS updates all variables in each
cycle of the bus cycle task, regardless of whether they are used and whether
they are mapped to an input or output channel.

There are two ways to associate I/O mappings to a program.

(1) Selecting variables in the

mapping

VE Controller Programming Manual BOM oA MK
? 1] ModbusTCP_Slave x v ToolBox
q!ﬂ PCI-Bus [EC Objects IntemalParameter Status) Information I
:Find / Filter Show all * |
Variable Mapgling Channel Address Type Unit Desm'pf
=% input %IW2a ARRAY [0..256]) OF WORD
+- % input[0] %IW28 WORD
] input(1] %IW29 WORD 1l
& input{2] Input Assistant
-4 input{3]
+ input[4] TextSearch Categories
i o] -Vanaues l a Name Type Ad
A + : input{s] ¥ & MCV ~ MoveVebaty
%
- @ MCV
-4 input{8] i i
i rut] ® MC_V.
+ 4y "Wt[m] 9 MC_V
i
s - & MCV
+ input[11]
@ MC_V...
& P input[12] # Po I
W _. DOUL
+ % input[13] . vel !_x e
% i T [
i eset Mapy Alwj + {) BFlog
[. "
|"@ =Create new variable "% = Mapto existing vari ‘| ﬂlotonflg_G\ubals -
‘ + {} IoDrvEtheraatD, Library
Bus Cyde Options + {} sM3_Basic

(2) Address assignment in the program

PROGRAM PLC_ PRG
VAR

wl00 AT %IWS: REAL;
END VAR

Online (#%:)

Once you have logged in to the device online, the Online tab appears. With EtherCAT,
you can use the slave status information and the functions for transferring files to the
slave.

¥ VECServo x i)
General Expert Process Data Process Data Startup Parameters Onine CoE Online EtherCAT Parameters = EtherCAT [/O Mapping = EtherCAT IEC Objects Status) Information
State Machine -

Init Bootstrap -
Curtent state
Pre-Op Safe-Op -
Requested State Operational
op

File access over EtherCAT

Download... Upload...

E2PROM Access -

Write E2PROM... Read E2PROM... Write E2PROM XML

VYECTOR

VE Controller Programming Manual A T

State Machine: JR7S#1E

Init Initialisation for debugging purposes
The slave switches to Bootstrap mode.
Boot Strap _ L . : .
Required if firmware files are to be transferred with the slave device
Pre-Op Pre-operation mode for commissioning purposes
Safe-Op Safe boot mode for debugging purposes
Op for debugging purposes

Current status

The current state

Requested status

Request Status

File access over EtherCAT: File access via EtherCAT

Download

Downloading the firmware file

A dialog box appears for storing the firmware file. In this dialog box,
a string and a password must be entered in order to perform the file
transfer. This information will be taken from the data sheet of the
slave station.

Upload

Uploading a firmware file

A dialog box appears for opening the firmware file. In this dialog
box, a string and a password must be entered in order to perform
the file transfer. This information will be taken from the data sheet of

the slave station.

E2PROM

Write E2PROM

Write the slave's configuration to the E2PROM.

Read E2PROM

Reads the configuration of the slave from the E2PROM. Uploading
the firmware file

Write E2PROM XML

Writes the slave configuration directly from the XML file to the
device.

Only executed if configuration data (<ConfigData> section) is
present in the XML file.

CoE Online (CoE #E%)

To set this option, you need the slave to support CoE Online mode, first check the

checkbox for expert settings in the slave

Enable expert settings Ang after logging into

the device online, a new tab CoE Online will appear, as shown below, this option displays the

object index of the ESI or slave.

VE Controller Programming Manual

B0 VECServo x

General Expert Process Data Process Data Startup Parameters Online CoE Online EtherCAT Parameters = EtherCAT /O Mapping = EtherCAT IEC Objects Status () Information

T Read Objects

[Auto update

Index:Subindex Name Flags Type Value
16#6065:16#00 Following error window RW UDINT 0
16#6067:16#00 Position window RW UDINT 10
16#6068:16#00 Position window time RW UINT 10
16#606B:16#00 Velocity_demand_value RO DINT 0
16#606C:16#00 Velocity actual value RO DINT 0
16#606D:16#00 Velocity window RW INT 100
16#606E:16#00 Velocity window time RW UINT 10
16#606F:16#00 VelocityThreshold RW UINT 50
16#6071:16#00 Target torque RW INT 0
16#6072:16#00 Max Torque RW INT 2800
16#6074:16%#00 Torque demand inner RO INT 0
16#6075:16#00 Motorratecurrent RO UDINT 2800
16#6077:16#00 Torque actual value RO INT 0
16#6078:16#00 current actual value RO INT 0
16#607A:16#00 Target position RW DINT 11
16#607C:16#00 Home offset RW DINT 0

+ 16#607D:16#00 SOFT_POSTION_LIMIT
16#607E:16#00 Cmd_Polarity RW SINT 0
16#607F:16#00 Max profie velocity RW UDINT 500000
16#6080:16#00 Motormaxvelocity RW UDINT 50000
16#6081:16#00 Profile velocity RW UDINT 400000
16#6083:16#00 Profie acceleration RW UDINT 1000000
16#6084:16#00 Profie deceleration RW UDINT 1000000
16#6085:16#00 Quick stop deceleration RW UDINT 0

Read Objects The object index is read once

Auto Update Objects are read periodically and updated automatically

_ _ This dialog box displays the contents of the object index in the
Offline from ESI File _ o
device description

SDOInfo, which displays the object index in the device, must be
enabled in the ESI file

Online from Device

i RO:value is write-protected
ags
9 RW:value can be changed

Type Data type of the parameter

Value Values can be edited by double clicking into the text area

VECTOR

VE Controller Programming Manual A T
4.3.3 SM_Drive_GenericDSP402 Shaft configurations
»

General (1EH)

5¢ SM_Drive_GenericDSP402 x -

General Axis type and imits Velocity ramp type 2

[Virtual mode Softwere Wit @ Trapezoid
Scaling/Mapping o ot [Activated Negative [u]: s
lodulo

Commissioning — Positive [u]: © Quadratic

SM_Drive_ETC_GenericDSP402: Software error reaction © Quadratic (smooth)

BRI Deceleration [u/s2]: Cl Tdentfication

I?dr;ﬁ;g‘g/ejm’&nenmswm‘ i Max. distance [u]: I:l D: I:

SM_Drive_ETC_GenericDSP402: IEC
Objects

Status

Information

Dynamic imits

Velocity [u/s]:

Acceleration [u/s2]:

Deceleration [u/s2]:

Jerk [ufss]:

3000

| [1000 |

[1000 |

[10000

Axis type and limits(axis type and limit).

Virtualmode: Virtual mode.

Position lag supervision
deactivated i

Lag limit [u]: 1.0

The drive is replaced by a simulation similar to a virtual

drive unit. If there are coupled drives, there is no effect on the field bus devices, which

operate as usual without sending messages to or receiving messages from the physical

device.

Note: You can also SMC3_ReinitDrive the virtual mode of the drive with IEC code by using

the function block.
Modulo:Module.

such as a belt drive.

The drive rotates indefinitely without limiting the range of operation,

The value of the module: the value of a period (mold period). The value is saved in the
fPositionPeriod AXIS_REF_SM3 the function block and the function block.
Note: If you select the Modelo drive type, the product must be an integer.
fPositionPeriod * dwRatioTechUnitsDenom
Finite: Limited. The drive has a fixed working area, such as a linear drive.
ActivatedThe software limit switch is activated [¥]: Position values are limited by
lower negative values and upper-limit positive values.
Negative Reverse: The input field for the negative limit value
Positive Positive: The input field for the positive limit value

Software error reaction(software error response).

Deceleration (u/s2): Thedeceleration value when the limit switch is reached.

Max Distance:Optional,the drive must reach a stop state within this distance after an
error hasoccurred.

Dynamic limits(dynamic limits).
Velocity (u/s):The limit of speed
Acceleration (u/s2):The limit of acceleration

VYECTOR

VE Controller Programming Manual A T

Deceleration (u/s2) : The limitof thedeceleration
Jerk (u/s3):The limit value of the acceleration change rate

Velocity ramp type(speed ramp type).
Trapezoid: Keystone velocity curve (with constant acceleration in each segment).
Sin2: A velocity curve defined by the sin2 function (with a constant acceleration curve).
Quadratic: A trapezoidal acceleration curve with acceleration limits
Quadratic (smooth):Similar to Quadratic, but the resulting beating curve does not jump

Identification(ID card).
ID: Integer identifier. Each drive should be unique. For example, this identifier is used in
the PLC log to identify the drive in the event of an error.

Lag supervision(lagging regulation).

Deactivated:Deactivated: Deactivated. No response or traction error monitoring is

disabled.

DisableDrive: Disable the drive. The bRegulatorOn bit is forced to be set to FALSE
(MC_Power input), which first forces the drive to slow down and then deactivation the drive
(depending on the drive implementation).

Do quickstop:Stop quickly. The bDriveStart bit is forced to be set to FALSE (compared
to MC_Power input), which forces the drive to perform a quick stop.

Stayenabled: Remain enabled. The drive remains open, but all running actions suddenly

stop.

Laglimit: Lag limit. Drag the error monitoring in the controller.

Scaling/Mapping (4&H/851)

Motor Type

Rotary: Rotating. The settings in the scale apply to rotating motors.

Linear:Linear. The settings in the scale are suitable for linear motors. (simplified
configuration without gears and motor turns).

Scaling

Invertdirection: Reverse the direction of the motor. The motor obtains a specified value
with the opposite symbol.

increments and motor turns: pulseincrements and number of motor turns.

Motor turns and gear output turns: number ofmotor turns and number of given gear
output laps.

gear outputs and It; units in application: numberof gear output turns and applied
units.

VECTOR

VE Controller Programming Manual BOM oA MK
Cases:
Scaling
[] Invert direction
increments <==> motor turns
motor turns <== gear output turns
gear output turns <=> units in application

As shown in the figure, the pulse increment corresponding to the motor turn 1 turn is
10000, the decelerationratio is 2:1,and the gear output is 1 revolution correspondingto the
terminal traveling 60 units.

Mapping

Automatic Mapping: Automatic mapping. Checked by default, the IEC parameters that
affect the drive are automatically mapped to the appropriate inputs and outputs of the
device. After you deactivate this option, you can edit the map manually.

Commissioning (if@iz)

This tab is used for testing purposes when commissioning physical drives. It is only

available when the "online configuration mode x - is activated. In this mode, the

development system is connected to the device. However, the application does not have to
be downloaded.

Online
[variable setvalle actualvae Status: |SMC7Ax1575T ATE.power_off |
[Position ful ___| 0.00 0.00 . .
Velociv okl 0.00 0.00 Communication: |operan0na\ (100) |
Acceleration [u/s? 0.00 0.00 Etiors
Torgue [Nm] 0.00 0.00

Axis Error:

|0 [16#00000000] |

. ‘ FB Error:

[SMC_ERROR.SMC_NO_ERROR |

uiDrivelnterfaceError:
0 |

strDrivelnterfaceError:
Power Error reset Homing
—_
Start
Inch Read&Write
Distance: parameter: [|
Velocity: Value:
Acceleation: Preparedvaiie: [| [7
Deceleration:
Jerk:]

VYECTOR

VE Controller Programming Manual A T

Online

Requirement: PLC in online mode

Variable table List of drive variables with variable name, set value and current value

Status Shows the current status of the SoftMotion drive

Communication |[Display of the current communication status

Axis error:
FB error:

Error -
uiDrivelnterfaceError:

strDrivelnterfaceError:

Operating elements

Power: Driver enable (compare MC_Power)

Error reset: Reset the drive after an error (compare MC_Reset)

Starthoming: Use the settings parameters in the drive to perform origin regression
(MC_Home).

Joggingmode: The driver can move forward and back according to the specified values
of Distance, Velocity, Speed, Deceleration, and Jerk (Compare MC_Inch).

ReadWrite:For the specified drive parameters, the current value is read and displayed
from the PLC. In Prepare Values, you can specify a new value and write parameters to the
drive MC_ReadParameteraMC_WriteParameter button (to the ratio ofMC_WriteParameter,
the ratio).

VE Controller Programming Manual A T

Parameters (Z#1)

A SM_Drive_GenericDSP402 x

General Parameter Type Value Default Value Unit
+ - aIS_REF: Standard

4 AxIS_REF: Scalings

L1 L ogical device settings

L1 standard driver settings

4 Aas REF: DSP402 configuration

Scaling/Mapping

B

5

Commissioning

&

&

SM_Drive_ETC_GenericDSP402:

i Parameters | # 1 possible cyclic driver in-foutputs
SM_Drive_ETC_GenericDSP402: I/O % Address_8010
Mappin =
| Mapp .Q # Type_8010
. gl\t;lialztl:‘lsveflz—l'CfGenerLCDSPLlOl IEC # AddressPointer_8010
Address_8020
Status # Type_8020

AddressPointer_8020
Address_8030

Type_8030

AddressPointer_8030
Address_8040

Type_8040

% AddressPointer_8040
% Address 8050

Type_8050

AddressPointer_8050
@ Address_8060

% Type_8060

AddressPointer_8060
Address_8070

Type_8070

AddressPointer_8070

Information

I/0 Mapping (1/0 BRET)

Bus Cycle Task:The definition of the device object that updates the bus. The default
value is defined in the device description:

Use Parent bus cycle setting (using parent device settings): Update based on the
settings of the parent device.

EtherCAT Task: Update the device object of the bus using EtherCAT Task.
Main Task: Update the device object of the bus with Main Task.

IEC Objects (IEC XI5R)

In this tab of the Universal Device Editor, Objects are listed that allow access to devices
from IEC applications. In online mode, it is used as a monitoring view.

VE Controller Programming Manual A T

Status (A7)

In online mode, the axis status is displayed.

Information ({§8&)

Displays axis information.

4.3.4 EtherCAT bus cycle behavior

Typically, for each IEC task, the input data used is read at the beginning of each task (1)
and the output data is transferred to the I/O drive (3) at the end of the task. The
implementation in the I/O driver is decisive for the further transfer of I/O data.

The PLC's bus cycle task can be defined for all field busses in the PLC settings. However,
for some field busses, you can change this setting independently of the global settings. A
task with the shortest cycle time is used as a bus loop task (not specified in the PLC settings).
In this task, messages are usually transmitted on the bus.

Other tasks replicate only I/0O data in the internal buffer, which is exchanged only with
the physical hardware in the bus loop task.

Copy data from fo bus @

Bus cycle task®

Priority 1. 1ms

Priority 5

Priority 10,
Interrupted by
task 5

1) Read input (2) IEC tasks from the input cache
3) Write output to the output cache (4) bus cycle
5) Enter the cache (6) output cache

7) Copy data to/from bus (9) bus cycle tasks, priority 1, 1 ms
10) Bus cycle task, priority 5
11) Bus cycle task, priority 10, interrupted by task 5

~ o~ o~ o~~~

VYECTOR

VE Controller Programming Manual A T

4.3.5 Ether CAT specific variables

If the primary device is plugged into the device tree, EtherCAT_Master task is inserted
into the task configuration that is currently applied. As usual, POUcalls can be added to
the task configuration. EtherCAT specific Boolean variables can be set in the POU to affect
the EtherCAT configuration behavior in the context of the application:

1) Optional devices are supported

The loss of the EtherCAT device in the application causes an error in starting the bus to
prevent the stack from loading, and the variable is set at the beginning of the first PLC cycle

<instance name of EtherCAT master>. StartConfigWithLessDevice := TRUE;

the lost device is treated as an optional device that does not affect the normal stack startup
process.

2) Suppress additional message scheduling

To refresh the output as quickly aspossible, the EtherCAT master sends its own
messages to each individual task. However, if the satellite driver is synchronized with the
real-time output data, the bus loop task should be the only one that allows the output to be
set. Additional messages disrupt synchronization. To suppress additional task messages

<instance name of EtherCAT master>. EnableTaskOutputMessage := FALSE;

Must be set once in the first PLC cycle.

4.3.6 EtherCAT Library

The primary instance

loDrvEtherCAT_0O

loDrvEtherCAT
—xRestart xConfigFinished—
—xStopBus xDistributedClockinSync—
*Error—
xSynclnWindow—

Create an instance of type loDrvEtherCAT for each EtherCAT master plugged into the
device tree. The name of the instance corresponds to the name of the primary server in
the device tree. The availability of the instance appears in the IEC Objects tab of the
device editor.

Input:

Name Data type Description

Restart the main server along the rise and reload all configuration
xRestart BOOL

parameters.

VYECTOR

VE Controller Programming Manual A T

xStopBus BOOL will be sent. Afterwards, most devices need to be restarted as they

TRUE: Communication is stopped. No further EtherCAT telegrams

have switched to the error state.

Output

Name

Data type Description

xConfigFinished

TRUE: Transfer of all configuration parameters is completed

BOOL) o .
without errors, communication is running on the bus.

xDistributed
ClockInSync

If a distributed clock is used, the PLC is synchronised with the
first EtherCAT slave that activates the DC option.

As soon as the synchronisation has been successfully
completed, the output changes to TRUE. this signal can then
BOOL be used, for example, to activate the SoftMotion function
block only when the PLC is in synchronisation mode,
otherwise a position jump may occur.

When starting the PLC the output is FALSE and changes to
TRUE after a few seconds. if the synchronisation is lost due to

some error the output is reset to FALSE.

xError

The output becomes TRUE if
® An error occurred during the start of the EtherCAT
stack.
e Communication with the from the station is
interrupted because no other messages can be
received (for example, due to a brokencable).

BOOL

xSyncinWindow

If the Sync Window Monitoring option is activated and all
synchronization from the station is within Sync Window, the
BOOL |output becomes TRUE. If the Sync Window Monitoring
option is activated and all synchronization from the station is
within Sync Window, the output becomes TRUE.

For example.

® Start the restart of the primary server with the xRestart variable:
EtherCAT_Master();
EtherCAT_Master.xRestart := xRestart;

® Stop communication on the bus via the xStop variable:
EtherCAT_Master.xStopBus := xStop;

® (Call the main station for information about the success of downloading

configuration parameters:
EtherCAT_Master();
xFinish := EtherCAT_Master.xConfigFinished;

Properties of the main site:

AutoSetOperational

TRUE: If communication is interrupted, the master will try to
restart the slave immediately

VYECTOR

VE Controller Programming Manual A T

Default: FALSE

ConfigRead

TRUE: The reading configuration is complete and the user can
edit the settings, for example in order to add a custom SDO.

DCInSyncWindow

The time window for XDistributedClockinSync. The jitter must be
within the window in order for the XDistributedClockinSync
output signal to remain TRUE at all times.

Default:50 ms (200 microseconds when using CODESYS
SoftMotion)

DCClockReferenceTime

Use the "distributed clock” to return the current time of the first
slave. This time is the reference time for all other slaves and the
PLC itself.

DClintegralDivider

Integration Factor for Distributed Clock Control Loops
Default:20

DCPropFactor

Scale factor for distributed clock control loops
Default:25

DCSyncToMaster

Distributed clock synchronisation on the master. If set to TRUE, all
slaves are synchronised to the master rather than to the first slave
of the PLC.

Default:FALSE

DCSyncToMasterWith
SysTime

The distributed clock on the master is synchronised.

TRUE:AIll slaves are synchronized with the system time of the
master and the time read from SysTimeRtcHighResGet is used to
distribute the system time of the PLC to all EtherCAT slaves.
Default:FALSE

EnableTaskOutput
Message

EtherCAT signals are normally scheduled by the bus cycle task
and additionally from each task that uses the slave outputs. In the
bus cycle tasks, all outputs are written and all inputs are read. In
other tasks, the outputs are transferred again so that they can be
written to the corresponding slave immediately. In this way an
attempt is made to keep the stagnation time until the shortest
possible write. This together with distributed clocks can cause
problems in some devices, for example if the servo controller is
not synchronised with the Sync interrupt but uses the write time
for internal synchronisation. In this case, multiple write accesses
may occur in one cycle. If EnableTaskOutputMessage is set to
FALSE, only bus cycle tasks are used. Further tasks will not result
in further messages.

Default: TRUE

FirstSlave

Pointer to the first slave below the master

FrameAtTaskStart

TRUE: The frame of the slave is transmitted at the beginning of
the task (before the IEC task), which ensures the minimum jitter.
This command is used to realize the non-impact movement of

VYECTOR

VE Controller Programming Manual A T

the servo drive. If this flag is set to TRUE, the frame of the output
buffer will be written in the next cycle (see the chart below).
Default: FALSE (TRUE when using CODESYS SoftMotion)

Pointer to the list of connected master stations -> previous
Lastlnstance .
master station.

This property returns a string that contains the last message from
the EtherCAT stack. If the startup completes successfully, return
LastMessage to All slavesdone. Use the same string as the diagnostic
message displayed in the EtherCAT main device editor window in
online mode.

Pointer to the list of connected master stations -> next master
NextInstance ati
station.

This attribute returns the number of slaves actually connected.
NumberActiveSlaves StartConfigWithLessDevice :=TRUE: The number of the physical
device detected.

_ Turning on the network adapter timed out. The default value is 4
OpenTimeout
seconds.

Used to divide the frame into two parts. The first part contains
process data, and the second part contains asynchronous
SplitFrame mailbox communication and status flags. Due to the separation,
the process data is received earlier, so the jitter of the PLC has
less impact on the slave device.

Used to affect the startup behavior of the stack. For example, if

five servo controllers are configured in the project but only three
are connected, the EtherCAT stack will usually stop. However, if in
the first cycle, StartConfigWithLessDevice := TRUE, then the stack

StartConfigWithLess N ,
will still try to start. In this way, for example, a general

Device , , .
configuration of 10 servo controllers can be implemented, but

the number of actual connections can be kept variable. Please
note that the vendor ID and product ID of each slave must be

checked anyway. If a difference is found, the stack stops.

VE Controller Programming Manual B OH

8]
signal
o

=FALSE

PLC Task

signal signal
SIEna SIENAL

Device

FrameAtTaskStar
=TRUE

—
t:Y
o | (| — | —
- ™

Device

The from the station instance

ETCSlave_0
ETCSlave
xSetOperational wState —

An instance of the ETCSlave data type is generated for each EtherCAT slave inserted into
the device tree. The name of the instance corresponds to the name of the subordinate in the
device tree, and the availability of the instance is displayed on the IEC object tab in the

device editor.

The slave instance is used in the application to query or change the state of the slave at

runtime.
Input

Name

Data type

Description

xSetOperational

BOOL

Rising edge: Try to switch to ETC_SLAVE_ OPERATIONAL
mode.

Output

Name |Data type

Description

wState | ETC_SLAVE_STATE

The current status of the slave:
e (0:ETC_SLAVE_BOOT
e 1:ETC_SLAVE Init

VYECTOR

VE Controller Programming Manual A T

e 2:ETC_SLAVE_PREOPERATIONAL

e 4ETC_SLAVE_SAVEOPERATIONAL

e 8:ETC_SLAVE_OPERATIONAL
The configuration has been successfully completed.
If an error occurs during configuration, the slave can fall
back to an earlier state.

Properties of the slave:

After the EtherCAT stack is started, this attribute will return the vendor ID
read from the device

VendorlD

ConfigVendorID [Read the vendor ID from the configuration

After the EtherCAT stack is started, this attribute will return the product ID
read from the device

ProductID

ConfigProductID | Read product ID from configuration

After the EtherCAT stack is started, this attribute contains the serial
number of the device.

SeriallD

If a message is received, this information is stored in the slave server and
LastEmergency [can be queried from the application using this property, and a log
message is also added.

Note: If you activate the vendor or product ID check in the expert settings, as long as
there is a difference between VendorID and ConfigVendorlID or ProductlD and
ConfigProductID, stop the stack startup.

Check the chained list of all slaves

In order to monitor each slave station in the program, the instance will be called and the
state wState will be determined through. For the sake of simplicity, all masters and slaves can
be determined through the linked list, and all slaves can be checked through a simple WHILE
loop. The properties Nextlnstance and Lastinstance exist for both the master and the slave.
These attributes point to the next or previous subordinate. For the master server, there is an
additional attribute FirstSlave, which provides a pointer to the first slave server. According to
the following example, all slaves can be checked.

Example:
statement:
pSlave:POINTER TO ETCSlave;

program:

pSlave := EtherCAT_Master.FirstSlave;

WHILE pSlave <> 0 DO

pSlave’();

IF pSlave®.wState = ETC_SLAVE_STATE.ETC_SLAVE_OPERATIONAL THEN

END_IF

VYECTOR

VE Controller Programming Manual A T

pSlave := pSlave”.NextInstance;
END_WHILE

At the beginning, the first slave is extracted to the master through
EtherCAT_Master.FirstSlave. In the WHILE cycle, each master station is called individually, and
wState is also specified, and then the status can be checked. The pointer to the next slave
station is extracted by pSlave”.Nextinstance. If the list is complete, the pointer is zero and
the loop ends.

4.3.7 10DrvEtherCAT

If EtherCAT configuration is supported and executed, the library is automatically
integrated into the project. It contains function blocks for reading and writing device
parameters. It is therefore possible to check and even change individual parameters at
runtime. Several functional blocks can be active at the same time. Each request in the loop is
managed internally and processed continuously.

ETC_CO_SdoRead

Library: IODrvEtherCAT

This function block is used to read EtherCAT slave parameters. Unlike
ETC_CO_SdoRead4, it also supports parameters longer than 4 bytes. The parameters to be
read are specified by Index and Subindex, as used in the object catalog.
Input

Name Data type [Description

Rising edge: Start to read the slave parameters.
xExecute BOOL In order to release the internal channel again later, the instance
must be called at least once by xExecute: = FALSE.

xAbort BOOL TRUE: The current reading process is aborted.

EtherCAT master station number: If only one EtherCAT master
usiCom USINT station is used, usiCom is always 1. If multiple master stations are
used, 1 specifies the first one, 2 specifies the second, and so on.

The physical address of the slave.

If the automatic configuration mode is deactivated in the master
station, the slave station can be provided with its own address.
_ . This address must be specified here.

uiDevice Ulnt _ _ . . :
If the automatic configuration mode is activated, the address of
the first slave is 1001. The current slave address can be checked

in the Slave dialog box in the EtherCAT address area device

editor.
usiChannel [USINT Reserved for future expansion
windex WORD The index of the parameter in the object directory.

bySubindex | BYTE The sub index of the parameter in the object catalog.

VECTOR

VE Controller Programming Manual A T
Input
Name Data type |Description
The definition of monitoring watchdog time, in milliseconds.
udiTimeOut | UDINT If the reading of the parameters has not been completed when
this time expires, an error message is output.
Pointer to the data buffer, the data buffer stores data after
pBuffer CAA_PVOID o
successful transmission of parameters
szSize CAA_SIZE |The size of the data buffer (pBuffer) in bytes.
i
Name Data type Description
xDone BOOL TRUE: Complete parameter reading without error.
xBusy BOOL TRUE: The reading has not been completed yet.
xError BOOL TRUE: An error occurred during reading.
Information about the cause of the error displayed by
eError ETC_CO_ERROR .
xError, such as ETC_CO_TIMEOUT when timed out
_ If an error occurs in the device, this output will provide
udiSdoAbort |UDINT _ . .
more information about it.
szDataRead |CAA_SIZE Number of bytes read; maximum szSize (input).

ENUM ETC_CO_ERROR

ETC_CO_NO_ERROR 0 No error

ETC CO_FIRST ERROR 5750 The causg of the error is stored in the
output udiSdoAbort

ETC_CO_OTHER_ERROR 5751 |Can't find the main station

ETC_CO_DATA_OVERFLOW 5752 |ETC_CO_Expedited and size> 4

ETC_CO_TIME_OUT 5753 |Beyond time limit

ETC_CO_FIRST_MF 5770 | Unused

ETC_CO_LAST_ERROR 5799 | Unused

ETC _CO _SdoRead4

Library: IODrvEtherCAT
This function block is used to read EtherCAT slave parameters. Unlike ETC_CO_SdoRead,
it only supports parameters no longer than 4 bytes. The parameters to be read are specified

using Index and Subindex, as used in the object catalog.

ETUN

Name Data type |[Description
Rising edge: Start to read the slave parameters.

xExecute BOOL In order to release the internal channel again later, the instance
must be called at least once by xExecute: = FALSE.

VYECTOR

VE Controller Programming Manual A T
ETUN
Name Data type [Description
xAbort BOOL TRUE: The current reading process is aborted
EtherCAT master station number: If an EtherCAT master station is
usiCom USINT used, usiCom is always 1. If multiple master stations are used, 1
specifies the first one, 2 specifies the second, and so on.
The physical address of the slave.
If the automatic configuration mode is deactivated in the master
station, the slave station can be provided with its own address.
uiDevice Ulnt This address must be specified here.
If the automatic configuration mode is activated, the address of
the first slave is 1001. The current slave address can be checked in
the slave dialog box in the EtherCAT address area device editor.
usiChannel [USINT Reserved for future expansion
windex WORD The index of the parameter in the object directory.
bySubindex | BYTE The sub index of the parameter in the object catalog.
The definition of monitoring time, in milliseconds.
udiTimeOut | UDINT If the reading of the parameters has not been completed when
this time expires, an error message is output.
g L
Name Data type Description
xDone BOOL TRUE: Complete parameter reading without error.
xBusy BOOL TRUE: The reading has not been completed yet.
xError BOOL TRUE: An error occurred during reading.
Information about the cause of the error displayed
eError ETC_CO_ERROR

by xError, such as ETC_CO_TIMEOUT when timed out

udiSdoAbort |UDINT

If the device has an error, this output will provide
more information about it

abyData

ARRAY [1..4] OFBYTE

Read the 4-byte array to which the parameter data is
copied

usiDataLength [USINT

The number of bytes read (1, 2, 4).

ENUM ETC_CO_ERROR

ETC_CO_NO_ERROR

0 No error

ETC_CO_FIRST_ERROR

The cause of the error is stored in the output
udiSdoAbort

5750

ETC_CO_OTHER_ERROR

5751 |Master station not found

ETC_CO_DATA_OVERFLOW 5752 |ETC_CO_Expedited and size> 4

ETC_CO_TIME_OUT

5753 [Beyond time limit

ETC_CO_FIRST_MF

5770 |Unused

VYECTOR

VE Controller Programming Manual A T

ETC_CO_LAST_ERROR 5799 |Unused

ETC_CO _SdoRreadDWord

Library: IODrvEtherCAT

Similar ETC_CO_SdoRead4, this function block is used to read TheerCAT from the
station parameters. However, the data to be read is transmitted in DWWORD (dwData)
instead of an array. If byte switching is required, it is performed automatically, so the read
data can be reused directly.

ETC_CO_SdoWrite

Library: IODrvEtherCAT

This function block is used to write EtherCAT dependent parameters. Unlike
ETC_CO_SdoWrite4, parameters that are not longer than 4 bytes can be supported. The
parameters to write are specified by the index and sub-index, as used in the object directory.

Input

Name Data type Description

Rising edge: start reading from the parameter.
xExecute BOOL In order to release the internal channel again later, the
instance must be called at least once by xExecute: = FALSE.

xAbort BOOL TRUE: End of the current write process.

EtherCAT Master Number: If only one EtherCAT master
station is used, usiCom is always 1. If you use more than one
USICOM USINT _ _ . : .
primary station, 1 specifies the first, 2 specifies the second,

and so on.

The physical address from the station.

If you deactivate automatic configuration mode in the
primary station, you can provide your own address for the
from the station. This address must be specified here.

If the automatic configuration mode is activated, the address
of the first from the station is 1001. The address of the
current from the station is always located in the EtherCAT
address area and the tab of the from the station.

UlDevice UINT

usiChannel |USINT Reserved for future expansion
windex WORD The index of the parameter in the object directory.
bySubindex | BYTE The sub index of the parameter in the object catalog.

udiTimeOut | UDINT The definition of monitoring time, in milliseconds.

VYECTOR

VE Controller Programming Manual A T
Input
Name Data type Description

If the parameter writing has not been completed when this
time expires, an error message is output.

pBuffer CAA_PVOID Pointer to the data buffer containing the data to be written.

szSize CAA_SIZE The size of the data buffer (pBuffer) in bytes

The number of bytes to be written. Possible inputs:
e ETC_CO_AUTO
e ETC_CO_EXPEDITED
e ETC_CO_SEGMENTED
AUTO mode is usually set, so the mode suitable for the

eMode ETC_CO_MODE

length is automatically used.

Output

Name Data type Description

xDone BOOL TRUE: The parameter writing is completed without error.
xBusy BOOL TRUE: Writing has not been completed yet.

xError BOOL TRUE: An error occurred during writing.

eError ETC CO_ERROR Information about the cause of the error displayed by

xError, e.g. ETC_CO_TIMEOUT on timeout

_ If an error occurs in the device, this output will provide
udiSdoAbort |UDINT

more information about it

szDataWritten | CAA_SIZE Number of bytes written; max szSize (input).
ENUM ETC_CO_MODE

AUTO 0 Automatic mode selection by the client
EXPEDITED 1 Client uses acceleration protocol
SEGMENTED 2 Client uses segmentation protocol

ETC_CO_SdoWrite4

Library:IODrvEtherCAT

This function block is wused to write EtherCAT slave parameters. Unlike
ETC_CO_SdoWrite, only parameters not longer than 4 bytes can be supported. The
parameters to be written are specified by Index and Subindex and are used in the object
directory.

Input
Name Data type Description
xExecute BOOL Rising edge:Start reading slave parameters.

xAbort BOOL TRUE:The current writing process is aborted.

VECTOR

VE Controller Programming Manual A T
Input
Name Data type Description
Number of the EtherCAT master: usiCom is always 1
_ if only one EtherCAT master is used. If several
usiCom USINT . _
masters are used, “1" designates the first, “2" the
second and so on.
Physical address of the slave.If the
auto-configuration mode is deactivated in the
master, the slave can be given its own address. This
_ . address must be specified herelf the
uiDevice Ulint _
auto-configuration mode is activated, the first slave
is given the address 1001. The current address of a
slave is always located on the Slave tab of the slave
in the EtherCAT address field.
usiChannel USINT Reserved for future extensions
windex WORD Index of the parameter in the object directory.
bySubindex BYTE Subindex of the parameter in the object directory.
Definition of the watchdog time in milliseconds.If the
udiTimeOut |UDINT writing of the parameters is not yet complete on
expiry of this time, an error message is output.
Contains the data to be written.The data must be
abyData ARRAY [1..4] BYBYTE _
saved in the Intel byte order.
usiDatalLength [USINT Number of bytes (1,2,4) to be written.
Output
Name Data type Description
TRUE: Writing of the parameter was completed without
xDone BOOL
error.
xBusy BOOL TRUE: Writing is not yet completed.
xError BOOL TRUE: An error occurred during writing.
Information about the cause of the error that was displayed
eError ETC_CO_ERROR . .
by xError, e.g. ETC_CO_TIMEOUT in case of a timeout
_ If an error has occurred in the device, this output provides
udiSdoAbort |UDINT _ _ _
further information about it

ENUM ETC_CO_MODE

AUTO 0 The client automatically selects the mode
EXPEDITED 1 The client uses the expedited protocol
SEGMENTED 2 The client uses the segmented protocol

VYECTOR

VE Controller Programming Manual A T

ETC_CO _SdoWriteDWord

Library:IODrvEtherCAT

Just like ETC_CO_SdoWrite4, this function block is used to write EtherCAT slave
parameters. However, the data to be written is not transferred as an array but is passed to
DWORD(dwData). If byte swapping is required, this is performed automatically. The value to
be written can therefore be specified directly.

ReadMemory

Library: IODrvEtherCAT
This function block is for reading the memory of EtherCAT Slaves.

Input

Name Data type Description

Rising edge: Starts the reading.Falling edge: Resets
outputs.If a falling edge occurs before the function
block has completed the command, the outputs
continue working normally. They are reset only if the
xExecute BOOL _
command has either been fully executed or aborted
(xAbort) or if an error occurs. In this case the
corresponding output values (xDone, xError, iError) are

present at the output for precisely one cycle.

TRUE: Command is immediately aborted and all
xAbort BOOL N
outputs are set to their initial values.

Index number of the EtherCAT master (1 for the first
master--)

USICOM USINT

Automatically increased address or physical address of
wSlaveAddress | WORD

the device.
xAutolncAdr | BOOL Flag for interpretation of the address
Flag indicating whether broadcast reading is to be
xBroadcast BOOL used.TRUE: wSlaveAddress and bAutolncAdr are not
used

_ Offset of the memory in the EtherCAT slave memory
uiMemOffset |UINT

image
iSize INT Number of bytes to be read.
pDest POINTER OF BYTE | Buffer for the storage of the data

udiTimeOut IDINT Watchdog time for the command in ms

VE Controller Programming Manual

VECTOR

A N -
Output
Name Data type Description
xDone BOOL TRUE: Reading was completed without error.
xBusy BOOL TRUE: Reading is not yet completed.
CError BOOL An error occurred during reading; the function block aborts
the command.
xAborted BOOL Command was aborted by the user.

Example: reading the register 0x130 (current status)
PROGRAM PLC_PRG
VAR

etcreadmemory :ReadMemory;

wStatus :WORD;

xRead :BOOL,;

END_VAR

etcreadmemory(xExecute := xRead, usiCom:=1, wSlaveAddress := 1002,

xAutolncAdr

iSize := 2, pDest := ADR(wStatus), udiTimeout := 500);

WriteMemory

Library: IODrvEtherCAT

This function block is for writing the memory of EtherCAT slaves.
Input

FALSE, xBroadcast := FALSE, uiMemOffset := 16#130,

Name Data type Description

xExecute BOOL

Rising edge: Starts the writingFalling edge: Resets
outputs.If a falling edge occurs before the function
block has completed the command, the outputs
continue working normally. They are reset only if the
command has either been fully executed or aborted
(xAbort) or if an error occurs. In this case the
corresponding output values (xDone, xError, iError) are
present at the output for precisely one cycle.

VE Controller Programming Manual

VECTOR

A N -
Input
Name Data type Description
TRUE: Command is immediately aborted and all
xAbort BOOL N
outputs are set to their initial values.
. Index number of the EtherCAT master (1 for the first
usiCom USINT
master--)
Automatically increased address or physical address of
wSlaveAddress | WORD _
the device.
xAutolncAdr |BOOL Flag for interpretation of the address
Flag indicating whether broadcast reading is to be
xBroadcast BOOL used. TRUE: wSlaveAddress and bAutolncAdr are not
used
_ Offset of the memory in the EtherCAT slave memory
uiMemOffset |UINT .
image
iSize INT Number of bytes to be written
pDest POINTER OF BYTE | Buffer for the storage of the data
udiTimeOut IDINT Watchdog time for the command in ms
Output
Name Data type Description
xDone BOOL TRUE: Writing was completed without error.
xBusy BOOL TRUE: Reading is not yet completed.
TRUE: An error occurred during reading; the function block
xError BOOL
aborts the command.
xAborted BOOL TRUE: Command was aborted by the user.

VE Controller Programming Manual A T

4.3.8 SoftMotion General Axis Pool

If a SoftMotion PLC is used (e.g. CODESYS SoftMotion Win V3), the base libraries are
automatically linked in the Library Manager. A SoftMotion General Axis Pool is available for
these types of controllers. SoftMotion free drive units can be inserted here.

The SoftMotion Drive Interface is a standard interface for linking, configuring and addressing
drive hardware in the IEC program. By mapping different hardware to one interface, drives
can be easily exchanged and IEC programs can be reused. The interface couples the drive to
the | / O mapping and is responsible for updating the required motion data and transferring
it to the drive control.

The method for adding a SoftMotion free drive is shown in the following diagram.

IEEP S TR LT WA A VLA AR T W T 1Ty Fina

=B pLC Logic — ; (@ Append device () Insert device
aria
= £} Application :
m Library Manager =4 ‘S:mg for a full text search | Vendor | <Al vendors>
[2] pLC PrG (PRG v Vendor Version Description
_PRG (FRG)
o =l |
i pou (F8) | = @ softMotion drives
— +
=-{88 Task Configuration | + @ Free Encoders
"N
= @ EtherCAT_Task (IEC-Tasks) + m pasition controlled drives
"
#] pLc_PrG #- & virtual drives
+
@ MainTask (NewGroup)
- +
= Ld EtherCAT_Master_SoftMotion (EtherCAT Master Soft

= [VECServo (VECServo)

Hg@P Axis1(SM_Drive_GenericDSP402)
= BB VECServa_S (VECServo)

HgP Axis2 (SM_Drive_GenericDSP402)

M Gruu%y category [] Display all versions (for experts only) [] Display outdated v

A MadbusTrD Slave ModhusTCD Slave) % f
— = | ‘ / Please select a device from the It above.
'3 SoftMotion General Axis Pool
& Cut
By Copy
Paste
¥ Delete
Properties...
Add Object
) Add Folder...
— ¥ :
ices | [} POUs | ‘ Add Device...
s List Insert Device... ect another target node in the navigator while this window is open.)
=, Application.PLC PRG.LLL (1" Edit Object

Position control drives

Position control of the CODESYS axes can be run using the SM_Drive_PosControl drive
control. The requirement is for a device that is controlled by the set speed and returns its
current position. It can be, for example, a speed control device (frequency converter) with
position feedback.

VECTOR

VE Controller Programming Manual BOM oA MK

i SM_Drive_PosControl X
General Scaling/Mapping SoftMotion Drive: Position Control Loop Commissioning SM_Drive_PosControl: Parameters = SM_Drive_PosContra

Axis type and limits Vot rwe b
[] virtual mode Eafine s (®) Trapezoid
[] Activated Negative [u]: 0.0 =
O Modulo O Sin
@ Finite Positive [u]: (O Quadratic
Software eror reaction (O Quadratic (smooth)
S o,
N
Dynamic limits _Posi‘ﬁon lag supervision
Velocity [u/s]: Acceleration [u/s?] Deceleration [ufs2] Jerk [u/s3]: deactivated bd
[30 | [1000 | [1000 | [10000 | Laglimitfu): 10

Free encoder

Use SMC_FreeEncoder to integrate encoders that are not permanently coupled to I/O or
hardware.

Assign the input value of the encoder to the variable
<FREE_ENCODER_AXIS>.diEncoderPosition. this can be done as IEC code or by mapping the
memory of the input data.

B sM Drive PosControl ' @ SMC_FreeEncoder X

Encoder SMC_FreeEncoder: Parameters % SMC_FreeEncoder: IO Mapping ™ SMC_FreeEncoder: IEC Objects Si
Encoder general settings

O Modulo Bitwidth: |32 v

(®) Finite

Scaling
[] Invert direction

1] increments <=> encoder turns 1 J
Online

. variable set value actual value Status: | l
= Communicaﬁnn{ I
Velocity fu/s]
Acceleration [u/s] Errors
. Torque [Nm] [AIIS Error: |
FB Error:
uiDrivelnterfaceError:

[|

strDriveInterfaceError:

O
, VYECTOR
VE Controller Programming Manual BOM oA MK

Virtual drives

The virtual drive SM_Drive_Virtual is a simulated drive in software. It is possible to test
programs or implement extended functions without connecting hardware. These types of
functions include, for example, the control of axis movements.

B sM_Drive_PosControl |'® sMC_FreeEncoder &> SM_Drive_Virtual X
General Commissioning SM_Drive_Virtual: Parameters % SM_Drive_Virtual: I/O Mapping ¥ SM_Drive_Virtual: IEC Objects Status ¢
Axis type and limits Velodty ramp type
Software limits (@) Trapezoid

; . 0.0
ikt [] Activated Negative [u] . | O sin2
Positive [ul: 1000.0 (O Quadratic

(®) Finite
Software error reaction (O Quadratic (smooth)
Deceleration [u/s2]: 0 Identification
e e I —
Dynamic limits
Velocity [u/s]: Acceleration [u/s2] Deceleration [u/s2] Jerk [ufs3]:

[30 | [1000 | [1000 | |10000 |

pu

WECTOR

VE Controller Programming Manual BOM oA MK

5 VE controller program execution mechanism

5.1 User engineering tasks and configuration

As shown in the diagram, each task group can have its own execution trigger conditions,
execution period, execution priority, etc.

> R X [@ EtherCAT_Task x w1

1 * || Configuration
evice (Vector ARM Cortex-Linux-SM-CNC-TV-MC)
e riority (0.31 [t Task execution priority
=) Application Top

@ S |CYC|'C v| Interval (e.g. t#200ms) |4 | Ims

|E] PLC_PRG (PRG) T |(t T ¥ E 3 . |

i Pou (F8) ifm rigger type xecution interva

= E Task Configuration
{ S EtherCAT Task (EC Tesks) [=———>
B ic_Pre Time (=.0. t=200ms) Task execution monitoring time ms
@ MainTask (NewGroup)

[[JEnable

Sensitivity

[EtherCAT_Master_SoftMotion (EtherCAT Master SoftM
- BB vECServo (VECServa)

4P Axis1 (SM_Drive_GenericDSP402) —

B e si{#ecservo) 4k Add Call ¥ Remove Call (& Change Call | & Move Up Move Dow

= ervo_! ervo,

B Axis2 (SM_Drive_GenericDSP402) POU Comment
J ModbusTCP_Slave (ModbusTCP_Siave) @] pLc_PRG User program objects executed
b SoftMotion General Axis Pool sequentially during the task cycle

! 5M_Drive_PosControl (SM_Drive_PosControl)

il i i i

The types of tasks supported by the VE controller are as follows:

Type of task execution Type description Example
Cycle Execute the corresponding POU | EtherCAT Bus Tasks
once at each set time interval General Task Loop
Event In the set Bool type variable state | Soft interrupt handling POU

0->1 Trigger execution once

Freewheeling Once execution has started, the | General task cycle
cycle is repeated without
interruption

Status If the state of the set Bool variable | Conditional execution task
is 1, the loop is repeated POU

VYECTOR

VE Controller Programming Manual A T

5.1.1 Key points of task configuration

When set to the "Cycle" type, the "task cycle" refers to the time interval to perform the task.
For general logic control, where the state of common 10 port variables changes slowly, the
task cycle can be set to a larger period, e.g. 20ms; for tasks that need to be processed in time,
the task cycle can be set to a smaller period.

The task configuration for EtherCAT bus communication is a special "cyclic" task with the
highest priority. The set value for the task cycle is also the EtherCAT bus communication
cycle, usually set to 1ms-4ms; the smaller the set value, the higher the accuracy of the
motion control; the larger the number of axes to be controlled, the larger the set cycle,
otherwise the CPU will be overloaded with calculations.

A task configuration can only be set to one execution type, time interval and priority, and to
obtain different execution characteristics, multiple task configurations can be added. A task
configuration can contain multiple POUs, all of which will be executed at the same time
interval and in the order in which the POUs are added to the task.

5.1.2 Prioritisation of tasks

For tasks with different object types, it is recommended that different priorities are
assigned to ensure that important tasks such as motion control are prioritised, allowing the
controller's performance to be used wisely in some applications where high performance
motion control (MC) is required. The order of task priority is as follows.

Priority Type of task Description

0 EtherCAT Bus tasks Highest priority, only one EtherCAT task allowed
1 ModbusTCP

2 ModbusRTU

3 MainPOU Lowest priority

When the controller performs a task, there is a time alignment point unobserved by the
user at which it starts, at the highest priority = Second highest priority =Execution starts in
the order of the lowest priority; a lower priority task may be interrupted by a higher priority
task while it is being executed, and when the execution of the higher priority task is complete,
the interrupted task is returned and execution of that lower priority task continues.

The EtherCAT task is the highest priority task and is entered in the EtherCAT cycle and
all POUs within the task are executed before returning to the lower priority task.

5.1.3 Execution cycle setting in task configuration

The CODESYS software uses a multitasking approach to execute the user program's
"tasks", each of which is assigned a different execution period. Some global variables may
have to be accessed and modified between different POUs, so global variables need to be

VYECTOR

VE Controller Programming Manual A T

synchronised interactively, also at the "time alignment point” of the task, in integer multiples
when setting the period of a cyclic type task. Do not set the EtherCAT period to 3ms, 6ms,
7ms, 9ms etc. as this may result in a non-integer multiple relationship.

5.2 Data flow analysis in EtherCAT bus networks

5.2.1 Network overview of the EtherCAT bus

The EtherCAT bus is commonly connected using RJ45 plugs, multi-core Ethernet cables
and recommended Super 5 cables for improved interference immunity. Similar to a common
Ethernet network, the network communicates at a rate of 100 Mbps, with link cable lengths
of up to 100 m per adjacent slave, etc.

The EtherCAT network differs significantly from a normal Ethernet network in that there
is only one EtherCAT master in the network and the network-specific ESC (EtherCAT Slave
Controller) inside the master can receive the communication data sent to this station and
insert the reply data from this station into the frame in real time. The communication data
frames in the EtherCAT bus follow the Ethernet data UDP/IP frame structure, type 0x88A4,
except that the intermediate data fields have to be prepared and analysed according to the
EtherCAT communication protocol.

The EtherCAT segments can be further defined and parsed by some protocol, and data
communication can be achieved as long as both the primary and the host stations comply
with this protocol. Protocols typically used include CANopen Over EtherCAT (CoE) and
Sercos Over EtherCAT (SoE), just as Modbus Protocol Frame Data (ModbusTCP) is
transmitted on TCP/IP networks.

The VE controller uses the CoE protocol, the DS402 regulation (also known as CiA402)

for the CANopen protocol, which is a dedicated protocol for servo motion control classes,
the most important features of which are:
(1) In order to improve communication efficiency, the master-from station is not accessed by
means of a question-and-answer approach, but during the initialization phase of the
bus network, the master gives the host station a list of data items to be sent in advance to
the master, such as a "process data PDO", informing it that the host station will send the data
items and sequence (TPDO), requiring thedata items and sequence (RPDO) sent from the
station, so that the receiving from the station To the main station data frame know how to
parse, you can also prepare the required answer data in advance, when the main station
dataframe arrived, each from the network control chip (ESC) can take the data segment sent
to the station, for the station's processor according to the configuration table for analysis,
and in the appropriate stage of The EtherCAT communication frame timely insert the
answering data block of the station, returned to the main station;

(2@ The data to be communicated by the user is divided into "process data PDO" and
"service data SDO" according to the real-time requirements, with the former PDO arranged
for high-frequency cyclic sending and receiving, and the latter SDO communicating only

VYECTOR

VE Controller Programming Manual A T

when needed.

(@ The control command parameters, operation status parameters and function code
setting parameters of the servo drive, the most number of which reaches hundreds, are
named differently for each brand of servo parameters, and in order to ensure that the master
and slave stations of different brands are interchangeable, an "object dictionary OD" has
been developed in the CiA402 protocol to list all the functions used in the servo drive. All the
function codes, operation commands and their set value meanings, operation status
parameters and the scale to be used in the drive are defined specifically, forming a
professional technical specification, and equipment suppliers of different brands can operate
with the VE controller as long as the products developed in accordance with this CiA402
protocol specification can ensure universality and interchangeability.

@) The configuration of communication objects between master and slave stations is a
condition to ensure the successful execution of the functions of the operation and control
function block. When executing the MC function block in the user program, the controller
needs to use specific "communication data objects” to send commands to the servo slave
and read the slave's axis status.

(5 The slave device may not support all the items defined in the "Object Dictionary OD", but
the device manufacturer has defined the "Device Description File EDS" for the device, so the
programming user needs to import the device description file EDS of the slave device in
CODESYS before configuring the device, and can see the contents of the supported objects.

(6) When writing the user project, the user selects and configures the TPDO and RPDO data
object tables according to the control needs, which will be automatically forwarded by the
master to the corresponding slave during operation by means of communication; try to
select only the required configuration items and reduce the configuration items of irrelevant
data objects, which will reduce the load of EtherCAT communication and help to improve the
communication efficiency.

(7) The SDO configuration item is generally used to initialise the function code of the slave
device at the beginning of the system, and can also be used to access the parameters via
function blocks such as MC_SDOread during operation, which has a lower communication
timeliness and takes up additional EtherCAT communication overhead, and can cause
synchronisation timeout failures in applications with a high bus load rate.

5.2.2 Synchronous clocking of the EtherCAT bus

As a multi-axis motion control network, it is often necessary to have multiple slave
stations start or stop motion at the same time. The EtherCAT network has a Distributed Clock
(DC) mechanism, which allows each intelligent slave station (e.g. servo drive, intelligent

VYECTOR

VE Controller Programming Manual A T

high-speed expansion module) to have a consistent clock, and each slave station outputs
the data written by the master station to the execution unit according to a set
synchronisation trigger period to achieve simultaneous

operation.
Local clock 2 = Local clock £3 » Local clock t5
Local cleck tm Local clock t1 Clock offset 1 Clock offset 2 Clock offzet 1
{refer to clock} rans gyl TromT !
EtherCAT i
Slave Slave Slave Slave
Master Slave
1 2 3 b
4
[EtheiCAT J [T T Vg

During the initialisation phase of the EtherCAT bus, the master reads the current time of
each slave and uses the local time of the first slave as the "reference clock” for the network,
so that the "clock offset Toffset" of each slave relative to the reference clock can be
calculated, and the clock offset of each slave is written to the corresponding slave so that it
can correct its clock and eliminate static errors.

In addition, during the transmission of the communication data frames, there will be a
transmission delay time due to the hardware network, the master will send a specific
broadcast frame, let each slave station record the data arrival time, the master will then read
the time value recorded by each slave station, while measuring the total delay of the data
return data frame, can accurately calculate the "transmission delay Tdelay" of each slave
station "The master then writes the transmission delay time of each slave into the memory of
each slave. With these clock corrections, the slave gets the same clock as the reference clock
t1 by calculating TLocal-Toffset-Tdelay.

In EtherCAT networks, 10 slaves that are not sensitive to the DC clock can be set up
without DC handling and the EtherCAT master ignores their clock calibration during the DC
calibration. Once the synchronisation unit has been activated, a SYNC synchronisation signal
is generated at regular intervals to validate the currently received data and, in the case of
servo drives, to start execution with the received position command as the target point.

The initialisation and calibration of the DC clocks of the EtherCAT slaves as described
above is done automatically by the EtherCAT master without user intervention and is
completed when the EtherCAT bus is ready. It is important to note that slaves with internal
clock functions are placed at the front of the network as far as possible.

VYECTOR

VE Controller Programming Manual A T

5.3 Communication flow between VE controller and servo

slaves

In EtherCAT communication, the CoE is used at the application level. When the
controller executes the Motion Control (MC) user program, the communication data
between the controller system software and the servo is processed through a multi-level
functional unit.

5.3.1 Step-by-step description of the control information process

Step 1: Execute the MC function block of the user program and process

the command data to be sent

When the controller executes the user program, it executes an MC motion control
function block instance, e.g. MC_MoveRelative (Axis_1), and the controller, based on the
slave (Axis_1) state machine and data structure in memory.

checking the current state of the slave axis, reporting an MC execution error if the slave
axis is not enabled, or is running in torque mode, or is running in synchronous mode, or is
Homing running, or is alarming, etc.; if the slave axis is stopped, or is running in
non-synchronous mode in position mode, sending the make slave axis run command
ControlWord.

analyses the current running speed fActPosition of the slave axis, the running speed
fActVelocity, and constraints such as target position, maximum allowed speed, acceleration,
deceleration, etc. to calculate the required motion position command TargetPosition for the
next running cycle.

The controller also needs to wait for the data returned from the slave station in the next
communication cycle to analyse and judge the execution of this MC function block
instruction, so that the user can know whether the execution is Busy, Done, Error, or Aborted
by other MC instructions, etc.

Step 2: Place the control command data to be sent into the EtherCAT Send

Buffer Unit

The command data ControlWord and TargetPosition that need to be sent to the slave
Axis_1 are stored in the PDO send buffer unit, a prerequisite for this operation is that these
two parameters (called "objects” in the CiA402) are already present in the PDO configuration
table.) option; the "PDO configuration table" holds the "index number" (main index number:
sub-index number) of the control parameters (objects) that need to be sent and read by the

VYECTOR

VE Controller Programming Manual A T

master, divided into TPDO and RPDO.

Description of use

A list table of objects and attributes that need to be configured by the
user when programming, based on what needs to be sent cyclically for
the control of the slave.

This table is automatically sent by the controller to the slave ESC during

the network initialisation phase.
TPDO layout

tabl (b) The controller master will arrange the size of the transmit buffer
able

according to this table and at runtime will store the command data to be
sent into the transmit buffer.

the slave stations at runtime parse the received data frames according to
this table.

each slave can have a different TPDO configuration table.

A list table of objects and attributes that need to be configured by the
user when programming, based on the content of the objects that need
to be automatically answered by the slave.

This table is automatically sent to the slave ESC during the network

initialisation phase.
RPDO layout

tabl The runtime slave prepares the data according to this table and returns it
able

to the master in time for insertion into the time slot of the EtherCAT data
frame when the master accesses this slave.

At runtime the master parses the returned data frames according to this
table and returns the slave answer data.

Each slave can have a different RPDO configuration table.

The following diagram shows the PDO configuration table, in which the index number
and data type of each control parameter are specified by the CiA402 protocol, and the
"index number" can be used to find out what the parameter is and the width type of the
parameter in the "Object Dictionary
oD".

VE Controller Programming Manual A T

2 VECServo x -
fGeneraI Process Data Startup Parameters EtherCAT Parameters = EtherCAT I/O Mapping = EtherCAT IEC Objects Status i Inf

Select the Outputs Select the Inputs
| Name Type Index ~ Name Type Index
v 16#1701 258th receive PDO v 16#1B01 258th transmit
Controlword UINT 16#6040:0 Error code UINT 16#603F:
Target position DINT 16#B07A: Statusword UINT 16#6041:
Touch probe function UINT 16#60B8: Pasition actual value DINT 16#6064:
Physical outputs UDINT 16#60FE:0 Torque actual value INT 16#6077:
LI 16#1702 259th receive PDO Following error actual value DINT 16#60F4:
UINT 16#6040:0 Touch probe status UINT 16#60BS:
DINT 16#607A: Touch probe posl posvalue DINT 16#60BA:
DINT 16#60FF:0 Touch probe pos2 posvalue DINT 16#60BC:
INT 16#6071:0 Digital inputs UDINT 16#60FD:
SINT 16#6060:0 T 16#1B02 250th transmit
UINT 16#60B8: rror code UINT

Max profile velocity UDINT 16#607F:0 5

] 16#1703 260th receive PDO
i UINT
jsition DINT

et welncity NINT 1AEAOFFN Torh nrnhe atatiig LITNT 1A#ANRA"

tatus

UINT
DINT
INT

SINT

During the initialisation phase of the network, the master sends the "PDO Configuration
Table", which contains the TPDO, RPDO, data type and width of each object, to the slave as
the basis for parsing the data frames.

The order of the objects in the table will be the basis for the system to place the data to
be sent by the MC command into the transmit buffer unit. As shown above, the ControlWord
is placed in the first transmit unit, the TargetPosition is placed in the second unit, and so on.

The slave station, according to the RPDO configuration table (9 "objects” in the above
diagram), will put the index number and order of each object, in turn, the servo's operation
status data into the answer cache unit, when the master station communication frame
accesses this slave station, the ESC will automatically insert the data of this cache unit into
the appropriate time slot of the data frame and return it to the master station.

The RPDO table will also be the basis for the master to parse the slave's answer data.

Step 3: The master control chip sends the data from the transmit cache unit
to the slave ESC at regular intervals and the slave sends the reply data at the

same time

The controller, as master, generates EtherCAT interrupts at regular intervals according
to the EtherCAT clock cycle set by the user. After entering an EtherCAT interrupt, it initiates
EtherCAT communication and sends the data of the PDO transmit cache unit to several
slaves in one or several frames, and incidentally retrieves the answer data of each slave in the
same communication frame.

In chronological order, the data in the controller's transmit cache is the command data
from the previous EtherCAT interrupt POU execution; the reply data from the slaves is not
the answer to the master's query, but the current value of the cyclic reply "object” as
required by the RPDO configuration.

VYECTOR

VE Controller Programming Manual A T

Step 4: The slave receives and parses the data sent to this site from the

master

After entering the normal operation state of the network, the ESC from the station will
receive the communication data frame sent by the main station on a timely date and
automatically store the data sent to the station in the communication frame to the local
cache.

After receiving a string of PDO data, the processor of the station intercepts the received
data string according to the specified object data type (width) according to the TPDO table,
and stores the parameter properties represented by the "object index” number to the
corresponding control command unit for the operation control of the servo

The processor of the station will, according to the object properties and order required
by the configuration table of the RPDO, brush the current running state and parameters of
this servo axis, cycle through the answering cache unit in the new local ESC, and insert the
cached data into the EtherCAT communication frame with high-speed hardware operation
to the main station in the appropriate communication frame time slot.

Step 5: The main station receives and parses the data from the station
answer, updates the axis state parameters, and determines whether the

execution is complete

The controller, as the etherCAT network master station, sends data frames at the same
time, it receives the communication frames sent back by the closed loop of the network from
the station at the same time, and can extract the data strings that the receiving station
answers from from , and can also judge the communication status of the network and
analyze the success of the communication operation.

Based on the data answered from the station, such as Error Code, Status Word, Position
Actual Value... The controller system can determine whether it has reached the operating
position required by the MC function block instance and refresh the output variable state of
the MC function block instance

The above is the VE controller's EtherCAT packet sending, receiving and parsing
principle process description, easy for users to understand its internal mechanism, many of
the links are automatic system completion, do not need user intervention, users only need to
understand the CiA402 object concept, master the servo axis commonly used "like" type,
TPDO, RPDO configuration table object selection on it.

VYECTOR

VE Controller Programming Manual A T

5.3.2 CiA402 Data Object Dictionary and Servo Common Objects

The EtherCAT bus communication layer of the VE Motion Controller uses the CANopen
DS402 protocol, also known as CiA402, which is part of the CANopen protocol "Servo and
Motion Control" protocol family. EtherCAT bus networks. Controllers and servo drives (slave
devices) developed by different device manufacturers according to this protocol can be used
in conjunction with or instead of each other, giving the user more choice and meeting the
aims of the PLCopen specification.

CiA402 object types are grouped into index number segments by attribute, as follows:

Master index | Meaning Description
number range

Protocol type descriptions, | There is information initialisation by
manufacturer information, line | the device manufacturer and the
type descriptions, configuration | configuration information is done
0x0000~0x1FFF y , . .
table description information, | automatically by the system
etc. software without the intervention of

the controller user.

Manufacturer-defined objects, | The device vendor can design the
functional properties of the | master index number as a function
0x2000~0x5FFF | objects defined by the | code for the servo drive and use it
equipment vendor to set the function code parameters
for the static parameters

Line definition data objects for | Data for communication interaction
0x6000~0x9FFF | the control and monitoring of | between the controller and the
equipment servo for control

0xAO000~0OxFFFF | Reserved

As can be seen from the table above, the objects required for motion control are mainly
in the(Ox6000-0x9FFF) index segment section, if you want SDO configuration to modify the
servo function code, you need to pay attention to the(0x2000-0x5FFF) index segment
section. Detailed index number instructions may be referred to in the EtherCAT bus-type
servo instructions of the Wykoda servo instruction manual, which will not be repeated here.

The VE controller controls the operation of the servo and generally has several
command types:

1) control the operating state of the servo, such as enabler, origin regression,
start-stop operation, alarm reset, etc.

2) set the operating mode of the servo, such as position mode, speed mode,
torque mode;

3) Set the target position, running speed and output torque of servo operation;

4) Read the operating status of the servo system, such as operating state, operating

mode, position, current speed, output torque, etc.

5) Set or modify the function code parameters of the servo system, run the
constraint parameters, etc.

To complete these control operations, there are several commonly used data objects,

VYECTOR

VE Controller Programming Manual A T

which must be programmed in the PDO or SDO configuration table, and some data objects,
which are added as appropriate based on the functionality used in the user program.

This section describes the value of the data object, used to explain the functional
definition of the object, the actual runtime, the controller will automatically send the
corresponding value according to the required control operation: for the PDO configuration
table, the user only needs to add the controller to use the data object, do not need to fill in
the specific parameter value or variable name,

When codeSYS software is compiled, the variables in the MC function block are
automatically associated with the object of the PDO, and for the SDO configuration table,
the operation (write) that is typically used for the controller to initialize the servo function
code is a definite constant, since the constant to be filled in must conform to the DS402
specification definition, and some are defined as a constant by the functional code unique to
the servo drive.

VYECTOR

VE Controller Programming Manual A T

5.3.3 Configuration of servo shaft motor parameters

Motion control of the action, the most through the operation of the servo motor to
achieve, to servo motor in accordance with our hope, the controller needs to know the servo
motor parameters, the application system mechanical transmission mechanism
characteristics parameters, as well as the user's desired operating characteristics, in order to
send the appropriate operating position instructions, which need to be programmed to set
these characteristic parameters on the controller.

The method of setting servo motor parameters is shown in the following diagram,
double-click SM_Drive_GenericDSP402,and themotor-related parameters can be set in the
window on the right.

(1) Under the basic parameter label, the main axis position counter module value is set.
If the servo motor is the characteristics of round-trip operation, such as the re-operation of
the wire rod, you can choose "limited", (also known as multi-turn mode, limited long mode),
convenient in the case of servo motor rotation multi-turn, can carry out absolute position
mode positioning;

(2) If the servo motor is running in one direction indefinitely, e.g. the operation of the
fly shear roll, you can select "module", its position counter in each operating cycle,
counting from 0, will not produce a position counter overflow;

(3) If you are running without an actual access servo, you can check Virtual Mode, which
can be used for simulation operations

Ad Axisl X
General Scaling/Mapping Commissioning SM_Drive_ETC_GenericDSP402: Parameters ¥ SM_Drive_ETC_GenericDSP402: 1/O Mapping
Axis type and limits Velocity ramp type
[] Virtual mode | [Software lests _ @ Trapezoid
it [] Activated Negative [u]: |0,0 O sins
@ Finite Ponte i (w00 | O quadratic
Software error reaction (O Quadratic (smooth)
Deceleration [u/s2]: lﬂi Identification
Max. distance [u]: |-D. ID:
Dynamic limits Position lag supervision
Velocity [u/s]: Acceleration [ufs2] Deceleration [ufs?] Jerk [u/s3]: deactivated >
/3000 | [1000 | [1000 | [10000 Lag limit [u}:
Attention:

The above setting rules, both applicable to the incremental encoder servo motor, but
also suitable for absolute encoder servo motor, the above settings are not given to the
servo driver, and the current position of the motor, by the VE controller according to the
position signal of the motor feedback, as well as the above-mentioned setting parameters,
automatically carry out the cumulative and quantum calculation of the position, therefore, if
the servo position has the power-off hold characteristics, the user program needs to back up
the current position of the shaft to the power-down hold variable, and then restore the
relevant parameters.

VE Controller Programming Manual A T

The "software restriction” in the figure above refers to the software of CODESYS, which
protects the travel limit of the servo motor so that the VE controller does not issue the
over-limit positioning instructions, which is very useful in the application system of the MC
instructions of the absolute position encoder and the absolute positioning instructions. There
is also a selection of additional deceleration-special curves, which can be selected during
commissioning to make the mechanical system run more smoothly.

Because the controller always takes the number of pulses that make the servo run as the
operating position command, the controller must know the pulse value of the encoder of the
servo motor per turn, and also know the mechanical parameters such as the deceleration
ratio of the operating mechanism, the wire rod guide, the wheel doughnut peritution, which
can be entered under the "zoom/map" label of the motor parameters, as shown below:

General ScalingMapping Commissioning SM_Drive_ETC_GenericDSP402: Parameters ™ SM_Drive_ETC_GenericDSP402: I/O Mapping ™ SM_Drive_ETC_Ger * | *

Motor Type Scalin = 3
[Invert direction |—» Check the box to change the direction of the motor

=
@® Rotary 1 131072 increments <=> motor turns 1 |

O Linear) 1 motor turns <=> gear output turns 1

o

3 1 gear output turns <=> units in application 60

) 1 Number of pulses per revolution for motor encaders, 10000 for 2500 line encoders, 131072 for 17 bit encoders
Mapping 2 The reduction ratio of a reduction mechanism, if not an integer, can be expressed as a ratio of integers on both sidgs
Automatic mapping
3 Single-turn travel of the end-running mechanism, if not an integer, can be expressed as a ratio of integers on both sides

Inputs:

ltem 1 in the figure above, which is used to set the number of pulses per lap;

Item 2 in the figure above, which is used to set the deceleration ratio of the gearbox, shows
that the servo motor shaft rotates 1 turn for every 5 turns, and if the gearbox is not used,
the deceleration ratio is 1:1;

Item 3 in the figure above sets the physical distance of the work piece for each 1 turn of the
output axis. For example,

@ |f the use of flying shear roll, we only pay attention to its rotation angle, can be filled in this
way:

gear output turns <=> units in application 360

The MC_MoveRelative of the instruction is that the mechanism rotates by 1 degree;

The MC_MoveRelative of the instruction is that the mechanism rotates by 360 degrees;

€ If you are using a wire rod with a guide of 5mm, i.e. the slider on the wire rod moves
5mm at 1 turn, fill in this:

gear output tums <=> units in application

The MC_MoveRelative of the instruction is that the slider mechanism travels 1mm;
@ If you are using a synchronous gear with a diameter of 63.7mm, the moving distance of
the synchronous belt is 63.7mmx3.14 x 200mm for each turn, which can be filled in as this:

gear output turns <=> units in application 200

The MC_MoveRelative of the instruction is that the belt mechanism travels 100mm;

It can be learned that through the accurate setting of 1/2/3 items, the application
system physical units and MC operating instruction units can be achieved consistent, so that
the instructions of the user program intuitive, convenient variable settings, not easy to errors.

VE Controller Programming Manual A T

Note: Setting the motor parameters is used for the VE controller to perform the conversion
of the electronic gear ratio when sending the final (number of pulses) position command,
and is not downloaded to the servo driver, while the electronic gear ratio set by the function
code in the servo also attenuated the operating instruction, so in the following figure, the
actual impact on the servo motor is Rc*Rd:

______ \
] 'L_.'_:'.n'a-o". | N i :J;\:‘l?:a'l-.'
e e £ Y IR EtherCAT gea ratias
Procedures dehid - | l | . Rd I
/

Therefore, to ensure that the user program performs the same in each application device, it
is necessary to initialize the electronic gear ratio function code of the servo to the specified
parameter value through SDO operation, otherwise, because of the different servo function
code settings, it will result in a difference in the operating response.

VYECTOR

VE Controller Programming Manual A T

5.3.4 EtherCAT network state initialization and management

(1) Initialization and status of the EtherCAT network

After the controller is powered on, it will start itself and complete the loading of the
operating system and user programs.

If the user program does not use the EtherCAT bus, the controller will start the user
program execution after the user program initializes the operation of the other bus, and if
the user program uses the EtherCATcommunication network, the VE controller as
theEtherCAT main station will initialize the EtherCAT network bus, including:

(1) According to the user's EtherCAT configuration, it takes about 3 seconds to
configure the main station;

(2) Send the initial command of the network, let all from the station ESC control chip to
start the initial operation, read the EtherCAT network information in turn, and compare
with the EtherCAT network configuration in the user program, if there is a difference in the
number and order of the station, it will report errors;

(3) If the network configuration is normal, SDO, PDO will be sent to each station ESC
chip in turn;

(4) Let the network first enter Pro-OP, Safe-OP, and then OP operation;

The above operation process, is the controller automatically completed, does not need
user intervention, from the number of stations, the network initialization time increased
accordingly, the user program to determine whether the application system's network
state started normally, the simplest and most reliable way is to detect each servo axis of the
MC_Power.status state is true, because the state can indicate that the network is normal,
servo normal, with the conditions to start running.

(2) Communication drop-off and communication recovery

EtherCAT from the station can communicate with the main station normal premise, from
the station ESC after the main station configuration, has entered the network Pro-OP,
Safe-OP, and then op operating state, ESC internal typical configuration content contains
PDO configuration table, this information is only when the main station to the network
configuration, from Station ESC can be obtained, and once the main station network into the
OP operation state, can no longer occur configuration information, therefore, when the
EtherCAT network main station into the operating state, from the station to power up, or
from the station after the power down, will not be able to enter the network operation state.

EtherCAT currently resumes network operation after powering down from the station,
only for the primary station to restart and start running, such as powering up again, and for
the primary station to start running again, but this affects the operation of other stations.

(3) Address and setting of the address from the station

In writing the user program is, by default, the VE controller is in accordance with the
EtherCAT from the network cable link order, automatically addressing and addressing, the
advantage of this addressing method is that the user does not need to worry about the
naming and renaming of the device, just according to the user program bus network

VE Controller Programming Manual B OH

configuration, easy for the main controller to check the network configuration, find hardware

connection errors. The automatic naming rules that the controller adds to the user program
are as follows:

Devices ~ ® x 88 VECServo x
=g > || General Process Data Startup Parameters EtherCAT Parameters = EtherCAT /O
=-[@ Device (CODESYS Softmotion RTE V3 x64] Address Additional
E_J] ;(:A:)Osl':atm “ AutoInc address 0 s [Enable expert settings
@ o EtherCAT address 1001 £ [optional
i Library Manager
[E] PLC_PRG (PRG) Distributed Clock

POUL (PRG)
[8 PoUZ (PRG)
¥ pou3 (PRG)
= [Task Configuration
=-¢& EtherCAT_Task
&) PLC_PRG
=& MainTask
& poul
& pou2
& pous
= (@ EtherCAT_Master_SoftMotion (Ether
7
VECServo_1 (VECServo)
VECServo_2 (VECServo)
VECServo_3 (VECServo)

Where the station serial number starts from 1001, according to the order of addition, in
turn, the runtime, according to which the servo network cable link order, will be directly
connected with the VE controller servo named 1001, in turn to the servo name, the user
program, the control function of an axis, give the corresponding serial number of the servo.
The point of this search is that the order inwhich EtherCAT network cables are linked must be
in the order in which the network configuration isconfigured in the user program.

However, in some applications, some of the functions of the axes have been clearly
defined, and there is a fixed name, requiring the VE controller's user program can be
addressed according to this fixed name, which requires the user to program, the network
from the station addressing method is set to "from the station alias” addressing, and in
addition to the servo set the corresponding "from the station alias.”

The method from which the station will be set to address by "from the station alias" is as
follows:

v v o~ nF AXISL B vouerve x

¥ || General processData Startup Parameters Log EtherCAT Parameters ¥ EtherCAT I/O Mapping =
wice (Vector ARM Cortex-Linux-SM-CNC-TV-MC) Address

Additional =
J F;;:Log'c AutoIncaddress) $ [] Bxpert settings EtherCAT.

© tskt [Copums

@ Cam EtherCAT address 1001 = Optional

!ﬂ Library Manager Distributed Clock

[Z] PLC_PRG (PRG)

] Pou ¢5) Identification

- Disabled
= (&8 Task Configuration e

= @ EtherCAT Task (IEC-Tasks) (® Configuri ation alias (ADO 0x0012) Value 1 %

8] PLC_PRG
& MainTask (NewGroup)
Qﬁ Trace

|_EtherCAT Master SoftMotion (E
Bl VECServo (VECServo)
HgP Axis1 (SM_Drive_GenericDSP402)

B8 vECServo_5 (VECServo)
WP Axis2 (SM_Drive_GenericDSP402)

Explicit device identification (ADO 0x0134)

Data Word (2 Bytes) ADO (hex) 16#12 5

Set the alias from the station in the servo station.

For example, for the Wykoda bus servo, we can put its "from station number” function

VYECTOR

VE Controller Programming Manual A T

code P08 41 The function code is set to 6.

After the user program is configured in this way, regardless of the order of access
locationof the alias "6" servo, the servo can be found and given the operating function
characteristics of the servo axis in the user program.

Attention:
If some servo axes in the application system are automatically named, the system will
first determine the "alias” of the station, the rest of the stations are still automatically named.

5.3.5 Detect the EherCAT communication status

EtherCAT main station status flag bit

1, EtherCAT main station communication status flag bit:
The main station can use the following parameters to determine whether the network is
healthy.

1) xConfigFinished: If this parameter is TRUE, the transfer of all configuration parameters
has been completed correctly. The communication is running.

2) xDistributedClockinSync: If a distribution clock is used, the PLC will synchronize with
the first EtherCAT from the station that activates the distribution clock setting. As long as
synchronization completes successfully, the output is TRUE. xDistributedClockinSync for ON
does not guarantee that communication must be completely normal and needs to be
judged by xError and from the station state together.

This signal can be used in synchronous mode to activate the SoftMotion function block
before the PLC starts, as positional jumps may occur otherwise. When the PLC starts, the
output is FALSE, and after a few seconds it becomes TRUE. If synchronization is lost due to
any failure, the output is reset to FALSE.

3) xError: Useful for all drop-off stations or communication errors (xError-TRUE). If an
error is detected at the start of the EtherCAT stack, or if communication with the from the
station is interrupted during operation, the output is TRUE because no messages (e.g. due to
a wire outage) can be received. The cause of the error can be understood through a list of
errors or error messages.

Example: VE Controller and VECServo

=22 EtherCAT_Master_SoftMotion (EtherCAT Master SoftMotion)
=3 B8 VECServo (VECServo)
Hg” Axisl (SM_Drive_GenericDSP402)

A) Standard bit status when communication is normal:
xConfigFinished= TRUE;

VYECTOR

VE Controller Programming Manual A T

xDistributedClockinSync = TRUE;
xError= False,

B) There are no from or from the network:
xConfigFinished= False;
xDistributedClockinSync = False;
xError=TRUE,
=-A[f] EtherCAT_Master_SoftMotion (EtherCAT Master SoftMotion)
=AM VECServo (VECServo)
ARG Axisl (SM_Drive_GenericDSP402)

mt 1S : =EtherCAT Master SoftMotion.xConfigFinishedEls;
mtZfiEq: =EtherCAT Master_ SoftMotion.xDistributedClockInSync|[JiEq:
bk} AL SE :=EtherCAT_Master_SDftMDti-:n.xEerr FALSE H

xError does not output True

C) Disconnect the network cable between the primary station and the first from the
station when communication is normal, i.e. interrupt all the from the station data

xConfigFinished = TRUE;

xDistributedClockinSync= False;

xError=False,

D) Disconnect the network cable between the first and second from the station when
communication is normal, i.e. disconnect all dc-enabled access stations

xConfigFinished = TRUE;

xDistributedClockinSync= False;

xError=False,

E) Disconnect the network cable between the second and last from the station when
communication is normal.

xConfigFinished = TRUE;

xDistributedClockinSync= TRUE;

xError=False,

EtherCAT from the station detection

The current state returned from the station, the program should detect the state of the
station in real time, motion control is generally considered to be ETC_SLAVE_OPERATIONAL
before the commonly used PLCopen instructions can be used to control the axis. The current
state of the station is divided into:

0: ETC_SLAVE_BOOT

1: ETC_SLAVE_INIT

2:ETC_SLAVE_PREOPERATIONAL

4: ETC_SLAVE_SAVEOPERATIONAL

VE Controller Programming Manual A T

8: ETC_SLAVE_OPERATIONAL

N
o

Normal communication automatically switches to the operating state, and the VE

4s 5s 6s

controller is initialized after it is stopped. When you convert from an initialization state to a
running state, you must convert in the order of Initialization, Pre-Run, Run Safe, and you
must not go over the level. You can go through the conversion when you return from the
running state. The conversion operation and initialization process of the state

Init(#T4514)

A £
(IP) ﬂ H(PD

Pre-Operational (FLIZ1T) (0

L
o nPS}ﬂ H (s?)

(OP) Safe-Operational (% 4:3E4T)

(S0) Jl E (08)

Operational (iZ f7)

As with the EtherCAT master, each from the station can be considered a function block,
and the name of the from the station is an instance of the ETCslave function block, which
only needs to be used in the program.

The basic direct judgment is whether the stand is ETC_SLAVE_OPERATIONAL state

Detect whether the from the station is OP mode
IF _VECServo.wState<>8 THEN

bnoOP:=TRUE;
END_IF

VE Controller Programming Manual A T

The above method, if there are dozens from the station, each from the station is judged
to need dozens of IF statements, more troublesome. The EtherCAT master provides pointers
and lists to the first station, all of which can be found on the chain, so programming can be
simplified with the while loop.

Defined:
Was
pSlave: POINTER TO ETCSlave;
i INT,
iErrorSlave: INT;
END_VAR
Programming:
pSlave := EtherCAT_Master_SoftMotion.FirstSlave; // First find the EtherCAT_Master
from the main station by using the 19th station.FirstSlave.
WHILE pSlave 0 DO // Call each instance in the 'WHILE' loop to determine the wState
and then check the status.
pSlave/\();
IF pSlave/.wState = ETC_SLAVE_STATE. ETC_SLAVE_OPERATIONAL THEN
i=i+1;
else
exit;
END_IF // by pSlave. Nextlnstance finds a pointer to the next from the station. At the
end of the list the pointer is empty and the loop ends.
pSlave := pSlave/. Nextlnstance;
END_WHILE
iErrorSlave:=i+1; // Get the first few station number faults
i:=0;

VYECTOR

VE Controller Programming Manual A T

54 The MC motion controls the timing of the transmission

of the data

The VE controller periodically enters the EtherCAT interrupt according to the user-set
EtherCAT cycle, performs a full EtherCAT task, first performs the communication operation
between the master and each EtherCAT from the station, and then performs all the POU
configured by the user under the task, in the order of the POU in the task configuration
table.

The contents of the master's communication operation with each EtherCAT from the station:

(1) Start the EtherCAT bus send operation, send buffer data to the TPDO prepared by
the last EtherCAT cycle system, send the data sent to each station in turn, and the
communication frame, according to the RPDO configuration, reserves a number of byte
gaps that the answer data needs to occupy from the station, in order to get the data back
from each station;

The TPDO sends the data in the buffer in the order in which it follows from the station,
and the data sent contains normal I/O data and control data of the MC motion control axis

When the number of stations is relatively large, more than the allowed data length of a
communication frame, a number of communication frames are used to carry out, if the user
program performs SDO read and write operations, the SDO send request is finally sent;

(2) The master resolves the communication return frame, takes out the answer data of
each station, analyzes the answer data of the MC from the station axis, updates the data
structure such as axis state and position, speed, torque, etc., and determines and updates the
execution status indication of the MC function block for the user program to read.

Each time entering EtherCAT interrupts, the axis parameters read by the user program
are the data that the system has automatically processed and updated in this link.

VYECTOR

VE Controller Programming Manual A T

5.5 The processing mechanism of the MC function block

5.5.1 Cycle synchronization position mode

Wykoda servo default to the cycle synchronization position mode for control, the
so-called "cycle synchronization position mode", that is, the VE controller according to the
user wants to arrive from the station axis, allowed operating speed, acceleration, EtherCAT
bus cycle and other conditions, in each EtherCAT task execution, by the relevant MC function
block to calculate the next cycle point required to reach the location (TargetPosition), sent to
the servo drive, and the servo will be based on this distance / time command, the movement
to reach the next target point. In this mode of operation, the controller is responsible for
planning the location and speed of each point in time for the servo, which only knows the
target point and speed to be reached at the next EtherCAT time.

5.5.2 The data structure of the servo axis

In the VE controller, the servo station is managed as a special "axis" and the axis is an
important object.

In CODESYS, for each servo axis configured by the user, the system automatically
declares a data structure corresponding to the axis at the same time, and automatically
updates maintenance in real time when each EtherCAT interrupts the operation;

The following illustration is an example of a monitoring window for Axis, an axis in a user
program, whose information is the data structure from that axis.

VE Controller Programming Manual A T
i 1
=AR vz ESid] & EEE BT iy ER
= @ ToConfig_Globals.Axis1 Device.Appication SM3_Drive._... ARBER]
*p whxisStructID WORD 65042 Fiztal]
*p nAxisState SMC_AXIS_... continuous_mof... {RER LM State of the axis according to the ' *PLCopen’ " sta...
*» bRegulatorOn BOOL JREF T Parameter number: 1010
*p bDriveStart BOOL TRUE Fizatal] Parameter number: 1011
4% bCommunication BOOL {EER M | " TRUE"*: Communication OK #
% wCommunicationState WORD 100 JE Parameter number: 1013
*% uiDrivelnterfaceEmor UINT 0 {EER | Drive interface error number 4
*» bRegulatorRealState BOOL TRUE AREERm] Parameter number: 1015
% bDriveStartRealState BOOL TRUE JEER] Parameter number: 1016
*p wDriveld WORD 0 Fizezstarl] Parameter number: 1021
*p iowner INT 1542 EF LT Parameter number: 1022
*p iNoOwner INT 1542 Fiztal] Parameter number: 1023
*p fCydeTimeSpent LREAL 0.001 {BF LM Parameter number: 1024
*p fTaskCyde LREAL 0.001 ARBETm]| Parameter number: 1025
*p bError BOOL {RER LM Parameter number: 1030
% dwErrorID DWORD 0 ARBERm] Parameter number: 1031
*# bErrorAckn BOOL ficsanrl] Parameter number: 1032
*p bDisableErrorLogging BOOL FALSE Fizezstarl] Parameter number: 1036
+ 4 fbeFBError ARRAY [0..g... AEEF M
*p dwRatioTechUnitsDenom DWORD 2097152 Fizatal] Parameter number 1051
“$ iRatioTechUnitsNum DINT 15 ARBERm] Parameter number 1052
*p nDirection MC_DIRECT... negative ARERm| Parameter number 1053
*p fScalefactor LREAL 139810.133333... {RER LM Parameter number 1054
% fFactorvel LREAL 139810.133333... ARBERm] Parameter number 1055
*p fFractorAcc LREAL 139810.133333... Fizatal] Parameter number: 1056
*p fFactorTor LREAL 787.401574803... Fizezatapl] Parameter number: 1057
*p fractorlerk LREAL 139810.133333... EF | Factor jerk b
A fEactnrCir LDEML 1 SEEEE Darameter numhar: 1050
B i 1 W0 g s

With regard to axis data structure, users need to understand and pay attention to the
following characteristics:
€ \When the user applies the servo axis configuration of the application network, the system
automatically declares the data structure at the same time, the name of the data structure is
the same as the name of the axis, and the variable name and data type in the data structure
are defined by the system.
€ When there are multiple servo axes in the user project, each axis has its corresponding
data structure.
@ |f a virtual axis is used in the user program, including the encoder axis, the system will also
declare and maintain a corresponding axis data structure for it, but whether some of the
structural variables change.
@ Axis data structure variables are global variable types, i.e. they can be accessed directly in
all OUes of the user project.
@ As long as the controller computing power meets the requirements of the application
system, the number of axes allowed by the system has no clear limit, there is a
corresponding number of axis data structure.
@ Once the controller starts to run, during each EtherCAT task run phase, the controller
automatically updates the servo's backfly value to the data structure after it picks up the
answer data from the station, and the variables of the data structure can be accessed when
the user POU is executed.

€ Axis data variables are specified by: "Data structure name. Structure variable name”, as
shown in the data structure, we often use the following parameters:

Axis.nAxisState: the current operating state of the axis, servo feedback to the status
parameters of the controller;

Axis.fSetPostion: axis setting position, parameters sent by the controller to the servo

VYECTOR

VE Controller Programming Manual A T

axis;

Axis.fActPostion: the current actual position of the axis, servo feedback to the status
parameters of the controller, the outline and the user program set the same command unit;

Axis.fActVelocity: the current actual speed of the axis, servo feedback to the controller of
the status parameters of the same as the user program set the command unit;

In the user program, these variables can be used as the basis for motion control
calculation and judgment, some variables in the axis structure are command data sent by the
controller to the servo axis, and in the user program, the servo axis can also be controlled by
assigning these variables directly. For example, the following ST statement:

Axis.fSetPostion:=500; The units of this parameter are the same as the instruction units

5.5.3 Servo axis status machine and transfer conditions

In motion control systems, the operational state of the axis is divided into several logical
states, and the direct transfer of each logical state requires specific conditions, or specified
MC operation commands. The advantage of this division processing is that it is easy for the
axis to be controlled by motion mode classification, the axis can only be in a logical state at
a time, and the transfer of the logical state needs to be carried out according to rules, not
due to the wrong trigger of different MC caused by the chaos of operation.

The axis data structure variable (Axis.nAxisState), which indicates the current running
state of the axis, axis.nAxisState, is an enumeration variable, common as
The next 8 possible states:

0:Power_off: The shaft is not powered up or enabled, and the command is MC_Power

executed
1: Errorstop; -----=--=--=--------- execute the MC_Reset/MC_Power directive first
2. Stopping; -------------------- waits for the shutdown operation to complete
3. Standstill; ------------------- axis has stopped running and is out of sync
4: Discrete_Motion; --------- axis is discretely running
5: Continuous_Motion; ----- axis is running continuously
6: Synchronized_Motion; --- axis is running in sync
7. Homing; ---------------------- axis is running back to zero, waiting for the

zeroing operation to complete

The axis state transfer diagram is as follows, moving from one state to another requires
running the corresponding conditions, such as running mc instructions, or an external failure,
the user cannot enforce its state, programming must follow the logical requirements, run the
relevant instructions:

VYECTOR

VE Controller Programming Manual A T

MC_Gearln (Slave)
MC_GearlnPos (Slave)
MC_Camin (Slave)

MC_MoveAbsolute
MC_MoveRelative
MC_MoveAdditive
MC_PositionProfile
MC_Halt
(MC_MoveSuperimposad

Synchronized
Maotion

MC_MoveVelocity
MC_VelocityProfile
MC_AccelerationProfile
MC_MoveContinuousAbsolute
MC_MoveContinuousRelative

Continuous
Motion

Discrete Motion

MC_Stop L

Stopping)

MNote 1
Errorstop)4- —————

Note 4 Note 3

'
(Homing

. Note 2
(Disabled))-l—
Note 1: From any state, an error occurred with the axis. .

Note 2: From any state, MC_Power.Enable s FALSE the axis did not have an error.
Note 3: MC_Reset and MC_Power.Status = FALSE

Note 4: MC_Reset and MC_Power.Status = TRUE and MC_Power.Enable = TRUE
Note 5: MC_Power.Enable = TRUE and MC_Power.Status = TRUE

Note 6: MC_Stop.Done = TRUE and MC_Stop.Execute = FALSE

v

Standstill

MC_Home

The MC function block in the figure transfers the axis state to the specified state, as can
be seen in the figure:
In the axis stop state (Standstill, i.e. Axis.nAxisState 3) can be transferred to various operating
states;
Can be transferred from a variety of states to a stop state (Standstill, i.e. Axis.nAxisState, 3),
If an alarm appears on the servo axis (Errorstop, i.e. Axis.nAxisState-1), it is necessary to run
the MC_Reset command, the MC_Power command to enter the Standstill state before the
shaft can run again;
If you do not use the MC command axis motion according to the above transfer diagram,
the shaft will not respond, but get the error warning information of the MC function block;
In user programs, it is sometimes necessary to initiate subsequent control logic based
on the state of the axis, which is more accurate and reliable than the one signal judgment of
the MC function block, based on Axis.nAxisState.
Be familiar with the transfer conditions of the axonal state diagram above, and pay attention
to the logic and order of mc instructions when programming, in order to write a stable and

VYECTOR

VE Controller Programming Manual A T

reliable application program.

5.5.4 The execution logic of the MC function block:

Axis control commands related to servo stations appear in the form of MC function
blocks (also known as instructions), because MC function blocks require short intervals of
sustained execution, need to monitor the servo's operational response in a timely manner, so
the MC function blocks related to axis motion can only be called to execute in the EtherCAT
task.

The system is handled as follows:

(1) When performing an MC function block, the MC block is effectively triggered before
execution, and for multiple instances of the same MC function block (for the same axis
object), the principle of priority is given to the trigger;

(2) For the MC control command of the servo axis, check the legality of the operation
according to the axis state transfer specification, and then process it, including the axis state
transfer, the target parameter update of the axis, and finally prepare the control command
data of the shaft;

(3) The system software of the EtherCAT bus control part will send cache data into PDO
according to the TPDO configuration table and object dictionary of each user-set station
axis

(4) The system software of the EtherCAT bus control section will, according to the
user-set RPDO configuration table and object dictionary of each server-obeying station
axis, reserve the axis state parameters that the main station needs to read, reserve a number
of byte gaps that need to be occupied by the receiving segment of the EtherCAT frame,
and finally "group” to the EtherCAT frame to send the cache area, waiting for the next
EtherCAT cycle to start, sending to the station;

(5) With regard to the operation results of EtherCAT Remote 10, stored in the cache area
in the order of connection from the station rack and sent with the servo station. However,
the state of the data for the send cache is updated only after the normal task cycle (task
priority is 15 or lower, such as 20ms);

(7) In the user operation control program, if the servo system is in operation, it is
necessary to have an MC function block that is triggered to execute in supervising the servo
axis, to avoid a running servo axis due to the logic jump of the program, showing a state
without MC monitoring, with MC_Stop to stop it, is also a kind of monitoring.

Thus, theoperational commands involved in axis control in the EtherCAT task are not
sent out during the current POU execution cycle, but have a delay of one EtherCAT cycle,

VYECTOR

VE Controller Programming Manual A T

which in some applications that require precise position and length control, such as the
trigger of the MC_Camlin of multi-axis synchronous control, etc., the error caused by this
delay needs to be considered.

For the delay error caused by the above reasons, the programming should be handled
as follows:

a, 1 EtherCAT cycle in advance to trigger the operation control instructions;

b. The operation control start-up required by the control process is not necessarily
exactly at the beginning of the EtherCAT cycle, but at a certain moment in the middle of
the cycle, the elimination of this discrete deviation should be taken into account in
programming, using the Offset parameters provided by the MC motion control function
block to compensate;

(8) Eliminate discrete deviation and estimate the error caused by this communication
mechanism based on parameters such as the current object's operating position, speed,
acceleration, etc. Reducing the setting of the EtherCAT bus cycle is beneficial to reduce
uncontrollable errors.

5.5.5 Data interactions between different priority tasks POU

To have variable access interactions between multiple PVUs, you need to use global
variables, which are declared in the GVL global variable list, but if the POU is in a different
priority task, the data does not interact in real time, and the update results of the data are
related to the task priority and the setting of the task cycle, variable access type, and so on.
We need to pay attention to the following mechanisms:

When the user program executes, for tasks of different priorities and cycles, the system
adopts the rule of starting time alignment, that is, there is a common start time calculation
point of the task cycle, and if the periods of the two tasks are multiplied by integers, then
they will have a point in time (alignment point), which is often used as the GVL data
interaction point;

Only after the task is completed will the POU modification of the variable be written to the
GVL cache, and the modification of the GVL parameters by the low priority task will only take
effect at the end of its task cycle

High-priority POU, the rewriting operation of GVL, will take effect immediately;

The GVL value is copied from the GVL cache once before the first task starts at the
alignment point, as the basis used during the execution of the POU of this task, and the GVL
cache variable is no longer read during the execution of this task;

The servo axis data structure is a global variable automatically defined by the system, and
each time the ECT task is performed, the system automatically refreshes the data structure,
and if the main task POU reads the variable of the data structure, its reading is also the first
ECT task after each "task cycle alignment point" The updated data, the same principle, if the

VYECTOR

VE Controller Programming Manual A T

main task POU to modify the data structure of the variable, is the next "task cycle
alignment point" after the first ECT task sent to the servo axis, there will be about one Main
task cycle lag;

Attention:

Thus, in setting the user program's EtherCAT task and the normal main loop task cycle,
should maintain the relationship between the two integers, (e.g. EtherCAT task is 2ms or 4ms,
the main loop task is 20ms), so as to avoid the GVL parameter interaction abnormal
situation;

In different priority tasks, if there are modifications to the same GVL variable, there
may be cases of overlaying each other, programming, it is recommended that a global
variable only have one POU override or position operation, and the other POU simply read
and reference or reset the operation to avoid unexpected errors.

VYECTOR

VE Controller Programming Manual A T

6 Programming Languages and References

6.1 Data types

CODESYS supports all IEC 61131-3 data types, types that extend I[EC 61131-3 and
user-defined data types.

IEC 61131-3 data types Type of extension to |EC | User-defined data types

61131-3

‘BOOL’ ‘UNION’ ‘ARRAY’
Integer ‘BIT’ Structure
‘REAL’ / 'LREAL’ ‘_UXINT" and '__ XWORD’ Enumerations
‘STRING’ Reference Reference
‘WSTRING’ Pointers Pointers
Time Subrange Types
‘LTIME’ |dentifiers
6.1.1 BOOL Boolean types
Data Type Values Memory
BOOL TRUE (1), FALSE (0) 8 bit
6.1.2 Integer

CODESYS offers the following integer data types.
Data Type Lower Limit Upper Limit Memory
BYTE 0 255 8 bit
WORD 0 65535 16 bit
DWORD 0 4294967295 32 bit
LWORD 0 2"-1 64 bit
SINT -128 127 8 bit
USINT 0 255 8 bit
INT -32768 32767 16 bit
UINT 0 65535 16 bit
DINT -2147483648 2147483647 32 bit
UDINT 0 4294967295 32 bit
LINT -2% 2%-1 64 bit

VYECTOR

VE Controller Programming Manual A T
Data Type Lower Limit Upper Limit Memory
ULINT 0 2%-1 64 bit

6.1.3 REAL/LREAL Floating point type

Data Type |Lower Limit Upper Limit Memory
REAL -3.402823e+38 3.402823E+38 32 bit
LREAL -1.7976931348623157E+308 |1.7976931348623157E+308 64 bit

6.1.4 STRING String type

Variables of the STRING data type can contain any string. The amount of memory
allocated during the declaration relates to characters and is shown in brackets or square
brackets. If the size is not defined, CODESYS allocates 80 characters by default. Normally,
CODESYS does not limit the length of strings. However, string functions can only handle
lengths between 1 and 255. If a variable is initialised with a string that is too long for the data
type, CODESYS truncates the string accordingly from the right hand side. the memory
required for a STRING variable is always one byte per character plus one additional byte (e.g.
81 bytes for a STRING [80] declaration).

Example of a 35-character string declaration.:

str: STRING(35):= 'This is a String";

6.1.5 WSTRING

In contrast to string (ASCII) data types, WSTRING data types are interpreted in Unicode
format. As a result of this encoding, the number of WSTRING display characters depends on
the characters. A length of 10 means that the length of WSTRING can contain up to 10 words.
However, for some characters in Unicode, encoding a character requires more than one
WORD, so that the number of characters does not have to correspond to the length of
WSTRING (in this case 10). Data types require 1 WORD memory per character, plus 1 WORD
extra memory. Only 1 byte per STRING is required. Data type WSTRING to terminate 0.

Cases:

wstr : WSTRING := "This is a WString";

VE Controller Programming Manual

VECTOR

6.1.6 TIME time type

The time data type is internally considered DWORD. TIME and TIME_OF_DAY are
resolved in milliseconds, DATE_AND_TIME in milliseconds, and in seconds.

Data type Lower limit Upper limit Storage space [Resolution
TIME T#0dohomosems T#49d17h2m47s295ms ms
TIME_OF_DAY TOD#0:0:0.000 TOD#23:59:59.999
ms
TOD 00:00:00.000 23:59:59.999
D#1970-1-1 DATE#2106-2-7
DATE Day
01/01/70 February 07, 2106
DATE_AND_TIME |DT#1979-1-1-00:00:00 |DT#2106-2-7-6:28:15
Seconds
DT 01/01/1970 00:00:00 February 07, 2106 6:28:15

LTIME is used as the time base for the High Resolution Timer. The resolution of the
high-resolution timer is measured in nanoseconds.

Data type

Lower limit

Upper limit

Storage space

LTIME

0

213503d23h34m33s709ms551us615ns

64 bit

LTIME#<time declaration>

The time declaration may include units of time applicable to TIME constants, and

® “us”: microseconds
® “ns”: nanoseconds

example:
LTIME1 := LTIME#1000d15h23m12s34ms2us44ns

6.1.8 UNION Joint Statement

UNION is a data structure that usually contains different data types.

In a union, all components have the same offset and therefore the same amount of
memory. In the joint statement example below, the assignment of name.a also affects the .b.

TYPE name:
UNION
a: LREAL;
b LINT:
END_ UNION
END TYPE

VYECTOR

VE Controller Programming Manual A T

6.1.9 BIT bit

Only BIT data types can be used for individual variables in a structure or function block.
Possible values are TRUE(1) and FALSE(0). A BIT element requires 1 bit of memory. Therefore,
you can refer to a single bit of the structure by name. BIT continuously declared elements
are bundled together in bytes. In this way, you can optimize how memory is used instead of
using the BOOL type, which retains 8 bits per type. Bit access, on the other hand, is
significantly more time-consuming. Therefore,BIT should only use data types if data needs to
be defined in a predefined format.

6.1.10 _ UXIN and __XWORD are pseudo-data types

CODESYS supports systems with 32-bit and 64-bit-wide address registers. To make the
IEC code as independent as possible from the target system, use pseudo-_ UXINT and
_XWORD. The compiler checks which target system types are up-to-date, and then
converts these data types to the appropriate standard data types.

__UXINT converted to ULINT on a 64-bit platform and UDINT on a 32-bit platform.

_XWORD converted to LWORD on a 64-bit platform and DWORD on a 32-bit
platform.

6.1.11 POINTERS pointer

The syntax declaration of the pointer

Pointers store the addresses of variables, programs, function blocks, methods, and
functions while the application is running. The pointer points to one of the objects
mentioned or a variable of any data type. The syntax of the pointer declaration:

<identifier>: POINTER TO <data type | function block | program | method | function>;

When you de-reference a pointer, the value of the address to which the pointer points
is determined. In order to de-reference the pointer, attach the content operator to the
pointer identifier (see the example below pt.

Using the address operator ADR, youcan assign the address of a variable to a pointer.
Was

pt: POINT TO INT; (Declaration of pointer pt)

var_int1: INT: =5; (Declarations of var_int1 and var_int2 variables)

var_int2: INT;
END_VAR

VYECTOR

VE Controller Programming Manual A T

pt: =ADR (var_int1) ; (The address that the pointer ptisassigned tovar s int1).

var_int2: = pt #; (The value 5 of the value of the var_int1 is assigned to the variable by canceling the
reference var_int2 pt)

Attention:

If a pointer to the device input is used, the access (e.g.,"pTest: invalid assignment
target") is considered a write access. This causes the compiler to warn when the code is
generated. If this construct is required, the input value (input) must first be copied to a
variable with write access. In online mode, you can jump from the pointer to the declared
position of the reference variable by clicking the Go to Reference command.

A function pointer to an external function

CODESYS supports function pointers that replace the INDEXOF operator and can be
passed to an external library. However, CODESYS does not provide any way to call function
pointers from within the application in the development system. The runtime system
function used to register callback functions (system library functions) requires a function
pointer. Depending on which callback is registered, the runtime system implicitly calls related
functions (for example, in the case of STOP). In order for such a system call (runtime system)
to be possible, the appropriate object properties must be set in the Build tab.

You can use the ADR operator for functions, programs, function blocks, and methods.
CODESYS outputs the address of the pointer to the function, not the address of the function,
because the value of the function can be changed after it is changed online. This address is
valid as long as the feature exists on the target system.

The index access pointer

At CODESYS, index access to the " input POINTERSTRING, and WSTRING variables is
allowed.
Pint s i returns the basic data type
® |ndex access to pointers is done arithmetically: if index access is used for pointER
TO variables, CODESYS calculates the offset pint s (pint s i s sizeOF (base type)). Index
access also causes the pointer to be implicitly de-referenced. The resulting data
type is the basic data type of the pointer. Note that pint s7 s
® \When index access is used for variables of type type, STRING gets characters at the
offset of the index expression. The result is a BYTE type. The first character of the
string is returnedbystr (i) in SINT (ASCII).
® \When index access is used for variables of type type, WSTRING gets characters at the
offset of the index expression. The result is a WORD type. wstr (i) returns the
firstcharacter of the string inINT (Unicode).
Attention:
1. DWORD When a pointer is a 64-bit pointer, even on a 64-bit platform, the difference
between the two pointers results in a type.
2. You can use a reference to a value that is directly controlled compared to a pointer.

VYECTOR

VE Controller Programming Manual A T

3. Memory access to pointers can be monitored at runtime through the implicit
monitoring feature CheckPointer.

6.1.12 REFERENCE Reference

REFERENCE is also a pointer, but it has some advantages over POINTER:

® Fasy to use: You don't have to explicitly de-reference a reference (using s) to access the
contents of the reference object.
® Better syntax for passing values: If the input is REFERENCE TO, a (reflnput: s value) does
not have to write ADR explicitly.
® Type safety: Unlike pointers, for references, the compiler checks that the base type is the
same when assigning two references

References can be declared in the following syntax:

<identifier> : REFERENCE TO <data type>
A : REFERENCE TO DUT;
B : DUT;
C: DUT;

AREF=B; // T A:=ADR(B);
A: C; MR T A-

To check for a valid reference, you can use the operator __ISVALIDREF to check that the
reference points to a valid value, that is, a value that is not equal to 0. Language:
<Boolean variable> := __ISVALIDREF(<with REFERENCE TO <data type> declared identifier);
When the reference points to a valid value, the .It; Boolean variable is TRUE; otherwise
ITSE. Example:
ivar : INT;
ref_int: REFERENCE TO INT;
ref_int0 : REFERENCE TO INT;
testref : BOOL := FALSE;
How to do it:
ivar: =ivar + 1;
ref_int REF = ivar;
ref_int0 REF = 0;
testref: = ISVALIDREF (ref_int) ; (s true becauseref_int point to ivars that are not zero).
testref: = __ISVALIDREF (ref_int0) ; (... falsebecausethe ref_int0 setto O ..

6.1.13 ARRAY array

An array is a collection of data elements of the same data type. CODESYS supports

VYECTOR

VE Controller Programming Manual A T

one-dimensional and multi-dimensional arrays of fixed or variable lengths. Array types are:
fixed-length arrays, array arrays, and variable-length arrays, which can be defined in the
declaration section of the POU or in the list of global variables.

An array of fixed lengths

The syntax of a one-dimensional array declaration:

<variable name>: ARRAY[<dimension>] OF <data type> (:= <initialization>)? ;
<dimension>: <lower index bound>..<upper index bound>

<data type> : elementary data types | user defined data types | function block types
//(...)? : Optional

The syntax of the two-dimensional array declaration:
<variable name>: ARRAY[<1st dimension> (, <next dimension>)+] OF <data type> (:=

<initialization>)? ;

<1st dimension>: <1st lower index bound>..<1st upper index bound>

<next dimension> : <next lower index bound>..<next upper index bound>

<data type> : elementary data types | user defined data types | function block types
/[(...)* : One or more further dimensions

/1 (...)? : Optional

The index limit is an integer;
Data access syntax:
<variable name>[<index of 1st dimension> (, <index of next dimension>)*]

/[(...)* : 0, one or more further dimensions

Example One:

One-dimensional array of 10 integer elements defined:

Was

aiCounter:ARRAYT0..9] OF INT; //Index Lower Limit:0 , Index Upper Limit:9

END_VAR

Program:

aiCounter: ARRAY[0..9]: =[0, 10, 20, 30, 40, 50, 60, 70, 80, 90]; /#¥I&tit:
iLocalVariable: = aiCounter [2]; // Data access

The value 20 in the array is assigned to the local variable iLocalVariable.

Example 2:

Two-dimensional array Definition:

Was

aiCardGame: ARRAY [1..2, 3..4]OF INT; /M1D:1to2, 2D:3to4

END_VAR

Initialization program:

aiCardGame: ARRAY [1..2, 3.4]OF INT: =[2 (10), 2 (20) J; //A short history of [10,10,20, 20]

VYECTOR

VE Controller Programming Manual A T
1 2
3 10 10
20 20

Data Access Program:
iLocal_1: =aiCardGame [1, 3]; //Assign 10
iLocal_2: =aiCardGame [2, 4]; // Allocate 20

Example three:
3D array definition:
Was
aiCardGame: ARRAY [1..2, 3..4, 5..6] OF INT;
END_VAR
1st dimensional: 1 to 2
2nd dimensional: 3to 4
3D:5t06
A totalof: 2 x 2 x 2 x 8 array elements

Initialize 1:

aiCardGame: ARRAY [1..2, 3.4, 5.6] OF INT: =[10, 20, 30, 40, 50, 60, 70, 80];
Data Access 1:

iLocal_1: =aiCardGame [1, 3, 5]; //Assign 10
iLocal_2: =aiCardGame [2, 3, 5]; //Allocate 20
iLocal_3: =aiCardGame [1, 4, 5]; //Allocate 30
iLocal_4: =aiCardGame [2, 4, 5]; //Allocate 40
iLocal_5: =aiCardGame [1, 3, 6]; //Allocate 50
iLocal_6: =aiCardGame [2, 3, 6]; //Assign 60
iLocal_7: =aiCardGame [1, 4, 6]; //Assign 70
iLocal_8: =aiCardGame [2, 4, 6]; //Allocate 80
Initialize 2:

aiCardGame: ARRAY [1..2, 3.4, 5.6] OF INT: =[2 (10), 2 (20), 2 (30), 2 (40) [;
/[Short for [10, 10,20,20,30,30,40]

Data Access 2:

iLocal_1: =aiCardGame [1, 3, 5];// Assign 10
iLocal_2: =aiCardGame [2, 3, 5];// Assign 10
iLocal_3: = aiCardGame [1, 4, 5];// Allocate 20
iLocal_4: = aiCardGame [2, 4, 5];// Allocate 20
iLocal_5: =aiCardGame [1, 3, 6]; // Allocate 30
iLocal_6: = aiCardGame [2, 3, 6]; // Allocate 30
iLocal_7: =aiCardGame [1, 4, 6];// Allocate 40
iLocal_8: =aiCardGame [2, 4, 6];// Allocate 40

Example Four:
3-dimensional arrays of user-defined structures:
TYPE DATA_A

VYECTOR

VE Controller Programming Manual A T

STRUCT
iA_1:INT;
iA_2:INT;
dwA_3 : DWORD;
END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR

aData_A: ARRAY[1..3, 1..3, 1..10] OF DATA_A;
END_VAR
The array aData_A consists of a total of 3 * 3 * 10 = 90 array elements of the data type
DATA_A.
Partial initialisation:
aData_A:ARRAY[1..3, 1..3, 1..10] OF DATA_A:=[(iA_1:=1,iA_2:= 10, dwA_3 := 16#00FF),(iA_1:= 2,
iA_2:=20, dwA_3 := 16#FF00),(iA_1 := 3, iA_2 := 30, dwA_3 := 16#FFFF)];
In this example, only the first three elements are explicitly initialised. Elements that are not
explicitly assigned an initialisation value are initialised internally using the default value of the
base data type. This will begin with the element aData_A[2, 1, 1] as the initialised O structure
component.
Data access
iLocal_1: =aData_A[1,1,1] .iA_1; // Allocation 1
dwlLocal_2: =aData_A[3,1,1] .dwA 3; // Allocation 16 # FFFF

An array of arrays

Declaring“array of arrays” is another syntax for multi-dimensional arrays. The collection
of nested elements rather than the dimensions of the dimensions of the dimensions of the
dimensions. The depth of nesting is infinite.

Array array declaration syntax:
<variable name>: ARRAY[<first>] (OF ARRAY[<next>])+ OF <data type> (:= <initialization>)? ;

<first>: <first lower index bound>..<first upper index bound>

<next> : <lower index bound>..<upper index bound> // one or more arrays

<data type> : elementary data types | user defined data types | function block types
/l (...)* : One or more further arrays

/1 (...)? : Optional

Data access syntax:

<variable name>[<index of first array>] ([<index of next array>])+ ;

Il (...)* : 0, one or more further arrays

Example One:

PROGRAM PLC_PRG

VYECTOR

VE Controller Programming Manual A T

VAR
aiPoints : ARRAY[1..2,1..3] OF INT :=[1,2,3,4,5,6];
ai2Boxes : ARRAY[1..2] OF ARRAY[1..3] OF INT := [[1, 2, 3], [4, 5, 6]];
ai3Boxes : ARRAY[1..2] OF ARRAY[1..3] OF ARRAY[1..4] OF INT :=[[[1, 2, 3, 4], [5, 6, 7, 81, [9, 10,
11,1211, [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]];
ai4Boxes : ARRAY[1..2] OF ARRAY[1..3] OF ARRAY([1..4] OF ARRAY([1..5] OF INT;
END_VAR

aiPoints[1, 2] := 1200;
ai2Boxes[1][2] := 1200;

The variables aiPoints and ai2Boxes collect the same data elements, but the syntax of the
declaration differs from that of the data

= @ aiPoints ARRAY [1..2, 1..3] OF INT
& aiPaints[1, 1] INT 1
aiPoints[1, 2] INT 1200
d aiPoints[1, 3] INT 3
& aiPoints[2, 1] INT 4
& aiPoints[2, 2] INT 3
2CCESS. d aiPoints[2, 3] INT &
= @ ai2Boxes ARRAY [1..2] OF ARRAY [1.,3] OF INT
= ¢ ai2Boxes[1] ARRAY [1..3] OF INT
@ ai2Boxes[1][1] INT 1
& a@i2Boxes[1][2] INT 1200
& ai2Boxes[1][3] INT 3
= @ aiZBoxes[2] ARRAY [1..3] OF INT
& aiZBoxes[2][1] INT %
@ ai2Boxes[2][Z] INT
& ai2Boxes[2][3] INT &

An array of variable lengths

In a function block, function, or method, you can declare an array VAR_IN_OUT variable
length in the declaration section of the file. the LOWER_BOUND and UPPER_BOUND
operators provide an index range to determine which arrays are actually used at runtime.

Variable length The syntax declared by a one-dimensional array:
<variable name>: ARRAY[*] OF <data type> (:= <initialization>)? ;

<data type> : elementary data types | user defined data types | function block types
/1 (...)? : Optional

A variable-length multi-dimensional array declares the syntax of

<variable name>: ARRAY[* (, *)+] OF <data type> (:= <initialization>)? ;

<data type> : elementary data types | user defined data types | function block types
/[(...)* : One or more further dimensions

https://help.codesys.com/webapp/_cds_datatype_array;product=codesys;version=3.5.15.0

VYECTOR

VE Controller Programming Manual A T

/1 (...)? : Optional

Syntax of operators for calculating limit indices
LOWER_BOUND(<variable name> , <dimension number>)
UPPER_BOUND(<variable name> , <dimension number>)
Example One:

This SUM function adds up the integer values of the array elements and returns the
calculated sum as the result. The sum is calculated over all the array elements available at
runtime. As the actual number of array elements is only known at runtime, the local variables
are declared as variable length one-dimensional arrays.

FUNCTION SUM: INT;
VAR_IN_OUT

aiData : ARRAY[*] OF INT;
END_VAR
VAR

diCounter, diResult : DINT;
END_VAR

diResult := 0;
FOR diCounter := LOWER_BOUND(aiData, 1) TO UPPER_BOUND(aiData, 1) DO // Calculates the
length of the current array
diResult := diResult + A[i];
END_FOR;
SUM := diResult;

6.1.14 Structure structure

Create a structure in a project that has aDUTobject by clicking Add Objects.

Add DUT X
Create a new data unit type
Name
[put
= Device (CODESYS Softmotion RTE V3 x64) Bype
© Application|', " - [] Extends
IEU Library Ma Copy
[8] PLC_PRG - () Enumeration
= (3 Task con % Delete
& EtherC = .
- & MaiTa Refactoring 4)
B Pl Properties... O Alias
%@ Eme”CAT_Ma“* 3 Add Object » Alarm Configuration... Base type
2 SoftMotion Gene[) Add Folder... © Application... .
[Edit Object @ Axis Group... © Union
Edit Object with... @& Camtable..
© Login & CNCprogram...
Delete application from device & CNCsettings...
" Data Sources Manager...
|_ % DUT...
B External File...
@ Global Variable List...
Q image Poo.. i
=0 Interface...

VYECTOR

VE Controller Programming Manual A T

The structure declares the keywords TYPE and STRUCT at the beginning, and is
associated with both END_STRUCT and END_TYPE.

The syntax of the structure declaration:
TYPE <structure name>:
STRUCT

<variable declaration 1>

<variable declaration n>
END_STRUCT
END_TYPE

<structure name> is a type that CODESYS can recognise as a whole item and can be

used as a standard data type. Nested structures can also be used. The only restriction is that
you are not allowed to assign addresses to variables (as AT declarations are not allowed).
Example One:
TYPE polygonline:
STRUCT

start:ARRAY [1..2] OF INT;

point1:ARRAY [1..2] OF INT;

point2:ARRAY [1..2] OF INT;

point3:ARRAY [1..2] OF INT;

point4:ARRAY [1..2] OF INT;

end:ARRAY [1..2] OF INT;
END_STRUCT
END_TYPE

Initializing the structure

Example:

pPoly_1 : polygonline := (start:=[3,3], point1:=[5,2], point2 := [7,3], point3 := [8,5], point4 := [5,7], end :=
[3.,5]);
Initialisation with variables is not allowed.

Accessing structure members

Structure members can be accessed using the following syntax:

<structure name>.<component name>

Thus, the start component polygonline of the structure can be accessed using
poly_1.start in the above example.

VYECTOR

VE Controller Programming Manual A T

Bit access in structures

Bit is a special data type defined only in structures. It reserves one memory
bit and allows the use of names to address individual bits of the structure.
TYPE <structure name>:

STRUCT

<bit name bit1> : BIT;

<bit name bit2> : BIT;

<bit name bit3> : BIT;

<bit name bitn> : BIT;
END_STRUCT
END_TYPE
BIT structure members can be accessed using the following syntax:

<structure name>.<bit name>

6.1.15 Enumerations

Enumeration is a user-defined data type consisting of a series of comma-separated
components (enumeration values) that declare user-defined variables. In addition, you can
use enumered components, such as constants, whose identifiers are globally recognized in
the project.

<enumeration name>.<component name>

You can declare an enumerated in a DUT object and create itinyour project by clicking
AddObiject.

Add DUT x
Create a new data unit type
Name
o y [pur
= Device (CODESYS Softmotion RTE V3 x64)
A Applcation] 7 ¢y O Structure
IP Ubrary M3 g Eobi
[pLc_pre Patin
& Etherg : .
=& MarTa Refactoring 3 [Textlist support
3 L Properties...
= O Alias
* [EthercAT Mastp[:) Add Object 3 Alarm Configuration...
2 SoftMotion Gene[—) Add Folder... © Application... Base type >
o Edit Obj:ect . B} Axis Group... O Union
Edit Object with... & Camtable...
&8 Login @& CNC program...
Delete application from device & Chcsetings..
" Data Sources Manager...
[[zour

& External File...
@ Global Variable List...
@ image Pool... g
=0 Interface...

Declaration syntax:
({attribute 'strict'})? // Pragma optional but recommended

TYPE <enumeration name> :

VYECTOR

VE Controller Programming Manual A T

(

<first component declaration>,

(<component declaration> ,)+

<last component declaration>
)(<basic data type>)? (:= <default variable initialization>)? ;
END_TYPE

(...)?: Optional
<component declaration> : <component name> (:= <component initialization>)?
<basic data type> : INT | UINT | SINT | USINT | DINT | UDINT | LINT | ULINT | BYTE | WORD | DWORD |
LWORD
<variable initialization> : <one of the component names>

In enumerumered declarations, at least two components are typically declared.
However, you can declare as many as you want. Each component can be assigned its own
initialization. Enumeration automatically has a base data type INT,but you can specify
additional base data types. In addition, you can specify a component in a declaration and
then use that component to initialize enumerated variables.

The use of the term ‘attribute 'strict’) causes the rigorous type test described below.
Example 1:
{attribute 'qualified_only'}
{attribute 'strict"}
TYPE COLOR_BASIC :
(

yellow,

green,

blue,

black
)
2 /I The base data type is INT,and COLOR_BASIC the default initialization of all variables is yellow
END_TYPE

6.1.16 Subrange Types

A sub-range type is a data type whose value range is a subset of the base type.

The syntax of the declaration:
<name> : <int type> (<lower limit>..<upper limit>);

<name> Valid IEC identifiers

Sub-range data types
<int type> (SINT, USINT, INT, UINT, DINT, UDINT, BYTE, WORD, DWORD,
LINT, ULINT, LWORD),

VYECTOR

VE Controller Programming Manual A T

Lower limit of the range: constants that must be compatible with the base
data type. The lower limit is also included in the scope.

<lower limit>

Upper limit of the range: constants that must be compatible with the base

<upper limit> L . .
data type. The upper limit is also included in the range.

Example One:

VAR

i: INT (-4095..4095) ;
ui: UINT (0..10000) ;

END_VAR
CODESYS issues an error message if the value assigned to a subrange type in the
declaration or implementation section is not in the range (e.g. i: = 5000). In runtime mode,

the implicit monitoring function CheckRangeSigned and the range restriction
CheckRangeUnsigned, which monitors subrange types, can be used.

VYECTOR

VE Controller Programming Manual A T

6.2 Variable

6.2.1 Local variable -VAR

Local variables are declared in the declaration section END_VAR between the VARs and
the programming object. You can use instance paths for read-only access to local variables,
or you can extend local variables using the attribute keyword.

Example:
Was

iVar1: INT;
END_VAR

6.2.2 Enter the variable - VAR _INPUT

The input variable is used for the input of the function block.

VAR_INPUT variable is declared in VAR_INPUT declaration END_VAR the programming
object between the keyword and the target. You can use the attribute keyword extension to
enter variables.

Example:

VAR_INPUT

iln1: INT; (*the first input variable*)
END_VAR

6.2.3 OQutput variable - VAR_OUTPUT

The output variable is used for the output of the function block.

VAR_OUTPUT variable is declared in VAR_OUTPUT declaration END_VAR the programming
object between the keyword and the target. CODESYS returns the value of this variable to
the calling POU. You can retrieve values there and continue to use them, or you can extend
the output variables using the attribute keyword.

Example:
VAR_OUPUT

iOut1: INT; (* First output variable *)

END_VAR

Output variables in functions and methods.

Functions and methods have additional outputs according to the IEC 61131-3 standard.
These additional outputs must be assigned when the function is called, as shown below.
Example:

VYECTOR

VE Controller Programming Manual A T

fun (iln1: =1, iIn2: =2, iOutl =>iLoc1, iOut2 =>ilLoc2) ;

6.2.4 Input and output variables -VAR_IN_OUT

VAR_IN_OUT variable is an input/output variable that is part of the POU interface and
passes the parameter as a formal reference. Input and output variables FUNCTION_BLOCK
declared inthe VAR_IN_OUT of PRG, method, METHOD, or FUNCTION.

Declaration syntax:
<keyword> <POU name>
VAR_IN_OUT

<variable name> : <data type> (:= <initialization value>)? ;

END_VAR
<keyword> : FUNCTION | FUNCTION_BLOCK | METHOD | PRG

6.2.5 Global variable - VAR GLOBAL

Global variables are ordinary, constant, external, or remaining variables that can be
identified throughout the project.

Global variables can be declared in the list of global VAR_GLOBAL or in the declaration
END_VAR of a programming object between the keywords and and .

Add Global Variable List X
= [Device (CODESYS Softmotion RTE V3 x64) @ Create a new global variable list
-
1 & Appiication
Library Ma i i
 pLc prg| B CoPY St
+ (&4 Task Conf paste
+ (@ EthercaT_maste - Delete
s SoftMotion Gene Refactoring ’
Properties...
2 ”J Add Object 4 Alarm Configuration...
o AddFolder... & Application...
[i° Edit Object &% Axis Group...
Edit Object with... @ Camtable...
© Login & CNC program...
Delete application from device & CNCsettings..
& Data Sources Manager...
% DUT..
[External File... |
3 |@ Global Variable List... 5 R
] Image Pool...
When you add a point before a variable name, such as .iGlobVarl,a global variable is
recognized.
Attention:

If the local variable declared in the block has the same name as the global variable, it
has priority in the block. CODESYS always initializes global variables before local POU

VYECTOR

VE Controller Programming Manual A T

variables

Example One:

VAR_GLOBAL
iVarGlob1: INT;

END_VAR

6.2.6 Temporary variable - VAR_TEMP

The Temporary Variables feature is an extension of the IEC 61131-3 standard.

You can declare VAR_TEMP locally END_VAR between the keywords and the relevant
keywords. VAR_TEMP declaration is only available in program blocks and function blocks.
CodeSYS initializes the temporary variable each time the block is called. Applications can
only access temporary variables in the implementation part of a block or function block.
VAR_TEMP
iVarTmp1:INT;(the first temporary variable
END_VAR

6.2.7 Static variable - VAR _STAT

This feature is an extension of the IEC 61131-3 standard.

You can declare VAR_STAT locally END_VAR between the keywords and and the key.
CodeSYS initializes static variables the first time each block is called. Static variables can only
be accessed from the namespace where the variable is declared. However, when the
application leaves the block, the static variable retains its value. For example, you can use
static variables as counters for function calls. Static variables can be extended using the
attribute keyword.

Example 1:

VAR_STAT
iVarStat1: INT;

END_VAR

6.2.8 External variable - VAR _EXTERNAL

An external variable is a global variable that is imported into a block.
You can declare VAR_EXTERNAL variables between the keywords and END_VAR. If the global
variable does not exist, an error message is displayed.

VYECTOR

VE Controller Programming Manual A T

Attention:

CODESYS does not require you to declare a global variable as an external variable to
use it in the POU. This keyword is used only to maintain compliance with [EC 61131-3.
Language:
<POU keyword> <POU name>
VAR_EXTERNAL

<variable name> : <data type>;
END_VAR

This variable does not allow initialization.

Example:
FUNCTION_BLOCK FB_DoSomething
VAR_EXTERNAL

iVarExt1: INT; (*First variable*)
END_VAR

6.2.9 Instance variable - VAR INST

CODESYS does VAR_INST method variables in the method stack, but in the stack of
feature block instances. This means VAR_INST functions like other variables in the function
block instance and is not reinitialized each time the method is called.

VAR_INST only allow variables in methods, and they can only be accessed within the
method. Monitor the variable values of instance variables in the declaration section of the
method.

You can extend instance variables using the attribute keyword.

Example One:
Method meth_last: INT
VAR_INPUT

iVar: INT;
END_VAR
VAR_INST

iLast: INT: =0;
END_VAR
meth_last: =ilLast;

iLast: =iVar;

VYECTOR

VE Controller Programming Manual A T

6.2.10 Configuration variable - VAR_CONFIG

Use configuration variables to assign full addresses to variables with incomplete
addresses declared in the function block, which are mapped to device I/O. Declare
VAR_CONFIG in END_VAR list of global variables between and . The list of global variables is
called a "variable configuration" in which you can type configuration variables with the full
instance path and the correct address.

Example 1:
Declare the variable %l,which is not complete in the function block, is :
FUNCTION_BLOCK locio
Was

xLocIn AT%I *: BOOL: = TRUE;
END_VAR
The locio function block is used PLC_PRG program:
PROGRAM PLC_PRG
Was

locioVar1: locio;
END_VAR
The correct variable configuration in the list of global variables is as follows:
VAR_CONFIG

PLC_PRG.locioVar1.xLocln AT%1X1.0: BOOL;

END_VAR

6.2.11 Constant variable - VAR CONSTANT

Constant variables are declared in the list of global variables or in the declaration
section of a programming object. In an implementation, constant variables can be accessed
as read-only through the instance path.

Language:
<scope> CONSTANT

<identifier> : <data type> := <initialization> ;

END_VAR

<scope> : VAR | VAR_INPUT | VAR_STAT | VAR_GLOBAL
When you declare a constant variable, you always assign an initialization value. So you
can't write constants anymore.
Example 1:
Statement
VAR CONSTANT
c_rTAXFACTOR : REAL :=1.19;

VE Controller Programming Manual A T

END_VAR

Call

rPrice := rValue * c_rTAXFACTOR,;

In an implementation, you can access constant variables only in a read-only manner. The
constant variable is to the right of the assignment operator.

6.2.12 Persistence variable -PERSISTENT

Persistent variables are declared in the VAR_GLOBAL RETAIN PERSISTENT declaration
section of the persistent global VAR_GLOBAL list. For variables marked with keywords outside
the persistence editor, the instance path is added to it.

~ (@ Device (CODESYS Softmotion RTE V3 x64) Add Persistent Variables %
= Bl PLC Logic
1 | £ Application T
- ﬂpzw o Cut Create a new global variable list
B
Library m Copy,
[pic_prg|© PEste
X Delete Name
+
(24 Task Con
+ [EtherCAT Masta Refactoring >
3 Softhotion Gend Properties...
2 |51 Add Object + Alarm Configuration...
) Add Folder... € Application...
[T Edit Object @& Axis Group...
Edit Object with... @ Camtable...
€ Login & CNC program...
Delete application from device &) CNCsettigs..
&® Data Sources Manager...
% DUT...
[External File...
@ Global Variable List...
£] Image Pool...
=0 Interface...
@ Network Variable List (Receiver)...
@ Network Variable List (Sender)...
3 [T Persistent Variables... r
& POU for implicit checks...

ﬂ PersistentVars x

VAR GLOBAL PERSISTENT RETAIN

W

END VAR

A variable declares PERSISTENT RETAIN withthe same effect as RETAIN PERSISTENT or
PERSISTENT.

The syntax persistentVars declared in the list of global persistent variables:
VAR_GLOBAL PERSISTENT RETAIN
<identifier>: <data type> (:= <initialization>)?;
<instance path to POU variable>
END_VAR

VYECTOR

VE Controller Programming Manual A T

The syntax declared in the POU:
<scope> PERSISTENT RETAIN

<identifier>: <data type> (:= <initialization>)?; /I (...)7: Optional
END_VAR
<scope> : VAR | VAR_INPUT | VAR_OUTPUT | VAR_IN_OUT | VAR_STAT | VAR_GLOBAL
Attention:

1. Never use pointer TO data types in a persistent variable list. If you download the
application again, its address may change.

2. The AT keyword is not allowed to be used to assign input, output, or memory
addresses.

3. If you frequently change the name or data type of the remaining variables, it is best
for RETAIN to declare them as reserved variables only using keywords.

4. There are two ways to declare: a, declare variables directly in the list of persistent
variables, and avoid inserting instance paths. b, declare locally in the program or function
block, and add the instance path in the list of persistent variables (here's how). Both
methods, which use twice as much memory, also increase cycle time.

Declare directly in the list of permanent | This variable is persistent and is located in a
global variables protected memory area.

Local declarations in programs with

instance paths in the list of persistent . . _ _ _

_ The variable is persistent and is located in a
variables _
protected memory area and in memory (double

allocation).

Local declarations in function blocks
with instance paths in the list of
persistent variables

This variable is not persistent. A warning is

displayed in the message window.
Local to the program only o _ . .
_ _ Tip: "Click on Declaration * Add all instance paths
Local in function blocks only _ _ _ _ ,
to import the variable into the list of persistent

variables.

) This declaration has no effect. This variable is not
Local functions

persistent.

Method a:
Declaration of PersistentVars in the list of persistent variables:
{attribute'qualified_only"}
VAR_GLOBAL
PERSISTENT RETAIN g_iCounter: INT;
/I Generated persistent variables
PLC_PRG.fb_A.iPersistentCounter_A: INT;
END_VAR

Method b:
Declare locally or in a function block:

VYECTOR

VE Controller Programming Manual A T

[E pLC_PRG x
PROGRAM PLC_PRG

H 3 VAR PERSISTENT RETAIN
! iPersistentCounter A:INT;
END VAR

Add an instance path to the list of persistent variables

File Edit View Project | Declarations = Build Online Debug Tools Window Help

1=l & < =¥ >‘| Add All Instance Paths | # | Application [Device: PLC Logic] - &%
Reorder List and Clear Gaps

evices Save Current Values to Recipe s x
3 Restore Values from Recipe
)) E] 3| VAR GLOBAL PERSISTENT RETAIN
+ [Device (CODESYS Softmotion RJE V3 x64) 3 T e RS Ead ARRtanhG ELE OF pais et RataET
=8l PLC Logic 4 PLC_PRG.iPersistentCounter A: INT;
=-{} Application 5| | END varR
@ G

i) Library Manager
[E] PLC_PRG (PRG)

+ 3 Task Configuration
+-(i] EtherCAT Master_SoftMotion (EtherCAT Master Softl
Avoid, as far as possible, the variable PERSISTENT declared in the function blockby atag.

This is because the function block instance is stored entirely in the remaining memory, not
just the tagged variable.

6.2.13 Reserved variable - RETAIN

The declaration of a reserved variable is in the keyword PRESERVEdeclaring
thescope:VAR,VAR_INPUT,VAR_OUTPUT,VAR_IN_OUT VAR_STAT, or VAR_GLOBAL.

Declaration syntax:
<scope> RETAIN
<identifier>: <data type> (:= <initialization>)? // (...)? : Optional
END_VAR
<scope> : VAR | VAR_INPUT | VAR_OUTPUT | VAR _IN_OUT | VAR_STAT | VAR_GLOBAL
Attention:
The use of AT key words to assign input, output, or memory addresses is not allowed.

The declared area:

In program local Only the variables are located in the reserved storage area.

Global in the list of | Only the variables are located in the reserved storage area.
global variables

Local in function |The entire instance of a function block and all its data are located in the
block reserved memory. Only the declared reserved variables are protected.

Local functions Even the variable is not located in the reserved storage area. This

VYECTOR

VE Controller Programming Manual A T

statement has no effect.

Local and persistent | Even if the variable is not located in a reserved storage area. The

operation statement has no effect.

Avoid using variables from the RETAIN marker function block where possible.

6.2.14 Special variables -SUPER

SUPER is a special variable for use in object-oriented programming.
SUPER is a pointer to a function block, which points to the basic function block
instance from which the function block is generated. The pointer therefore also allows
access to the implementation of the methods of the basic function block (basic
class).The SUPER pointer is automatically available for each function block.SUPER
can only be used within the methods and the associated function block implementation.
Dereferencing of pointers: SUPER”
Use of the SUPER pointer: With the keyword SUPER it is possible to call methods that
are valid in the base class or in an instance of the parent class.
Examplel:

ST:

SUPER” .METH_DoIt();

FBD / CFC / LD:

SUBER"
METH DoIt
METH_DoIt |-

6.3 Operators

CODESYS supports all IEC-61131-3 operators. These operators are implicitly recognised
throughout the project. In addition to these IEC operators, CODESYS also supports certain
non-IEC 61131-3 standard operators.

Operators are used in blocks such as function blocks. They include arithmetic operators,
bit string operators, bit shift operators, selection operators, comparison operators, address
operators, call operators, type conversion operators, numerical operators, namespace
operators, multicore operators, other operators, etc.

Arithmetic Operators

“ADD”
“SuUB”
“MUL”

VYECTOR

VE Controller Programming Manual A T

“DIV”
'MOD'
“MOVE”

“ INDEXOF”
“ SIZEOF”

Bit String Operators

“ AND”
« OR"

“XOR”
“NOT”

“ AND_THEN’
“OR_ELSE”

Shift Operators

“ SHL”
“SHR”
“ROL”
“ROR”

Selection Operators

“ SEL”
“MAX”
“MIN”
“LIMIT”
“MUX”

Comparison Operators

GT
-
‘LE"
GE'
«EQ"
NE

Address Operators
“ADR”

Content Operators
“BITADR”

Call Operators
“CAL”

Type conversion operators

javascript:navigateTo('_cds_operator_mod',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_or',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_and_then',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_or_else',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_shl',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_shr',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_rol',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_ror',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_sel',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_max',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_min',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_limit',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_mux',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_gt',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_lt',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_le',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_ge',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_eq',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_ne',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_adr',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_content_operator',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_bitadr',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_cal',%20'codesys',%20'3.5.15.0');

VYECTOR

VE Controller Programming Manual A T

Implicit conversion from a larger type to a smaller type is not possible (for example,
from INT to BYTE or from DINT to WORD). A special type conversion must be used to
convert a larger type to a smaller type. Normally, you can convert any basic type to any other
basic type
Type conversion: <elementary typel>_TO_<elementary type2>
Overflow conversion: TO_<elementary type2>

Overflow conversion of numeric arithmetic symbols

“ABS”

“ SQRT”
“LN”
“LOG”
“EXP”
“EXPT”
“SIN”
“ASIN”
'‘COS'
“TAN”
'‘ACOS'
“ATAN”

javascript:navigateTo('_cds_operator_expt',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_sin',%20'codesys',%20'3.5.15.0');

VE Controller Programming Manual A T

6.3.1 Arithmetic operator

Add "ADD" to the operation

The IEC operator is used to add variables.

Allowed data types: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT,
UDINT, LINT, ULINT, REAL, LREAL, TIME, TIME_OF_DAY (TOD)DATEDATE_AND_TIME(DT)

Possible combinations of TIME data types:TIME-TIME-TIME, TOD-TIME-TOD,
DT-TIME,DT-TIME, DT

Features in the FBD/LD editor: ADD can be extended to function block inputs. The
number of additional function block inputs is limited.

Example:

ST:

varl: =7+2+4+7,
FBD:

WD [amo T
basevarl 1 |— + 233 + 99 + 0l F—ecgvac 3oL |
addvarl [232 |— addverz [68 |— al—

RDD]
basewarl [1 | 55 300 —erguar [200

addvarl

addvar2 [66 |

2 —

end [IEIEN

aTAarc
basewvarl
addwarl
addwarl

ELOVAr aod |

“MUL” Multiplication operations

This IEC operator is used to multiply variables together.

Allowed data types: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT,
UDINT, LINT, ULINT, REAL, LREAL, TIME

Function in the FBD / LD editor. MUL operators can be extended to additional function
block inputs. The number of additional function block inputs is limited.
Example:
ST:
varl: =7*2%4*7,
FBD:

VE Controller Programming Manual A T
. ME) e s | WL —— S
verl[46— o H 4 —————— x 4| : 1 x [La%é —res [[1496 |
var2 f 1 verd| & 34 -
ML
varl 44 " — tes | 1436 |
vars O
vacd| 1 P
34—

end [IEEEH

ETALT
vazl |

var?

“SUB” Subtraction operations

This IEC operator is used to subtract the variable.

Allowed data types: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT,
UDINT, LINT, ULINT, REAL, LREAL, TIME,,, TIME_OF_DAY (TOD)DATEDATE_AND_TIME (DT)

Possible combinations of TIME data types: TIME-TIME= TIME, DATE-DATE= TIME,
TOD-TIME= TOD, TOD-TOD= TIME, DT-TIME= DT, DT-DT=TIME

Note
Negative TIME values are not defined.
Example:

ST:

varl: =7-2;
FBD:
SUB
e —— Varl

5 —

“DIV” Division operations

This IEC operator is used to divide variables.
Allowed data types: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT,
UDINT, LINT, ULINT, REAL, LREAL, TIME, The result of dividing by zero may vary depending

on the target system.
Example:

ST:

varl: =8/2;

VE Controller Programming Manual A T

FBD:

DIV [prv DIV
varl 58 | ==) [) [T =
wvarz [1+ vard [1 34 —

DI‘;
warl [58 ", H e F—rea [1 |

var2 { 1 |—|

=tart

varl [és I—I ‘Ilr

34—

"MOD"take-out operation

This IEC operator is used for die-out.

The result of the function is an integer remaining part of the divide.

Allowed data types:BYTE,WORD,DWORD,LWORD,SINT,USINT,INT,UINT,DINT,UDINT,LINT,ULINT.
Results divided by zero may vary depending on the target system.

Example

ST:

varl: =9MOD 2; //result: 1

FBD:

HOD
" S —— Varl
7 —

“MOVE” Assignment operations

This IEC operator is used to assign a variable to another variable of the corresponding
type.

As this MOVE block is available in the CFC, FBD and LD editors, it is also possible to use
the EN / ENO function for variable assignment.
CFC with EN / ENO function:

CODESYS assigns the value of varl to var2 only if "en_i" is TRUE.

MOvE] i
en_i EM EMHO en_n
2
warl vare

ST:
ivar2 := MOVE(ivarl);
Equivalent to:

ivar2 := ivarl;

VECTOR

VE Controller Programming Manual

“SIZEOF“Byte operations

This operator is an extension of the IEC 61131-3 standard. This operator is used to
define the number of bytes x required for a variable.
The SIZEOF operator always produces an unsigned value. The type of the returned

variable is adapted to the detected variable size x.
Constant data types (CODESYS uses implicit size

Return value of SIZEOF(x)

detection)
0 <=size of x < 256 USINT
256 <= size of x < 65536 UINT

65536 <= size of x < 4294967296 |[UDINT

4294967296 <= size of x ULINT

Example:

ST:

arr1 : ARRAY[0..4] OF INT;

Var1 : INT;

var1 := SIZEOF(arr1); (* var1 := USINT#10; *)

6.3.2 Bit-Serial Operators

“AND”

This IEC operator is used to operate on numbers by AND bits.
When the input bits are all 1, the output bit is 1; otherwise, the output is 0. Allowed data
types:BOOL, BYTE, WORD, DWORD, LWORD
Example:
ST:
varl: =2#1001_0011 AND 2#1000_1010; // The result varl is 2#1000_0010
FBD:

2#1001_0011— —— warl
2#1000_1010—

“OR”

This IEC operator is used to operate on numbers by OR bits.

VYECTOR

VE Controller Programming Manual A T

When at least one of the input bits produces a 1, the output bit also produces a 1;
otherwise, the output bit is 0. Allowed data types:BOOL, BYTE, WORD, DWORD, LWORD

Example:

ST:

Var1: =2#1001_0011 OR 2#1000_1010; //The result varl is 2#1001_1011
FBD:

1134

Z#1001_0011 —
Z#1000_1010 —

Varl

1] N OTH

This IEC operator is used for the by bit of the NOT bit operand.
The output bit produces a 1 when the corresponding input bit produces a 0, and vice versa.
Allowed data types: BOOL, BYTE, WORD, DWORD, LWORD

Example:
ST:
var1: =NOT 2#1001_0011; //The result varl: 2#0110_1100
FBD:
HOT
2#1001_0011— — wvarl
“XOR”

When and only when one of the two input bits is 1, the output bit also produces a 1.
When both inputs are 1 or both are 0, the output produces a 0. Allowed data types: BOOL,
BYTE, WORD, DWORD, LWORD

Example:
ST:
var1: =2#1001_0011 XOR 2# 1000_1010; /[The result varl: 2#0001_1001
FBD:
XOR
Z2#1001_0011— —— warl

2#1000_1010—

“AND_THEN"

TRUE when all operands are produced and the result of the operand is produced TRUE;
otherwise FALSE.

VYECTOR

VE Controller Programming Manual A T

“OR_ELSE”

When at least one operand is produced TRUE, the result of the operation also produces
TRUE; otherwise FALSE.

6.3.3 Shift operators

“SHL” Left shif

This IEC operator is used to shift the operand to the left.
erg := SHL (in, n)
in: the operand shifted to the left, n: the number of bits of in shifted to the
left. The number of bits n for this operation is defined by the data type of the
input variable in.
Example:
ST:
PROGRAM shl_st
VAR
in_byte : BYTE := 16#45; (* 2401000101)
in_word : WORD := 16#0045; (* 2#0000000001000101)
erg_byte : BYTE;
erg_word : WORD;
n: BYTE :=2;
END_VAR

erg_byte := SHL(in_byte,n); (* Result is 16#14, 2#00010100 *)
erg_word := SHL(in_word,n); (* Result is 1640114, 240000000100010100 *)
FBD:

SHL
i — —erg_hyte
> —

“SHR” Right shift

This IEC operator is used to move the operand to the right.

erg := SHR (in, n)

in: the operand shifted to the right, n: the number of bits of in shifted to the right.
Example.:

ST:

VYECTOR

VE Controller Programming Manual A T

PROGRAM shr_st
VAR
in_byte : BYTE:=16#45; (* 2#01000101)
in_word : WORD:=16#0045; (* 2#0000000001000101)
erg_byte : BYTE;
erg_word : WORD;
n: BYTE :=2;
END_VAR

erg_byte := SHR(in_byte,n); (* Result is 16#11, 2400010001 *)
erg_word := SHR(in_word,n); (* Result is 1640011, 2#0000000000010001 *)
FBD:

S5HR
in_byte— ——erg_byrte
> —

“ROL” Cyclic left shift

This IEC operator is used to loop the operand to the left. Allowed data types: BYTE,
WORD, DWORD, LWORD

erg := ROL (in, n)

Moves in n bits to the left and then adds that bit from the right to the leftmost position.
Define in by the data type of the input variable. if this is a constant, the smallest data type is
used. The data type of the output variable still does not affect this operation.

Example:
ST:
PROGRAM rol_st

VAR
in_byte : BYTE := 16#45;
in_word : WORD := 16#45;
erg_byte : BYTE;
erg_word : WORD;
n: BYTE :=2;

END_VAR

erg_byte := ROL(in_byte,n); (* Result: 16#15 *)

erg_word := ROL(in_word,n); (* Result: 16#0114 *)
FBD:

VYECTOR

VE Controller Programming Manual A T
ROL
in _byte— —— erg_byte
n—

“ROR” Cyclic right shift

This IEC operator is used to loop the operand to the right. Allowed data types: BYTE,
WORD, DWORD, LWORD

erg := ROR(in,n)

Moves in n bits to the right and then adds that bit from the left to the rightmost position.
Define in by the data type of the input variable. if this is a constant, the smallest data type is
used. The data type of the output variable still does not affect this operation.

Example:
ST:
PROGRAM ror_st

VAR
in_byte : BYTE := 16#45;
in_word : WORD := 16#45;
erg_byte : BYTE;
erg_word : WORD;
n: BYTE :=2;

END_VAR

erg_byte := ROR(in_byte,n); (* Result: 16#51 *)

erg_word := ROR(in_word,n); (* Result: 16#4011 *)
FBD:

ROR
in_hyte— ——erg_byte

n

6.3.4 Selection operators

“SEL” Select

The IEC operator is used to select by bit.
OUT := SEL(G, INO, IN1)

Equivalent to :

OUT := INQ; if G = FALSE

VECTOR

VE Controller Programming Manual

OUT := IN1; if G = TRUE
INO, ... Data types for INn and OUT: any of the same data types, G: BOOL,

Example:
ST:
Var1: =SEL (TRUE, 34) ; (*Result: 4%*)
FBD:
SEL
TRUE —1& Varl
3 —IND
4 —IN1

“MAX” Maximum value

This IEC operator is used for the maximum function. It produces the maximum of two
values.

OUT := MAX(INO, IN1)

Allowed data types: all

Example
ST:
Varl: = MAX (40, MAX (90,30)) ; Result: 90
FBD:
M MAx M
=] Ly —— Varl
] 40 T

“MIN” Minimum value

This IEC operator is used for the minimum function. It yields the smallest value of two
values.
OUT := MIN(INO,IN1)
Permitted data types: all

Example:
ST:
Var1: =MIN (MIN (90, 30) ,40) ; “ Result, 30”
FBD:
MIH MTH MIH
0 —— Varl
30 40 A

VYECTOR

VE Controller Programming Manual A T

“LIMIT” Limit values

This IEC selection operator is used to restrict the.

OUT := LIMIT(Min, IN, Max)

Equivalent to: OUT := MIN (MAX (IN, Min), Max), Max is the upper limit of the result, Min
is the lower limit of the result. If the value IN is higher than the upper limit of Max, the LIMIT
result is Max. If the value IN is lower than the minimum Min lower limit, the result is Min.

Allowed data types IN and OUT: All

Example
ST:
Var1: =LIMIT (30,90,80) ; /IThe result Var1 is 80

“MUX” Multiplexing

This IEC operator is used as a multiplexer.
OUT := MUX(K, INO,...,INn), Equivalentto: OUT = IN_K
MUX selects the Kth value from a set of values. The first value is K = 0. If
K is greater than the number of other inputs (n), the last value is passed (INn)
Allowed data types K: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT,
LINT, ULINT, UDINT,
E
ST:
Var1: = MUX (0,30,40,50,60,70,80) ; // The result Varl is 30.

6.3.5 Comparison operators

“GT” greater than

This IEC operator is used for the "greater than" function. If the first operand is greater
than the second operand, the operator produces a TRUE result; otherwise FALSE.
Allowed data types: any basic data type.

Example:
ST:
VAR1: =20>30; Result: FALSE
FBD:
GT
20 —— Warl

30

VYECTOR

VE Controller Programming Manual A T

“LT” Less than

This IEC operator is used for the "less than" function. If the first operand is less than the
second, the operator produces a TRUE result; otherwise FALSE.
Allowed data types: any basic data type.

Example:
ST:
Var1: =20 <30; //Result: TRUE
FBD:
LT
20 —— Warl
30

“LE” Less than or equal to

This IEC operator is used in the "less than or equal to" function. If the first operand is less
than or equal to the second operand, the operator produces a TRUE result; otherwise FALSE.
Allowed data types: any basic data type.
Example:
ST:

Var1: =20 <=30; Result:vari: TRUE

FBD:

LE
20 —— Varl
30

“GE” Greater than or equal to

This IEC operator is used in the "greater than or equal to" function. If the first operand is
greater than or equal to the second operand, the operator produces a TRUE result; otherwise
FALSE.

Allowed data types for operands: any basic data type.

Example:
ST:
VAR1: =60>=40; result: TRUE
FBD:
GE
60 —— Varl

40—

VYECTOR

VE Controller Programming Manual A T

“EQ” equals

The IEC operator is used for the "equal” function. If the input numbers are equal, the
operator produces a TRUE result, otherwise FALSE.
Allowed data types: any basic data type.

Example:
result: TRUE
ST:
VAR1: =40 =40;
FBD:
EQ
20— —— Varl
20—

“NE”Not equals

This IEC operator is used in the "not equal” function. If the operands are not equal, the
operator produces a TRUE result; otherwise FALSE.
Allowed data types: any basic data type.

Example:
ST:
Var1: =40 <> 40; result Varl is FALSE
FBD:
HE
40— —— Warl
40—

6.3.6 Address operators

“ADR”

This operator is an extension of the IEC 61131-3 standard. the ADR generates the
address DWORD of its parameter in. this address can be passed to the manufacturer
function or they can be assigned to a pointer in the project.

Caution.

The ADR operator can be used together with function names, program names, function
block names and method names. Thus, ADR replaces the INDEXOF operator.

ST:

VYECTOR

VE Controller Programming Manual A T
VAR
<address name> : DWORD | LWORD | POINTER TO < basis data type>
END_VAR
<address name> := ADR(<variable name>);
Example:
FUNCTION_BLOCK FB_Address
VAR

piAddress1: POINTER TO INT;

iNumber1: INT := 5;

IwAddress2

iNumber2: INT := 10;
END_VAR

piAddress1 := ADR(iNumber1); // piNumber is assigned to address of iNumber1
IwAddress2 := ADR(iNumber2); // 64 bit runtime system

“Content Operator”

This operator is an extension of the IEC 61131-3 standard. This operator can be used to
dereference a pointer by appending ” to the pointer identifier. When using a pointer to an
address, please note that applying online changes may shift the address content.

Example:

ST:

pt: POINT TO INT;
var_int1: INT;
var_int2: INT;

pt: =ADR (var_int1) ;
var_int2: =pt#;

“BITADR”

This operator is an extension of the IEC 61131-3 standard. bit offset DWORD in the
segment generated by BITADR. the offset depends on whether the byte addressing
checkbox is selected in the target system settings. The highest half-byte (4 bits) DWORD
defines the storage range:

Flag: 16x40000000

Input: 16x80000000

Output: 16xC0000000

When using a pointer to an address, please note that applying online changes may shift
the contents of the address
Example:

ST:

VYECTOR

VE Controller Programming Manual A T

WHERE
Var1 AT%IX2.3: BOOL;
bitoffset: DWORD;
END_VAR

bitoffset: = BITADR (var1) ;
(* Byte addressing = TRUE A: 16x80000013, Byte addressing = FALSE Ad: 16x80000023 *)

6.3.7 Calling operators

“CAL” Call

This IEC operator is used to call function blocks. Example of a CAL call to a function
block in IL

CAL <function block> (<input variablel> := <value>, <input variableN> := <value>)
Example:

Inst calls the instance of the function block with the input variables Parl,
Par2 and the assigned @ or TRUE
CAL Inst(Par1 := 0, Par2 := TRUE);

6.3.8 Numerical operators

“ABS” Absolute values

This IEC operator yields the absolute value of a number.
Allowed data types: any numeric basic data type

Example:
ST:
i: =ABS (-2) ; [/lresult | is 2
FBD:
ABS
- — i
HSQRT”

This IEC of course yields the square root of a number.

VYECTOR

VE Controller Programming Manual A T

Permitted data types for input variables: any numeric basic data type
Permitted data types for output variables: REAL or LREAL

Example:
ST:
q: =SQRT (16) ; // Result q: 4
FBD:
SORT
16— |

“LN” Natural logarithm

This IEC operator yields the natural logarithm of a number.
Allowed data types for input variables: any numeric basic data type.
Permissible data types for output variables: REAL and LREAL.

Example:
ST:
Q=LN (45) ; /lresult: 3.80666
FBD:
LH
45 ——

“LOG” Constant logarithm

This IEC operator yields a logarithm with a base of 10.
Allowed data types for input variables: any numeric basic data type.
Permissible data types for output variables: REAL and LREAL.

Example:
ST:
q: =LOG (314.5) ;/lresult q: 2.49762
FBD:
Loz
314.5— — o

“EXP” Exponent of the natural number e

This IEC operator produces an exponential function.

VYECTOR

VE Controller Programming Manual A T

Allowed data types for input variables: any numeric basic data type
Permissible data types for output variables: REAL and LREAL

Example:
ST:
q: =EXP (2) ; /Iresult q: 7.389056099
FBD:
EXP
27 !

“EXPT” (Yth power of X)

This IEC operator is used to calculate the power function, power = base exronent,
Grammar:
EXPT(<base>, <exponent>)

Input value data type: SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL,
LREAL, BYTE, WORD, DWORD, LWORD
Data type of return value: floating point type (REAL and LREAL)
Example 1:
Power functions with text
Var1 := EXPT(7,2);
FBD:

EXPT
o S —— Varl
o —

result: Varl = 49

Example 2:
Power functions with variables
PROGRAM PLC_PRG
VAR

IrPow : LREAL;

iBase : INT := 2;

iExponent : INT := 7;
END_VAR

IrPow := EXPT(iBase, iExponent); // result: lrPow = 128

VYECTOR

VE Controller Programming Manual A T

“SIN” Sine function

This IEC operator yields the sine of a number.

Input variables for measuring angles in radians, allowed data types: any numeric basic
data type

Allowed data types for output variables: REAL F1 LREAL

Example:
ST:
q: =SIN (0.5); llresult q: 0.479426
FBD:
STH
0.5 I—

“COS” The cosine function

This IEC operator yields the cosine value of a number.

Input variables for measuring angles in radians, allowed data types: any numeric basic
data type

Allowed data types for output variables: REAL F1 LREAL

Example:
ST:
q: =COS (0.5) ; /lresult q: 0.877583
FBD:
cos
0.5 ——

“TAN” tangent function

This IEC operator yields the tangent value of a number.
Input variables for measuring angles in radians, allowed data types: any numeric basic
data type
Allowed data types for output variables: REAL F1 LREAL
Example:
ST:
g: = TAN (0.5); //resultq: 0.546302
FBD:

TAH

VYECTOR

VE Controller Programming Manual A T

“ASIN” Sine function anyway

This IEC operator yields the inverse sine value of the number.
Permissible data types for input variables: any numeric basic data type
Permissible data types for output variables: REAL F1 LREAL

Example:
ST:
q: =ASIN (0,5) ; /lresult q: 0.523599
FBD:
ASTH
0.5 I—

“ACOS” The inverse cosine function

This IEC operator yields the inverse cosine of the number. The value is calculated in
radians.

Permissible data types for input variables: any numeric basic data type

Permissible data types for output variables: REAL F1 LREAL

Example:
ST:
q: =ACOS (0.5) ; /lresult : q=1.0472
FBD:
ACO0s
0.5 —

“ATAN” Anyway tangent function

This IEC operator yields the arctangent value of the number. The value is calculated in
radians.

Input variables for measuring angles in radians, permitted data types: any numeric basic
data type

Allowed data types for output variables: REAL F1 LREAL
Example:
ST:

VYECTOR

VE Controller Programming Manual A T

q: =5 (0.5); /lresult q: 0.463648

FBD:

AT AH

6.3.9 Type conversion operators

“BOOL_TO”

The IEC operator is used to convert a BOOL data type to another data type. Syntax:
BOOL_TO_<data type>
When the data type is NUMBER, the result is 1 when the Boolean value is TRUE and 0
when it is FALSE.
When STRING data type, the result is TRUE or FALSE,

Example:
ST code Result
i := BOOL_TO_INT(TRUE); 1
str := BOOL_TO_STRING(TRUE); TRUE
t := BOOL_TO TIME(TRUE); T#lms
tof := BOOL_TO_TOD(TRUE); TOD#00:00:00.001
dat := BOOL_TO DATE(FALSE); D#1970
dandt := BOOL_TO DT(TRUE); DT#1970-01-01-00:00:01
FBD code Result
BOOL TO INHT
TRUE— — i 1
BOOL TOD STRIHG
TRIE— - atr TRUE
BOOL TO TIME
TEITF— & T#1ms
BOOL T0 TOD TOD#00:00:00.001
TRUE— —— tof TR T

VYECTOR

VE Controller Programming Manual A T
FBD code Result
BOOL TO DATE
FALSE— — D#1970-01-01
BOOL T0 DT DT#197 1-01 100:01
TEIE— dandt 0-01-01-00:00:0
“TO_BOOL”

The IEC operator is used to convert other variable types to BOOL variables. Syntax:
<data type>_TO_BOOL
The result is TRUE when the operand is not equal to 0. The result is FALSE when the
operand is equal to 0.

For the STRING type, the result is TRUE if the operand is "TRUE"; otherwise it is FALSE.
Example:

ST code Result
b := BYTE_TO_BOOL(2#11010101); TRUE
b := INT_TO_BOOL(@); FALSE
b := TIME_TO_BOOL(T#5ms); TRUE
b := STRING_TO_BOOL('TRUE'); TRUE
FBD code Result
BYTE TO BOOL
25— _— TRUE

IHT TO BOOL
0 — b FALSE

TIME TO BOOL TRUE
C#Ims— I—h U

STRING TO BOOL
TRUE! — — TRUE

“TO_ <xxx>"

The IEC operator is used to convert a variable of one data type to another data type.
TO_<data type>

Information may be lost when converting from a larger data type to a smaller data type.

VYECTOR

VE Controller Programming Manual A T

If the value to be converted is outside the range limit, CODESYS will ignore the first few bytes
of the value. This is the case, for example, when converting from LREAL to a negative DINT
input value.
Example:
ST:
VAR
iVar : INT;
bVar : BOOL,;
sVar : STRING;
rVar : REAL;
END_VAR

iVar := TO_INT(4.22); (* Result: 4 *)
bVar := TO_BOOL(1); (* Result: TRUE *)
sVar := TO_STRING(342); (* Result: '342')
rVar := TO_WORD('123'); (* Result: 123 *)

“<INT Type>_TO_<INT Type>"

Converts one integer data type to another integer data type.
<INT data type> TO _<INT data type>

Note that information may be lost when converting from a larger data type to a smaller
data type. If the value to be converted is outside the range limit, CODESYS will ignore the
first few bytes of the value.
Example:
ST:
si:=INT_TO_SINT(4223); /[Result: Result in si: 127

If the integer 4223 (represented in hexadecimal as 16 #107f) is saved as a separate SINT
variable, the value 127 (represented in hexadecimal as 16 #7f) will be assigned to this
variable.
FBD:

IHT TD SIHT
4ZZ3—] — =1

“REAL_TO- / LREAL_TO”

The IEC operator is used to convert REAL and LREAL data types to another data type.
REAL_TO <data type>
LREAL_TO_<data type>

Rounds the real value of an operand up or down to an integer value and then converts

VYECTOR

VE Controller Programming Manual A T

it to the appropriate type. (Exceptions are STRING, BOOL, REAL, and LREAL data types).
Examples

ST code Result
i := REAL_TO_INT(1.5); 2
j := REAL_TO_INT(1.4); 1
i := REAL_TO_INT(-1.5); -2
j := REAL_TO_INT(-1.4); -1
FBD code Result
LEREAL TO IHT
15— — i 2

“TIME_TO / TIME_OF_DAY_TO”

This IEC operator is used for converting the TIME and TIME_OF_DAY data types into another
data type.

<TIME data type>_TO_<data type>

Internally, CODESYS saves the time (in milliseconds) to a DWORD (for TIME_OF_DAY since
00:00). CODESYS converts this value.

For the STRING data type, the result is the time constant.

Example:

ST code Result
str := TIME_TO_STRING(T#12ms); T#12ms
dw := TIME_TO_DWORD(T#5m); 300000
si := TOD_TO_SINT(TOD#00:00:00.012); 12
FBD code Result

TIME TO STRIHG
L#l 2ms—] —— str T#12ms

TIME TO DWORD
4 5m— — du 30000

TOD TO SINT
TOD#00:00: 00, 012— — 51 12

VYECTOR

VE Controller Programming Manual A T

“DATE_TO / DT_TO”
This IEC operator is used for converting the DATE and DATE_AND_TIME data types into
another data type.
<DATE data type>_TO_<data type>

Internally, CODESYS saves the date to a DWORD (in seconds since 01 January 1970).
CODESYS converts this value.

For the STRING data type, the result is the date constant.

Example:
ST code Result
b := DATE_TO_BOOL (D#1970-01-01); FALSE
i := DATE_TO_INT(D#1970-01-15); 29952
i := DT_TO BYTE(DT#1970-01-15-05:05:05); 129
str := DT_TO_STRING(DT#1998-02-13-14:20); DT#1998-02-13-14:20
FBD code Result
DATE TO BOOL
D#l970-01-01—] — 1 FALSE
DATE TO INT
D#l970-01-15—] i 29952
DATE TO BYTE 129
D#1970-01-15-05: 05 :05—] — i
R DT#1998-02-13-14:2
D#1995-02-13-14:20—] —— str 8-62-13-14:20
“STRING _TO”

This IEC operator is used for converting the STRING data type into another data type.
STRING_TO_<data type>

You must define the STRING operand according to the IEC 61131-3 standard. The value
has to be a valid constant (literal) of the target type. This affects any given exponential
values, infinite values, prefixes, grouping characters (_), and commas. Additional
characters after the digits of a number are permitted (for example, 23xy). Additional
characters before a number are not permitted.

The operand must be a valid value of the target data type.

VYECTOR

VE Controller Programming Manual A T

Example:

ST code Result

b := STRING_TO_BOOL('TRUE'); TRUE

w := STRING_TO_WORD('abc34');)

w := STRING_TO_WORD('34abc'); 34

t := STRING_TO_TIME('T#127ms'); T#127ms

r := STRING_TO REAL('1.234'); 1.234

bv := STRING_TO BYTE('500'); 244

FBD code Result

STRING TO BOOL

' TRIE! — — TRUE

“TRUNC”

This IEC operator is used for converting the REAL data type into the DINT data type.
CODESYS takes only the integer part of the number.

Example:

ST:

diVar := TRUNC(1.9); (* Result: 1 %)

diVar := TRUNC(-1.4); (* Result: -1 *)

VE Controller Programming Manual A T

6.4 Structured text(ST).

6.4.1 ST Editor

The ST Editor is a text editor for implementing code in structured text (ST) and extended
structured text (ExST).

[l PLC_PRG x -
1 PROGRAM PLC_PRG
2 VAR 0

3

1 END VAR
[[150% [&
as

1
150 % &
< >

The line number appears on the left side of the editor. The List components feature
(activated in the SmartCoding category of the CODESYS option) and input assistant F2 are
also helpful when entering programming elements. When the cursor is placed on a variable,
CODESYS displays a tool tip that contains information to declare the variable.

Options X

@ Device description download ~
[Device editor

[® FBD, LD and 1 editor

W Help

@ International Settings

i Libraries

i Library download

& Load and Save

Declare unknown variables automatically (AutoDeclare)
Enable for ST editor

Show all instance variables in input assistant
Show symbols from system libraries in input assistant

B Mon toring List components after typing a dot (.)
i PLCopenxML List components immediately when typing
B proxy settings [Insert with namepace
i Refactoring
SFC editor Convert keywords to uppercase automatically (AutoFormat)
&= =
2 ‘Smartoudmg Automaticaly list selection in cross reference view
= Store
B Text editor Underiine errors in the editor
&) visualzation Highlight symbols

& Visualization styles
83 visualzation user management v
L4 >

Max degree of parallelism 3

e

The behavior of the editor (for example, parentheses, mouse actions, tabs) and
appearances are configured in the Text Editor category of codeSYS options.

VE Controller Programming Manual

VECTOR

Options

Device description download ~

Device editor

FBD, LD and IL editor

Help

International Settings

Libraries

Library download

Load and Save

Monitoring

PLCopenXML

Proxy Settings

Refactoring

SFC editor

SmartCoding

Store

Text editor

Visualization

Visualization styles

Visualization user management v
>

AfREBDILIESs e D LBRBRREE R S

Theme Editing Text Area Marain Monitoring

Theme
Default v

Preview

=} 2z VAR GLOBAL
A Variable: INT:= 7;

sString : STRING := 'Den

pString :
: BOOL := TRUE;
: BYTE = %0B7 (* output byte 7 #);

bDemo
out7
END_VAR

Cancel

6.4.2 The ST expression

An expression is a construct that returns a value after its evaluation.
Expressions consist of operators and operans. In Extended Structured Text (ExST), you
can also use assignments as expressions. Operans can be constants, variables, function calls,

or other expressions.

Cases:

2014 (» Constant *)

ivar (* Variable *)

fct(a,b) (* Function call *)

(x*y)/z (x Expression *)

real_var2 := int.var; (* in EXST: Assignment *) *)

You can prioritize expressions by handling operators based on certain connection rules.

CODESYS first handles operators with the strongest connections. Operators with the same

connection strength are processed from left to right.

Operators Symbols

Connection strength

Parenthesize

(Expression)

Strongest binding

Function name (parameter list)

Function Call _
all operators with syntax: <operator> ()
Exponentiate EXPT
Negate -
Complementation NOT
Multiplication *
Division /

VYECTOR

VE Controller Programming Manual A T
Operators Symbols Connection strength
Modulo MoD
Addition +
Subtraction -
Comparison <> K==
Equality =
Inequality <>
AND
Bool AND
AND_THEN
Bool XOR XOR
OR o
Bool OR Weakest binding
OR_ELSE

6.4.3 ST assignment method

The assignment expression

1B% . <operand> := <expression>
The assignment operator performs the same functions as the MOVE operator.

The ST assignment operator for the output

The assignment operator assigns the output of a function, function block, or method to
a variable.

Grammar:
<output> => <variable>
Example:
FBcomp_Output1 => bVar1;
FBcomp_Output2 =>;
FBcom_Outputl and FB Output2 are the values of the output of the function
block,FBcom_Outputl assigned to the variable bVarl.

Extended ST assignments "S", "R""

"S" is equivalent to "SET" in the PLC,withthe syntax:
<variable name> S= <operand name> ;
The data type of the variable and operand is BOOL, and true is assigned to the variable
Variable when operand switches FROM TO TRUE. However, the variable remains in true state

VYECTOR

VE Controller Programming Manual A T

even if Operaand continues to change its state.
Cases:
PROGRAM PLC_PRG
VAR
xOperand: BOOL := FALSE;
xSetVariable: BOOL := FALSE;
END_VAR

xSetVariable S= xOperand;

"R" is equivalent to "RST" in the PLC, syntax:

<variable name> R= <operand name> ;

The data type of the variable and operand is BOOL, and false is assigned to the
variable Variable when operand switches from FALSE to TRUE. However, even if the operans
continue to change their state, the variable remains in state FALSE.

6.4.4 ST syntax

IF statement

If statements are used to examine a condition and execute subsequent statements
based on that condition. Grammar:
IF <condition> THEN
<statements>
ELSIF <condition> THEN
<statements>
ELSE
<statements>
END_IF;
The ELSIF branch and the ELSE branch are optional.

Cases:
PROGRAM PLC_PRG
VAR
iTemp: INT;
xHeatingOn: BOOL;
xOpenWindow: BOOL;
END_VAR

IF iTemp < 17 THEN
xHeatingOn := TRUE;

VYECTOR

VE Controller Programming Manual A T

ELSIF iTemp > 25 THEN

xOpenWindow := TRUE;
ELSE xHeatingOn := FALSE;
END_IF;

The FOR statement

The FOR loop is used to execute instructions that have a certain number of repetitions.
Grammar:

FOR <counter> := <start value> TO <end value> {BY <increment>} DO
<instructions>
END_FOR;

The parts in parentheses are optional. As long as the value of slt,counter is not greater
than that of slt;end value; and not less than slt;start value, then the counter slt;instructions
are executed and the counter is automatically increased every time the instructions are
executed. Increments can be any integer value. If no increment is specified, the standard
increment is 1.

Cases:
FOR iCounter :=1TO 5 BY 1 DO
iVar1 :=iVar1*2;
END_FOR;
Very :=iVar1;
When the initial valueof iVar 1 is 1, the value of iVar is 32at the end of the FORIoop.

CASE statement

Use this dialog box to combine multiple conditional instructions that contain the same
condition variable into a construct. Grammar:

CASE <Var1> OF

<value1>:<instruction1>

<value2>:<instruction2>

<value3, value4, value5>:<instruction3>

<valueb ... value10>:<instruction4>

<value n>:<instruction n>

{ELSE <ELSE-instruction>}

END_CASE;
The section within the curly brackets {} is optional.

VYECTOR

VE Controller Programming Manual A T

Processing scheme of a CASE instruction.

e If the value of the variable <varil> is <value i>, then the
instruction <instruction i> is executed.

e If the variable <var1l> has non of the given values, then the <ELSE-instruction> is
executed.

o If the same instruction is executed for several values of the variable, then you can
write the values in sequence, seperated by commas.

Example:

CASE iVar OF

1, 5: bVar1 := TRUE;
bVar3 := FALSE;

2: bVar2 := FALSE;
bVar3 := TRUE;

10..20: bVar1 := TRUE;
bVar3= TRUE;
ELSE
bVar1 := NOT bVar1;
bVar2 := bVar1 OR bVar2;
END_CASE;

WHILE statement

The WHILE loop is used like the FOR loop in order to execute instructions several times until
the abort condition occurs. The abort condition of a WHILE loop is a boolean expression.
Syntax:
WHILE <boolean expression> DO

<instructions>

END_WHILE;

CODESYS repeatedly executes the <instructions> for as long as
the <boolean expression> returns TRUE. If the boolean expression is already FALSE at the
first evaluation, then CODESYS never executes the instructions. If the boolean expression
never adopts the value FALSE, then the instructions are repeated endlessly, as a result of
which a runtime error results.
example:

WHILE iCounter <> 0 DO

Var1 := Var1*2

iCounter := iCounter-1;

END_WHILE;

In a certain sense the WHILE and REPEAT loops are more powerful than the FOR loop, since

VYECTOR

VE Controller Programming Manual A T

you don’t need to already know the number of executions of the loop before its execution. In
some cases it is thus only possible to work with these two kinds of loop. If the number of
executions of the loop is clear, however, then a FOR loop is preferable in order to avoid
endless loops.

As an extension to the IEC 61131-3 standard you can use the CONTINUE instruction within
the WHILE loop.

REPEAT statement

The REPEAT loop is used like the WHILE loop, but with the difference that CODESYS
only checks the abort condition after the execution of the loop. The consequence of this
behavior is that the REPEAT loop is executed at least once, regardless of the abort condition:
REPAEAT
<instructions>

UNTIL <boolean expression>
END_REPEAT;

executes the <instructions> until the <boolean expression> returns TRUE.

If the boolean expression already returns TRUE at the first evaluation, CODESYS executes the
instructions precisely once. If the boolean expression never adopts the value TRUE, then the
instructions are repeated endlessly, as a result of which a runtime error results.

Example:

REPEAT

Var1 := Var1*2;

iCounter := iCounter-1;

UNTIL

iCounter = 0

END_REPEAT;

RETURN

Use the RETURN instruction in order to exit from a function block. You can make this
dependent on a condition, for example.

Example:

IF xIsDone = TRUE THEN
RETURN;

END_IF;

iCounter := iCounter + 1;
If the value of b is TRUE, the function block is exited immediately and CODESYS does
not execute the instruction a:=a+1;.

VE Controller Programming Manual A T

IMP

The JMP instruction is used to execute an unconditional jump to a program line that is
marked by a jump label.

Syntax:

<label>: <instructions>
JMP <label>;

The jump label <label> is any unique identifier that you place at the beginning of a
program line. On reaching the 3JIMP instruction, a return to the program line with
the <label> takes place.
iVar1 :=0;

_label1: iVar1 ;= iVar1+1;

(*instructions®)

IF (iVar1 < 10) THEN
JMP _labelt;
END_IF;

EXIT

The EXIT instruction is used in a FOR, WHILE or REPEAT loop to immediately end the
loop regardless of its stop condition.

CONTINUE

CONTINUE is an instruction of the Extended Structured Text (ExST).

The instruction is used inside FOR, WHILE and REPEAT loops in order to jump to the
beginning of the next execution of the loop.

Example:
FOR Counter:=1 TO 5 BY 1 DO
INT1:=INT1 / 2;
IF INT1=0 THEN
CONTINUE; (* to provide a division by zero *)
END_IF
Var1:=Var1/INT1; (* executed, if INT1 is not 0 *)
END_FOR;

VECTOR

VE Controller Programming Manual

Erg:=Var1;

ST Function Block Call

Syntax of ST function block calls:

<FB-instance>(<FB input variable>:=<value or address>|, <other FB input variables>);
Example:

TMR:TON;

TMR (IN:=%0OX5, PT:=T#300ms);
varA:=TMR.Q;
The timer function block TON has been instantiated in TMR:TON and is called using the

allocated parameters IN and PT. The output is addressed with Q to TMR.Q and assigned to
the variable varA.

ST COMMENTS

Note |Description example

Single | // starts and ends at the end of the

. . // This is a comment
line line

Multi- | (* opening, *) ending

i (* This is a multi-line comment *)
Ine

Neste | (» opening, *) closing, possibly with|(* a:=inst.out; (* 1st comment *) b:
d comments inside the comment (*.... *) |[=b+1; (* 2nd comment *) *)

VYECTOR

VE Controller Programming Manual A T

6.5 Continuous function diagrams (CFC)

The Continuous Function Chart (CFC) language is a graphical programming language
that is an extension of the standard language of IEC 61131-3. Systems can be programmed
graphically using the POU in CFC. Elements can be inserted and placed freely, connections
inserted and elements connected to a network in order to create well-structured functional
block diagrams.

The order of execution of the function block diagram is based on the data flow.
Furthermore, the POU can handle multiple data streams. This way the data streams do not
have any common data. In the editor, there are no connections between multiple networks.

6.5.1 CFC Editor

a4 Axisl B VECServo [£] Pc_Pre [@ rou_1 x w || ToolBox
1| PROGRAM POU_1 - CFC

VAR R Pointer
END VAR

= » Control Point

= Input

E 4 = OQutput
Variable declaration area £} Box

w= Jump
100 % |&R = Label

< Return

I Composer

W Selector

= Comment

== Connection Mark - Source
== Connection Mark - Sink

Programming area FF Input Pin
F Output Pin

Toolbox

Requirement: Pointer selected in the toolbox view L
Cursor symbols: 3 The symbols indicate that you can edit in the editor. Select
elements or links to move them or to execute commands.

Requirement: Any of the elements is selected in the toolbox

| view.
Cursor symbols: Clicking in the editor will insert the selected element. You can

also drag the element into the editor.

Example of dragging a _ o . .
Requirement: A line is selected in the declaration of the CFC.

function block from an _ _ _ _
Instances will be inserted as POUs with name, type and all pins.

editor's declaration

VYECTOR

VE Controller Programming Manual A T

Dragging variables from a
declaration to a POU pin in
the editor

The variable is inserted as an input or output and is connected
to the POU pin where the focus is located.
Hint: The cursor indicates when your focus position is valid for

the variable

Ctrl + Click on the
programming area

Requirement: An element is selected in the toolbox view.
Each click in the programming area will create a selected
element each time as long as the Ctrl key is held down.

Ctrl+Right Arrow

Requirement: In the CFC program, exactly one output pin is
selected for an element.

Move the selection so that the input pin at the end of the
connection line is selected. If there are multiple pins, select
them all.

MOVE

EN END —] O _xRed

— —71 O _xYellow
O _xGreen

MOVE

—EN ENO — 1 O _xRed
— —E: O _xYellow

{0 _xGreen

Ctrl+Left Arrow

Requirement: In the CFC program, exactly one element selects
an input pin.

Move the selection so that the output pin at the beginning of
the connection line is selected. If there are multiple pins, select
them all.

MOVE
—EN END

MOVE = 0_xRed

—EHN ENOD 0 _xYellow
— —71 O _xGreen

1]

VE Controller Programming Manual A T

6.5.2 The order in which the CFC data flow is executed

In the CFC editor, elements are freely placed, so the execution order is not unique at
first. Therefore, the software determines the order of execution through the data flow and, in
the case of multiple networks, the order of execution is determined by the topological
position of the element: the element is sorted from top to bottom, from left to right.

After adding the CFC language object POU, the menu bar appears in the POU interface
with CFC options, as follows

CFC | Build Online Debug Tools Win
Edit Worksheet...

- Negate
EN/ENO
Set/Reset
Execution Order
Pins
Routing
Group

Edit Parameters...
Connect Selected Pins

E Select Connected Pins
Prepare Box for Forcing
Force Function Block Input..

Save Prepared Parameters to Project

Open Tooloptions = CFC > Editor,openCFC editor settings, and customize the editor
content.

Options x

CFC Editor ~
& Composer

Debugging General view Print
Declaration Editor

Device description download
Device editor

Enable AutoConnect

(wWhen you drop elements somewhere on the canvas, unconnected pins that are
touching each other are automatically connected if this feature is activated. This can be
FBD, LD and 1L editor helpful for quick editing, but be careful that you are not making connections accidentally
by moving elements around.)

dAEskBTLBREcEEaa ¢ d

Help
International Settings Prepare values in implementation part
Libraries

Library download

Load and Save

Monitoring

PLCopenxML

Proxy Settings

Refactoring

SFC editor

SmartCeding

Store v

~
v

ol

By default, the order in which CFC objects are executed is automatically determined. To
do this, check the Display Execution Order property. You can check in the CFC Editor to
temporarily display the automatically determined order of execution.

Example: The addition program is as follows

ADD
iFinal_1
fb_Dolt_0 fh_Dolt_1
FB_Dolt FB_Dolt
i | Resul i Resul
) —iBravo sResuIt*l —iBrave sResult—
‘Delta’ Charlie xResult] Charlie

xResult}
TRUE ——xltem \—xltem

Click"CFC, Execution Order, Display Execution Order" to showthe order in

VYECTOR

VE Controller Programming Manual A T

whichobjects are executed. The boxes and inputs are numbered accordingly and reflect the
chronological order. When you click again in the CFC editor, the number is hidden.

ADD
[1] iFinal 1 |-
fb_Dolt_0 fb_Dolt_1
FB_Dolt FB_Dolt =
z . Resul————a Resut———[a1
8 | ——iBravo U sF{esuIt—| —jiBrava J sResult—
“Delta’ —sCharlie xResul

Charlie xResult
TRUE —(xltem I;xltem
xFinal |

Right click on the function block, or click on the “CFC *» Execution Order”, The order of
execution can be changed.

CFQlEuiId Online Debug Tools Window Help
Edit Worksheet...

pplication [Device: PLC Logic] - ©

< Negate

{n EN/ENQ
Set/Reset

‘ Execution Order

4 Send to Front

Pins 3y SendtoBack
Routing &y Move Up

Group 5 Move Down

Edit Parameters... Set Execution Order...

-~ Connect Selected Pins Order by Data Flow

Select Connected Pins order by Topology

Prepare Box for Forcing
Force Function Block Input...

Save Prepared Parameters to Project

6.5.3 CFC elements

Page page

Symbol:j

Element inserts a new page into the editor. Available only in page-oriented CFC editors.
Page numbers are automatically assigned based on their location. You can enter the name
and description of the page in the orange title. Use the Edit Page Size command to resize
the page.

Control Point control point

Symbol:ﬁhA

Before adjusting the route, you can use the Control Point control point to secure the
connection point. This way, the element is dragged to the desired location on the
connector, and the connector with the control point is no longer automatically clothed.

VE Controller Programming Manual A T

Input

Symbol: =

CODESYS inserts an input element by default with the text “???”. You can directly edit
this field by clicking on it and entering a constant value or a variable name. Alternatively
you can open the input assistant in order to select a variable by clicking on =]

Output

Symbol: =

CODESYS inserts an output element by default with the text “???”. You can directly edit
this field by clicking on it and entering a constant value or a variable name. Alternatively
you can open the input assistant in order to select a variable by clicking on =]

297

il

Box iz E Bt

we: T

Symbol: TF

You use the element in order to insert an operator, a function, a function block or a
program. By default CODESYS inserts the element with the name “???”. You can directly

edit this field by clicking on it and entering a function block name. Alternatively you can
open the input assistant and select a function block by clicking on G

4
m

In the case of a function block, CODESYS additionally displays an input field (??7?)
above the function block symbol. You must replace this name by the name of the function
block instance. If you instance a function block with constant input parameters, the
function block element displays the ‘Parameter...’ field in the bottom left corner. You edit
the parameters by clicking on this field:

WECTOR

VE Controller Programming Manual BOM oA MK
Input Box Output
A A A
V—s5(V \

o

Jump

Symbol: *=

You use the element in order to define a position at which program execution is to
continue. You must define this target position by a label. To do this, enter the name of the
mark in the input field ???. If you have already inserted the corresponding label, you can
also select it via the input assistant ([:]).

Label

Symbol: =
A label defines a position to which program execution jumps with the help of a jump

element.

Example: Jump and Label usage

iCount

:

Return

Symbol:

Use the elements to exit the function block POU.

4

<| RETURN [

VE Controller Programming Manual A T

Composer

Symbol: I

The composer element is for handling structural components. The individual components
of a structure are made available to you as an input. For this purpose you must name the
composer element like the structure concerned (replace the ??7?).

The composer element is the counterpart to the selector element.

Selector

Symbol: TF

The selector element is for handling structural components. The individual components of
a structure are made available to you as an output. For this purpose you must name the
selector element like the structure concerned (replace the “??7?7”)

The selector element is the counterpart to the composer element.

Comment

[}

Symbol:

With this element you input a comment in the CFC editor. Replace the placeholder text in
the element by the comment text. A line break can be inserted with the aid of the
shortcut Ctrl + Enter.

Connection Mark - Source/Sink

Symbol: ==, ==

You can use connection marks instead of a connecting line between elements. That helps
you to display complex diagrams more clearly.

For a valid connection you must connect an element Connection Mark - Source with the
output of an element and an element Connection Mark - Sink with the input of another
element. Both marks must bear the same name. The names are not case-sensitive.

VE Controller Programming Manual A T

Input Pin

Symbol: £F

Depending on the type of function block you can add further inputs to an inserted function
block element. To do this you must select the function block element and drag the function
block input element onto the body of the function block.

Please note: You can drag an input or output connection to another position on the
function block with the ctrl key pressed.

Output Pin

Symbol: FF

Depending on the type of function block you can add further outputs to an inserted
function block element. To do this you must select the function block element and drag the
function block output element onto the body of the function block.

Please note: You can drag an input or output connection to another position on the
function block with the ctrl key pressed.

VE Controller Programming Manual A T

6.6 Sequential functionmap (SFC).

6.6.1 SFC Editor

The SFC editor is the graphics editor. The new SFC POU contains an Init step and
subsequent transitions.

As Axisl X6 vECServo [§] Pc_prs @ Pou_1 [£] Pou_2 x|~ | ToolBox
1| PROGRAM FOU_2 = || - sk
2l vAr
END VAR 8 nilin
= + Transition
: 1 a Action
Variable declaration area b e
[#) Macro
% Branch
100 % |[&R
-
Init
tm: Programming area e

In the SFC editor, a single element can be inserted into the diagram via the SFC menu
(which automatically appearswhen the POU in the SFC language isopened).

SFC | Build Online Debug Tools
Init Step
E] Add Entry Action
[3 Add Exit Action
#t Insert Step-transition
P Insert Step-transition After
& Parallel
Alternative

Insert Branch
Insert Branch Right

Insert Action Association
Insert Action Association After
Lt Insert Jump

et Insert Jump After

Bt Insert Macro
B+ Insert Macro After
P Zoom into Macro
{ Zoom out of Macro
|, Paste After
Change Duplication »

Bl EICEFT L[i@ & & |=t = bt bl |[FtE P o

You can also drag SFC elementsfrom theToolBox Toolbox view to the figure. As you
drag elements on the editor, the software marks all possible insertion points with a gray box.
If you move the mouse over the gray box, the color of the box turns green. When you
release the mouse button, the object is inserted into that location.

VE Controller Programming Manual A T
® prou2 x ~ | [ToolBox -1 x
PROGRAM PQUZ A - SEC
2 VAR
END_VAR e = Step
+ Transition
100 % @ v~ a Adion
L
— L Jump
Init [Macro
@ Branch

Init
Drop here to insert a dragged element |

In online mode, CODESYS displays the activity steps in blue.

Init T#0ns

+ Tranzlne
one ACT_ONE

T#0ns

TransEranch

T#200ms

6.6.2 Theorder in which S FCs are processed

1, reset the IEC action
CODESYS resets the internal motion control flags of action qualifiers (N, R, S, L, D, P, SD,
DS, SL), which control IEC actions.

2, perform an exit action

The software verifies that all steps meet the criteria for each step to perform an exit
action. The validation order follows the layout in the SFC diagram, from top to bottom, left to
right. When the step is disabled, the software performs an exit action (after any input and
step actions were performed in the previous loop, and the conditions for the subsequent
steps are true).

3, perform input actions

The software verifies that all steps meet the criteria for each step to perform an input
action. The validation order follows the layout in the SFC diagram, from top to bottom, left to
right. If the condition is met, the software performs an input operation. Once the conversion
of the next step is complete and produces TRUE,the software immediately performs an input
action indicating that the step has been activated.

VYECTOR

VE Controller Programming Manual A T

4, time check /step action
The software performs the following checks on each step in the order of the SFC layout:
® The software copies the passing time of the active step to the corresponding
implicit step variable. <step name>.t
@ |f a timeout occurs, CODESYS sets its own error flags.
@ For non-IEC steps: CODESYS performs step actions.

5, the implementation of IEC action

CODESYS performs IEC actions in alphabetical order, twice through the action list. In the
first cycle, the software performs IEC actions on each step that was disabled in the last loop.
In the second time, perform the IEC action for each active step.

6, transition check/activate the next step

The transition passes as follows: If a step is active in the current loop and subsequent
transitionsare generated, TRUE and the minimum time defined by the step has passed, the
next steps are activated.

6.6.3 SFC Action conditions

Qualifiers can be assigned to IEC steps. The qualifier describes how the step action is
handled.

The qualifiers are handled by the function block "lecSfclibrary” in the
"SFCActionControl" library. This library is automatically integrated into the project via the SFC

plug-in.

N |Non-storage The action is active as long as the step is active.

RO | Override reset The action is disabled.

Settings (stored) [When this step is activated, the software will perform this operation
SO immediately. Even if the step is de-activated, the operation will
continue until a reset is received.

Time limit The software will perform this operation immediately after the step is
L activated. The operation will be performed until the step is disabled or
the given time interval has elapsed.

Time delay The software will only start executing the operation after a given delay
D time has elapsed since the step was activated and the step is still
active. The operation is performed until the step is disabled.

p Pulse The software performs the action exactly twice: once to activate the
step and once to activate the step.
D Store and time|The software will only start executing the action after a given delay

delay time has elapsed since the step was activated. The action will be

VYECTOR

VE Controller Programming Manual A T

executed until a reset is received.

Delay and | The software will only start executing an action after a given delay
DS | storage time has elapsed since the step was activated and the step is still
active. The action will be executed until a reset is received.

Limited storage|The software will perform this operation immediately after this step
SL [time has been activated. The operation will be performed until the given
time has elapsed or until a reset is received.

6.6.4 SFC Implicit variables and flags

SFC Implicit variables

Each SFC object provides implicit variables that monitor the state of the step and IEC
action at runtime, and CODESYS declares these implicit variables automatically for each step
and each IEC action.

Implicit variables are structural instances of the step type SFCStepType and the action
type SFCActionType. Variables have the same name as their elements, e.g. "stepl” step name
is "stepl” variable name. The structure member describes the state of the step or action or
the current time elapsed in the active step.

Syntax for implicit variable declarations:

<step name>:SFCStepType;

_<action name>:SFCActionType;

The following implicit variables are available for step or IEC action states:

Step
Shows the active status of the current cycle.

<step name>.x When <step name>.x = TRUE , it indicates that the software is
processing the steps of the current cycle.
Displays the activation status of the next cycle.

<step name>._x When <step name>. _x = TRUE and <step name>.x = FALSE, the
software is processing the step in the next cycle
The current elapsed time since the step was activated. This only

<step name>.t applies to steps, regardless of whether a minimum time is defined in
the step properties.

<step name>._t Internal use only

I[EC Action

_<action name>.x TRUE : The action is being executed.

_<action name>._x TRUE : The action is active.

The above variables can be used to force a specific status value to a step (activation step).

VYECTOR

VE Controller Programming Manual A T

Accessing implicit variables Syntax.
a. Assigning implicit variables directly in the POU:
<variable name>:=<step name>.<implicit variable>or
<variable name>:=_<action name>.<implicit variable>
Example:

status:=stepl. x;

b. From another POU with the following name:
<variable name>:=<POU name>.<step name>.<implicit variable> or
<variable name>:=<POU name>._<action name>.<implicit variable>
Example:
status:=SFC_prog.stepl. Xx;

SFC flags

SFC flags are implicitly generated variables with predefined names that are used to
control the processing of SFC diagrams. For example, these flags can be used to display
timeouts or reset step chains. In addition, the hint mode can be activated specifically to
activate transitions. These variables must be declared and activated in order to access them.

Name Date type| Description

TRUE: The software resets the sequence to the initial
step. The other SFC flags are also reset (initialised).
. When the variable is TRUE, the initial step remains set
SFCInit BOOL) })
(active), but does not perform its operation. Only when
SFCInit is re-given FALSE does its block processing

continue down the line.

This function is similar to SFCInit. however, the software
SFCReset BOOL _ _ o N
continues processing after the initialization of the initial steps.

TRUE: If a timeout occurs in the SFC diagram.

If a second timeout occurs in the program, it will not be
set to FALSE unless you have previously reset the variable
SFCError BOOL .
SFCError. other functions used to control the use of
chronological flag variables (SFCErrorStep, SFCErrorPOU,

SFCQuitError) require SFCError to be declared first.

Used to activate (TRUE) and de-activate (FALSE) the timeout
SFCEnableLimit |BOOL control SFCError. must be set TRUE to SFCError for it to work. If
this is not done, the timeout is ignored.

_ Stores the name of the step that caused the timeout. The
SFCErrorStep |String . .
prerequisite is that SFCError is declared.

i Stores the name of the block in which the timeout occurred.
SFCErrorpPOU String .
The prerequisite is that SFCError is declared.

https://help.codesys.com/webapp/_cds_sfc_sfc_flags;product=codesys;version=3.5.15.0

VYECTOR

VE Controller Programming Manual A T

Name Date type| Description

TRUE: The software will pause the processing of the SFC
graph and any timeout SFCError in this variable will be
SFCQuitError BOOL reset. If the variable is reset to FALSE, all previous
times in the active step will be reset. The prerequisite
is that SFCError is declared.

SFCPause BOOL TRUE: The software suspends the processing of the SFC.

SFCTrans BOOL TRUE if the TransitionTransidition is active.

Displays the name of the active step, independent of time
. monitoring.

SFCCurrentStep | String . .
In parallel branches, the name of the step in the rightmost

branch line is always stored.

Controls the Tip mode of the SFC block.
SFCTip, BOOL If this flag is enabled SFCTipMode=TRUE, the next step can be
SFCTipMode activated by setting SFCTip to TRUE. When SFCTipMode is set

to when FALSE, the transition is used to continue activation.

6.6.5 SFC Element

Step and Transition

Step symbol I:::'; Transition symbol +

As a rule, CODESYS inserts steps and transitions as combinations. Inserting a step
without a transition or a transition without a step causes an error when compiling. You can
modify this by double-clicking the name.

Stend

IJIZITransEI

All steps are defined by the step properties, which you can display and edit in
the Properties view, depending on the set options.

You have to add those actions to the step which are to be executed when the step is
active. A distinction is made between IEC actions and step actions. Details for this are
found in the chapter about the SFC element “Action”.

A transition must include the condition for the subsequent step to be active as soon as the
value of the condition yields TRUE. Therefore, a transition condition must
yield TRUE or FALSE. It can be defined in one of two ways:

VE Controller Programming Manual A T

1. Inline condition (direct): You replace the default transition name with either
the name of a Boolean variable, a Boolean address, a Boolean constant,
or a statement with a Boolean result, for example (i<100) AND b. You
cannot specify programs, function blocks, or assignments here.

2. Multi-use condition (separate transition or property object): You replace
the default transition name with the name of a transition or property object

(E B). You create these objects by clicking Project » Add Object . This

allows multiple use of transitions, for example “condition_xy” in the figures
below. Like an inline condition, the object can contain a Boolean variable,
Boolean address, Boolean constant, or an statement with a Boolean result.
In addition, it can also contain multiple statements with any code.

Init

+hVarl AND h¥Varz @
count —‘—{ n | actl l

n:llleRUE @

React

Itcondition_xy @

Init

. "
~[5; sFC_POU.condition_sy |
l| condition xwi=(iy=100) AHD b¥Var;

Transitions that reference a transition or property object are marked with a small
triangle in the upper right corner of the transition box.

Tnit = [E] rouiprre)
= E; Prop_a
3 E;n Get
|58 set
IZ%I'I'RU'E +o|EF condition_xy
|
Step?
C%Conditinn_xy
Stepl

Q%)Pr op_&

As opposed to CoDeSys V2.3, now CODESYS treats a transition condition like a
method call. The entry has the following syntax:

<transition name>:=<transition condition>

Example:

VE Controller Programming Manual A T

trans1:= a=100
or only
<transition condition> // (for example :a=100)

Action

;}I
Symbol: |§“

An action includes a series of statements in one of the valid implementation languages.
You can assign an action to a step.

You must create all actions as POUs in the project when they are used in SFC steps.

_]] o
= 8] srcpou (Pré) _ [f] sFceaps [S3 count [SFCPOU] |
@ = /ﬁmt:ﬂl:ounf&l:l
[?A actz
|_§'ﬂ count
Es

1. IEC actions
These actions comply with the IEC1131-3 standard. They are executed according to
their qualifiers. Each action is executed two times: first when the step is activated and
second when the step is deactivated. If you assign several actions to one step, the action
list is processed from top to bottom.
Each action box includes the qualifier in the first column and the action name in the
second column, both of which can be edited directly.

Siaet — N actl
Ep
i acts
N count

As opposed to step actions, you can use different qualifiers for IEC actions. In addition,
each |IEC action is provided with a control flag. This directs CODESYS to execute an
action only one time at any moment, even if the action is called by another step at the
same time. This cannot be guaranteed for step actions.

You assign IEC actions to steps by clicking SFC » Insert action association .

2. Step actions:
You can use these step actions to extend the IEC standard.

e Entry action:

VE Controller Programming Manual A T

CODESYS executes this action after the step is activated and before the main
action is executed.

These reference a new action, or action created in below the SFC object, from a
step by means of the Entry action step property. (2). You can also add a new
action to the step by means of the Add entry action command. The entry action is
marked with an E in the lower left corner of the step box.

¢ Main action:

CODESYS executes this action when the step is active and any entry actions
have already been processed. However, as opposed to IEC actions (see above),
these step actions a are not executed a second time when the step is deactivated.
In addition, you cannot use qualifiers here.

You add an existing action to a step by means of the Main action element property
(1). You can create and add a new action by clicking the step element. A main
action is marked with a filled triangle in the upper right corner of the step box.

o Exit action:

CODESYS executes this action one time when the step is deactivated. Please
note, however, that an exit action is not executed in the same cycle, but at the
beginning of the next cycle.

These reference a new action, or action created in below the SFC object, from a
step by means of the Exit action step property. (3). You can also add a new action
to the step by means of the EAdd exit action command. The exit action is marked
with an x in the lower right corner of the step box.

Property Walue
+ Camman
= Specific
Initial stkep ¥
* Times
= Actions
[~ ——— Main action @ ack_skep
v e EITHY action ack_enkry
| Exitaction ack_exit

3. Difference between IEC actions and step actions:

The basic difference between step actions and IEC actions with a qualifier N is that an
IEC action is executed two times: when the step is activated and when the step is deactivated.
See the following example.

VE Controller Programming Manual A T

Branch

Symbol T

Use branches to program parallel or alternative sequences in the sequential function
chart.

For alternative branches, CODESYS processes just one of the branch lines at a time,
depending on the preceding transition condition. Parallel branches are processed at the
same time.

1. Parallel branch
For parallel branches, the branch lines must begin and end with steps. Parallel
branch lines can contain additional branches.

The horizontal lines before and after the branch are double lines.

Bra.. =|

Stepll Step2l

=2l

Step2?

L]

l:|:lt3
Processing in online mode: If the preceding transition (2 in the example) yields TRUE, then
the first steps in all parallel branch lines are active (Step11 and Step21). CODESYS
processes the individual branch lines at the same time and the subsequent transition is
passed afterwards (13).

The “Branch<n>" jump marker is added automatically to the horizontal line that indicates
the beginning of a branch. You can define this marker as the jump destination.

Please note that you can convert a parallel branch into an alternative branch by
clicking Alternative.

2. Alternative branch

The horizontal line before and after the branch is a single line.
In an alternative branch, the branch lines must begin and end with transitions. The branch
lines can contain additional branches.

VE Controller Programming Manual A T

Step32

jﬂt42

Stepd

If the step before the branch is active, then CODESYS passes the first transition of
each alternative branch line from left to right. For the first transition that yields TRUE, the
associated branch line opens, thus activating the step following the transition.

Jump

Symbol ¥

Use a jump to define which actions in a step should be executed next as soon as the
transition preceding the jump is TRUE. Jumps may become necessary, as execution paths
cannot cross or lead upwards.

Excluding the required jump at the end of a diagram, you can generally insert jumps only
at the end of a branch.

The destination of a jump is defined by the added text string, which you can edit directly.
The jump destination can be a step name or the marker for a parallel branch.

——|N |actl i

stepl

Macro

Symbol Ll

A macro includes part of the SFC diagram, but it is not displayed in detail in the main view
of the editor.

VE Controller Programming Manual BOM oA MK

Using macros does not influence the processing flow. Macros are used for hiding specific
parts of the diagram, for example to increase overall clarity.

You open the macro editor by double-clicking the macro box or by clicking SFC » Zoom
into macro . You can program here just like in the main view of the SFC editor. To close
the macro editor, click SFC » Zoom out of macro .

Stepl

|
I-
Step3d
Step?
td
— P

@ Main view in the SFC editor
@ Macro editor view for Macro1
Macros can also include other macros. The caption of the macro editor always

shows the path of the open macro within the diagram, for example:

Macrol -= Macro2

Era.

VE Controller Programming Manual A T

6.7 CFC/LD/IL

6.7.1 FBD /LD /IL Editor

The FBD/LD/IL editor is a combination editor for FBD, LD and IL programming

languages.
n VELSErvo .%I PLL_PRG Lﬂ] FOU_1 sj rFOU_2 m FUOU_S5 X | ¥ 100I00X
1| PROGRAM POU_3 - General
2| var =
17 Network
END VAR = e
- 4iF Box

IF Box with EN/ENO
-k Assignment
- Jump
4ut Return
100 % (@R & Input
1 . T Branch
| | T Execute
Boolean Operators

Variable declaration area

Math Operators
Other Operators
Function Blocks
Ladder Elements
POUs

Programming area

o F o o o#

Tool box

If necessary, you can activate IL by selecting "Enable IL" in the software option
"Tools=>Options=>FBD, LD, IL Editor".

Options X

Composer ~
Debugging

Dedlaration Editor

Device description download View Behavior

Device editor Enable 1L Default network content
Ll e After insertion select
Help

International Settings

Libraries

Library download

Load and Save

Monitoring

PLCOpenXML

Proxy Settings

Refactoring

SFC editor

SmartCoding

Store

Text editor v

General FBD LD 1L Print

IHEs e NV BRRBEDRE ¢ Je

Al
¥

s

The three programming languages are automatically converted internally to each other.
With the help of the network, the code in the implementation section is constructed in all
three languages. The FBD / LD / IL menu provides commands to work in the editor. In
offline and online mode, you can switch editors at any time by using menu commands in
View.

ECTOR

g

]
B
b
R

VE Controller Programming Manual

FBD/LD/IL | Build Online Debug Tools
= Insert Network Ctrl+l
I Insert Network (below) Ctrl+T
Insert label

Toggle network comment state Ctrl+O

&

Insert Box Ctrl+B
Insert Empty Box Ctrl+Shift+B
Insert Box with EN/JENO Ctrl+Shift+E
Insert Empty Box with EN/ENO

Insert Execute Box

Insert Input Ctrl+Q
Insert Assignment Ctrl+A
Insert Jump Ctrl+L
Insert Return

B BHEH

Negation Ctrl+N
Edge Detection Ctrl+E
Set/Reset Ctrl+M

Set output connection Ctrl+w
Insert Branch Ctrl+Shift+v
Insert Branch above

5
an
=
3
L}
B
1
j‘éi
=

Insert Branch below
Set Branch Start Point

4

Toggle Parallel Mode

Update parameters Ctrl+U
Remove unused FB call parameters
[View o View as function block diagram Ctrl+1
¥ Goto.. View as Ladder Logic Ctrl+2
View as instruction list Ctrl+3

6.7.2 FBD/LD/IL Element

Network

Symbol ¥

A network is the base unit of an FBD or LD program. In the FBD/LD/IL editor, the networks
are arranged in a list. Each network is provided with a sequential network number on the
left side and can include: logical and arithmetic expressions, program/function/function
block calls, jumps, or return statements.

An IL program consists of at least one network. This network can include all IL statements
of the program.

You can provide each network with a title, comment, or label. In the CODESYS options
(category FBD, LD, and IL, you can define whether network title, comment, and separator
between individual networks are displayed in the editor.

Click the first line of the network to enter a network title. Click the second line of the
network to enter a network comment.

Box

Symbol: IF

VE Controller Programming Manual A T

A box and its call can represent additional functions, for example IEC function blocks, IEC
functions, library function blocks, operators.

A box can have any number of inputs and outputs.

If the box also provides an image file, the box icon is displayed inside the box. The
requirement is that the option Show box symbol is activated in the CODESYS options,
category FBD, LD and IL.

If you have changed the box interfaces, you can update the box parameters with the
command FBD/LD/IL » Update parameters without having to re-insert the box.

FBD/LD/IL Element ‘Box with EN/ENO’

Symbol:
The element is available only in the FBD and LD editors.

The box generally corresponds to the FBD/LD/IL element Box; however, this box
additionally contains an EN input and an ENO output. EN and ENO have the data
type BOOL.

Function of the EN input and ENO output: if the input EN has the value FALSE at the time of
the calling the box, the operations defined in the box are not executed. Otherwise, i.e.

if EN has the value TRUE, these operations are executed. The ENO output has the same
value as the EN input.

Assignment

Symbol: ="

The FBD editor shows a newly inserted assignment as a line with 3 question marks after it.
The LD editor shows a newly inserted assignment as a coil with 3 question marks located
above it.

After insertion you can replace the placeholder ??? by the name of the variable to which
the signal coming from the left is to be assigned. The input assistant is available to you for
this.

Input

Symbol: *

VE Controller Programming Manual A T

The maximum number of inputs depends on the type of box.

A newly added input is first marked with ?2?. You can replace the string ??? by a variable
or a constant.

Label

[

Symbol:

The label is an optional identifier for a network in FBD and LD, which you can specify as a
destination for a jump.

If you insert a jump label in a network, it will be added as an editable field Label: in the
network.

Jump

Symbol *

In FBD or LD a jump is inserted either directly before an input, directly after an output or at
the end of the network, depending on the current cursor position.

You enter a jump label as the jump destination directly behind the jump element.

Return

“IRET

Symbol:

This element immediately interrupts the execution of the box if the input of
the RETURN element goes TRUE.

In an FBD or LD network you can place the Return instruction parallel to or after the
preceding elements.

In IL the RET instruction is available to you for this purpose.

VE Controller Programming Manual A T

Branch

Symbol: T

The element is available in the LD and FBD editor and represents an open line branch. A
line branch splits the processing line from the current cursor position onwards into 2
subnetworks, which are executed in succession from top to bottom. You can branch each
subnetwork further, as a result of which multiple branches are created within a network.

Each subnetwork is given a marker symbol (rectangle) at the branch point, which you can
select in order to execute further commands.

ADD R
1va}1j:: + 1 > bvar

AHD
S & «Ejnet._a
real

H—ob
R
e — 21
R
. |

In order to delete a subnetwork, you must first delete all elements of the network and
then the marker symbol of the subnetwork.

Excute

Symbol: &

The element is a box that enables you to directly enter ST code in the FBD and LD
editors.

You can drag the Execute element with the mouse from the Tools view into the
implementation part of your POU. If you click on Enter ST code here..., an input field
opens where you can input multiple-line ST code.

Contact

Symbol: 1 in the editor |] |]

The element is available only in the LD editor.

A contact passes on the signal TRUE (ON) or FALSE (OFF) from left to right until the signal
finally reaches a cail in the right-hand part of the network. For this purpose a boolean

VE Controller Programming Manual A T

variable containing the signal is assigned to the contact. To do this, replace the
placeholder ??? above the contact with the name of a boolean variable.

You can arrange several contacts both in series and in parallel. In the case of two parallel
contacts, only one needs to obtain the value TRUE in order for ON to be passed on to the
right. If contacts are connected in series, all of them must obtain the value TRUE in order
for ON to be passed on to the right by the last contact in the series. Hence, you can
program electrical parallel and series connections with LD.

A negated contact ”fl] forwards the signal TRUE if the variable value is FALSE. You can

negate an inserted contact with the help of the command FBD/LD/IL » Negation or insert
a negated contact from the Tools view.

If you place the mouse pointer on a contact with the left mouse button pressed and with a
network selected, the button Convert to coil appears in the network. If you now move the
mouse pointer onto this button, still with the mouse button pressed, and then release the
mouse button over this button, CODESYS converts the contact into a coil.

Coil

Symbol:¢ ¥, in the editor [J

The element is available only in the LD editor.

A coil adopts the value supplied from the left and saves it in the boolean variable assigned
to the coil. Its input can have the value TRUE (ON) or FALSE (OFF).

Several coils in a network can only be arranged in parallel.

In a negated coil [H] the negated value of the incoming signal is stored in the boolean

variable that is assigned to the coil.

Set coil, Reset coil

Symbol: ¥ ¥ in the editor: [ISI]]
Set coil: If the value TRUE arrives at a set coil, the coil retains the value TRUE. As long as
the application is running, the value can no longer be overwritten here.

Reset coil: If the value TRUE arrives at a reset coil, the coil retains the value FALSE. As long
as the application is running, the value can no longer be overwritten here.

VE Controller Programming Manual A T

You can define an inserted coil as a set or reset coil with the help of the
command FBD/LD/IL » Set/Reset or insert it as an element Set coil and Reset coil from
the Tools view.

Branch Start/End 9 X FFHa/4%&E %R

Symbol:

The element serves the closed line branch.

VYECTOR

VE Controller Programming Manual A T

7 Motion control instructions

7.1 Motion control programming for single-axis MC

Instructions

7.1.1 MC instruction programming points

The motion control of the VE controller in conjunction with the servo axis (e.g.
VECServo)is based onthe EtherCAT bus network and, unlike the pulse mode of the
previous hardware output, is achieved entirely by software, specifically by calculating and
releasing a control command in each very short EtherCAT bus cycle to achieve control of the
servo. Therefore, the following points need to be noted:
€ The user MC control program, which is executed in the EtherCAT task cycle, should be
configured to execute under the EtherCAT task; most MC function blocks will not function
properly if they are placed in the POU of the lower priority Main task;
€ The execution of MC function blocks requires communication data objects in the
communication to be passed on, therefore the necessary configuration items should be
present in the PDO configuration table; if a configuration-related data object is omitted, the
servo may not function properly and there will be no error alarms;
€ The controller can initialize the function code of the servo through the configuration of
SDO, making the operation mode of the servo (usually CSP mode), servo motor encoder
mode, electronic gear ratio, etc., to ensure the correspondence between the control
command and the physical operation position; the initialization of the servo can also
improve the commissioning efficiency of the equipment, and no error after the replacement
of parts;
€ For the control of servo axes, the rules and logic of axis state transfer are followed, using
the appropriate MC function block according to the current state of the axis and the desired
motion;
€ One MC instance can only be used for one servo axis, if it is used for several servo axes at
the same time, it will lead to confusion.;
€ A running servo axis must have an MC function block to monitor its operation, even
MC_Stop is a kind of monitoring, to avoid that the system will stop and report an error due
to a jump in the program logic without MC function block monitoring, which is not easy to
check.;
€ Pay attention to the safe handling of commissioning. If the servo system uses incremental
encoders, a zeroing operation is required before normal operation, the DI signal input port
of the servo drive can be connected to the home position signal, and for movements within
a limited range (e.g. screw), there should be a limit and safety protection signal before
commissioning,

VE Controller Programming Manual A T

7.1.2 MC function blocks commonly used for single-axis control

Mc Function Block (FB)isalsoknown as the MC instruction, and to be precise, the user
program uses an object instance of the MC function block, which is controlled by the servo
axis through the MC object instance. Single-axis control, generally used for positioning
control, that is, the servo motor drags the external mechanism movement to a specified
position, and sometimes also requires the servo to operate at a specified speed or torque,
etc., in single-axis control, commonly used to the following MC function blocks:

Control MC commands to be | Description
operations used
Servo enable MC_Power Run this command to enable the servo axis

before subsequent operation control can take

place
Servo pointing | MC_Jog Pointing operation of the servo motor, often
operation used for low speed test runs, to check

equipment or to adjust the position of the
servo motor

Relative MC_MoveRelative Runs a specified distance with the current

positioning position as a reference

Relative MC_MoveAdditive The servo is run for a specified distance relative

superimposed to the current servo run command

positioning

Absolute MC_MoveAbsolute Command the servo to run to a specified

positioning coordinate point

Speed control MC_MoveVelocity Command the servo to run at the specified
speed

Torque control MC_MoveTorque Command the servo to run at a specified
torque

Servo pause MC_Halt Command the servo to pause, if MC_Movexxx

is triggered again, the servo can run again.

Emergency stop | MC_Stop Command the servo to emergency stop, only
after the stop command is reset and
MC_Movexxx is triggered, the servo can run

again
Alarm reset MC_Reset When the servo has an alarm stop, run this
command to reset the servo.
Change of | MC_ControlMode This command allows the servo to select
operating mode "position"”, "speed" or "torque" mode.
Servo home | MC_Home The servo is commanded to start a home
return return operation, with the application system's

home signal, both limit signals, etc. connected
to the servo's DI port

Controller home | MC_Homing The control system starts the home return

VE Controller Programming Manual A T

return operation. The home signal of the application
system and the limit signals on both sides are

connected to the DI port of the controller.

7.1.3 MC commands and PDO/SDO configuration

When the VE controller executes the servo axis MC control commands from the user
program, the information items required to interact with the servo during the execution of
the MC commands need to be added to the communication PDO/SDO configuration table
in order to perform the required control functions.

MC Directive Required TPDO objects Required RPDO objects
MC_Power
MC_Halt
MC_Stop StatusWord

ControlWord
MC_Reset Errorcode
MC_Home
MC_Homing
MC_Jog
MC_MoveRelative - Position actual value
— TargetPosition)

MC_MoveAdditive Following error actual value

MC_MoveAbsolute

_ Target velocity
MC_MoveVelocity ! .
Max profile velocity

SMC_SetTorque Target torque Torque actual value

1: Cycle Synchronous Torque
Mode CST

2: Cycle Synchronous Velocity
Mode CSV

3. Cycle synchronous position
CSsP

SMC_SetControllerMode | Modes of operation

The above mentioned TPDO and RPDO are the basic configuration items required for
single axis control. In MC control, the servo is in position mode in most cases, especially in
EtherCAT bus based applications, and is in "cyclic synchronous position mode", so the servo
is normally initialised to this mode of operation in the SDO configuration during
programming.

¥ vECServo x

General Process Data Startup Parameters EtherCAT Parameters = EtherCAT I/O Mapping = EtherCAT IEC Objects Status i Information
& Add [Edit Delete # Move Up Move Down

Line Index:Subindex Mame Value Bit Length Aborton Error Jump to Line on Error Next Line Comment
1 16#6060:16#00 Command_0 8 8] | 0

VYECTOR

VE Controller Programming Manual A T

VYECTOR

VE Controller Programming Manual A T

7.2 Motion control programming for multi-axis CAM cam

synchronization

Cam motion is borrowed from the concept of the relative motion characteristics of
mechanical cam and lift bar, refers to the controller according to a specific relative position
nonlinear relationship, so that the servo follows the spindle, continuous synchronization
motion to meet the motion characteristics required by the equipment, in the fixed length
cutting, shear control, fly shear control, multi-color overprinting and other synchronous
applications, is widely used. The main-axis position of the electronic cam curve is shown
below, with the horizontal axis as the primary axis position and the vertical axis as the axle
position:

Slave

PosEon
& -
Slave I gl =
.-__" b - CUMVeSs

— = PO

lMaster

VE controller is a software way, the realization of cam motion control characteristics,
that is, the use of software digital "cam meter" instead of mechanical cam, so also known as
electronic cam control. Compared to mechanical cams, there are the following features:
® Fasy production of cam shapes: cams are described using cam tables, cam curves or
arrays;
® Fasy and versatile cam shapes: multiple cam table selection, dynamic switching during
operation;
® FEasy cam shape modification: allows dynamic modification of cam table key points
during operation;
® Multiple cam followers: multiple cam followers allowed;
® Cam tappets: multiple cam tappets, multiple setting intervals allowed,;
® Cam clutch: in cam operation, user programmable to enter and exit cam operation;
® FElectronic cam specific features: virtual spindle support, phase shift, output
superimposition;

The VE controller's cam operation is software-only, and if the CAM is running, the next
target point from the shaft is calculated once each time the EtherCAT task is entered, so it
has better functional flexibility than hardware cam operation.

The control of the electronic cam has three elements:
(1) Spindle: a reference axis used for synchronous control;
(2) From the axis: the servo axis that follows the movement according to the desired

VE Controller Programming Manual A T

nonlinear characteristics according to the position of the spindle;
(3) Cam table: Describes the spindle - a data sheet or cam curve from the relative position
and range of the axis, periodicity, etc.

The user writes the program needs to design the cam table, specify the spindle and the
axle, trigger the cam run at the right time during operation, so that the cam from the shaft
into the cam run.

Basic command function blocks for electronic cam control:

Control MC commands to be _
_ Description
operation used
Cam table Run this command to relate the spindle,
_ MC_CamTableSelect
selection slave cam table and all three
Entering cam Putting the slave shaft into cam operation
MC_Camin
run
Exit cam run MC CamOut Getting the slave axis out of the cam run
Correction of , Spindle phase modification
MC Phasing
cam phase

ECTOR

e

VE Controller Programming Manual

2
BF
2
RE

7.2.1 Characteristics of the cam table

The new cam table can be created as follows:

3 Cut
|Ba Copy
Bl PLC_PRG ho| B Paste
) rou (re) X Delete Alarm Configuration...
POU_1 (PRG) Refactoring » Application...
% POU_2 (PRG) é Properties... i e II
POU_3 (PRG) [|— Cam table...
= Task Configur| £ Add Object = CNC program...
= & EtherCAT | 3? Ad_d R &y CNC settings...
i PLC_Pi Ly EdDhinc E% Data Sources Manager...
& MainTask (Edit Object With... s puT..
& Trace & Login @ External File...
EXCAT Miter Sl Delete application from device @ Global Variable List..

1l veCservo (ECSertoy T- i@ Global Variable List (tasklocal)...
W@ Axis1 (SM_Drive_GenericDSP402) I

[[L |

When writing a user program for cam operation, the cam table is one of the items
written which determines the characteristics of the cam operation and can be entered in
both graphical and tabular form.

The diagram below shows the CAM cam table in graphical form, with the horizontal axis
being the spindle position axis and the length of the axis being the travel of the cam run.
There are four coordinate curves and the vertical axes are the slave axis position, slave axis
speed, slave axis acceleration and slave axis acceleration curves. When programming and
commissioning, more attention is often paid to the position curve, the velocity curve and,
when commissioning for smoothness, the acceleration curve.

& cam x [Pou | -
Cam Camtable Tappets Tappet table
R ~
L \J
300 e
200
. e
100 a2
L1 i
™ — i ter poksition
¥ 20 40 80 80 100 120 140 160 180 200 20 240 260 280 300 adp
0
o
B
15
142
£
05
ter positi
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
0.03
0.02
oou_h_ master position [u}
ooidd 1 0.4 1 1 2 202 2 21 3 4
-0.02{5 ; ; ; ¢ o
-003-?- H i i H i ke
| TE L
|0.002}3—— i i i i i i } i i i : i f i ; ool || 8

VE Controller Programming Manual A T

The cam curve has the following characteristics:

€ In the coordinates of the master-slave position curve, the vertical axis is the range of
possible motion of the slave axis; the vertical axes of the other three curves are the ratio of
the velocity of the slave to the main axis and the ratio of the acceleration of the slave to the
master;

€ The cam curve is a monotonic curve in the vertical direction, i.e. each coordinate of the
main axis can only correspond to a unique coordinate value of the slave axis; when the cam
is executed, the main axis coordinates move in a small to large direction;

€ The cam curve can have a number of key points and the line between two key points can
be set as a straight line or a 5-times curve, with the system optimising each 5-times curve to
minimise sudden changes in speed and acceleration;

€ The start and end coordinates of the horizontal axis (spindle) start at 0 and end at 360 by
default and can be modified by the user according to the actual physical travel.

7.2.2 Cam table input

(1) When a new cam table is created, the system automatically sets up the simplest cam

curve, on the basis of which the user can modify it to form the CAM curve table he needs.

(20 The user can increase or decrease the number of key points of the cam curve and
modify the coordinates of the key points.

(3) The user can modify the line type between any two adjacent key points, or a 5th curve,
or a straight line;

(4) The system defaults to a 5-fold curve between key points in the cam curve, which
ensures continuity of speed during operation and reduces mechanical shocks.;

ice (Vector ARM Cortex-Linux-SM-CNC-TV-MC)
PLC Logic

- Properties - Cam [Device: PLC Logic: Application X
.} Application P [9 PP]
@, Cam q
Common Buid Access Control
Cut
m Library Manager %
ng PLC_PRG (PRG) Bay Copy Dimensions
l'ﬂ POU (FB) Paste Masterstartpositmﬂ:|0 | Master end position: 360
gj POU_1 (PRG) # Delete Slave start position: [0 l Slave end position: P360
[8] rou_2 (Pre) Browse » i
b =
—J POU_3 (PRG) Refactoring » [4] Smooth transition Slave period: {360
= (&8 Task Configuration -
= EtherCAT Task (I Properties.. Continuity requirements
) pLc_PRG Add Object [Position Velocity [Acceleration [] Jerk
2 MainTask (NewGro) Add Folder... Compile format
& Trace 7" Edit Object (® polynomial (XYVA)
EtherCAT Master_SoftMotion (f Edit Object With... (O one dimensional point array Elements: 256
VECServo (VECServo,
n o (VECTervo) (O two dimensional point array
.& Axis1 {SM_Drive_GenericDSP402)
B8 VECServo_5 (VECServo)
HgP Axis2 (SM_Drive_GenericDSP402)
ModbusTCP_Slave (ModbusTCP_Slave)
SoftMotion General Axis Pool
! SM_Drive_PosControl (SM_Drive_PosControl) E Cancel Appty
A At Cemfm e dee (R EamaEmmnda hd

Key points in the cam curve, often related to the mechanical movement requirements of the
control object, for example

VYECTOR

VE Controller Programming Manual A T

(1) For chasing shear applications, the coordinate range of the spindle is recommended to
correspond to the physical travel of the running interval for easy analysis.

(2@ The starting and ending points of the round trip from the spindle, the starting position
point of the synchronous running interval and the point at which it leaves the synchronous
position are important key points.

@ The line segments of the cam curve should be straight lines for proportional
synchronisation intervals and 5 times curves for other intervals

7.2.3 The internal data structure and array of the CAM cam table

In CODESYS, for each CAM table, there is a data structure that describes the CAM table,
describing the characteristic data of the CAM table. The following image describes the data
structure of the CAMO cam table, note the variable names of its structures:

gt
FE i) ESicl B HEEE TR i EE
= @ Camo Device.Application MC_CAM_REF TBEF
4 wCamStructiD WORD 56372 TEEFEEM By menas of this variable,...ich always has a consta...
*» byType BYTE 3 ARET Describes the cam type, t... is the way in which the...
*» byvarType BYTE 0 TEEF Only used if byType=1 or byType=2 +
4y xStart LREAL 1] AEER] Start position of the mast...fining the range of ma...
* xEnd LREAL 360 AEFR] End position of the maste...fining the range of mas...
*» nElements INT 5 AEER L] Number of elements that is depending on cam type ...
*p nTappets INT 0 B Number of tappet switch actions.
% pee POINTER TO... 16#0000FFFFSC... ARER L] Pointer to actual data element which type depends ...
¥ % pt POINTER TO... 16£0000000000... TREFLEM
*p dwTappetactiveBits DWORD 0 ARER LT Internal variable
* strCAMName STRING ‘camo' TREF A
*» bylInterpolationQuality BYTE 1 AEEF] 1: Linear interpolation, 3: Cubic interpolation
*p byCompatibilityMmode BYTE 0 AEEF] Compatibility mode: Bit0:...TRUE" " : Periodic execu...
*p bchangedOnline BOOL ABEF Internal variable
43 xPartofLM BOOL AEEF " TRUE' " : Generated by programming system -> ...
B e 1 [s

Inside there is a data structure to describe the characteristics of the CAM cam table: if
we write a CAM table manually, it is also available, as follows:

Although we don't need to write CAM tables manually, we can modify the required
CAM feature data through access to the data structure.

Note: When we declare the CAMO cam table, the system automatically declares the
CAMO data structure of the global variable type by default, and also declares CAMO_A an
array of

For example, in a user program, modify the number of key points or coordinates of the
CAMO cam table:

CAMO. nElements:=20; // Change the number of key points to 20
CAMO. xEnd:=500; // Change the end point of the spindle to 500.
// For example, in the user program, modify the coordinates of 2 of the key

points:

CAMO_A
CAMO_A
CAMO_A
CAMO_A

3
3
3
3

.dx:=30;
dy:=45;
.dvi=1;
.da:=0;

— —/ /e
_—

VYECTOR

VE Controller Programming Manual A T

CAMO_A[4].dx:=60;
CAMO_A[4].dy:=75;
CAMO_A[4].dv:=1;
CAMO_A[4].da:=0;

Online maodification of CAM camsheets

On-line modification of CAM curves" refers to the modification of the coordinates of the key
points of the CAM curve during the execution of the user written program, according to the
control characteristics. The modifications are usually made to the coordinates of the key
points, but can also be made to the number of key points, to the distance range of the
spindle, etc.

Reminder: Modify the cam table before entering the cam run, not during the run to avoid
unanticipated movement results that require modification of the CAM cam table
Applications.

1) In general, OEM customers use cam tables that have been successfully verified by
commissioning.

@) If there are several machining objects or modes, multiple cam tables can be considered
to be preset and switched automatically according to the needs of the user.

(3 Some machines require a wider range of adaptability, e.g. packaging machines, which
require a packaging length in the range of 10cm to 25cm and automatic adaptation to
changes in operating speed, may require online modification of the CAM cam table.

7.2.4 Reference and dynamic switching of CAM table

C The CAM cam table is stored internally in the controller as an array that can be
pointed to by a specific MC_CAM_REF variable type, e.g. by declaring
Cam table p: MC_CAM_REF
This variable can be assigned a value and can also be thought of as pointing to a
specific cam table as follows
Cam table p:= Cam0; // point to the desired cam table
cam table p: MC_CAM_REF; // cam table pointer.
TablelD: uint; // cam table selection command, settable by HMI.
Case TablelD of
0: cam table p := cam table A;
1: Cam table p := Cam table B;
2: Cam table p := Cam table C;
End_case
MC_CamTableSelect_0(// Cam relationship
Master:= cam master ,

Slave:= cam slave ,

CamTable:= Cam table p,

Execute:= ReSelect, // Rising edge triggers cam table selection
Periodic:= TRUE,

VE Controller Programming Manual A T

MasterAbsolute:= FALSE,
SlaveAbsolute:= FALSE);
In the above example, the assignment of the MC_CAM_REF variable is used to switch

between multiple cam tables.

VE Controller Programming Manual

7.3

7.3.1 MC _Power

1) Command Format

Single axis commands

Instructions Name Graphical representation ST Performance
MC_Power (
S el
—Axis - Statusf— bRegulatorOn:= ,
Axis enable | —Enable bRegulatorRealstate— bDriveStart:= ,
MC_Power —bRegulatorOn bDriveStartRealState f— Status=> ,
command —bDrivestart . Busy — bRegulatorRealState=> ,
E”Eur:f[;: iﬂr:'l"\o_'§5ta:'tREélStéte=) i
Err;r:;,
ErroriD=>);
2) Related variables
@ Input variables
Input Data Effective Initial _
_ Name Description
variables Type range value
_ Axis Mapped to an axis, i.e. an
Axis AXIS_REF | — — _
instance of AXIS_REF_SM3
Input Set to TRUE to start
Enable _ BOOL TRUE,FALSE | FALSE . .
active function block processing
Enabled Set to TRUE to set the axis
bRegulatorOn BOOL TRUE,FALSE | FALSE
state to the enable state
Drive Set to TRUE to disable
_ allowed emergency stop
bDriveStart BOOL TRUE,FALSE | FALSE . :
processing of the function
block
@ Output Variables
_ Data Effective Initial o
Output Variables Name Description
Type range value
Operable Set to TRUE if the axis
Status BOOL | TRUE,FALSE | FALSE | |
state is ready to move
Axis enable TRUE when axis
bRegulatorRealState | signal BOOL | TRUEFALSE | FALSE | enable is active
status
Permissible TRUE if the axis is not
bDriveStartRealState | drive status | BOOL | TRUE,FALSE | FALSE | interrupted by the
fast stop mechanism
Execution TRUE if the
Busy _ BOOL | TRUE,FALSE | FALSE _
in progress processing of the

VYECTOR

VE Controller Programming Manual A T
function block has
not been completed

Error TRUE if an exception
Error BOOL | TRUE,FALSE | FALSE
occurs
Refer to Error code output
Error SMC_ _
ErrorlD SMC_ 0 when an exception
Codes ERROR
ERROR occurs

3) Function description

The other inputs are only processed by the function block if the input Enable is TRUE.

If the function block MC_Power has already been called and bRegulatorOn=FALSE, the
function block sets the axis state (nAxisState) of the relevant axis to the power_off state,
indicating that the drive is not yet ready for motion.

If the function block MC_Power has been called and bRegulatorOn=TRUE, the function
block will set the axis state (nAxisState) of the relevant axis to the standstill state if no errors
have occurred; if errors have occurred, the corresponding error state will be output.

If Enable, bRegulatorOn and bDriveStart are TRUE, but the output Status remains FALSE
after a certain time, the output Error will be set. This can happen when a hardware problem
is generated in the enable state.

If the enable signal is lost (usually in operating mode), the nAxisState of the relevant axis
will be set to the ErrorStop state.

When using this, note the order of operation of Enable and bRegulatorOn. Enable can
be held high to control servo enable and disable by controlling bRegulatorOn. Do not turn
Enable and bRegulatorOn on and off at the same time. If Enable is disabled, the function
block will no longer be executed and changing bRegulatorOn will not take effect, resulting in
the "servo is still enabled even though bRegulatorOn has been reset” phenomenon. This will
lead to the phenomenon that "the servo is still enabled even though bRegulatorOn has been
reset”.

€ Time-series diagram

Set Enable to TRUE, bRegulatorOn to TRUE and bDriveStart to TRUE, indicating that the
busy command is being processed becomes TRUE, then the axis enters the Enable ON state
and the Status state becomes TRUE.

VE Controller Programming Manual A T

Enable

bRegulatorOn

bDriveStart

Status

bRegulatorRealState

bDriveStartRealState

Busy

Error

ErrorlD 0 >< R

4) Error description
Do not write a program to start another instance of the MC_Power instruction in the axis

where the MC_Power instruction is being executed. In principle, only 1 MC_Power instruction
can be set for each axis. If the MC_Power instruction of another instance is started in the axis
in which the MC_Power instruction is being executed, the MC_Power instruction that is
executed later will be executed first.

Note]: Please read "Appendix C Error Code Descriptions” for the descriptions of the relevant

error codes.

VE Controller Programming Manual

7.3.2 MC_Stop

MC_Stop puts the axis in the stop state. The currently running motion of the function block

instance is aborted.

1) Command Format

Instructions | Name Graphical representation ST Performance
MC_Stop(
Axis:= ,
MC_Stop Execute:= ,
Axis stop | —{Axis Donef— Deceleration:= ,
MC_Stop —{Execute Busy — Jerk:= ,
command | —peceleration Error— Done=> ,
—Jerk ErrorID— Busy=> ,
Error=> ,
ErrorID=>);
2) Related variables
€ Input and output variables
Input and . "
s Data Effective Initial _
output Name Description
_ Type range value
variables
.) Mapped to an axis, i.e. an
Axis Axis AXIS_REF — —
instance of AXIS_REF_SM3
@ Input variables
Input Data Effective Initial o
_ Name Description
variables Type range value
Execution A rising edge of the input
Execute conditions BOOL TRUE,FALSE FALSE will initiate the processing
of the function block
Deceleration “Positive Deceleration of the
Deceleration | rate LREAL numbers” . " | 0 function block (u/S"2)
0
Rate of “Positive Rate of change of velocity
Jerk change of | LREAL numbers” . " | 0 (u /SN3)
speed 0
@ Output Variables
Output Data Effective Initial o
, Name Description
Variables Type range value
Instruction Axis instruction execution
Done execution BOOL TRUE,FALSE FALSE complete, set to TRUE
completed
Command TRUE if the current
Busy . . BOOL TRUE,FALSE FALSE)) o
execution in instruction is in progress

VE Controller Programming Manual A T

progress

Error Set to TRUE when an
Error BOOL TRUE,FALSE FALSE .

exception occurs
ErrorlD Error code SMC_ 7 SMC_ 0 Error code is output when
rror
ERROR ERROR an exception occurs

3) Function description

This function block is designed to stop the motion of an axis in normal operation, any
command to this axis is not valid when the axis is in the stopping state.

This function block can only be run when the axis is in Motion, but not in any other state.
The start command is initiated on the rising edge of Execute. If Busy is active while MC_Stop
is active, starting MC_Stop again will cause the command system to change to Errorstop.
@ Timing diagram
the axis must be in the running state (Motion) for the MC_Stop instruction to run.

Execute of the function block must have a rising edge condition.

Done of the function block indicates that the instruction has been executed normally.

A Busy function block indicates that the function block is currently being executed.

CommandAborted of the function block indicates that the instruction is interrupted by

another motion control instruction, and the flag bit is TRUE.

Example: The change of the flag bit during the execution of MC_MoveVelocity instruction

and MC_Stop instruction in different timing operations;

The processing of CommandAborted is described in the following timing diagram .

FB1 FB2
MC_MoveVelocity MC_Stop

Asds 1 — Axs InVelodty |- InVel_1 Axs 1 - Rds Dore | Done_2
Exe_1 — Execute Busy - Exe 2 - Execiute Busy

50 Velocty Commandfborted - Abort 1 20 - Deceleration Emor |-

10 - Acceleration Emor |- Eror_1 0 - Jerk ErrorlD |-

10 - Decelerstion EmoriD |-

0 - Jerk

1 — Direction

VYECTOR

VE Controller Programming Manual A T
FB1 1
Executeo t
InVelocityl
0 t
CommandAborted?
0 t
Error!
0
it
FB2
Executel
0 t
1
Done0 "
50
Velocity
0 i

4) Error Description
When MC_Stop has a repetitive instruction running, the error flag Error is True,ErrorID is
SMC_MS_AXI error ;
Note]: Please read "Appendix C Error Code Descriptions” for the description of the relevant

error codes.

VE Controller Programming Manual

7.3.3 MC Halt

1) Command Format

Instructions | Name Graphical representation ST Performance
MC_Halt(
) BAxis:= ,
Axis MC_Halt Execute:= ,
normal —Axis Done Deceleration:= ,
—Execute 2 Busy Jerk:= ,
MC_Halt ause — Deceleration CommandAborted Done=> ,
P —{Jerk Error Busy=> ,
command ErrorID CommandAborted=> ,
Error=> ,
ErrorID=>);
2) Related variables
€ Input and output variables
Input and Data Effective Initial _
_ Name Description
output variables Type range value
. Mapped to an axis, i.e. an instance
Axis AXIS AXIS_REF — —
of AXIS_REF_SM3
@ Input variables
Input Data Effective Initial o
_ Name Description
variables Type range value
Execution A rising edge of the input
Execute conditions BOOL TRUE,FALSE | FALSE will initiate the processing
of the function block
Deceleration “Positive Deceleration of the function
Deceleration LREAL numbers” +" | 0 block (u/S"2)
0"
Leap “Positive Specify the degree of jump
Jerk LREAL numbers” +" | 0 [command unit /SA3
0"
@ Output Variables
Output Data Effective Initial o
, Name Description
Variables Type range value
Instruction Axis instruction execution
Done execution BOOL TRUE,FALSE FALSE complete, set to TRUE
completed
Instruction The current instruction is in
Busy execution in | BOOL TRUE,FALSE FALSE progress, set to TRUE
progress
Command | Instruction If the current instruction is
) BOOL TRUE,FALSE FALSE)
Aborted interrupted interrupted, set to TRUE
Error Set to TRUE if an exception
Error BOOL TRUE,FALSE FALSE
occurs

VYECTOR

VE Controller Programming Manual A T
ErrorD Error code SMC_ Refer to SMC_ 0 Error code is output when
rror

ERROR ERROR an exception occurs

3) Function description

This function block stops the reference axis in a controlled manner. If the actions of
other function blocks are running at this time, these actions are aborted. The axis enters a
discrete motion state until the speed reaches 0. If the "Finish” output of MC_Halt is set, the
state of the axis will change to stationary. The execution of MC_Halt can be interrupted by
issuing a new motion command as long as MC_Halt is active, unlike MC_Stop, which can be
interrupted.

This function block can only be run in the running state (Motion), but not in any other
state.

The start command is initiated on the rising edge of Execute; the state of the command
is Discrete Motion while it is running and Standstill when it is finished.

4) Timing diagram
the axis must be in the running state (Motion) for the instruction to run.
Execute of a function block must have a rising edge condition.
Done for a function block indicates that the instruction is executing normally.
Busy of a function block indicates that the block is currently being executed.
CommandAborted of the function block indicates that the instruction is interrupted by
another motion control instruction, and the flag is TRUE.
Example: The change of the flag bit during the execution of MC_MoveVelocity
instruction and MC_Halt instruction in different timing operations;
The processing of CommandAborted is described in the following timing diagram,

EB1 FB2
MC_MoveVelocity MC_Halt

Axis_1 - Axis Invelocity | InVel_1 Axis_1 - Axis Done | Done_2
Exe_1 - Execute Busy |- Exe_2 — Execute Busy |-

50 — Velocity Active - 5 - Deceleration Active|-

10 q Acceleration CommandAbortedl- Abort_1 0 - Jerk CommandAborted | Abort_2

10 - Deceleration Errorf- —| Buffertd ode Errar |-

0 4 Jerk EmarlDp- ErrorlD |

1 - Direction

— Buffermode

VE Controller Programming Manual A T
FB1 1
Execute 0] -
S |
In‘v’elomtyﬂ .
CommandAborted !
0 t
FB2 1
Execute 0 | %
1
Done o [] 5
ommandAborted !
0 t
a0
Velocity
0 >t

5) Error description

An error occurs when the axis state is not a parameter error in the start-up instruction or
instruction system in Standstill, and the axis error can only be cleared before operation starts.
[Note]: Please read "Appendix C Error Code Descriptions” for a description of the relevant
error codes.

VE Controller Programming Manual

7.3.4 MC Home

Its execution will cause the axis to perform the “search home” sequence. The details of this

sequence are manufacturer dependent and can be set by the axis parameters.

The Position input is used to set the absolute position when a reference signal is detected.

The function block terminates with standstill.

1) Command Format
Instructions | Name Graphical representation ST Performance
MC_Home (
Axis Axis:= Axis,
i MC_Home | Execute:= ,
return to —Ex§cute B?Jg?_ Position:= ,
MC_Home —Position CommandAborted— Done=> ,
ZEr0 Errorf— Busy=> ,
i CommandAborted=> ,
command EUCHN -
ErroriD=>);
2) Related variables
€ Input and output variables
Input and . "
Data Effective Initial .
output Name Description
_ Type range value
variables
Mapped to an axis, i.e. an instance of
Axis AXIS AXIS_REF — —
AXIS_REF_SM3
@ Input variables
Input Data Effective Initial o
_ Name Description
variables Type range value
Execution A rising edge of the input will
Execute conditions BOOL TRUE,FALSE FALSE initiate the processing of the
function block
- Axis reaches Represents the zero return
Position o LREAL Data range 0 B) o
position position of the axis position
@ Output Variables
Output Data Effective Initial o
i Name Description
Variables Type range value
Instruction Axis instruction execution
Done execution BOOL TRUE,FALSE FALSE complete, set to TRUE
completed
Instruction Execution of current instruction
Busy execution in | BOOL TRUE,FALSE FALSE is in progress, set to TRUE
progress
Command | Instruction If the current instruction is
. BOOL TRUE,FALSE FALSE .
Abort interrupted interrupted, set to TRUE
Error Error BOOL TRUE,FALSE FALSE Set to TRUE if an exception

VE Controller Programming Manual A T
occurs
Error code SMC_ Refer to SMC_ Error code is output when an
ErrorlD 0]
ERROR ERROR exception occurs

3) Function description

This function block is a zero return operation, where the Position data is the zero position of
the axis.

The running state of this function block is in Standstill, the state of the instruction is homing
when it is running, and no other state can be run.

The start command is the rising edge start command of Execute.

Viktor servo setting instructions :

€ \When using each servo axis to return to the home position, the return mode of the servo
parameter must be set; the setting mode can be set manually by setting the function code of
the servo;

€ The corresponding function code can also be configured via the start parameters of the
VE slave; the following index and subindex data must be set for the communication method;

Project index Sub-indexes Description
Zero return method X609 The specific parameters to be set can be
X
selected according to the servo manual
Home velocity Generally defined speeds are relatively
0x6099 0x01 _ _ S
high, with reduced zeroing times in rpm
Find zero velocity Generally defined speeds are relatively low,
0x6099 0x02]
in rpm
Home return change in acceleration and deceleration at
_ . 0x609A _
acceleration/deceleration home return, in u/s"2
Home return timeout The return time exceeds the set time and
0x200A 0x08

the system reports an Er.603 error.

CODESYS screen settings reference :

B VECServo X
General ProcessData Startup Parameters |og EtherCAT Parameters %= EtherCAT I/OMapping #= EtherCAT IEC (
db Add [AEdit > Delete # MoveUp & Move Down

Line Index:Subindex Name Value Bit Length Abort on Error
1 16#6098:16200 Homing method 35 8 !
2 1626099:16 =01 Speed during search for switch 600 32 O
3 16#6099: 16202 Speed during search for zero 300 32 F
4 16=609A: 16200 Homing acceleration 4000 32 O
4) Timing

diagram

VECTOR

B
k]
B
b
R

VE Controller Programming Manual

Execute

Done _|

Busy

CommandAborted

Error

ErrorlD (1] >< Error Code

VE Controller Programming Manual

7.3.5 MC_MoveVelocity

Simulated velocity control using the drive position control mode, where the Velocity

assignment controls the speed of the drive if the axis is enabled and the command is valid.

1) Command Format

Instructions Name Graphical representation ST Performance
MC MoveVelocity(
Axis:= ,
Execute:= ,
MC_MoveVelocity Velocity:= ,
—{Axis InVelocity [— 2 r ons=
Speed :) Acceleration:= ,
P —{Execute Busy [— Deceleration:= ,
. — Velocity CommandAborted — e
MC_MoveVelocity control i =N Jerk:= ,
| : | Direction:= ,
commands _?;f(eferat»on ErrorlD ST ncivyst .
—Direction Busy=> ,
CommandAborted=> ,
Error=> ,
ErrorID=>);
2) Related variables
€ Input and output variables
Input and . "
Data Effective Initial o
output Name Description
_ Type range value
variables
. Mapped to an axis, i.e. an
Axis AXIS AXIS_REF — —)
instance of AXIS_REF_SM3
@ Input variables
Input Data , Initial o
_ Name Effective range Description
variables Type value
Execution A rising edge of the
conditions input will initiate the
Execute BOOL TRUE,FALSE FALSE)
processing of the
function block
Speed Data range This data is the speed
Velocity LREAL 0 run value for this
instruction
Acceleratio Data range Acceleration value as
Acceleration n LREAL 0 the speed becomes
greater
) Deceleratio Data range Deceleration value as
Deceleration LREAL 0
n speed becomes smaller
Leap Data range The value of the slope
change of the
Jerk LREAL 0 .
acceleration and
deceleration curve
Direction Direction MC _Direction | 1: positive current | Command operation

VE Controller Programming Manual

of travel -1: negative for the direction of
2. current travel
@ Output Variables
Output Data Effective Initial .
_ Name Description
Variables Type range value
. Set speed flag The set running speed has
InVelocity BOOL TRUE,FALSE FALSE
reached been reached, set to TRUE
Instruction The current instruction is
Busy being BOOL TRUE,FALSE FALSE being executed, set to
executed TRUE
Instruction If the current instruction is
CommandAbort | BOOL TRUE,FALSE FALSE .
interrupted interrupted, set to TRUE
Error Set to TRUE if an
Error BOOL TRUE,FALSE FALSE]
exception occurs
Error code SMC_ Refer to SMC_ Error code is output when
ErrorlD 0
ERROR ERROR an exception occurs

3) Function Description

Changes the Velocity parameter for the analog speed control of the drive.

€ Timing diagram

Execute of the function block must have a rising edge condition
InVelocity of the function block indicates that the running speed of the instruction has

reached the set value.

Busy of a function block indicates that the function block is currently being executed.

€ Examples

FB1

MC_MoveVelocity
Axis —SAxis

Axis —

FB2

-

OR

InVelocity
Execute —|Execute

Velocity CommandAb:

Buay[—Busyl

Acceleration E:
100 Deceleration ErrorlD
0 —Jerk
1 —Direction

@ Timing instructions :

Next —|

Test —

& >1

MC_MoveVelocity

Axis

Execute

Velocity
Acceleration
Deceleration
Jerk
Direction

InVelocity
Busy
CommandAborted

VE Controller Programming Manual

FB1)
Next 0

1
Execute

Busy

S O

InVelocityé

gpmmandAbortedé
FB2

1

Test0

Busy1
0

1

InVelccityO

ngmandAbortedé

1500
1000
Velocity

0

VE Controller Programming Manual

7.3.6 MC_MoveAbsolute

This function block causes the axis to be moved to an absolute position and uses the

values for Velocity, Deceleration, Acceleration and Jerk. If no further actions are pending, the

execution ends with velocity 0.

1) Command Format
Instructions Name Graphical representation ST Performance
MC_MoveRbsolute (
AXiS MC_MoveAbsolute 2:::;:1:' ’
absolute | Zptue B | e
—IPosition CommandAborted}— % o f
MC_MoveAbsolute | position —jvelogiy Error— e T
7Accelerat\'.on ErrorIDf— “z;e;n;n: £
control Mo Done=> ,
commands | o .
Errorioes):
2) Related variables
€ Input and output variables
Input and . "
Data Effective Initial _
output Name Description
variables Type range value
A AXIS AXIS REF Mapped to an axis, ie. an
Xis i — _
instance of AXIS_REF_SM3
@ Input variables
Input N Data Effective Initial D ot
. ame escription
variables Type range value
Execution A rising edge of the input will start
Execute - BOOL TRUE,FALSE | FALSE)
conditions the function block
Positi Axis arrival LREAL Data range 0 This position is the absolute
osition
position position data of the axis
Veloci Operating LREAL Data range 0 Maximum speed at which the axis
elocity -
speed runs to the target position
] Acceleratio Data range Acceleration value as speed
Acceleration LREAL 0)
n increases
) Deceleratio Data range Value of deceleration as speed
Deceleration LREAL 0
n becomes smaller
Leap Data range Value of the change in slope of
Jerk LREAL 0 the acceleration/deceleration
curve
Direction of MC Negative, Negative: Reverse movement ;
Direction command DIRECTION shortest shortest | Shortest: Choose the direction
Positive, based on the shortest path ;

VE Controller Programming Manual A T

current, Positive: move in the positive
fastest direction ;

Current: Move in the current
direction;

Fastest: automatically selects the
fastest direction of travel

(This function is available in

rotation mode)

@ Output Variables

Output Data Effective Initial o
_ Name Description
Variables Type range value
Instruction Axis instruction execution
Done execution BOOL TRUE,FALSE FALSE complete, set to TRUE
completed
Instruction Execution of current
Busy execution in | BOOL TRUE,FALSE FALSE instruction is in progress, set
progress to TRUE
Command Instruction If the current instruction is
BOOL TRUE,FALSE FALSE .
Abort interrupted interrupted, set to TRUE
Error Set to TRUE if an exception
Error BOOL TRUE,FALSE FALSE
occurs
Error code SMC_ Refer to Error code is output when
ErrorlD 0 .
ERROR SMC_ERROR an exception occurs

3) Function Description

€ This function block is an absolute axis positioning instruction, and the Position data
is the absolute position of the axis.

This function block is in Standstill, and the state of the command is Discrete Motion.

A complete running process must control the different motion states of the axes.

This instruction is valid for repeated rising edges in Discrete Motion, each time
refreshing the latest position.

This command is valid on the rising edge of Discrete Motion.

If Acceleration or Deceleration is zero, the command will run in an abnormal state, but
the state of the axis is Discrete Motion.

€ Trapezoidal acceleration and deceleration actions

Velocity, Acceleration and Deceleration have data; and Jerk is O;

VE Controller Programming Manual A T
& velocity
target velooity
Acceleratio Deceleration
time
-
Starting absolute position Absolute position of the target

€ S-curve acceleration and deceleration manoeuvres
Velocity, Acceleration, Deceleration and Jerk all with data;

4 Veloaty
target velocity
Poceleratio Deceleration
time
-
Starting absclute position Absclute position of the target
€ Absolute positioning of the axes in cyclic mode
Axis type and limits
Modulo settings
[J virtual mode g
@® Madulo Modulo value [u]: 360.0
() Finite

(D The axis rotation period is set to 360 and the Direction is set to Positive.

When the modulus of Position to 360 (Position/360 is rounded off, e.g. Position
380 is modulus 20 to 360, Position 350 is modulus 350 to 360) > Start absolute position,
then the axis runs in the forward direction (modulus of Position to 360 — Start

absolute position) by a distance.

VECTOR

2]
k]
B
b
R

VE Controller Programming Manual

/

Medulus thargel__
position to 360

When the modulus of Position to 360 (Position/360 is remainder, e.g. Position is 380
then modulus to 360 is 20) < Start absolute position, then the axis runs in the forward
direction (360 - Start absolute position + modulus of Position to 360) by a distance.

@ The axis rotation period is set to 360 and the Direction is set to shortest or fastest.
The modulus of Position to 360 is XPosition

When 0 < XPosition - Start absolute position < 180, the distance of the axis in the
forward direction (XPosition - Start absolute position).

- Starting point

\

\

|

Bt

-

N

Medulus of target

position to 360

When 180 < XPosition - starting absolute position, the axis runs in the opposite
direction 360 - XPosition + distance from the starting absolute position.

VECTOR

B
k]
B
b
R

VE Controller Programming Manual

Starting point

Madulus of target

position to 360

When XPosition< Start Absolute Position, the axis runs in the opposite direction Distance
from Start Absolute Position — Xposition.

Medulus of target

sition to 360
Starting peint

180

(B The axis rotation period is set to 360 and the Direction is set to shortest or
Negative. The modulus of Position to 360 is XPosition
Axis runs in reverse direction Distance from absolute position + 360—XPosition.

W30
Starting point

Medulus of target position to 360

-
d -
g

180

@ Absolute positioning of axes in linear mode

VE Controller Programming Manual A T

Axis type and limits
[virtual mode
) Modulo

(® Finite

When the absolute position of the target > the starting position, move the target
forward (absolute position - distance from the starting position)

When the target position < Start position, move the target in the opposite direction
(Start position - Distance from target position)

The running direction set in linear mode does not determine the axis running direction,
i.e. Direction is invalid.

Abseclute position Starting absolute Absolute position of
of the target pﬂsittinn the ta rgl-Et
L . i1 _ _
O o R o) T o)

4) Timing diagram

Axis must be in the Standstill state for the instruction to run.

Execute of a function block must have a rising edge condition.

Done of a function block indicates that the instruction has completed normal execution.
Busy of a function block indicates that the function block is currently being executed,;

Execute

Done

Busy

Commandéborted

Errar

ErroriD i (1] : X Error code |

VE Controller Programming Manual

7.3.7 MC_MoveAdditive

This function block causes a controlled motion that adds the specified distance to the

last specified target position. The axis is thereby in the discrete_motion mode. The current

target position can result from a preceding motion of MC_MoveAdditive that was aborted. If

the function block runs in the continuous_motion mode, the specified distance is added to

the current position during the processing time.

1) Command Format

Instructions Name Graphical representation ST Performance
MC MovelAdditive(
Axis:= ,
___ Execute:= ,
Superimposed s MC_MoveAdditive i Distance:= ,
Velocity:= ,
MC—Move absolute :I[E))f?t;itfe CommandAb::z: Acceleration:= ,
.) —Ivelogity e Deceleration:= ,
Additive motion _ e il B Jerk:= ,
—Deceleration Done=> ,
commands — e Busy=> ,
CommandAborted=> ,
Error=> ,
ErrorID=>);
2) Related variables
4 Input and output variables
Input and . "
Data Effective Initial _
output Name Description
_ Type range value
variables
. Mapped to an axis, i.e. an instance
Axis AXIS AXIS_REF — —
of AXIS_REF_SM3
@ Input variables
Input Data Effective Initial o
_ Name Description
variables Type range value
Execution A rising edge of the input will
Execute conditions BOOL TRUE,FALSE FALSE initiate the processing of the
function block
. Axis arrival Data range This data is the superimposed
Distance - LREAL 0 -
position position data
] Operating Data range Maximum velocity of the axis
Velocity LREAL 0) -
speed running to the target position
) Acceleration Data range Acceleration value as speed
Acceleration LREAL 0 .
increases
i Deceleration Data range Deceleration value as speed
Deceleration LREAL 0
becomes smaller
Leap Data range Slope change of the
Jerk LREAL % 1 _ .
acceleration/deceleration curve

@ Output Variables

VE Controller Programming Manual A T
Output Data Effective Initial o
_ Name Description
Variables Type range value
Instruction Axis instruction execution
Done execution BOOL TRUE,FALSE FALSE complete, set to TRUE
completed
Instruction Execution of current
Busy execution in | BOOL TRUE,FALSE FALSE instruction is in progress, set
progress to TRUE
Command Instruction If the current instruction is
) BOOL TRUE,FALSE FALSE .
Abort interrupted interrupted, set to TRUE
Error Set to TRUE if an exception
Error BOOL TRUE,FALSE FALSE
occurs
Error code SMC_ Refer to Error code is output when
ErrorlD 0 .
ERROR SMC_ERROR an exception occurs

3) Function description

€ This function block is a superimposed position command, and the Distance data is the

superimposed data of the axis.

€ |f this function block runs in Discrete Motion state, the CommandAbort of other

commands will be set in position when it is used.

€ |n standstill state, this command can be run independently to achieve relative positioning

requirements.

@ |f Acceleration or Deceleration is zero, the instruction runs in an abnormal state, but the

state of the axis is Discrete Motion.

€ The start instruction is the rising edge of Execute.

€ Trapezoidal acceleration and deceleration actions
Velocity, Acceleration and Deceleration have data; and Jerk is 0,

@ S-curve acceleration and deceleration

& velocity

Acceleratio

target velooity

Deceleration

time

Starting absclute position

-
Absolute position of the target

Velocity, Acceleration, Deceleration and Jerk all have data

VE Controller Programming Manual

A Velocity

Woceleratio

target velocity

Deceleration

time

Starting absclute position

4) Timing diagram

-

Absclute position of the target

Axis must be in the Standstill state for the instruction to run.
Execute of a function block must have a rising edge condition.

Done of a function block indicates that the instruction has completed normal execution.
Busy of the function block indicates that the function block is currently being executed.

€ Example

FBl

MC_Moveibsolute

nxis —Snxis
Execute —Execure
€000 —Position
3000 —{Velocity
100
10
0 —Jerk
0 —Direction

Done
Busy

Commandhiborted

0 —jAcceleration
0 —Deceleration

Error
ErroriD

| MC_MoveAdditive

Lwis —Shyia

€ Timing instructions :

Test —

OR

21 —Execute
4000 —{Distance
2000 —i‘Je locity

100 —|Acceleration
100 —f_Da celeration
0 —Jerk

FBz2
Done
Buay
CommandAborted

Error
ErrorID

—Busy2

[~ Commandhborted2

VE Controller Programming Manual

Ees Executei] B
] e @ O
A
Done 0
CommandAborted?
0 t
FB2 Execute é
Done 1| i
e TARRRIS: I | s o e B
ommandAborted!
0 t
3000 u:-“u \..é;
Velocity 201/
0 : >t

SLCTI101] 1 S—

Position 6000}

0

VE Controller Programming Manual

7.3.8 MC_MoveRelative

The axes run in relative position. The relative position is specified by Distance (units are

set by axis). Set the relevant parameters before running this command, Acceleration .
Deceleration. Velocity . Jerk and BufferMode.

1) Command format

Instructions Name Graphical representation ST Performance
MC_MoveRelative(
Axis:=,
Execute:=,
. MC_MoveRelative Distance:=,
Axis —AXis Donet— Velocity:=,
. —Execute Busy — Acceleration:=,
MC_ relative —pistance Activel— Deceleration:=,
—Velocity CommandAbaorted — Jerk:=,
MoveRelative | positioning | —jAcekeration e BufferMode:=,
—Deceleration ErrorID [— Dofe=s
— k 4
commands | I eemode Busy=> ,
CommandAborted=>,
Error=> ,
ErrorlD=>);
2) Related variables
€ Input and output variables
Input and . "
Data Effective Initial _
output Name Description
_ Type range value
variables
. Mapped to an axis, ie. an
Axis AXIS AXIS_REF — — .
instance of AXIS_REF_SM3
@ Input variables
Input Data , Initial o
_ Name Effective range Description
variables Type value
Execution Arising edge of the input
conditions will initiate the
Execute BOOL TRUE,FALSE FALSE .
processing of the
function block
Relative Data range This data is the relative
Distance position of | LREAL 0 position of the
movement movement
Running Data range Maximum velocity of the
Velocity speed LREAL 0 axis running to the target
position
) Acceleratio Data range Acceleration value as the
Acceleration LREAL 0 .
n velocity becomes greater
) Deceleratio Data range Value of deceleration as
Deceleration LREAL 0
n speed becomes smaller
Jerk Leap LREAL Data range 0 The value of the change

VE Controller Programming Manual A T
degree in slope of the
acceleration and

deceleration curve
Buffer Defines the time
mode Aborting; sequence of this FB
Buffered; relative to the previous
BufferMode MC_BUFFER_ | BlendinglLow;] function block. If the
MODE BlendingPrevious; Aborting function block is Busy,
BlendingNext; then only
BlendingHigh; BufferMode=Aborting is

allowed.
BufferMode

(available only with CODESYS
SoftMotion version 4.8.0.0)

Introduction

Without buffering, the previous motion function block is

Aborting immediately aborted and this function block is started
immediately (default mode)

Buffered This function block is started again after the previous motion
command has completed its movement
When switching, after the previous motion command has
completed its movement, pass the end position of the first

BlendingLow

motion command at the lower speed of the two preceding and
following motion commands

BlendingPrevious

When switching, after the previous motion command has
completed its movement, the end position of the previous
motion command is passed at the speed of the previous
motion command

BlendingNext

When switching, after the previous motion command has
completed its movement, pass the end position of the previous
motion command at the speed of the latter motion command

BlendingHigh

When switching, after the previous motion command has
completed its movement, pass the end of the first motion
command at the higher speed of the two preceding and
following motion commands

€ Output Variables

Output Data Effective Initial o
_ Name Description
Variables Type range value
Instruction AXxis instruction execution
Done execution BOOL TRUE,FALSE FALSE complete, set to TRUE
completed
Instruction Execution of current
Busy)) BOOL TRUE,FALSE FALSE | -
execution in instruction is in progress,

VE Controller Programming Manual A T

progress set to TRUE

Instruction If the current instruction is
CommandAbort , BOOL TRUE,FALSE FALSE |

interrupted interrupted, set to TRUE

Error Set to TRUE if an
Error BOOL TRUE,FALSE FALSE)

exception occurs

Error code SMC_ Refer to SMC_ Error code is output when

ErrorlD 0 .
ERROR ERROR an exception occurs

3) Function description

This function block runs in Standstill and the state of the instruction is Discrete Motion, so
that the execution of the instruction can be focused on the running state of the axis to avoid

interrupting other instructions of the axis or being interrupted by other instructions.

The start instruction is the rising edge of Execute, this instruction can be repeated on the
rising edge of Discrete Motion to refresh the latest Position position each time.
Acceleration or Deceleration is zero, the instruction runs in an abnormal state, but the state

of the axis is Discrete Motion.

@ Trapezoidal acceleration and deceleration movements

Velocity, Acceleration and Deceleration have data; and Jerk is O;

& vVelocity

Acceleratio

target velooity

Decelgration

time

Starting absclute position

@ S-shaped acceleration and deceleration movements

-
Absolute position of the target

Velocity, Acceleration and Deceleration and Jerk all have data;

A Velocity

Woceleratio

target velocity

Deceleration

time

Starting absolute position

4) Timing diagram

Absolute position of the target

Execute of a function block must have a rising edge condition.

VE Controller Programming Manual A T

Done for a function block indicates that the instruction has been executed normally.
Busy of a function block indicates that the function block is currently being executed,;

Execute I
Done |
Busy I |

CommandAborted

Error
ErrarlD 0 >< Error code

7.3.9 MC_MoveSuperimposed

Axis in the original instruction speed and position on the basis of the superimposed
acceleration and position data in the running instruction, the entire original instruction
execution time model no change; through this instruction can solve our actual operation of
some similar by the belt and gear clearance error compensation, can ensure the consistency
of the movement;

The command runs with the parameters Distance, VelocityDiff, Acceleration,
Deceleration and Velocity; a value of O for Acceleration or Deceleration is an error. MC_
MoveSuperlmposed is equivalent to the MC_MoveRelative instruction in the standstill state.
1) Command format

Instructions Name Graphical representation ST Performance

MC_ MoveSuperImposed(
Axis:= ,

MC_MoveSuperimposed Execute:=,
s - | e
. —Execute Busy — R
MC_ § j]u *H X—J- —Distance CommandAborted f— ::;:i::;zi::;
—— —VelocityDiff : Errorf— =i T
MoveSuperimposed | E&115%" | aamerston Emori| gerii= ,
— Deceleration
—Jerk CommandAborted=> ,
Er => ,
ErroriD=>);
2) Related variables
€ Input and output variables
Input and _ .
Data Effective Initial _
output Name Description
, Type range value
variables
. Mapped to an axis, i.e. an
Axis AXIS AXIS_REF — —]
instance of AXIS_REF_SM3
@ |nput variables
Input Data Effective Initial

, Name Description
variables Type range value

VE Controller Programming Manual A T
Execution A rising edge of the
conditions input will initiate the

Execute BOOL TRUE,FALSE FALSE .

processing of the
function block
Axis arrival Data range This data is the
Distance position LREAL 0 superimposed position
data
Stack Data range Axis running
VelocityDiff | acceleration | LREAL 0 superimposed
acceleration
_ Acceleration Data range Acceleration value as
Acceleration LREAL 0)
speed increases
_ Deceleration Data range Deceleration value as
Deceleration LREAL 0)
speed increases
Leap Data range Slope change of curve

Jerk LREAL 0 , ,

acceleration/deceleration

@ Output Variables

Output Data Effective Initial o
, Name Description
Variables Type range value
Instruction Axis instruction
Done execution BOOL TRUE,FALSE FALSE execution complete,
completed set to TRUE
Instruction Execution of current
Busy execution in | BOOL TRUE,FALSE FALSE instruction is in
progress progress, set to TRUE
Instruction If the current
interrupted instruction is
CommandAbort BOOL TRUE,FALSE FALSE)
interrupted, set to
TRUE
Error Set to TRUE if an
Error BOOL TRUE,FALSE FALSE .
exception occurs
Error code Error code is output
SMC_ Refer to SMC_)
ErrorlD 0 when an exception
ERROR ERROR
occurs

3) Function Description

This function block is for superimposing position and velocity commands, VelocityDiff and

Distance for superimposing velocity and position on other commands, respectively.

MC_MoveSuperimposed can be superimposed on any other command in motion mode.

MC_MoveSuperimposed can also be interrupted by MC_MoveSuperlmposed.

in the state StandStill, the function block MC_MoveSuperimposed acts similarly to
MC_MoveRelative.
The start instruction is the rising edge of Execute.

4) Timing diagram

VE Controller Programming Manual

the function block Execute must have a rising edge condition.

Done of the function block indicates that the instruction has been executed normally.

Busy of the function block indicates that the function block is currently being executed.

¢ Example

FB2

MC MoveSuperImposed
Axis Haxis Done
FBl1 Busy —Busy2
MC MoveRelative OR Commandiborted — CommandAborted2
Axis —Saxis - Done >1 ——Execute Error[—Er
— Execute Busy —Busyl - ErrorID—
—Distance CommandAberted — CommandAbortedl
—Velocity Error
—Acceleration ErrorlD
100 —Deceleration
0 —Jerk
Test —
1000 —Distance
100 —VelocityDiff
50 —(hcceleration
50 —Deceleration
0 Jerk
€ Timing operating instructions :
FB1
Executeé | |
Done é |_| |]
CommandAborted !
0 t
FB2 1
Execut]
xecute m
Done (1] []
ommandAborted?
0 t
100
Velocity 300 \
0 t
6000 /"’"
L 5000 / i
Position ’_/
0 t

VE Controller Programming Manual

7.3.10 MC_PositionProfile

This function block is designed to command time-position locked motion profiles.

1) Command format

Instructions Name Graphical representation ST Performance
POSiti on e MC_PositionProfile -
MC_ —TimePasition Busy |
profile —IExecute CommandAbarted | —
PositionProfile e e
command | T
2) Related variables
€ Input and output variables
Input and . "
& Data Effective Initial o
output Name Description
_ Type range value
variables
Axes Mapping to an axis, i.e.
Axis AXIS_REF — — an instance of
AXIS_REF_SM3
Axis Description of the axis
position position runtime and
_ N running position data , data
TimePosition) MC_TP_REF o .
time and consisting of multiple
position data sets
description
@ Input variables
Input Data Effective Initial o
_ Name Description
variables Type range value
Execution A rising edge of the input
Execute conditions | BOOL TRUE,FALSE FALSE will initiate the processing
of the function block
, Dynamic Data range Number of arrays used in
ArraySize INT 0]
arrays the run profile
Synthesis Positive Scale factor of the
PositionScale | factors LREAL numbers 1 position in MC_TP_REF
+"0"
Offset Overall offset value of the
Offset LREAL 0 o
position
@ Output Variables
Output Data Effective Initial o
_ Name Description
Variables Type range value
Done Instruction BOOL TRUE,FALSE FALSE Axis instruction

VE Controller Programming Manual A T
execution execution complete,
completed set to TRUE
Instruction Execution of current
execution in instruction is in

Busy BOOL TRUE,FALSE FALSE
progress progress, set to

TRUE
Instruction If the current
CommandAbor | interrupted instruction is
BOOL TRUE,FALSE FALSE .
t interrupted, set to
TRUE
Error Set to TRUE if an
Error BOOL TRUE,FALSE FALSE)
exception occurs
Error code Error code is output
SMC_ER Rerfer to)
ErrorlD 0 when an exception
ROR SMC_ERROR
occurs

3) Function description

This function block is a contouring motion model for time periods and positions, with a

running mode of Discrete Motion, based on the data set by the user in the TimePosition

variable. The running state of this function block is in Standstill, the state of the instruction is

Discrete Motion, and no other state can be run. The start instruction is the rising edge of

Execute, and the instruction is repeated in Discrete Motion.
TimePosition is the MC_TP_REF data type;

MC_TP_REF is described as follows :

Members Type Initial value Description
. Number of segments of the
Number_of_pairs | INT 0)
profile path
Absolute motion (TRUE) and
IsAbsolute BOOL TRUE)))
relative motion selection
MC_TP_Array ARRAY[1..N] OF SMC_TP Arrays of times and positions
SMC_TP The specific description is as follows:
Members Type Initial value Description
. Time of position
delta_time TIME TIME#0ms
segment
N Current position
position LREAL 0
value

Note: Any change in speed according to the set position data will be adjusted according to

the S curve.

€ Timing diagram

Conditions MC_TP_Array can only be run if the position profile command has been set by

other means.

The axis must be in the Standstill state for the instruction to run.

Execute of the function block must have a rising edge condition.

Done of the function block indicates that the instruction has been executed normally.

pu

WECTOR

VE Controller Programming Manual BOM oA MK

Busy of a function block indicates that the function block is currently being executed;

Expcute

- LN

Busy

Commandaborted

Error

ErroriD >]|< Error code

4) Error description

An error occurs when the axis state is not a parameter error in the start-up instruction or
instruction system in Standstill, and the axis error can only be cleared before operation starts.
Note]: Please read "Appendix C Error Code Descriptions” for a description of the relevant
error codes.

VE Controller Programming Manual

7.3.11 MC_Reset

By resetting all errors associated with the internal axes, the function block is designed to stop
from status error to stop. This does not affect the output of the function block instance.

1) Command format

Instructions Name Graphical representation ST Performance
MC Reset(
Axis:=
; MC_Reset ’
Axis error - - Donel— Execute:= ,
MC_Reset status reset | —Execute Busy — Done=> ,
Errorp— Busy=> ,
command ErrorIDf— Error=> ,
ErrorID=>);
2) Related variables
€ Input and output variables
Input and . .
Data Effective Initial .
output Name Description
_ Type range value
variables
Mapped to an axis, i.e. an instance of
Axis AXIS AXIS_REF — —
AXIS_REF_SM3
@ Input variables
Input Data Effective Initial o
_ Name Description
variables Type range value
Implementation A rising edge of the input will initiate the
Execute BOOL TRUE,FALSE FALSE
conditions processing of the function block
€ The output variable
The _ The
The data Effective L ,
output Name initial Describe
, type range
variable value
The execution of
The axis instruction execution is
Done the instruction is | BOOL TRUE,FALSE FALSE
complete and is set to TRUE
complete
The instruction is The current instruction is in
Busy BOOL TRUE,FALSE FALSE
being executed execution and is set to TRUE
When an exception occurs, it is set
Error Error BOOL TRUE,FALSE FALSE
to TRUE
SMC_ See SMC_ When an exception occurs, the error
ErrorlD The error code 0
ERROR ERROR code is output

3) Description of the function

This function block changes the axis state to Standstill in the case of normal axis
communication, and the abnormal state of the axis to a normal and operational state;

VE Controller Programming Manual BOM oA MK

Axis.oCommunication is FLASE state when the axis errorstop cannot be reset, and the
communication between the main station and the from the station axis must be
re-established;

The Busy flag bit in the instruction has a very short time to connect, please note when
using;

Time series chart

Execute

Drone : —|
Busy 1 B

Erer

Errarll) o I Error code

VE Controller Programming Manual

7.3.12 MC_ReadActualPosition

The instruction reads the actual location where the drive is running and is saved in a variable
cell that it defines.

1) Instruction format

Instructions Name Graphical performance ST performance
MC_ReadActualPosition(
The actual MC_ReadActualPosition Axist= ,
MC locati —Axis validf— Enable:= ,
- ocation | _fenaple - Busy |- Valid=> ,
ReadActualPosition | reads the Er:}'rr;’[;: E::::).
instruction pctap] - ErrorID=> ,
Position=>);
2) Related variables
input and output variables
, The
Enter the output The data Effective L _
, Name initial Describe
variable type range
value
.) Maps to the axis, AXIS_REF_SM3
Axis Axis AXIS_REF — — .
instance of the property
Enter variables
The
Enter the The data _ L .
) Name Effective range initial Describe
variable type
value
The Read the current position
Enable execution BOOL TRUE,FALSE FALSE of the servo for the TRUE
condition state
The output variable
The _ The
The data Effective L ,
output Name initial Describe
, type range
variable value
] Location data is The correct location of the
Valid , BOOL TRUE,FALSE | FALSE o
available for flags drive is set to TRUE
The instruction is The current instruction is in
Busy _ BOOL TRUE FALSE | FALSE _ .
being executed execution and is set to TRUE
When an exception occurs, it
Error Error BOOL TRUE,FALSE | FALSE :
is set to TRUE
SMC_ See SMC_ When an exception occurs,
ErrorlD The error code 0 :
ERROR ERROR the error code is output
- Gets to the axis Axis The axis position data read
Position . LREAL . 0 . .
position position out of the instruction

VE Controller Programming Manual A T

3) Function description

The actual position command in the drive is read by means of this instruction, which is an
Enable level enable effect. The instruction can be used repeatedly without affecting each
other.

€ Timing diagram

The condition that Enable of the function block must be TRUE.

Valid of the function block indicates that the Position read is a valid data value.

Busy of the function block indicates that the function block is currently being executed.
Timing operation description

Enableé

e |
Valld0

Busy!
y()

Position

VE Controller Programming Manual

7.3.13 MC_ReadAxisError

The error case in which the instruction reads the axis and is saved in a variable cell that it

defines.

1) Instruction format

Instructions Name Graphical performance ST performance
MC_ReadAxisError(
_ Axis:= ,
The wrong i MC_ReadAxisError vl F;?j}:: ,
state of the | —fEnable = il I gt
MC_ReadAxisError _ st I i ’
reading AxisError f— ErrorID=> ,
. T AxisError=> ,
axis SWEndSwitchActivef— AxisErrorID=> ,
SWEndSwitchActive=>);
2) Related variables
input and output variables
Enter the) The
The data Effective L _
output Name initial Describe
_ type range
variable value
Maps to the axis, AXIS_REF_SM3 instance of
Axis Axis AXIS_REF — —
the property
Enter variables
Enter _ The
The data Effective o)
the Name initial Describe
, type range
variable value
The
Read the current position of the servo
Enable execution BOOL TRUE,FALSE FALSE
for the TRUE state
condition
The output variable
The The _ L
Effective The initial)
output Name data Describe
) range value
variable type
The error data of the axis can
The error data
Valid BOOL TRUE,FALSE FALSE be obtained and placed as
gets the flag
TRUE
The
instruction is The current instruction is in
Busy BOOL TRUE,FALSE FALSE
being execution and is set to TRUE
executed
Error Error BOOL TRUE,FALSE FALSE When an exception occurs, it is

VE Controller Programming Manual A T
set to TRUE
The error | SMC_ See SMC_ When an exception occurs, the
ErrorID 0
code ERROR ERROR error code is output
The axis is The read-out axis is an error,
AxisError incorrectly BOOL TRUE,FALSE FALSE corresponding to the indicated
marked position
The read-out
Axis error
AxisErrorID DWORD 0 axis is an error
code
code
SWENd The soft limit In instruction read, check the
BOOL TRUE,FALSE FALSE
SwitchActive switch is valid status of the soft limit switch

3) Function description
Reads the error code in the drive via MC_ReadAxisError, the instruction is the Enable level
enable effect. The instruction can be used repeatedly without affecting each other.

€ Timing diagram
The condition that Enable of the function block must be TRUE.
Valid of the function block indicates that the AxisError and AxisErrorID read is a valid data

value.

Busy of the function block indicates that the function block is currently being executed;

VE Controller Programming Manual

7.3.14 MC_ReadBoolParameter

The instruction reads the bit parameters of the drive shaft and saves them in a variable unit

that it defines.

1) Instruction format

Instructions Name Graphical performance ST performance
MC_ReadBoolParameter (
Read the MC_ReadBoolParameter ‘;};;Zl:;
MC_ bit :é:l;bbe ;S!S: idramiternumber:= =
—{ParameterNumber Errorp— VB Ltar
ReadBoolParameter | parameters ErrorDl— Busy=> ,
i’ Error=> ,
of the axis ok ErrorID=> ,
Value=>);
2) Related variables
input and output variables
Enter the) The
The data Effective o _
output Name initial Describe
_ type range
variable value
Maps to the axis, AXIS_REF_SM3
Axis Axis AXIS_REF — —
instance of the property
Enter variables
, The
Enter the The data Effective . _
i Name initial Describe
variable type range
value
The
Read the current position of the
Enable execution | BOOL TRUE,FALSE FALSE
servo for the TRUE state
condition
The serial
number Access the indexes and sub-indexes
ParameterNumber | of the | DINT 0 and serial numbers of axis
axis parameters
argument

Note:P arameterNumber (DINT)=
-DWORD_TO_DINT (SHL (USINT_TO_DWORD (usiDatalength), 24) (data length in
object dictionary)
+SHL (UINT_TO_DWORD (uilndex), 8) (index -16BIT inobject dictionary)
+usisublndex(sub-index -8BIT in object dictionary).

usiDatalength: Filled in by bytes; 1 byte is 16'01; 2 bytes is 16'02; 4 bytes is 16'04, etc.

The output variable

The ; The
The data Effective . ;
output Name initial Describe
, type range
variable value

VE Controller Programming Manual A T
Location data is The correct location of the drive
Valid BOOL TRUE,FALSE FALSE
available for flags is set to TRUE
The instruction is being The current instruction is in
Busy BOOL TRUE,FALSE FALSE
executed execution and is set to TRUE
When an exception occurs, it is
Error Error BOOL TRUE,FALSE FALSE
set to TRUE
SMC_ See SMC_ When an exception occurs, the
ErrorlD The error code 0
ERROR ERROR error code is output
The axis status of the instruction
Value Gets to the axis status BOOL TRUE,FALSE FALSE

read out

3) Function description

The bit data status in the drive is read via MC_ReadBoolParam, the instruction is an Enable
level enable effect. The instruction can be used repeatedly without affecting each other.

€ Timing diagram

The condition that Enable of the function block must be TRUE.

Valid of the function block indicates that the read Valid is a valid bit status data.
Busy of the function block indicates that the current function block is being executed.
€ Timing operation description :

N

Enableé

—
Vahd0

Busy!
y()

1
Value d | [| st

VE Controller Programming

Manual

7.3.15 MC_ReadStatus

The instruction reads the state data of the axis and saves it in its own defined variable cell.

1) Instruction format

Instructions Name Graphical performance ST performance
MC ReadStatus(
Axig:= ,
MC_ReadStatus Enable:= ,
—huis Valid — Valid=> ,
—Enable = Busy f— Busy=> ,
Errorf— Error=> ,
DZ:E]]EE: E?zcrl'_&> ;
Errorstop|— Disabled=> ,
The status of the Stopping|— Errorstop=> ,
MC_ReadStatus Standstill— Stopping=> ,
reading axis DiscreteMotion|— StandStill=> ,
ContinugusMotionf— DiscreteMotion=>
SynchronizedMotionf— i a .
Homing|— ContinuousMotion=> ,
ConstantVelodity — SynchronizedMotion=> ,
Accelerating — Homing=> ,
Decelerating [— ConstantVelocity=> ,
FBErrorOccured f— Accelerating=> ,
Decelerating=> ,
FBErrorOccured=>);
2) Related variables
input and output variables
Enter the) The
The data Effective o _
output Name initial Describe
. type range
variable value
Maps to the axis, AXIS_REF_SM3
Axis Axis AXIS_REF — —
instance of the property
Enter variables
Enter) The
The data Effective . _
the Name initial Describe
. type range
variable value
The
Read the current position of the servo for
Enable execution BOOL TRUE,FALSE FALSE
the TRUE state
condition
The output variable
_ The
The output The data Effective L ,
_ Name initial Describe
variable type range
value
Axis status Gets When true, the representative axis
Valid BOOL TRUE,FALSE FALSE
the flag state is available
The instruction is The current instruction is in
Busy BOOL TRUE,FALSE FALSE
being executed execution and is set to TRUE
When an exception occurs, it is
Error Error BOOL TRUE,FALSE FALSE
set to TRUE
ErrorlD The error code SMC_ See SMC_ 0 When an exception occurs, the

VE Controller Programming Manual A T
ERROR ERROR error code is output
The axis is not in The axis is true in the no-enabled
Disabled BOOL TRUE,FALSE FALSE
an enabled state state;
The axis is true in the error
Errorstop Axis error status BOOL TRUE,FALSE FALSE
operating state;
The axis stops the The axis is TRUE during the stop
Stoping BOOL TRUE,FALSE FALSE
process state process
Axis standard The axis is TRUE in the standard
StandStill BOOL TRUE,FALSE FALSE
status (operational) state
The discrete
Discrete The axis is TRUE in a discrete
motion state of the | BOOL TRUE,FALSE FALSE
Motion motion state
axis
Continuous The continuous The axis is TRUE in a continuous
BOOL TRUE,FALSE FALSE
Motion motion of the axis motion state
Synchronized The axis runs in The axis is TRUE in the
BOOL TRUE,FALSE FALSE
Motion sync synchronized motion state
The axis returns to The axis is TRUE in the
Homing BOOL TRUE,FALSE FALSE
the origin state back-to-origin state
Constant The shaft runs at a True when the shaft reaches run
BOOL TRUE,FALSE FALSE
Velocity speed of arrival speed
The axis
The axis acceleration process
Accelerating accelerates the | BOOL TRUE,FALSE FALSE
status is TRUE
process state
Axis deceleration The axis deceleration process
Dccelerating BOOL TRUE,FALSE FALSE
process status status is TRUE
A flag appears for
FBError The axis function block error flag
an error in the axis | BOOL TRUE,FALSE FALSE
Occured is TRUE
function block

3) Function description
The various states of the corresponding axes are indicated by MC_ReadStatus, the

command is the Enable level enable effect. The command can be used several times without
affecting each other.

The Enable condition of the function block must be TRUE.

Valid of the function block indicates that the various data of the next status flag are
read out.

The Busy of a function block indicates that the function block is currently being
executed.

VE Controller Programming Manual

7.3.16 MC_ReadParameter

The instruction reads the parameters of the drive shaft and saves them in a variable unit that
you define yourself.

1) Instruction format

Instructions Name Graphical performance ST performance
MC ReadParameter (
Axisz:= ,
Read th MC_ReadParameter Enable:= ,
ea €| s valid |— ParameterNumber:= ,
MC_ Enable
arameters | o2 S Valid=>
ReadP p —ParameterNumber Errorp— .
eadParameter the ErrorDl— Busy=> ,
of the axis i EEraEis.
ErrorlD=> ,
Value=>);
2) Related variables
input and output variables
Enter the : The
The data | Effective o _
output Name initial Describe
_ type range
variable value
Maps to the axis, AXIS_REF_SM3 instance of
Axis Axis AXIS_REF — —
the property
Enter variables
Enter The) The
Effective . :
the Name data initial Describe
. range
variable type value
The execution Read the current position of the
Enable BOOL TRUE,FALSE FALSE
condition servo for the TRUE state
The serial Access the indexes and sub-indexes
Parameter
number of the | DINT 0 and serial numbers of axis
Number
axis argument parameters

Note:P arameterNumber (DINT)=
-DWORD_TO_DINT (SHL (USINT_TO_DWORD (usiDatalength), 24) (data length in
object dictionary)
+SHL (UINT_TO_DWORD (uilndex), 8) (index -16BIT inobject dictionary)
+usisublndex(sub-index -8BIT in object dictionary).

usiDatalength: Filled in by bytes; 1 byte is 16'01; 2 bytes is 16'02; 4 bytes is 16'04, etc.

The output variable

The
output
variable

Name

The
data

type

Effective
range

The initial

Describe
value

VE Controller Programming Manual A T
Location data is The correct location of the
Valid BOOL TRUE,FALSE FALSE
available for flags drive is set to TRUE
The instruction is The current instruction is in
Busy BOOL TRUE,FALSE FALSE
being executed execution and is set to TRUE
When an exception occurs, it is
Error Error BOOL TRUE,FALSE FALSE
setto TRUE
SMC_ See SMC_ When an exception occurs, the
ErrorlD The error code 0
ERROR ERROR error code is output
Gets the axis The axis parameters read out
Value LREAL 0
parameters of the instruction

3) Description of the function
The MC_ReadParam the bit data state in the drive by using the computer, instructing
the Enable level enable effect. Instructions can be reused multiple times without
affecting each other.

@ Timing diagram
the condition that Enable of the function block must be TRUE.
Valid of a function block indicates that the read Valid is a valid bit status data.
Busy of a function block indicates that the current function block is being executed.
Timing operation description :

1

Enable

Valid

Busy

o = O - o

Value

VE Controller Programming Manual

7.3.17 MC_AccelerationProfile

1) Instruction format

Instructions Name

Graphical performance

ST performance

MC Accel

lerationProfile(
Axis:= ,

. MC_AccelerationProfile TimeAcceleration:= ,
Acceleration | —ads Done|— EaeouLel
MC_ —{TimeAcceleration Busy|— ":zaf'm?e‘i ¥ .
proﬂle _Eeata B CommanaAbartedl— AccelerationScale:= ,
AccelerationProfile —JAmaySize Error— N
instruction —lAccelerationScale ErrorIDf—
—offset
ErrorID=>):
2) Related variables
Input and output variables
Enter the) The
The data | Effective | = . _
output Name initial Describe
_ type range
variable value
Maps to the axis, AXIS_REF_SM3
Axis Axis AXIS_REF — —
instance of the property
Axis acceleration Axis acceleration time and
time and | MC_TA_ acceleration data description,
TimeAcceleration
acceleration REF acceleration data consists of
description multiple sets of data
Enter variables
The : "
Enter the Effective The initial _
, Name | data Describe
variable range value
type
The An up-edge of the input will
Execute execution BOOL TRUE,FALSE FALSE initiate the processing of the
condition function block
Dynamic The range of The number of arrays used
ArraySize INT 0
array data in the run profile
MC_TA REF factor of
Synthesis "Positive” and
AccelerationScale LREAL 1 acceleration or destoation in
factor "0"
the system
The overall offset value of
Offset Offset LREAL 0 the acceleration and
decrease speed
The output variable
The) The
The data Effective . _
output Name initial Describe
_ type range
variable value
Done The execution of | BOOL TRUE,FALSE FALSE The axis instruction execution is

VE Controller Programming Manual

the instruction is complete and is set to TRUE
complete
The instruction is The current instruction is in execution
Busy BOOL TRUE,FALSE FALSE
being executed and is set to TRUE
Command The instruction is The current instruction is interrupted
BOOL TRUE,FALSE FALSE
Abort interrupted and is set to TRUE
When an exception occurs, it is set to
Error Error BOOL TRUE,FALSE FALSE
TRUE
SMC_ See SMC_ When an exception occurs, the error
ErrorlD The error code 0
ERROR ERROR code is output

3) Description of the function

This function block is a profile motion model for time periods and deceleration, running

in Discrete Motion, based on the data set by the user in the TimeAcceleration variable. This

function block runs in Standstill, the instruction runs in Discrete Motion, and other states

cannot run. The startup instruction is the up-edge start of Execute, and this instruction

repeats the speed at Discrete Motion on the last overlay, which is prone to system failure.
TimeAcceleration is MC_TA_REF data type;
MC_TA_REF description is as follows:

Members Type The initial value Describe
The number of segments of
Number_of_pairs INT 0
the profile path
Absolute motion (TRUE) and
IsAbsolute BOOL TRUE
relative motion selection
An array of time and
MC_TA_Array ARRAY[1..N] OF SMC_TA
acceleration values
SMC_TA description is as follows:
Members Type The initial value Describe
The time of the acceleration
delta_time TIME TIME#Oms
period
acceleration LREAL 0 The current acceleration value

Note : The set acceleration is reflected in the change in velocity, all acceleration changes

in the way the S curve changes, from the final result to the acceleration data of the starting

acceleration isA, the termination acceleration is B(A-B)/2 is reflected in the final velocity;

4) Time series chart

Condition MC_TA_Array has been set by other means; the axis must

be in the Standstill state instruction to run; the Execute of the function block must have

conditions on the rising

edge; the Done of the function block indicates that the instruction is executed

normally; and the Busy of the function block indicates that the current function block is

in the process of
executing;

VECTOR

VE Controller Programming Manual B i

#
[
#
R

Execute

Done —|
Busy |

Commandiborted

Error

ErroriD 0 X Error Code

5) Error description

An error occurs when the axis state is not a parameter error in the start-up instruction
or instruction system in Standstill, and the axis error can only be cleared before operation
starts.

[Note]: Please read "Appendix C Error Code Descriptions” for a description of the relevant
error codes.

VE Controller Programming Manual

7.3.18 MC_VelocityProfile

1) Instruction format

Instructions | Name Graphical performance ST performance
MC VelocityProfile(
Axis:= ,
TimeVelocity:= ,
MC_VelocityProfile Execute:= ,
Speed —Axis Donef— ArraySize:=
MC_ —TimeVelocity Busy |— o8 BT e
profile —{Execute CommandAborted|— :iiccrf,iSCale.- .
VelocityProfile —ArraySize Error|— Offset:=,
instructions | —VelocityScale ErrorlD}— Done=> ,
—Offset Busy=> ,
CommandAborted=> ,
Error=> ,
ErrorID=>):
2) Related variables
input and output variables
Enter the , The
The data | Effective | . . _
output Name initial Describe
_ type range
variable value
Maps to the axis, AXIS_REF_SM3
Axis Axis AXIS_REF — —
instance of the property
Axis speed run Axis speed run time and speed
MC_TV_
TimeVelocity time and speed data description, consisting of
REF
description multiple sets of data
Enter variables
The , The
Enter the Effective . _
, Name data initial Describe
variable range
type value
The An up-edge of the input will
Execute execution BOOL TRUE,FALSE FALSE initiate the processing of the
condition function block
Dynamic The range of The number of arrays used in the
ArraySize INT 0
array data run profile
The speed
VelocityScale LREAL "Positive”, "0" 1 The scale factor of the speed
factor
The overall offset value of the
Offset Offset LREAL 0
velocity value
The output variable
The , The
The data Effective . _
output Name initial Describe
_ type range
variable value
The execution of
The execution of the instruction is
Done the instruction is | BOOL TRUE,FALSE FALSE
complete and is set to TRUE
complete

VE Controller Programming Manual A T
The instruction is The current instruction is in
Busy BOOL TRUE,FALSE FALSE
being executed execution and is set to TRUE
Command The instruction is The current instruction is
BOOL TRUE,FALSE FALSE
Abort interrupted interrupted and is set to TRUE
When an exception occurs, it is set
Error Error BOOL TRUE,FALSE FALSE
to TRUE
SMC_ER See SMC_ When an exception occurs, the error
ErrorlD The error code 0
ROR ERROR code is output

3) Description of the function

This function block is an outline motion model for time periods and speeds, running in
Continuous Motion, based on data set by the user in the TimeVelocity variable.

This function block runs in Standstill, the instruction runs in Discrete Motion, and other states
cannot run.

The startup instruction starts on the rising edge of Execute, and this instruction runs
repeatedly in Discrete Motion.

TimeVelocity is MC_TV_REF data type;

MC_TV_REF description is as follows:

The initial _
Members Type Describe
value
The number of segments of the profile
Number_of_pairs INT 0
path
Absolute motion (TRUE) and relative
IsAbsolute BOOL TRUE
motion selection
MC_TV_Array ARRAY[1..N] OF SMC_TV An array of time and speed
SMC_TV description is as follows:
Members Type The initial value Describe
The time of the speed value
delta_time TIME TIME#0ms
segment
The speed value of the
Velocity LREAL 0
current record

Note: The entire velocity process is the way the S curve is deceleration, and each profile is
calculated as an overlay; Speed is also superimposed when instructions are repeated,
avoiding speed oversleed when instructions are used, and repeated runs must return the
state of this
axis to the Standstill state.
€ Timing diagram
condition MC_TV_Array has been set by other means in order to run the position profile
instruction.
the axis must be in the Standstill state for the instruction to run.
Execute of the function block must have a rising edge condition.
Done of the function block indicates that the instruction has been executed normally.
Busy of a function block indicates that the function block is currently being executed.;

VECTOR

VE Controller Programming Manual B i

#
[
#
R

Existuta

Busy

Commandaborted

Efrar

Erroril | 1} }!(Error Code

4) Error description

An error occurs when the axis state is not a parameter error in the start-up instruction
or instruction system in Standstill, and the axis error can only be cleared before operation
starts.

[Note]: Please read "Appendix C Error Code Descriptions” for a description of the
relevant error codes.

VE Controller Programming Manual

7.3.19 MC_WriteBoolParameter

The instruction sets the bit parameters of the drive shaft.

1) Instruction format

Instructions Name Graphical performance ST performance
MC WriteBoolParameter (
Axis:= ,
Set the bit MC_WriteBoolParameter Execute:= ,
MC_ —Axis Danef— ParameterNumber:= ,
parameters | —Execute Busy [— Value:= ,
WriteBoolParameter) —{ParameterNumber Error— Done=> ,
for the axis | —value ErrorIDf— Busy=> ,
rror=> ,
ErrorID=>);
2) Related variables
input and output variables
Enter the) The
The data Effective . _
output Name initial Describe
_ type range
variable value
Maps to the axis, AXIS_REF_SM3 instance
Axis Axis AXIS_REF — —
of the property
Enter variables
The) The
Enter the Effective o _
) Name data initial Describe
variable range
type value
The execution Set the operation once for the
Execute BOOL TRUE,FALSE FALSE
condition rising edge operation
The serial Access the indexes and
Parameter
number of the | DINT 0 sub-indexes and serial numbers of
Number
axis argument axis parameters
Value Set the value BOOL TRUE,FALSE FALSE Set the bit parameter value

Note:P arameterNumber (DINT)=
-DWORD_TO_DINT (SHL (USINT_TO_DWORD (usiDatalength), 24) (data length in
object dictionary)
+SHL (UINT_TO_DWORD (uilndex), 8) (index -16BIT inobject dictionary)
+usisublndex(sub-index -8BIT in object dictionary).

usiDatalength: Filled in by bytes; 1 byte is 16'01; 2 bytes is 16'02; 4 bytes is 16'04, etc.

The output variable

The _ The
The data Effective _ ,
output Name initial Describe
, type range
variable value
Done The setup | BOOL TRUE,FALSE FALSE The setup operation was

VE Controller Programming Manual

operation was

successful

successfully set to TRUE

The instruction is

The current instruction is in

Busy BOOL TRUE,FALSE FALSE
being executed execution and is set to TRUE
When an exception occurs, it is set
Error Error BOOL TRUE,FALSE FALSE
to TRUE
SMC_ See SMC_ When an exception occurs, the error
ErrorlD The error code 0
ERROR ERROR code is output

3) Function description

The bit parameter of the axis is set via MC_ WriteBoolParameter and the instruction is

Execute rising edge triggered. The instruction can be used several times without affecting

each other.
€ Timing diagram

Execute of the function block must be a rising edge triggering condition.

Done of the function block means that the setting operation is successful.

Busy of the function block indicates that the current function block is being executed.

@ Description of the timing operation :

Executeé

1

Done 0

Busy!
0

VE Controller Programming Manual

7.3.20 MC_WriteParameter

Instructions write parameters to the drive axis and are stored in their own defined variable

units.

1) Instruction format

Instructions Name Graphical performance ST performance
MC WriteParameter (
Axis:= ,
MC_WriteParameter Execute:= ,
MC_ Set the axis | —JAxis Donef— ParameterNumber:= ,
—Execute Busy — Value:= ,
WriteParameter | parameters | —lparameterNumber Error— Done=> ,
—Value ErrorID— Busy=> ,
2) Related variables
input and output variables
, The
Enter the The data Effective o _
i Name initial Describe
output variable type range
value
Maps to the axis, AXIS_REF_SM3
Axis Axis AXIS_REF — —
instance of the property
Enter variables
, The
Enter the The data Effective o _
i Name initial Describe
variable type range
value
The execution Set the operation once for the
Execute BOOL TRUE,FALSE FALSE
condition rising edge operation
The serial Access the indexes and
Parameter
number of the | DINT 0 sub-indexes and serial numbers of
Number
axis argument axis parameters
Value Set the value LREAL Set the bit parameter value

Note:P arameterNumber (DINT)=
-DWORD_TO_DINT (SHL (USINT_TO_DWORD (usiDatalength), 24) (data length in
object dictionary)
+SHL (UINT_TO_DWORD (uilndex), 8) (index -16BIT inobject dictionary)
+usisublndex(sub-index -8BIT in object dictionary).

usiDatalength: Filled in by bytes; 1 byte is 16'01; 2 bytes is 16'02; 4 bytes is 16'04, etc.

The output variable

The
output

variable

Name

The data
type

Effective
range

The
initial
value

Describe

VE Controller Programming Manual A T
The setup
The setup operation was
Done operation was | BOOL TRUE,FALSE FALSE
successfully set to TRUE
successful
The instruction is The current instruction is in
Busy BOOL TRUE,FALSE FALSE
being executed execution and is set to TRUE
When an exception occurs, it is set
Error Error BOOL TRUE,FALSE FALSE
to TRUE
SMC_ See SMC_ When an exception occurs, the error
ErrorlD The error code 0
ERROR ERROR code is output

3) Function description

The bit parameter for the axis is set via MC_ WriteParameter and the instruction is
Execute rising edge triggered. The instruction can be used several times without affecting
each other.

€ Timing diagram

Execute of the function block must be a rising edge trigger condition.

Done of the function block means that the setting operation is successful.

Busy of the function block means that the function block is currently being executed,;

1
Execute
0

Done

Busy

[TS s S

VE Controller Programming Manual

7.3.21 MC_AbortTrigger

The function block terminates the associated characteristics of the input latch-related events

and is used MC_Touchprobe with the user.

1) Instruction format

Instructions Name

Graphical performance

ST performance

The function

MC_AbortIrigger(
Axis:= ,

block :
—huis
MC_AbortTrigger terminates —Triggerinput
—Exeaute
the event

MC_AbortTrigger

association

TriggerInput:= ,

Donef— :

Busy|— Execute:= ,
Done=

Ermorf— Done=> ,

ErrorID— Busy=> ,
Error=> ,

ErrorID=>);

2) Related variables
input and output variables

Enter the , The
Effective | . .
output Name The data type initial Describe
. range
variable value
Maps to the axis, AXIS_REF_SM3
Axis Axis AXIS_REF —
instance of the property
Trigger Description of trigger signals,
Truggerinput TRIIGGER_REF —
signal trigger properties, etc
The TRIGGER_REF description:
The The
Structure Elements data initial Describe
type value
Which one of the lock functions is locked in drive
mode.
iTrigger T . 0: Probe 1 Rising Edge Latch
Number 1: Probe 1 Falling Edge
Latching 2: Probe 2 Rising Edge
TRIIGGER_ Latching 3: Probe 2 Falling Edge Latching
REF Specifies the type of latch trigger:
bFastLatching | BOOL TRUE TRUE: Drive mode
FALSE: Controller mode
bFastLatching is triggered by the controller Input
binput BOOL
signal when flask
bActive BOOL A valid signal that is triggered
Enter variables
Enter The data Effective The ,
Name o Describe
the type range initial

VE Controller Programming Manual A T
variable value
The
Set the operation once for the rising
Execute execution BOOL TRUE,FALSE FALSE
edge operation
condition
The output variable
The _ The
The data Effective . ,
output Name initial Describe
. type range
variable value
The setup
The setup operation was
Done operation was | BOOL TRUE,FALSE FALSE
successfully set to TRUE
successful
The instruction is The current instruction is in
Busy BOOL TRUE,FALSE FALSE
being executed execution and is set to TRUE
When an exception occurs, it is
Error Error BOOL TRUE,FALSE FALSE
set to TRUE
When an exception occurs, the
ErrorlD The error code SMC_ERROR See SMC_ERROR 0
error code is output

3) Function description

The MC_AbortTrigger function block terminates a trigger signal or property and its

associated trigger instruction. Execute of the function block must be a rising edge trigger

condition; Done of the function block indicates a successful setup operation; Busy of the

function block indicates that the function block is currently being executed;

VE Controller Programming Manual

7.3.22 MC_ReadActualTorque

The instruction reads the current torque value that the drive runs, and the current torque
value that is read is saved in a variable unit that you define yourself.

1) Instruction format

Instructions Name Graphical performance ST performance
The
MC_ReadActualTorque((
current MC_ReadActualTorque RaLhss :
torque —axis valid|— Enabless:,
|) - Valid=> ,
MC_ReadActualTorque e EB;ZY[? : ,l__ g
value reads Eaa] Eus"'> g
rror=> ,
the LECS oy ErrorID=> ,
. X Torque=>):
instruction
2) Related variables
input and output variables
Enter the . _—
The data | Effective | The initial _
output Name Describe
_ type range value
variable
Maps to the axis, AXIS_REF_SM3 instance
Axis Axis AXIS_REF — —
of the property
Enter variables
Enter , The
The data Effective . _
the Name initial Describe
_ type range
variable value
The
Read the current position of the servo for
Enable execution BOOL TRUE,FALSE FALSE
the TRUE state
condition
The output variable
The _ The
The data Effective L ,
output Name initial Describe
, type range
variable value
The torque value of the drive is
The current torque
Valid BOOL TRUE,FALSE FALSE correctly obtained and placed as
value gets the flag
TRUE
The instruction is The current instruction is in
Busy BOOL TRUE,FALSE FALSE
being executed execution and is set to TRUE
When an exception occurs, it is
Error Error BOOL TRUE,FALSE FALSE
set to TRUE
SMC_ See SMC_ When an exception occurs, the
ErrorlD The error code 0
ERROR ERROR error code is output
Torque The current torque | LREAL The torque | O The current torque data read out

VE Controller Programming Manual A T

| value obtained value (s) | | by the instruction

3) Function description

The command to read the current torque value in the drive via MC_ReadActualTorque is
the Enable level enable effect. The instruction can be used several times without affecting
each other.

@ Timing diagram

The condition that Enable of the function block must be TRUE

Valid of the function block indicates that the Torque read out is a valid data value.

Busy of the function block indicates that the current function block is being executed.;

-

Enable(l}

= sugid]:
Valldo_m_

Busyl
0

Torque

VE Controller Programming Manual

7.3.23 MC_ReadActualVelocity

The instruction reads the current speed value at which the drive runs, and the current speed

value of the read is saved in a variable cell that it defines.

1) Instruction format

Instructions Name Graphical performance ST performance
MC ReadActualVelocityO(
Current MC_ReadActualVelogity Axizi=
—|Axis valid Enable:= ,
MC_ speed _IEnable Busy Valid=> ,
. Errar] Busy=> ,
ReadActualVelocity | Read Edn E:::r=> '
instructions ety ErrorId=s ,
Velocity=>):
2) Related variables
input and output variables
Enter the , The
The data Effective . _
output Name initial Describe
_ type range
variable value
Maps to the axis, AXIS_REF_SM3
Axis Axis AXIS_REF — —
instance of the property
Enter variables
Enter . .
The data Effective The initial _
the Name Describe
_ type range value
variable
The
Read the current axis speed for the
Enable execution BOOL TRUE,FALSE FALSE
TRUE state
condition
The output variable
The _ The
The data Effective . ,
output Name initial Describe
, type range
variable value
The current speed The speed value of the drive is
Valid BOOL TRUE,FALSE FALSE
value gets the flag correctly obtained and set to TRUE
The instruction is The current instruction is in
Busy BOOL TRUE,FALSE FALSE
being executed execution and is set to TRUE
When an exception occurs, it is set
Error Error BOOL TRUE,FALSE FALSE
to TRUE
SMC_ See SMC_ When an exception occurs, the error
ErrorlD The error code 0
ERROR ERROR code is output
The current speed The speed The current speed data read out by
Velocity LREAL 0
value obtained value the instruction

VE Controller Programming Manual A T

3) Function description

The command to read the current velocity value in the drive via MC_ReadActualVelocity is
an Enable level enable effect. The instruction can be used several times without affecting
each other.

@ Timing diagram

The condition that Enable of the function block must be TRUE.

Valid of the function block indicates that the Velocity read out is a valid data value.

Busy of the function block indicates that the current function block is being executed;

™

Enableé

ez
\ralldo

Busy !
Yo

Velocity

VE Controller Programming Manual

7.3.24 MC_SetPosition

Setting the position data in the instruction to the position data of the current axis does not
cause any displacement movement to the set position data operation, which is used to

produce displacement of the coordinate system.

1) Instruction format

Instructions Name Graphical performance ST performance
MC_SetPosition0(
Axis:= i
Read the : ML JCtRUEIoa i .
MC —Axis Donef— Position:= ,
- parameters | —Execute Busy — Mode:= ,
SetPosition the axi —lPosition Error— Done=> ,
of the axis —Mode ErrorIDf— Busy=> ,
Error=> ,
ErrorID=>);
2) Related variables
input and output variables
Enter the The data Effective | The initial)
_ Name Describe
output variable type range value
Maps to the axis,
Axis Axis AXIS_REF — — AXIS_REF_SMS instance of the
property
Enter variables
, The
Enter the The data Effective L _
i Name initial Describe
variable type range
value
The
. Set the operation once for the
Execute execution BOOL TRUE,FALSE | FALSE o]
o rising edge operation
condition
Axis
Position position LREAL 0 Location data
data
Position mode;
TRUE: Relative Position
Set the
Mode | BOOL TRUE,FALSE | FALSE (RELATIVE);
value
FALSE: Absolute Position
(ABSOLUTE);
The output variable
The _ The
The data Effective o)
output Name initial Describe
, type range
variable value
Done The setup | BOOL TRUE,FALSE | FALSE The setup operation was

VE Controller Programming Manual A T
operation was successfully set to TRUE
successful
The instruction The current instruction is

Busy is being | BOOL TRUE,FALSE | FALSE executing in and is set to
executed TRUE

When an exception occurs, it

Error Error BOOL TRUE,FALSE | FALSE .

is set to TRUE
See When an exception occurs,

ErrorlD The error code | SMC_ERROR 0)

SMC_ERROR the error code is output

3) Function description

a. The axis position parameter is set by MC_ SetPosition, which does not produce any
displacement but creates a coordinate offset; the command is triggered by the rising edge of
Execute; the command can be used repeatedly without affecting each other.

b. Relationship with the reference position. When Mode=TRUE, Position is relative to the
reference position, and the value of Position=Reference Position+Position; when
Mode=FALSE, Position is absolute to the reference position, and the value of
Position=Position. When the input parameter Relative is a different value, the corresponding
execution effects are shown in the lower left and lower right figures respectively.

Posilion 4 Mode=TRUE —— Mode=False
After implementation
16000 |=======
Before implementation
10000 10000
Before implementation
6000 [====-==-=~ T EE—
After implementation
1] = Tima 0 = Tima

€ Timing diagram
Execute of the function block must be a rising edge trigger condition.
Done of the function block indicates that the setting operation was successful.
Busy of a function block indicates that the current function block is being executed;

s

Execut eé

1
0

Done

Busy!
0

VE Controller Programming Manual A T

7.3.25 MC_TouchProbe

The instruction is triggered by an external signal to save the position data of the current axis.

1) Instruction format

Instructions | Name Graphical performance ST performance
MC TouchProbe (
Axis:= ,
TriggerInput:= ,
MC_TouchProbe Execute:= ,
Enable —asis Donel— WindowOnly:= ,
—Triggerinput 3 Busy — FirstPosition:= ,
MC_TouchProbe | external —Execute 500 Errorf— LastPosition:= ,
—{WindowOnly ErrorIDfF— Done=> ,
H —{FirstPosition E RecordedPosition f— e
locki ng —LastPosition E CommandAborted |— :E:i:z;
ErrorID=> ,
RecordedPosition=> ,
CommandAborted=>):
2) Related variables
input and output variables
Enter the) The
The data Effective | . _
output Name initial Describe
. type range
variable value
Maps to the axis, AXIS_REF_SM3
Axis Axis AXIS_REF — —
instance of the property
Trigger TRIGGER_ Associated properties such as trigger
Truggerinput — —
signal REF signals or trigger properties

Enter variables

, The
Enter the The data Effective L _
, Name initial Describe
variable type range
value
The execution Set the operation once for
Execute BOOL TRUE,FALSE FALSE
condition the rising edge operation
Trigger the
WindowOnly BOOL TRUE,FALSE FALSE
window
The start position Specify where to start the
FirstPosition LREAL — 0
of the trigger receive trigger
Specify the end position
The end position
LastPosition LREAL — 0 where the receive trigger is
of the trigger
received
The output variable
_ The
The output The data Effective e ,
_ Name initial Describe
variable type range
value
The setup The setup operation was
Done BOOL TRUE,FALSE FALSE
operation was successfully set to TRUE

VE Controller Programming Manual A T
successful
The instruction
The current instruction is in
Busy is being | BOOL TRUE,FALSE FALSE
execution and is set to TRUE
executed
When an exception occurs, it
Error Error BOOL TRUE,FALSE FALSE
is set to TRUE
SMC_ See SMC_ When an exception occurs,
ErrorlD The error code 0
ERROR ERROR the error code is output
The location
where the The current position at which
RecordedPosition LREAL — 0
record was the trigger occurred
triggered
The current instruction is
The instruction
CommandAborted BOOL TRUE,FALSE FALSE interrupted and is set to
is interrupted
TRUE

3) Function descriptions

Description of probe functions

® The probe function is designed to enable position control based on the occurrence of a
trigger signal, such as a sensor input, and to record (lock) the axis position when a trigger
signal occurs. Normally 2 trigger points can be set for each axis at the same time.

® The MC_TouchProbe (enable external locking) command can be used to specify "trigger
input conditions" and "enable window" for the axis to be locked. The trigger signal can
specify a variable that can be used by the user program in addition to the signal to which the
servo drive is connected. To terminate the locking function, use the MC_AbortTrigger
command.

® | ocking function available for VC servo drives and other servos, encoders, etc. that
support the probe function.

® When WindowOnly is used, the trigger signal is only detected within the range of the
start and end points. The ranges for the different counting modes are shown below.

Linear mode

® Detectable only if FirstPosition =< LastPosition.

® |f FirstPosition > LastPosition is specified, an exception will be thrown.

® An exception is thrown when a position range is specified beyond the linear mode

FirstPosition LastPosition

{

0x8000000000 Ox7FFFFFFFFF

e

Windows

Locking the effective range

Rotation mode

VE Controller Programming Manual

<

~

Both FirstPosition
When the latter is specified, it is set to cr

LastPosition

and FirstPosition > LastPosition can be specified.
oss the lower limit setting of the ring counter.

If you specify beyond the upper or lower limit of the ring counter, the command will

cause an exception.

First Position = Last Position

First Position > Last Position

FirtPosition ~ LastPosition

Effective range

LastPosition = I'inxll"n.\-i[i.nrq

Counting values
Ox7FFFFFFF
Ring counterupper)

limit setpoint

Ring counter lower

limit setpoint (=0} 0

wodows | [[

Lecking the effective range

LastPosition = 330° _ First

Lecking the
effective range
[with boundary

values)

FirstPosition = 210°

There are two methods of obtaining the

® MC_TuochProbe command get

LastPosition = 210°

Lecking the effective range

Position = 330°

—0+

Locking the
effective range
[with boundary

values)

latch position, each of which is described below:

The current position of the running axis is recorded when triggered by a signal from the

MC_TouchProbe function block Truggerlnput. execute Execute on rising edge, drive latch:
the drive picks up the latch signal at the recorded position and then transmits it to the

controller.

VE Controller Programming Manual

PLC Sarrpling Poirts

F)
TRUE g] |
Execute | |
FALSE L1 —_—_
|
TRUE :
Triggerinput.Signal I |
FALSE 1l | -t
HER
TRUE il
i |
Done 0
FALSE L] i &
TRUE [
WindowOnly
FALSE . §
Axis.Position
LastPosition
RecordedP osition
FirstPosition
signal nat signal Ll |
accepted accepted

Structure data type TRIIGGER_REF describes the shaft driver used by the probe
input and determines which probe number corresponds to which hardware probe.

The name of | The data

the member type

iTriggerNumber | INT

bFastLatching BOOL

blnput BOOL

bActive BOOL

The

initial Describe

value

3 Trigger channel; defined by the driver (only used

when bFastLatching'.'

TRUE: The lock is present in the drive and is
completed using the probe function defined by

TRUE the servo shaft 60B8 (precise).

FALSE: In the motion task cycle,blnput is latched
(inaccurate).

The internal latch signal, which is valid when
bFastLatching is false.

The probe status, true, states that the probe is
FALSE ,
active

When bFastlLatching: s TRUE, take the Wykoda BusServo VECServo asan example, the
relationshipbetween the iTriggerNumber number and the servo probe is as follows:

iTriggerNumber

The hardware DI and edges of the servo probe

0

Servo DI9 rising edge latch

VE Controller Programming Manual

1 Servo DI9 drops along the latch
2 Servo DI10 rising edge latch
3 Servo DI10 drops along the latch

Familiarisation with VC servo-probe function

Index 16#60B8

Bit

Function

Probe 1 enabled.

0 - Probe 1 not
enabled

1 - Probe 1 enabled

Probe 1 trigger mode
0-Single trigger,
triggered only when
the trigger signal is
valid for the first time
1-Continuous

triggering

Probe 1 trigger signal
selection

0-DI9 input signal
1-Z signal

RES

Probe 1 rising edge
enable

0 - no latching on
rising edge

1 - rising edge latched

Probe 1 falling edge
enable

0 - no latching on
falling edge

1 - falling edge latch

BitO~Bit5: Probe 1 related
settings

@ Note.

Once the probe 1 enable signal
(rising edge of bit0 of 60B8h) is
valid, the function settings of
probe 1 (trigger mode, trigger
signal, valid latching edge)
cannot be changed, and bit0 of
60B8h must remain valid during
the action of probe 1. DI9 can
enable both its rising and falling
edges when used as the probe 1
trigger signal.

RES

Probe 2 enabled.

0 - Probe 2 not
enabled

1 - Probe 2 enabled

Probe 2 trigger mode
0-Single trigger,
triggered only when
the trigger signal is
valid for the first time
1 - Continuous trigger

Bit8~Bit15: Probe 2 related
settings

@ Note:Once the probe 2
enable signal (the rising edge of
bit 8 of 60B8h) is valid, the
function settings of probe 2
(trigger mode, trigger signal,
valid latch edge) cannot be
changed, and while the probe 2

VE Controller Programming Manual A T
10 Probe 2 trigger signal | is working, bit 8 of 60B8h must
selection Keep it effective. When DI10 is
0-DI10 input signal used as the trigger signal of
1-Z signal probe 2, its rising edge and
11 RES falling edge can be enabled at
12 Probe 2 rising edge the same time.
enable

0 - no latching on

rising edge

1 - rising edge latched
13 Probe 2 falling edge

enable

0 - no latching on

falling edge

1 - falling edge latch
14-15 | RES

Configuring PDO

The following PDO must be configured to use the probe function.
Output

16#60B8 (probe function)

Inputs

16#60B9 (probe status)

16#60BA (Probe 1 rising edge position latch) // selected according to 60B8 value

16#60BB (Probe 1 falling edge position latch) //selected according to 60B8 value

16#60BC (Probe 2 rising edge position latch) //selected according to 60B8 value

16#60BD (Probe 2 falling edge position latching)//selected according to 60B8 value

Configure the appropriate probe function according to actual needs, as shown below.
Or configure the probe related PDO in the 16#1600 and 16#1A00 groups.

VE Controller Programming Manual A T
NoteTestd ~|| @R Exidiske| dEHE |F£.i1122?31 B EtherCATSY] = EtherCATUCKAST = EtherCATIECH®: 35 O {58
(@ Device (Vector ARM Cortex-Linux-SM-CNC-TV-MC) FEAEEE ’ IR A
Tl rcEs e =m s ~ sm
= € Appiication 1600 1st receive PDO Ma DINT
D =g UINT DINT
PLC_PRG (PRG)) DINT DINT
POU (PRG) Touch probe function UINT DINT
- BsmE [116#1701 258th receive PDO UINT
= ¢ EtherCAT_Task (IEC-Tasks) UINT Di puts UDINT 1€
&) PLC_PRG DINT 116#1B01 258th transmit
& Trace UINT UINT
& Trace1 Physical out UDINT UINT
=[] EtherCAT Master SoftMotion (EtherCAT Master SoftM(|| [T6%1702 250th receive PDO. DINT
Controlword UINT 16#6040:0 INT
AxisL (SM_Drive_GenericDSP402) Target position DINT 16#807A: DINT
£ o<E> Target velocity DINT 16#60FF:0 UINT
3 softhotion General Axis Pool Target torque INT 16#6071:0 DINT
Modes of operation SINT 16#6060:0 DINT
Touch probe function UINT 16#60B8: UDINT 1
Max profile velocity UDINT 16#607F:0 #[16#1B02 259th transmit
[1621703 260th receive PDO Error code UINT 16#603F:
UINT Statusword UINT 16#6041:
DINT Position actual value DINT 16#6064:
DINT Torque actual value INT 16#6077:
SINT Modes of operation display SINT 16#6061:
UINT Touch probe status UINT 16#60B9:
UINT Touch probe posl posvalue DINT 16#60BA:
UINT Touch probe pos2 posvalue DINT 16#60BC:
Digital inputs UDINT 16#60FD:
UINT 16#1B03 260th transmit
DINT Error UINT 16#603
DINT UINT
> INT . DINT
® (Calling the MC_TouchProbe command
AR E=icl (=] EEE etk pES =4
= @ Tri_input SM3_Basic.TRIGGER_REF
TriggerNumber INT Trigger channel; defi... by driver (only use...
4 bFastLatching BOOL | ' *TRUE" *: Latching...done in drive (preci...
4 bInput BOOL Trigger signal when * " bFastLatching ™
bActive BOOL Internal variable

Note that a value needs to be assigned to Trinput.iTriggerNumber. Enable command,

trigger signal.

Tri_input.iTriggerNumber[0 |:=inumberl] 0 |;
Tri_input.bFastLatchingl[flE:=bFastlatchingl IENE;
Tri_input.bInput[FIEH:=kinputl[FIEE;

bactivel fIEH:=Tri_input.bictive[JIEd:;

TouchProbel (
Axis:= BAxisl,
TriggerInput:= Tri_input,
ExecutceJ[fl8:= TouchProbel Excut<|[HIE,
WindowOnly[fiEE: = TouchProbel WindowoOnly[FiEE,

FirstPosition[0 |:= TouchProbel FirstPosition[0 |
LastPosition[0 |:= TouchProbel Lastposition[0 |,

Done lflE=> TouchProbel DoncE.
H-> TouchProbesl Busy|g
Error[JiEE=> TouchProbesl Error[JiES,

ErrorIDSMC_NO ERRy F> TouchProbel ErrorID{SMC_NO_ERR» |,

RecordedPositio > TouchProbel Positio

CommandibortedJIER=> TouchProbkel Zbi[NER) ;

GERCP

Note: When using the MC_TuochProbe command to capture a position, only a single

capture can be made, not a continuous capture, if you need to capture a position

continuously, use the method of directly modifying the PDO

® Direct modification of PDO
Object index 16 s 60B8
MC_TuochProbe instructions are only supported
0: Probe index 60B8 s 16 s 11;

\":;!ECTOR

VE Controller Programming Manual oa M

1: Probe index 60B8 s 16 s 21;

2: Probe index 60B8 s 16 s 1100;

3: Probe index 60B8 s 16 s 2100 four modes. The VC supports more modes, using a
probe function other than the four above. You can set the index directly. The setting method
is as follows.

® Select the from which you want to control and check Enable Expert Mode:

%0 VECServo_ 5 X

General ExpertProcessData ProcessData Startup Parameters Log Ether

Address Additional
Autolncaddress -1 = Espertsettings
EtherCAT address 1002 2 [] optional

(2) Convert to the Process Data” "Output” in the
synchronizationmanager, check "16 1600"in the P DO assignment, you can see that there is

already"16 s 60B8 probe function” in thelst RPDO at this time, without modification:

b
General | Expert Process Data | Process Data Startup Parameters Log

"Expert interface,click

EtherCAT Parameters ® EtherCAT 1O Mapping # EtherCAT IEC Objr

Sync Manager ok Add [AEdit X Delete
SM Size Type PDO List
0 0 Mailbox Out Ipdex Size Name Ela SM
1 0 MailboxIn 16%1600 8.0 1st receive PDO Mapping 2
2 8 Outputs 1621701 2.0 258th receive PDO Mapping F
3 22 Inputs 16¥1702 19,0 259th receive PDO Mapping F
1651703 17.0 260th receive PDO Mapping F
1621704 23.0 261th receive PDO Mapping F
16#1705 18.0 262th receive PDO Mapping F
1671400 22.0 1st transmit PDO Mapping 3
1621601 28.0 258th transmit PDO Mapping F
] (16#1C12) db Insert [#] Edit < Delete @ MoveUp # Move Down
| 1621600 I PDO Content (1651600
(11621701 (excluded by 1621600 Index Size Offs Name Type
[1 1621702 (excluded by |1w5m:uu 20 0.0 Controlword UINT |
] 16%1703 (excluded by 16=6074:00 4.0 2.0 Targetposition DINT
(] 1621704 (excluded by | 16%60B8:00 2.0 6.0 Touch probe function UINT |
[] 16#1705 (excluded by 1621600 8.0

(3) Sync Manager selects "Input”, PDO assignmentclicks 1 6 1AQ0, selects 1 st TPDOwith SM
on the right, and can see that there is only "probe status, probe one or two rising edge latch
position” in the group at this time, click "Insert” if you want to add the falling edgelatch
position

VECTOR

VE Controller Programming Manual #
¥ VECServo 5 X =
General ExpertProcessDats processData StartupParameters log EtherCAT Parameters # EtherCATI/OMapping = EtherCAT IEC Objects S| ¢ [+]
Sync Manager ok Add [# Edit X Delete |
SM Size Type PDO List
0 0 Mailbox Out Index Size Name Fla.. SM
1 0 Mailbox In 1621600 8.0 1st receive PDO Mapping 2
2 8 Outputs 1621701 12.0 258th receive PDO Mapping F
| [22 Inputs ” 1621702 19.0 253th receive PDO Mapping -
1621703 17.0 260th receive PDO Mapping F
1621704 23.0 261th receive PDO Mapping F
E
22.0 1st transmit PDO Mapping 3| |
r
200 dasigamagt (16#1C13) o Insert| £ Edt X Delete ¥ MoveUp & MoveDown
I i 1651400 | PDO Content (1621400
[1621801 (excluded by 1621A00) Index Size Offs Name Type
[] 16%1B02 (excluded by 16%1A00) |15.¢6041:M 2.0 0.0 Statusword UINT
[] 16#1803 (excluded by 16=1A00) 16£6064:00 4.0 2.0 Position actual value DINT
[0 16=1B04 (excluded by 161A00) 16#6089:00 20 6.0 Touch probe status UINT
16=60BA:00 4.0 8.0 Touch probe pos1pos value DINT
16260BC:00 4,0 12.0 Touch probe pos2 pos value DINT
16#603F:00 2.0 16.0 Error code UINT
< > 16#60FD:00 4.0 18.0 Digitalinputs UDINT
)
(4) Find 60BB and 60BD,select Click OK toadd:
Select Item from Object Directory
Index:Subindex Name Flags Type Default L
16%6064:16%00 Position actual value RO DINT 1600000000
16%6068: 1600 velodity_demand_value RO DINT 1600000000
16%606C: 1600 velodty actual value RO DINT
16#6074: 1600 Torque demand inner RO INT
16#6075: 1600 Motorratecurrent RO UDINT
16%6077: 16500 Torque actual value RO INT
16#6075: 16 %00 current actual value RO INT
16#6089: 16200 Touch Probe status RO UINT
16%6088: 16 %00 Probe 1 neg Latch postion RO DINT
16#60B8C: 1600 Probe2 pas Latch postion RO DINT
16%608D: 16=00 Probe2 neg Latch postion RO DINT |
16#60F4:16 %00 Following error actual value RO DINT
16%60FD: 1600 Digital inputs RO UDINT [
Name fProbeZnag Latch postion I
Index: 16% 60BD 2] Bitlength 32 :
Sublndex: 165 0] b : Cancel |
Data type [DINT v]

(5) Click on the process data and you will now see the PDO required for the probe function

you have just added:

VE Controller Programming Manual

gsﬁon

B VECServo_5 X
General ExpertProcess Dat[Process Data |S|a'tup Parameters Log EtherCAT Parameters ¥ EtherCAT I/OMapping *= EtherCAT IEC Objects S ¢ l
Select the Outputs] _Select the Inputs B
Name Type Index o Name Type Index)
v 1621600 1st receive PDO Mapping v 16#1A00 1st transmit PDO Map
Controlword UINT 16=6040:00 Statusword UINT 1656041:00
Targetposition DINT 162607A:00 Pgsition actual valye DINT 16
Touch probe function UINT 1626068:00 Touch probe status UINT 16%6082:00
| 16#1701 258th recewve PDO Mappm Touch probe pos1pos value DINT 16=60BA:00
Controlword UINT Touch probe pos2 pos value DINT 16£60BC:00
Targetposition DINT Error code UINT 16=603F:00
Touch probe function UINT Digitalinputs UDINT 16#60FD:00
Physical outputs UDINT Probe2 neg Latch postion DINT 16%60BD:00
] 16#1702 259th receive PDO Mappin Probel neg Latch postion DINT 16+60BB:00
Controlword UINT 1626040:00 [[] 16#1B01 258th transmit PDO M
Targetposition DINT 62607A:0 Error code UINT 6E603F:00

(6) Modify the axis parameter setting, do not select automatic mapping, and delete the
address corresponding to the output output parameter probe function.

> 1 X
PLC Logic v A
£} Application
& cam
m Library Manager
[£] pLc_PrG PRE) /

¥ pou (FE)

@ Pou_1(Pre)

[§] Pou_2 PRG)

¥ Pou_3 (PrG)

= (&4 Task Configuration
~-§8 EtherCAT Task (IEC-Tasks)
& pLC_PRG
@ MainTask (NewGroup)

& Trace
EtherCAT_Master_SoftMotion
B8 vECServo (VECServo)

| H4P Axis1 (SM_Drive_GenericDSP402)
M vECServo_5 (VECServa)

HgP Axis2 (SM_Drive_GenericDSP402)
ModbusTCP_Slave (ModbusTCP_Slave)
SoftMotion General Axis Poal
¥ sM_Drive_PosControl (SM_Drive_PosControl)
& SMC_FreeEncoder (SMC_FreeEncoder)

& SM_Drive_Virtual (SM_Drive_Virtual)

erCAT Master So

3 E
General| Scaling/Mapping |Commissioning SM_Drive_ETC_GenericDSP402: Parameters ™ SM_Drive_ETC

Mgffor Type Scaling
[] Invert direction

Axisl X

gear output turns <=> units in application

(® Rotary increments <=> motor turns
O Linear 1 motor turns <=> gear output turns 1

-

[Automatic mapping | Uncheck

Y PoUs

Inputs:
Cydic object Object number Address Type L)
status word (in.wStatuswor) BLEEETEISLE] 'oLIW T ‘UINT'
actual position (diActPosition) \, 1626064:16500 '%IDT 'DINT'
actual velodity (diActVelocity) 16#606C: 16500 " 'DINT'
actual torque (wActTorque) R#6077:16%00 '%IW4 'INT
Modes of operation display (OP) 16%5061:16%00 ‘%1810 'SINT'
digital inputs (in.dwDigitallnputs) 16#6§FD:16#00 '%ID6' ‘UDINT'
Touch Probe Status 16#60BQ: 16200 '%IWE' 'UINT'
| Touch Probe 1rising edge 16#60BANG#00 '%IDS DINT' v
Qutputs:
| Cydic object Object numb Address Type N
set velocity (diSetvelocity) 16260FF: 16200 \, '%QDZ DINT*
set torque (wSetTorque) 16#6071: 16200 SQWE' 'INT'
Mo i P 16%6060: 16200 QB 14 'SINT'

Moge< ol operation 10
Touch Probe Function

Add torgue val

il e ke PR A

16#60B8: 16=00
16=60B1: 16=00
16#6082: 16500

'INT'

et

[Juwr Delete address

(7) Set the probe function communication address in the program. Refer to VC manual
introduction 16#60B8 for specific setting values. here configured as 16#60B8 = 2# 0011
0011 0011 0011 = 13107 with the following functions.

Probe 1 enable, continuous latching, rising edge latching, falling edge latching, latching

via DI9

Probe 2 enable, continuous latch, rising edge latch, falling edge latch, latch via DI10

gsc'ron

VE Controller Programming Manual oa M
Scope Name Address Data type Initialization (
o ran 10
& VAR prol_up DINT
$ VAR prol_down DINT
® VAR pro2_up DINT
$ VAR pro2_down DINT
X vECServo X [’ -
jeneral ExpertProcessData ProcessData Startup Parameters Log EtherCAT Parameters| ¥ EtherCATI/OMapping [= EtherCAT IEC Objects Status | *
ind Filter Show all » gp Add FB for 10 Channel... Go to Instance
Variable Mapping Channel Address Type Unit Description
"¢ Controlword %QW10 UINT Controlword
+ g Target position %QD6 DINT Target position
& I'O Application.POU2.A1 "% Touch probe function R] UINT Touch probe function
- Statusword %IW28 UINT Statusword
£] Position actual value %ID15 DINT Position actual value
FE Y Touch probe status BRIW32 UINT Touch probe status
+ “§ Application.POU2.pro1_up] Touch probe pos1 pos value Sibee DINT Touch probe pos1 pos value
+- *p Application.POUZ.pro2_up "® Touch probe pos2 pos value pIa:-ers DINT Touch probe pos2 pos value
+- 4 application.POU2.pro1_down ¥ Prabe1 neg Latch postion ID10 DINT Probe 1 neg Latch postion
+- % application.POU2.pro2_down "» Probe2 neg Latch postion AERs DINT Probe2 neg Latch postion
Ay Error code %IW42 UINT Error code
g Digital inputs %ID22 UDINT Digital inputs

Trigger configuration DI9, DI10, the latch position is saved in the variable and the latch

result is as follows

@ INTG0BS
% Posl_Up
4 Posl_Down
% Pos2_Up
4 Pos2_Down

UINT
DINT
DINT
DINT
DINT

13107
15309
9678

16110
23561

VE Controller Programming Manual

7.3.26 SMC_MoveContinuousAbsolute

The axes run continuously in absolute position (units are set by axis), the absolute position is

specified by Position, and the last running speed, EndVelocity, is run; the relevant parameters,

Acceleration, Deceleration and Velocity, are set before this instruction is run. Velocity; an

assignment of 0 to Acceleration or Deceleration is an error; during operation, it is important

to pay attention to the complete operation of this instruction to avoid interruptions by other

instructions from the user program's design point of view.

1) Command format

Instructions Name Graphical performance ST performance
The
absolute SMC_MoveContinuousAbsolute
Axis InEndVelodity —
position of o Bl
MC_Move :g'iﬁcg GommandAb(é r:ric: 1
the axis Endvelocity ErroriD|—

ContinousAbsolute

continuously

EndVelocityDirection
Acceleration
Deceleration

Jerk

controls the Direction
instructions
2) Related variables
input and output variables
Enter the , The
The data | Effective | = | _
output Name initial Describe
. type range
variable value
Maps to the axis, AXIS_REF_SM3 instance of the
Axis Axis AXIS_REF — —
property
Enter variables
, The
Enter the The data | Effective | . _
i Name initial Describe
variable type range
value
The execution An up-edge of the input will initiate
Execute BOOL TRUE,FALSE | FALSE
condition the processing of the function block
The motion is
This data is the absolute position of
Position absolutely right | LREAL 0
the motion
for the position
The speed at The maximum speed at which the
Velocity LREAL 0
which it is run axis runs to the target position
The end speed of The speed at which the instruction is
EndVelocity LREAL 0
the run executed
positive, Can be used: positive, negative,
EndVelocity The direction of
MC_Direction | negative, Current current;
Direction the end speed
current; Not available: shortest, fastest

VE Controller Programming Manual

Acceleration value as the velocity
Acceleration Acceleration LREAL 0
increases
Reduce the Speed changes by hours and
Deceleration LREAL 0
speed decreases the speed value
Acceleration rate
Jerk LREAL 0 Acceleration
of change
For linear / linear axes: positive,
negative;
The direction of
Direction shortest shortest | For rotation / circumferon axis:
operation
positive, negative, current, shortest,
fastest
The output variable
The
The output The data
Name Effective range initial Describe
variable type
value
The command
The axis command execution
InEndVelocity position BOOL TRUE,FALSE FALSE
position arrives and is set to TRUE
arrives
The instruction
The current instruction is in execution
Busy is being | BOOL TRUE,FALSE FALSE
and is set to TRUE
executed
The instruction The current instruction is interrupted
CommandAbort BOOL TRUE,FALSE FALSE
is interrupted and is set to TRUE
When an exception occurs, it is set to
Error Error BOOL TRUE,FALSE FALSE
TRUE
SMC_ See SMC_ When an exception occurs, the error
ErrorlD The error code 0
ERROR ERROR code is output

3) Function description

This function block is an absolute axis positioning command, where the Distance data is the

absolute position of the axis.

The running state of this function block is in Standstill, the state of the instruction is Discrete

Motion, a complete running process must control the different motion states of the axis.

The start command is the rising edge of Execute. This command can be repeated on the

rising edge of Discrete Motion, refreshing the latest Position position each time.

Acceleration or Deceleration is zero, the instruction runs in an abnormal state, but the state

of the axis is Discrete Motion;

€ Timing diagram

the axis must be in the Standstill state for the instruction to run.

Execute of a function block must have a rising edge condition.

Done of a function block indicates that the instruction has completed normal execution.

Busy of a function block indicates that the function block is currently being executed;

VE Controller Programming Manual

A

Execute

-

Done

Qista nce

Position

Velocity

4 -

f B
EndVelocity

VE Controller Programming Manual A T

7.3.27 SMC_MoveContinuousRelative

The axes run continuously in relative position (units are set by axis), the relative position is
specified by Distance, and the final running speed, EndVelocity, is run; the relevant
parameters, Acceleration, Deceleration and Velocity, are set before the instruction is run.
Velocity; a value of O for Acceleration or Deceleration is an error; during operation, it is
important to pay attention to the complete operation of this instruction to avoid
interruptions by other instructions from the user program's design point of view.

1) Instruction format

. . ST
Instructions Name Graphical performance
performance
The aXiS iS SMC_MoveContinuousRelative
—Axis InEndVelocity —
relatlve to :E)lﬁcaunt(ee CcmmandAhoB:z :
MCiMOVe —{Velocity Errorf—
. . the —Endvelacity ErrorIDf—
ContinuousRelative o —lEndveloatyDirection
posItioning | —axekation
instruction | =

2) Related variables
input and output variables

Enter the . The
The data | Effective | . .. _
output Name initial Describe
) type range

variable value

Maps to the axis, AXIS_REF_SM3 instance of
Axis Axis AXIS_REF — —

the property

Enter variables

, The
Enter the The data Effective . _
, Name initial Describe
variable type range
value
An up-edge of the input will
The execution
Execute BOOL TRUE,FALSE FALSE start the processing
condition
of the function block
The relative
The range of This data is the relative
Distance position of the | LREAL 0
data position of the motion
motion
The maximum speed at which
The speed at The range of
Velocity LREAL 0 the axis runs to the target
which itis run data
position
The end speed of The range of The speed at which the
EndVelocity LREAL 0
the run data instruction is executed
EndVelocity The direction of positive, Can be used: positive,
MC_Direction Current
Direction the end speed negative, negative,

VE Controller Programming Manual

current;

current;

Not available: shortest, fastest

The range of

Acceleration value as the

Acceleration Acceleration LREAL 0
data velocity increases
Reduce the The range of Speed changes by hours and
Deceleration LREAL 0
speed data decreases the speed value
The output variable
The _ The
The output Effective o :
_ Name data initial Describe
variable range
type value
The axis command execution
The command
InEndVelocity BOOL TRUE,FALSE FALSE position arrives and is set to
position arrives
TRUE
The instruction
The current instruction is in
Busy is being | BOOL TRUE,FALSE FALSE
execution and is set to TRUE
executed
The instruction The current instruction s
CommandAbort BOOL TRUE,FALSE FALSE
is interrupted interrupted and is set to TRUE
When an exception occurs, it is
Error Error BOOL TRUE,FALSE FALSE
set to TRUE
SMC_ See SMC_ When an exception occurs, the
ErrorlD The error code 0
ERROR ERROR error code is output

3) Function description

This function block runs in Standstill, and the state of the instruction is Discrete Motion, so as

to avoid interrupting the execution of other instructions in this axis or being interrupted by

other instructions.

The start instruction is the rising edge of Execute, which can be repeated on the rising edge

of Discrete Motion to refresh the latest Position each time.

Acceleration or Deceleration is zero, the instruction runs in an abnormal state, but the state

of the axis is Discrete Motion;

€ Timing diagram

Execute of a function block must have a rising edge condition.

Done of a function block indicates that the instruction has been executed normally.

Busy of a function block indicates that the current function block is being executed.

A
Execute
Done
Qistance
Position
Velocity
4 =

i >
EndVelocity

VE Controller Programming Manual

7.3.28 MC_Jog

1) Instruction format

Instructions Name Graphical performance ST performance
MC_Jog (
Axis:= ,
JogForward:= ,
: RAL lody JogBackward:= ,
—Axis Busy — i N
) . —JogForward 7 CommandAborted F— Velocity:=,
Pivot point —l1ogBackward Errorl— Acceleration:= ,
MC_Jog —velocity Errorldi— Deceleration:=
command —Acceleration :
- Jerk:= ,
—Deceleration
—Jerk Busy=> ,
CommandAborted=> ,
Error=> ,
ErrorId=>);
2) Related variables
input variables
Enter the The data Effective The initial ,
_ Name Describe
variable type range value
Set to TRUE to start moving forward,
Positive is
JogForward BOOL TRUE,FALSE FALSE and
valid
set to FALSE to stop moving forward
Set to TRUE to start moving in reverse;
Negative is
JogBackward BOOL TRUE,FALSE FALSE Set to FALSE to stop the reverse
valid
movement
Target Specify the target speed. Unit:
Velocity LREAL Positive or "0" 0
speed (Instruction unit /s)
Acceleration Acceleration | LREAL Positive or "0" 0 Specifies acceleration. In:
Reduce the
Deceleration LREAL Positive or "0" 0 Specifies a reduction in speed. In:
speed
The rate of change in the command
Jerk Acceleration | LREAL Positive or "0" 0
acceleration. In:(instruction unit /s’. .
The output variable
_ The
The output The data Effective _ ,
_ Name initial Describe
variable type range
value
When the instruction is received, it
Busy In action BOOL TRUE,FALSE FALSE
is set to TRUE
The
execution When the instruction is aborted, it
CommandAborted BOOL TRUE,FALSE FALSE
is is set to TRUE
interrupted
When an exception occurs, it is set
Error Error BOOL TRUE,FALSE FALSE
to TRUE

VE Controller Programming Manual A T
The error | SMC_ See SMC_ When an exception occurs, the
ErrorID 0
code ERROR ERROR error code is output
Input and output variables
Enter the , The
The data Effective . _
output Name initial Describe
_ type range
variable value
Maps to the axis, AXIS_REF_SM3 instance
Axis Axis AXIS_REF — —
of the property

3) Function description

Performs a jog according to the specified Velocity.

If a forward run is required, set JogForward to TRUE; if a reverse run is required, set
JogBackward to TRUE.

By setting both JogForward (valid for forward running) and JogBackward (valid for negative
running) to TRUE, no movement will occur. If the command speed setting of the MC_Jog
instruction exceeds the pointing maximum speed in the axis parameter, it will be executed at
the pointing maximum speed.

JogForen

|
JogBackward |

—

Blusy

Ermoer

Emorl) e

4 target velocity

Af,f /—‘—\<- Dec
A time
% A

|
Other commands interrupt

Velocity

operation and slow down to a stop

4) Error description

When an exception occurs during the execution of this instruction, Error becomes TRUE and
the axis stops moving.

You can check the output value of ErrorlD (error code) to understand the cause of the
exception.

€ Timing diagram when an exception occurs

U
VYECTOR
VE Controller Programming Manual : .

2]
k]
B
b
R

logFarward

JogBackward |

Busy

CommandAborted \ |

Errar

ErroriD X Errer Code

Please read "Appendix C Error Code Descriptions” for a description of the error codes that
occur with the command.

VE Controller Programming Manual

7.3.29 SMC _Inch

Axis step-by-step motion control, through the program can achieve step-by-step step

control.

1) Instruction format

Instructions Name Graphical performance ST performance
SMC_Incho (
Axis:= m
InchForward:= ,
. . SMC_Inch InchBackward:= ,
The axis is | —axis Busy [— Ak i
—InchForward ~ CommandAborted — A
relative to the | —inchBackward Errorf— Velocity:= ,
SMC_Inch — Distance Errorld— Acceleration:= ,
positioning —velocity Deceleration:= ,
—Acceleration San.
instruction —Deceleration SR
—{Jerk Busy=> ,
CommandAborted=> ,
Error=> ,
Errorld=>);
2) Related variables
input and output variables
Enter the : The
The data | Effective | . . _
output Name initial Describe
. type range
variable value
Maps to the axis, AXIS_REF_SM3 instance of
Axis Axis AXIS_REF — —
the property
Enter variables
, The
Enter the The data | Effective | . _
, Name initial Describe
variable type range
value
If InchForward is TRUE, the axis will move at a
given speed (Velocity, Speed, Deceleration) in
a positive direction until the distance is
reached. The input must be specified as
Is executing FALSE before the motion is started again for
TRUE,
InchForward in the right | BOOL FALSE TRUE.
FALSE
way If InchForward is set to FALSE before it
reaches its position, the axis will immediately
decelerate to 0 and Busy will be set to FALSE.
If the input InchBackward is set to TRUE in
simulation, no motion will be generated.
If InchBackward is TRUE, the axis will move at
Reverse TRUE, a
InchBackward BOOL FALSE
execution FALSE given speed value (Velocity, Speed,
Deceleration) in reverse motion to

VE Controller Programming Manual A T
the set position. The input must then be set
toFALSE, and then set to TRUE to start
another motion.

If the input signal InchForward is also set to
TRUE, there will be no axis motion.
The
The range
Distance distance LREAL 0 This data is the distance of motion
of data
moved
The speed
The range The maximum speed at which the axis runs to
Velocity at whichitis | LREAL 0
of data the target position
run
The range
Acceleration Acceleration | LREAL 0 Acceleration value as the velocity increases
of data
Reduce the The range Speed changes by hours and decreases the
Deceleration LREAL 0
speed of data speed value
The output variable
_ The
The output The data Effective . ,
_ Name initial Describe
variable type range
value
The instruction
The current instruction is in
Busy is being | BOOL TRUE,FALSE FALSE
execution and is set to TRUE
executed
The instruction The current instruction s
CommandAbortand BOOL TRUE,FALSE FALSE
is interrupted interrupted and is set to TRUE
When an exception occurs, it
Error Error BOOL TRUE,FALSE FALSE
is set to TRUE
SMC_ See SMC_ When an exception occurs,
ErrorlD The error code 0
ERROR ERROR the error code is output

3) Function Description

This function block runs in Standstill, and the state of the instruction is Discrete Motion, so as

to avoid interrupting other instructions of the axis or being interrupted by other instructions

during the execution of the instruction. state, but the state of the axis is Discrete Motion.

€ Timing diagram

InchForward/InchBackward of the function block must have the condition TRUE/FALSE.
Busy of a function block means that the block is currently being executed;

VE Controller Programming Manual

InchForward

InchBackward

Busy

Velocity

Distance

A J

VE Controller Programming Manual

7.3.30 SMC3_PersistPosition

This instruction is used to maintain the position of the recorded solid-axis absolute value
encoder (the position record value before the power-off is restored after the controller is
restarted). If the servo motor is using an absolute value encoder, use this function block in

conjunction.

1) Instruction format

Instructions Name Graphical performance ST performance
SMC3_PersistPosition0(
SMC3_PersistPosition Axizi= '
The axis —ixis bPostionRestored— Ferslsténti)ata:: .
SMC3_ —PersistentData el iiz:?il;;smre s
pOSitiOn is —bEnable bBusy I~ bPositionStored=> '
PersistPosition bErTor— — '
maintained efromD— bError=> ,
eRestorngrag— eErrorlD=> ,
eRestoringDiag=>);
2) Related variables
input and output variables
Enter the) The
Effective . :
output Name The data type initial Describe
. range
variable value
Maps to the axis,
Axis Axis AXIS_REF - - AXIS_REF_SM3 instance of
the property
The power-off-hold data
Keep the | SMC3_PersistPosition_
PersistentData structure that stores
data Data
location information
Enter variables
, The
Enter the The data | Effective . _
) Name initial Describe
variable type range
value
True function blocks are executed, false does not
execute function blocks, and tO restore the
bEnable Perform | BOOL TRUEFALSE | FALSE last stored location during
initialization, the value must be set to
true when the application starts
The output variable
The _ _
The data | Effective The initial ,
output Name Describe
: type range value
variable
bPosition Location TRUE,FALS TRUE, position recovery
BOOL FALSE
Restored recovery E completes after axis restart
bPosition Location BOOL TRUE,FALS FALSE TRUE, the save location is

VE Controller Programming Manual A T

Stored save E complete after calling the

function block

FB in TRUE,FALS TRUE, the function block is not
bBusy BOOL FALSE
action E executed
TRUE,FALS
bError Error BOOL FALSE TRUE, an exception occurs
E
When an exception
The error | SMC_ SMC_NO_E
eErrorlD occurs, the error
code ERROR RROR
code is output
Diagnostic information in
location recovery:
SMC3_PPD_RESTORING_OK:
Location Recovery
SMC3_PPD_AXIS_PROP_CHANG
ED: The axis parameters
have changed and
position cannot be
SMC3_ recovered
eRestoringDi | Restore SMC3_Persist PersistPositionDiag. | SMC3_PPD_DATA_STOR
ag diagnostics | PositionDiag SMC3_PPD_ ED_DURING_WRITING:
RESTORING_OK The function block

copies the data from the
axis parameter data
structure

instead of from the
PersistentData data. Possible
causes: non-synchronous
persistent variables, controller

crash crash

3) Function description

The PLC restart bEnable signal is TRUE, the bPositionRestroed output is TRUE.

Dummy axes and logical axes are not supported.

The actual position of the axes in the VE controller is: Offset + Coded feedback position
(command unit Plus) * Scale, the position recorded by the absolute encoder is the command
unit value. This function block is therefore required to restore the "actual position" before the
power failure after the PLC has been restarted and to record the "actual position" of the axis
before the power failure, the SMC3_PersistPosition_Data must be set to the continuous type
variable".

Usage (when the real axis encoder is a multi-turn absolute value)

@) Declare the SMC3_PersistPosition_Data type in PersistentVars

VE Controller Programming Manual A T

+ & MainTask
+ @ Task

@.9 tra

@ tra_1

W PersistentVars

i Device @ PersistentVars X
1 AR GLOBAL| PERSISTENT RETAIN
2 persistentDatal: SMC3 PersistPosition Data;
3| END VAR

® Called from the PLC main task (EthCat task)
€ Affirmation section.
VAR
SMC3_PersistPosition 1:SMC3 PersistPosition;
END_VAR

Program section:

S PRI S F LIS

SMC3_PersistPosition 1(Axis:=X Axis , PersistentData:=persistentDatal ,bEnable:=TRUE);

|

@ Time-series diagram

A

bEnable
>

bPosition
Restored > &
bPosition " t

stored »
One scan

bERROR |

4) Error description
An input axis that is a virtual axis or a logical axis will result in an error output; an error in
an axis will result in an error output.

[Note]: Please read "Appendix C Error Code Descriptions” for error code descriptions.,

VE Controller Programming Manual

7.3.31 SMC3_PersistPositionSingleturn

This instruction is used to maintain the position of the recorded solid-axis absolute value
encoder (single-turn absolute value) (after the power-off restarts the controller, the

pre-power-off position record value is restored).

If the servo motor is using a single-turn absolute value encoder, use this function block in

conjunction.

1) Instruction format

Instruction _
Name Graphical performance ST performance
S
SMC3_PersistPositionSinglecurn 0
The axis SMC3_PersistPositionSingleturn 2
SMC3_ —{Axis bPositionRestored
position is | —PersstentData - bPostionstored
PersistPosition —bEnable bBusy|
maintaine —usiNumberOfAbsoluteBits bErrar]
Singleturn ermarlD
d eRestoringDiag
2) Related variables
input and output variables
Enter the : The
Effective L :
output Name | The data type initial Describe
: range
variable value
Maps to the axis,
)) AXIS_REF_SM3
Axis Axis AXIS_REF - -)
instance of the
property
The power-off-hold
Keep | SMC3_
) i o data structure that
PersistentData | the PersistPosition)
. stores location
data | Singletrun_Data _ _
information
Enter variables
The : The
Enter the Effective . _
i Name data initial Describe
variable range
type value
True function block execution, false
does not execute function block To
restore the last stored location during
bEnable Perform | BOOL TRUE,FALSE FALSE
initialization, the value must be set
to true when the application
starts
usiNumberofAbso The How many bits of absolute value
UINT 16
luteBitesusiNumb number encoder (e.g. 20 bits, 24 bit encoder,

VE Controller Programming Manual

erofAbsoluteBites | of digits | | | | etc.)
The output variable
The The _ .
Effective The initial ,
output Name data Describe
: range value
variable type
bPositionRes | Location TRUE, position recovery
BOOL TRUE,FALSE FALSE
tored recovery completes after axis restart
bPositionSto Location TRUE, the call function is done
BOOL TRUE,FALSE FALSE
red save quickly after saving the location
FB in TRUE, the function block is not
bBusy BOOL TRUE,FALSE FALSE
action executed
bError Error BOOL TRUE,FALSE FALSE TRUE, an exception occurs
When an
The error | SMC_ERRO | SMC_NO_ERRO | exception
eErrorlD
code R R occurs, the error
code is output
Diagnostic message in position
recovery
SMC3_PPD_RESTORING_ OoK:
Position successfully recovered
SMC3_PPD_AXIS_PROP_
CHANGED: Axis parameter
SMC3_PersistPo | changed, position cannot be
SMC3_
eRestoringDi | Restore sitionDiag. recovered
PersistPosi
ag diagnostics SMC3_PPD_RES [SMC3_PPD_DATA_STORED_DURI
tionDiag

TORING_OK

NG_WRITING: Function block

copied from axis parameter data
structure instead of copying from
Possible

PersistentData data.

causes: Non-synchronous

persistent variable, controller

crash dead

3) Function description

The PLC restart bEnable signal is TRUE, the bPositionRestroed output is TRUE.

Dummy axes and logical axes are not supported.

This function block is required to restore the "actual position” before the power failure after

the PLC has been restarted and to record the "actual position” of the axis before the power
failure, the SMC3_
PersistPositionSingleTurn_Data as a continuous variable".

Usage (when the real axis encoder is a multi-turn absolute value)

(1) Declare SMC3_PersistPositionSingleTurn_Data in PersistentVars

VE Controller Programming Manual A T
* @ MainTask
+ @ Task
Qq tra
& tra_t
T Persistentvars
1 R GLOBAL| PERSISTENT RETAIN
F: persistentData2: SMC3_PersistPositionSingleTurn Data:
3| Ewp va{
@ Called from the PLC main task (EthCat task)
€ Affirmation section.
VAR
SMC3 PersistPosition 2: SMC3 PersistPositionSingleTurn Data;
END VAR
@ Program section:
SMC3_PersistPosition 2 (Axis:=Y Axis , PersistentData:=persistentData2 ,bEnable:=TRUE);
4) Time-series diagram
A
bEnable ; ’t
bPosition é
Restored E »t
bPosition i " " E § t
stored : [: »
+i0ne scan
bERROR = |

5) Error description

An input axis that is a virtual axis or a logical axis will result in an error output; an error in

an axis will result in an error output.

[Note]: Please read "Appendix C Error Code Descriptions” for error code descriptions.,

VE Controller Programming Manual

7.3.32 SMC3_PersistPositionLogical

This command is used to keep track of the position of the logical axes (right click on the real

or imaginary axis to "add device" to select the logical axis to be added) (after a power failure

and restart of the controller, the value of the position recorded before the power failure is

restored).

1) Instruction format

Instructions Name Graphical performance ST performance
SMC3_PersistPositionLogical0(
SMC3_PersistPositionLogical ixi53= E— *
SM CS AXiS Haxis bPositionRestored [LEXslovERLIataLm
- HrersistentData bPositionStored [Eiil::iii;;st”“ed->
PersistPosition | position i bPositionStoredes ,
LOgical holdlng —|bEnable eErrorID [BECARSS
eRestoringDiag [

2) Related variables

input and output variables

Enter the ; The
Effective L :
output Name The data type initial Describe
) range
variable value
Axis Maps to the axis,
N AXIS_REF_ AXIS_REF_SM3
XIS - -
LOGICAL_SM3 instance of the
property
Maintain The
data power-off-hold
SMC3_PersistPositionLogical_ data structure
PersistentData
Data that stores
location
information
Enter variables
Enter ; The
The data Effective o ;
the Name initial Describe
; type range
variable value
True function blocks are executed, false
function blocks are not executed
bEnable w7 BOOL TRUE,FALSE FALSE To restore the last stored location during
initialisation, this value must be set to true
from application start-up
The output variable
The Name The data Effective The initial Describe

VE Controller Programming Manual A T
output type range value
variable
bPosition Location TRUE, TRUE, position recovery
BOOL FALSE
Restored Recovery FALSE complete after axis restart
bPosition Position TRUE, TRUE, position saved after
BOOL FALSE
Stored saving FALSE function call completed
FB TRUE, function block not
TRUE,
bBusy Execution BOOL FALSE completed
FALSE
in progress
Error TRUE, TRUE, exception occurred
bError BOOL FALSE
FALSE
Error code Qutput an error
SMC_NO_
eErrorlD SMC_ERROR code when an
ERROR
exception occurs
Recovery Diagnostic messages in
diagnosis position recovery
SMC3_PPD_RESTORING_OK:
Position successfully recovered
SMC3_PPD_AXIS_PROP_
CHANGED: Axis parameters
have been changed, position
SMC3_ cannot be recovered
SMC3_
eRestoring PersistPositionDia SMC3_PPD _DATA STORED DU
PersistPosition
Diag g.SMC3_PPD_ RING_WRITING: The function
Diag

RESTORING_OK

block copies data from the axis

parameter data structure
instead of from Persistent

Data data instead of copying
from Persistent Data.
Possible causes:
Non-synchronous persistent

variables, controller crash dead

3) Function description
The PLC restart bEnable signal is TRUE, the bPositionRestroed output is TRUE.
The dummy axis and the real axis are not supported.

This function block is required to restore the "position” before the power failure after the

PLC has been restarted and to record the "actual position” of the axis before the power
failure, the SMC3_
PersistPositionLogical_Data as a continuous variable”.

Usage (when the real axis encoder is a multi-turn absolute value).

Declare SMC3_PersistPositionLogical_Data in PersistentVars

VE Controller Programming Manual A T

+ & |MainTask
+ @ Task

Qﬁ tra

& tra_t1

T PersistentVars

1 VAR GLOBAL PERSISTENT RETAIN
2 persistentData3: S}{CB_FE:SisuPcsitiancgical_Data:I
END VAR

Invoked in the PLC main task (EthCat task)
€ Affirmation section.
VAR
SMC3_PersistPosition_3:SMC3_PersistPositionLogical;
END_VAR
€ Program section

Z SMC3_PersistPosition_1(Axis:=X Axis , PersistentData:=persistentDatal ,bEnable:=TRUE);

@ Time-series diagram

A

bEnable »

»t
bPosition

t

Restored B
bPosition " By T

stored e

One scan

bERROR

4) Error description

An input axis that is virtual or real will result in an error output; an error in an axis will result in
an error output.

[Note]: Please read "Appendix C Error Code Descriptions” for error code descriptions.

VE Controller Programming Manual A T

7.3.33 SMC_Homing

The axis return to zero command differs from MC_Homing, which sets the return to zero
method at the axis configuration, in that this command is a controller-controlled return to

zero method.

1) Command format

Instructions | Name Graphical performance ST performance
SMC_Homing0 (
Axis:= '
bExecute:= ,
fHomePosition:= ,
_ fVelocitySlow:= ,
SMC_Homing fVelocitvFast:=
_nxis boonel— fVelocityFast:= ,
—|bExecute bBusy— fAcceleration:= ,
—{fHomePosition 1 bCommandAborted— fDeceleration:= ,
—fVelocitySlow ! bErrorf— flerk:=
. —ifvelocityFast NErroriD — L I
Axis —IfAcceleration bStartLatchingIndex|— pIRrection:= ,
—IfDaceleration bReferenceSwitch:= ,
SMC_Homing back to | —fierk fSignalDelay:= ,
_gg'e’;ﬁ'ones o : nHomingMode:= ,
— renceSwitd =
Zero _lsignaielay bReturnloZerc:= ,
—nHomingMode bIndexOccured:= ,
—|bReturnToZero fIndexPosition:=
—bIndexGccured bIgnoreBWLimit:= ,
—fIndexPaosition e
—bIgnoreHWLimit bDone=> ,
bBusy=> ,
bCommandAborted=> ,
bError=> ,
nErrorID=> ,
bStartLatchingIndex=>);

2) Related variables
input and output variables

Enter the . _
The data Effective | The initial _
output Name Describe
_ type range value
variable
Maps to the axis, AXIS_REF_SM3
Axis Axis AXIS_REF — —
instance of the property
Enter variables
, The
Enter the The data Effective o _
) Name initial Describe
variable type range
value
Executio TRUE, True function block execution, false
bExecute BOOL FALSE
n FALSE no function block execution
Home Home set position after return to
fHomePosition set LREAL 0 zero, in user calibrated units
position
Slow Slow setting speed after leaving the
fVelocitySlow LREAL 0
reference switch
fVelocityFast Fast LREAL 0 Fast setting speed when leaving the

VE Controller Programming Manual

reference switch set

Accelera Acceleration setpoint
fAcceleration LREAL 0
tion
Deceler Deceleration setting value
fDeceleration LREAL 0
ation
Accelera Jerkin [u/s3]
tion
flerk LREAL 0
derivativ
e
Return Direction of start of return to zero,
to zero | MC_ reference MC_DIRECTION
nDirection negative
directio DIRECTION
n
Referen Reference switch connected, TRUE:
bReference TRUE,
ce BOOL FALSE reference switch triggered, FALSE:
Switch FALSE
switch reference switch closed
Delay Transfer time of the reference switch
fSignalDelay LREAL 0 to compensate for the dead time.
The unit is seconds.
Return Reference SMC_HOMING_MODE
SMC_HOMING_
nHomingMod to zero
MODE
mode
Return TRUE: the axis runs to position zero
to zero when the return to zero is complete
(note: if fHomePosition=10, the axis
position becomes 10 when the return
to zero is complete.
TRUE,
bReturnTozero BOOL FALSE If fHomePosition=10, then the axis
FALSE
position becomes 10 and
bReturnTozero is ture
then the axis goes backwards 10
units to position 0 after the return to
zero is complete)
Flag pulse recording, effective when
TRUE, zero return mode is
bindexOccured BOOL FALSE
FALSE FAST_BSLOW_I_S_STOP,
FAST_SLOW_I_S_STOP
Position recorded at the time of the
findexPosition LREAL 0
flag pulse
Ignore TRUE, sets the hardware limit switch
hard enable to false, if the same physical
TRUE,
blgnoreHWLimit limits BOOL FALSE switch is used for the hardware limit
FALSE

switch and the reference switch, then

the hardware control will be set to

VE Controller Programming Manual

| | false

The output variable

, The
The output The data Effective . _
) Name initial Describe
variable type range
value
bDone BOOL TRUE,FALSE FALSE True, return to zero complete
bBusy BOOL TRUE,FALSE FALSE True, the function block is in effect
bCommand True, the block is interrupted by another
BOOL TRUE,FALSE FALSE
Aborted action instruction
Error BOOL TRUE,FALSE FALSE True, an error has occurred
Error code, enumerated variable, see help
ErrorlD SMC_ERROR 0
smc_error for specific alarm code
bStartLatching Generated by "bIndexOccured” and
BOOL TRUE,FALSE FALSE
Index "flndexPosition" together

Back to zero mode (SMC_HOMING_MODE)

Enumeration Initial _
Type Description
name value

Walk towards the home switch at a fast speed in the set

direction, hit the home switch and leave the home switch at a
FAST_BSLOW SMC_HOMING

slow speed in the reverse direction, after leaving, first execute
_S_STOP _MODE

MC_setPosition to set the current position to the

fHomePosition set value, then execute MC_stop

Walk towards the home switch in the set direction with a fast

speed, hit the home switch and leave the home switch in the
FAST_BSLOW SMC_HOMING

reverse direction with a slow speed, after leaving, first execute
_STOP_S _MOD

MC_stop to stop the axis and then execute MC_setPosition to

set the current position to the fHomePosition set value

The axis moves rapidly in the set direction towards the home

switch and then leaves the home switch at a slow speed after
FAST_BSLOW._| SMC_HOMING

hitting the home switch. bindexOccured signal is executed
_S_STOP _MOD

when MC_setPosition is reached and then MC_stop is

executed.

The MC_setPosition is executed first when the set direction is
FAST_SLOW SMC_HOMING_

fast towards the home switch, and then when the home
_S_STOP MOD

switch is touched, it leaves the home switch at a slow speed.

Walk towards the home switch in the set direction and leave
FAST SLOW SMC_HOMING _ the home switch at a slow speed after hitting the home
_STOP_S MOD switch, then execute MC_stop and then MC_setPosition to set

the current position to the fHomePosition setting.

The current position is set to the value set by fHomePosition.
FAST_SLOW_| SMC_HOMING_

The home switch is approached in a fast direction, touched
_S_STOP MOD

and left at a slow speed, and the bindexOccured signal is

VE Controller Programming Manual A T

| followed by MC_setPosition and then MC_stop.

3) Function description

After SMC_HOMING has been started by the rising edge of bExecute, the axis will start
moving at speed fVelocityFast and in the direction defined by nDirection until
bReferenceSwitch = FALSE. The axis will then stop slowly and leave the reference switch in
the opposite direction at speed fVelocitySlow leaves the reference switch in the opposite
direction. After bReferenceSwitch = TRUE the return to zero is complete. After enabling the
return to zero command the state of bReferenceSwitch is ON->OFF->0ON and the return to
zero is complete on the rising edge of OFF->0N, setting the reference position.

Reference position = fHomePosition + ((fSignalDelay*1000+1 DC clock cycle)
/1000) = fVelocitySlow actually compensates for the set bReferenceSwitch sampling delay
and one communication cycle shift delay.

If bReturnToZero=TRUE, the state of bReferenceSwitch sets the reference position
on the rising edge of OFF->ON to fHomePosition+((fSignalDelay*1000+1 DC clock
period)/1000) *fVelocitySlow, and then runs at the speed

fVelocityFast runs to position 0.

Note: After the Done signal, the axis position is set to: fHomePosition. the timing of
the setting is related to the nHomingMode (see SMC_HOMING_MODE for details). The
following diagrams show several modes of return to zero:

(D When returning to zero mode “0”

Origin detection o |
BReferenceSwitch |
OFF t >

11 MC_SETPOSITION

L S I MC STOP Two points one task cycle apart
I ‘
Return to zero speed 11 >

|
Ny

1 1l Set direction reverse slow
|

”

(2) When returning to zero mode 1

Origin detection O
bRederenceSwilch
OFF

MC_STOP
MC_SETPOSITION

Return to zero speed

|

| .

111 Set direction reverse slow
I |

”

(3) When returning to zero mode "4

VE Controller Programming Manual A T

Origin detection On |
bReferenceSwilch |

OFF { >

Tl Set direction reverse slow
MC_SETPOSITION
Set direction fast I .
:] Two points one task cycle apart
Return to zero speed LI MC_STOP >

”

(4) When returning to zero mode ”5

Origin detection O

bReferenceSwalch |
OFF 1 s
1 Set direction reverse slow
I | MC_SETPOSITION
Set direction fast |
A\ MC_STOP
Return speed] fie
[
€ Timing diagram
(1) Instruction execution when bReferenceSwitch TRUE
A
bEecute ’ "
bReferenc : '.
eSwitch i : : .. t
bBusy E ' Pt
bDone H : Pt
fVel i .
L 0
VELOCITY - — Pt
Bl ubinsy . e \ /

(@ When the instruction is executed bReferenceSwitch FALSE

VE Controller Programming Manual

bEecute » 1:
bReferenc
eSwitch b L
bBusy P
bDone .
VELOCITY P
—fVeloclyySlow

4) Error description

Error in input axis type.

Axis has error.

Axis is not enabled

The speed or acceleration is invalid.

[Note]: Please read "Appendix C Error Code Descriptions” for the descriptions of the relevant

error codes.

VE Controller Programming Manual

7.4

Instructions).

7.4.1 SMC_CamRegister

AXxis group instructions (primary/from-axis

Enable cam lift control (cam switch). Cam editing can not edit the main shaft curve, simply

configure the tap bar table can be through this function block to achieve the tap control.

1) Instruction format

Instructions | Name Graphical performance ST performance
SMC_CamRegister0 (
) Master:= .
SMC_CamReglst-er_O E CamTable:=)
SMC._CamRegister. BT P
= appet:= .
= Master Busy— e
Cam lift | SjCamTable Error — - “;:; A2
SMC_ SbTappet ErrorlD — T s?t.—_ !
CamRegister bar —Enable EndOfProfile SR e L L
control —|MasterOffset TappetHysteresis:= ,
—{MasterScaling DeadTimeCompensation:= ,
—TappetHysteresis Busy=> ,
—DeadTimeCompensation Error=> ,
ErrorID=> ,
EndOfProfile=>);
2) Related variables
input and output variables
Enter the , The
Effective | = .
output Name | The data type initial Describe
. range
variable value
Maps to the axis, AXIS_REF_SM3
Master Spindle AXIS_REF - -
instance of the property
Cam Maps to an electronic cam, an
CamTable MC_CAM_REF
table instance of an electronic cam
ARRAY [1.MAX_
Stick
bTappet NUM_TAPPETS] The output of the lift point
output
OF BOOL
Enter variables
_ The
Enter the The data Effective . ,
_ Name initial Describe
variable type range
value
True function blocks are executed,
Enable Perform BOOL TRUE,FALSE FALSE false does not perform function
blocks
Masteroffset Spindle offset | LREAL 0 Spindle offset

VYECTOR

VE Controller Programming Manual A T
MasterScaling Spindle ruler LREAL 1 The spindle linear scaling factor
The lift bar controls the damping
TappetHysteresis | Stick damping | LREAL 0
coefficient
The dead-zone compensation time
Dead zone unit is S, which can be positive or
DeadTime
time LREAL 0 negative depending on the spindle's
Compensation
compensation current velocity linear compensation
stick output

The output variable

The _ .
The data Effective The initial ,
output Name Describe
, type range value
variable
Busy In action BOOL TRUE,FALSE FALSE TRUE, function block in action
Error Error BOOL TRUE,FALSE FALSE TRUE, an exception occurs
The error | SMC_ When an exception occurs, the
ErrorlD SMC_NO_ERROR
code ERROR error code is output
Curve True, the spindle position is
EndofProfile Cycle BOOL TRUE,FALSE FALSE greater than or equal to
Completes the set period

3) Function description
€ The Enable signal is TRUE, if there is no error output then the Busy output is TRUE and
tappet control is performed.
This control function block is not related to the slave axis in the electronic cam, only the
spindle cycle and tappet table need to be configured.
€ "bTappet” is a one-dimensional boolean structure (MAX_NUM_TAPPETS=512) and
bTappet[i] corresponds to the output of the i-th tappet point.
tappet[i] corresponds to the output of the i-th tappet point.
The unit of DeadTimeCompensation is S/sec. If set to a positive value, the tappet signal is
overrun, if set to a negative value, the tappet signal is lagged. For example, if the setting is
0.02 seconds and the Ethcat task cycle is set to 4ms, then the tappet output position is P
according to the linear speed of the spindle v. The tappet will be output at the spindle set
position = P-V*0.02. Conversely, if the setting is -0.02 seconds, the tappet signal is output
with a lag of five cycles after the spindle set position is greater than or equal to P.
Example of the use of this function block.
Variable declaration:
VAR
TPP:ARRAY[1.MAX_NUM_TAPPETS] OF BOOL;
SMC_CamRegister0: SMC_CamRegister;
END_VAR

Procedure section:
SMC_CamRegister0Q(
Master:=Virtual_X,

VECTOR

VE Controller Programming Manual B i

#
[
#
R

CamTable:=Cam,
bTappet:=TPP,
Enable:=TRUE ,
MasterOffset:=0,
MasterScaling:= 1,
TappetHysteresis:= 0,
DeadTimeCompensation:=0 ,
Busy=>,
Error=>,
ErrorID=>,
EndOfProfile=>);

Cam edited the following image:

| Cam Camtable Tappets Tappet table

Track ID X positive pass negative pass

<& 1

wj 10 switch OFF switch OFF
) 30 switch ON switch OFF
-+ 2

o) 40 switch OFF switch OFF
] 60 switch ON switch OFF
L+ 3

] 80 switch OFF switch OFF
o) 100 switch ON switch OFF
L 4

) 160 switch OFF switch OFF
] 180 switch ON switch OFF
&

Start Virtual_X-axis:
The monitoring curve is shown below:

VECTOR

300

00

100

VE Controller Programming Manual BOM oA MK
c_}’ TPPI11
1: |
i L] TPP[2)
| |
|
i
d% TPP3]
% TPP[4]
» +

o

When the deadband compensation time is set to -0.02 seconds
SMC_CamRegister0Q(

Master:=Virtual_X,
CamTable:=Cam,
bTappet:=TPP,
Enable:=TRUE ,
MasterOffset:=0,
MasterScaling:= 1,
TappetHysteresis:= 0,

DeadTimeCompensation:=-0.02 ,

Busy=>,
Error=>,
ErroriD=>,
EndOfProfile=>),

The tappet output lags by five task cycles (4ms task cycle) as shown in the diagram

below:

VE Controller Programming Manual A T

o

= TESTS_TOUCHPROE.TPPL ™ |
a1 al
= TESTS_TOUCHPROB.TPR[2]
10| a0
mm TEST3_TOUCHPROB.TPP[3]
00| a
0 = TEST3_TOUCHPROB.TPP[4]
1 00| a
| m Virtual_XfSetPosition
= i] i ST TN I S o | 10.005000000000003 | 10.1050
I == Virtual_XfActPosition

B

9.985000000000003 | 10.08500

4) Error description

There is an error in the axis, the axis is not enabled, or the offset or scale value is set outside
the spindle range.

[Note]: Please read "Appendix C Error Code Descriptions” for descriptions of the relevant
error codes.,

VE Controller Programming Manual A T
7.4.2 SMC_GetCamSlaveSetPosition
Reads cam gauge slave position, speed and acceleration information.
1) Command format
Instructions Name Graphical representation ST Performance
SMC_GetCamSlaveSetPosition0 (
Master:=]
SMC_GetCamSlaveSetPosition_0 — Slave:= '
SMC_GetCamSlaveSetPosition. Ensble:= '
SMaster fStartPosition — M“tei:f:set:z '
SMC_GetCam | Get cam | <=Slave fStartVelocity — \S’laveuffsew_::= '
Sl S | —Enable fStartAcceleration — ':‘:sie;fci'_lm?f t
aveset slave —MasterOffset Busy— = goiats ing.— f
o o CamTableID:=
Position position | —SlaveOfset Sl fStartPosition=>
—MasterScaling ErrorlD — £StartVelocity=> ,
—SlaveScaling fStartAcceleration=> ,
—CamTablelD Busy=> ,
Error=> ,
ErrorID=>);
2) Related variables
input and output variables
Enter the . -
The data Effective The initial _
output Name Describe
_ type range value
variable
Master Spindle AXIS_REF - - Map to an axis
Slave From the axis AXIS_REF - - Map to an axis
Enter variables
, The
Enter the The data Effective . _
) Name initial Describe
variable type range
value
True function blocks are
Enable Perform BOOL TRUE,FALSE FALSE executed, false does not
perform function blocks
Spindle
Masteroffset LREAL 0 Cam table spindle offset
offset
Offset
The cam table is offset from
Slaveoffset from the | LREAL 0
the axis
axis
Spindle Cam table spindle scaling
MasterScaling LREAL 1
zoom factor
Zoom
The cam table scales the factor
SlaveScaling from the | LREAL 1
from the axis
axis
CamTablelD Cam ID MC_CAM_ID Cam meter ID

The output variable

VYECTOR

VE Controller Programming Manual A T
, The
The output The data | Effective . _
, Name initial Describe
variable type range
value
The position of the axle obtained
From the axis
fStartPosition LREAL 0 based on the cam table and the
position
current spindle information
The axle speed obtained based on
Speed from
fStartVelocity LREAL 0 the cam meter and the current
the axis
spindle information
Acceleration The axle acceleration obtained
fStart
from the | LREAL 0 from the cam meter and the
Acceleration
shaft current spindle information
TRUE, TRUE, which indicates that the
busy In action BOOL FALSE
FALSE function block is executing
TRUE,
Error Error BOOL FALSE TRUE, an exception occurs
FALSE
The error SMC_NO_ When an exception occurs, the
ErrorlD SMC_ERROR
code ERROR error code is output

3) Function description
The output value calculated by this instruction is: Y = (cam((cam start spindle table position
+ Masteroffset)* MasterScaling) + slaveoffset)* SlaveScaling, the
Cam is a cam table function. Example: cam start spindle position is 0, master and slave
scaling is 1, masteroffset is
100 and slaveoffset is 0, the output of the function block is the slave position corresponding
to the cam table at 100.
The function block reads the slave position only if the cam table is built successfully, there is
no requirement for the master and slave axes to be running, for example.
Statement:
SMC_GetCamSlaveSetPosition0: SMC_GetCamSlaveSetPosition;
ENABLE: BOOL;
MC_CamTableSelect0: MC_CamTableSelect;
Program:
MC_CamTableSelectO(
Master:=Virtual_X,
Slave:=Virtual_Y ,
CamTable:=Cam ,
Execute:=,
Periodic:=TRUE ,
MasterAbsolute: =0,
SlaveAbsolute:=0,
Done=>,
Busy=>,
Error=>,

VYECTOR

VE Controller Programming Manual A T

ErroriID=>,
CamTablelD=>);
SMC_GetCamSlaveSetPosition0(

Master:= Virtual_X,
Slave:= Virtual Y,
Enable:=ENABLE ,
MasterOffset:= 100,
SlaveOffset:=0 ,
MasterScaling:=1,
SlaveScaling:= 1,
CamTablelD:=MC_CamTableSelect0.CamTablelD,
fStartPosition=>,
fStartVelocity=>,
fStartAcceleration=>,

Busy=>,
Error=>,
ErrorlD=>);
“$ Enable BOOL TRUE
4$ MasterOffset LREAL 100
49 SlaveOffset LREAL 0
*$ MasterScaling LREAL 1
4 SlaveScaling LREAL 1
+ %9 CamTablelD MC_CAM_ID
"$ fStartPosition LREAL 33.580246913580254

4) Error Description

Error output is True, the instruction error is output.

Refer to ErrorID,SMC_ERROR to determine the cause of the error.

[Note]: Please read "Appendix C Error Code Descriptions” for the error code
descriptions.,

VE Controller Programming Manual

VECTOR

7.4.3 SMC_GetTappetValue

Use MC_CamlIn command to get the current stick output value.

1) Instruction format

Instructions Name Graphical performance ST performance
SMC_GetTappetValue_0 C & petV 0
Gets the : | PP | 5 SMC_GetTappetValue0 (
SMC._GetTappetValue Tappet3:=
SMC_ stick S Tappets bTappet iID:=,
GetTappetValue | output —ib bInitValue:= ,
—blnitValue bSetInitValueAtReset:= ,
value —bSetlnitValueAtReset bTappet=>);
2) Related variables
input and output variables
Enter the . L
Effective | The initial _
output Name | The data type Describe
_ range value
variable
Tappets Stick SMC_TappetData - - Map to a stick
Enter variables
The) The
Enter the Effective | . _
i Name data initial Describe
variable range
type value
Stick
iD group INT 0 The group ID of the stick
number
The initial The lift bar initializes the value on the first call
binitValue BOOL
value of the function block
TRUE, MC_Camln the bar output value will be
initialized to the binitValue set value FALSE
bSetlnitValue
BOOL when the function block restarts, and the lift
AtReset
bar output value will remain when the
MC_Camln function block restarts.
The output variable
The output The data _ The initial _
, Name Effective range Describe
variable type value
bTappet Stick output BOOL FALSE Lifting bar value

3) Function Description

€ This function block needs to be used in conjunction with the MC_CamlIn command.

€ This function block reads the tappet output as well as the SMC_CamRegister function,

but there is a conflict between the two, so that the tappet output is read in the same cam.

tappet table

VYECTOR

VE Controller Programming Manual A T

The function block is used in conjunction with the MC_Camin command.
Example of use:

MC_CaminQ(

Master:=Virtual_X,

Slave:= Virtual Y,

Execute:=,

MasterOffset:= 0,

SlaveOffset:= 0,

MasterScaling:=1,

SlaveScaling:= 1,

StartMode:= 1,

CamTablelD:= MC_CamTableSelect0.CamTablelD,

VelocityDiff:= ,

Acceleration:=,

Deceleration:=,

Jerk:=,

TappetHysteresis:= ,

InSync=>,

Busy=>,

CommandAborted=>,

Error=>,

ErrorID=>,

EndOfProfile=> ,

Tappets=>);
SMC_GetTappetValue0(

Tappets:= MC_CamIn0.Tappets,

iD:=2,

binitValue:= false,

bSetInitValueAtReset:=true ,

bTappet=>);

VECTOR

VE Controller Programming Manual BOM oA MK

2zv

4) Error description

Axis has error ;

Axis not enabled ;

CamTable ID does not point.

[Note]: Please read "Appendix C Error Code Descriptions” for the error code descriptions.

VYECTOR

VE Controller Programming Manual A T

7.44 MC_CamTableSelect

The MC_CamTableSelect function block, which specifies the cam table, is used in conjunction
with the MC_Camlin instruction. This function block is used to correlate the relationship
between the master, slave and cam table and to set the period of cam operation, the
position mode of the master and slave (absolute or relative position), etc. It is a managed
instruction, i.e. after triggering the instruction and executing it only once, the relevant master
and slave axes can continue to operate according to this characteristic; if the cam table
needs to be changed or the master and slave axes need to be changed, the execution of this
function block needs to be triggered again If the cam table needs to be changed or the
master and slave axis needs to be changed, the function block needs to be triggered again.

1) Command format

Instructions Name Graphical representation ST Performance

MC_CamTableSelectO(
Master:=

Slave:=

= MC_CamTableSelect 5 CamTable:=
—Master one—
MC_ Cam table o o :izf;?i:
CamTableSelec | designatio | _me i i [————
—lPeriodic CamTableID — SlaveAbsolute:= ,
t n —{MasterAbsalute Done=> ,
—SlaveAbsolute Busy=> ,
Error=>
ErrorID=>
CamTableID=>);
2) Related variables
Input and output variables
Enter the , The
Effective | = .
output Name The data type initial Describe
. range
variable value
Main shaft Mapping to a master axis, i.e. an
Master AXIS_REF - -
instance of AXIS_REF_SM3
Slave shafts Mapping to a slave axis, i.e. an
Slave AXIS_REF - -
instance of AXIS_REF_SM3
Selection Mapping to a CAM table
CamTable table MC_CAM_REF - - description, i.e. an instance of
MC_CAM_REF

Notes on use.

The master and slave axes must not be specified as the same axis, otherwise an error will be
output. The cam table corresponding to the CamTable must be edited correctly, otherwise it
will also cause an error to be reported in the command. The master and slave axes can be
real or imaginary axes.

Input variables

; The
Enter the The data Effective o ;
i Name initial Describe
variable type range
value

VE Controller Programming Manual

Execute

Execution

BOOL

TRUE,FALSE

FALSE

Rising edge signal, execute

command

Periodic

Repeat
mode

BOOL

TRUE,FALSE

FALSE

Specifies whether the specified
cam table is to be executed
repeatedly or only once

TRUE: Repeat

False: not repeated

MasterAbsolute

Spindle
absolute

BOOL

TRUE,FALSE

FALSE

Specify whether the spindle

tracking distance coordinate
system is based on absolute or
relative position

1: Absolute position, 0: Relative

position

SlaveAbsolute

Mode

BOOL

TRUE,FALSE

FALSE

In combination with the

StartMode in the MC_Camin
instruction, this specifies whether
the current command position of
the slave axis is absolute (the
current spindle position
corresponds to the cam table
output) or relative (the cam table
output value is superimposed on
the slave axis position at the start
of the command).

The current command position is
either absolute (the cam table
output corresponding to the

current spindle position) or
relative (the cam table output
value superimposed on the slave
position at the start of the
command)

1: absolute position, O: relative

position

Precautions for use:

Improper selection of MasterAbsolute and SlaveAbsolute may cause the electronic cam

output to jump, so please make sure to set the cam curve working method before setting.

Output variables

The _ The
The data Effective o ,

output Name initial Describe

, type range
variable value

Complete TRUE when completion s
Done BOOL TRUE,FALSE FALSE
selected,

Busy Execution in | BOOL TRUE,FALSE FALSE TRUE if no completion in

VE Controller Programming Manual A T

progress selection
Error Error BOOL TRUE,FALSE FALSE TRUE when an exception occurs

Error code Refer to SMC_ Output error code when an
ErrorlD SMC_ERROR 0

ERROR exception occurs

Effective Cam_ID of the selection, used in

CamTablelD MC_CAM_ID - - conjunction with the CamTablelD
in the MC_Camln instruction

Notes on use:
When Error occurs, please check the SMC_ERROR in the help against the ErrorlD.

3) Function Description

€ This instruction specifies the cam table required for electronic cam operation, so the cam
table must be edited (by the cam editor or online) before using this instruction.

€ Excute rising edge, execute the specified cam table, or refresh the specified cam table
after the cam table is updated.

If the output of Done signal is TRUE, the output variable "CamTablelD" is generated and
takes effect.

When the Busy signal is TRUE, the Done signal is TRUE and the Busy signal is FALSE.

@ Periodic parameters

The following figure shows the effect of single-cycle cam operation. When the cam table is
selected in single cycle mode (Periodic:=0), the slave axis is released from cam operation
after one cam table cycle has been run.

MC_CamTableSslect Prodic={)
Slave position

Slave position

i
|

_ 1
.-f"’n I
Master — il |
1

position |

0 [
MC_Camin Execule=1

When the cam table is selected in Periodic mode (Periodic:=1), after running one cam table
cycle, the slave axis starts the next cam cycle again until a user program commands it to exit
the cam running state, as follows:

Slave axis relative position mode

MC_CamTableSalect SlaveAbsohste =Falss . i
o Slave '_CI:EI‘?:I:H__.--'/
Slave position 1 P

I . e e e

I5lave position .~ 1

I |

[S -l

e I]

b et 1 I
. L 1 >

0 A

MC_Camin Execuie=1

VE Controller Programming Manual A T

@ Operating characteristics when both spindle and slave axes are in relative position

mode
Slave position
Spindle relative position mode _
MC_CamTableSelect MasierAbsolule =F alse
o
e |
r I Master position
_Vr_l-" ________________ »
. S0l
+t++-+-+-+-++-++-+-+-+-+--+-+-+-+-++-+-+-+--++-+--+-—-++++++-++--++HH-t

0
Actm;i;ff':ﬂg:ﬂ*;:;i:n MG_:u"|zhEnmll:=1
When the master axis is in relative position mode, the cam module will operate with the
current position as the starting point X=0 of the master axis when entering CAM.
When the slave axis is in relative position mode, the cam module uses the current
position as the starting point YO for the slave axis when entering CAM, and the CAM output

is superimposed on this thereafter.

€ Major axis is in absolute position mode, slave axis is in relative position

mode

Slave position

Spindle absolute position mode
MC_CamTableSelact MasterAbsohuta =True

ossible sudden speed

change fr:-n]{l:e E|3'-fi£}ii-"— —
|

e |
r | Master position
i] :'-'_ ________________
Hﬂ-iﬂﬂﬂ%-Hﬂﬂ—H—H—l—H—FH%FFFFFHﬂ%H—FFHﬂ—FH—FH—FFFFF!—FFH t
0 A

Actual spindle position MC_Camin Executes 1
Ashaster ActPosibon

When the spindle is in absolute position mode, when entering the CAM, the cam operation
module obtains the axle position at the current spindle position, so:

® High-speed rotation from shaft position when entering CAM operation, resulting in
shock or damage to the equipment;

® |f the current position is outside the valid range of the CAM table, the axle does not
move and an alarm is issued;

® |f the CAM table is in cycle mode, the continuous running of the next CAM cycle
begins when the current cycle is completed.

€ Main axis in relative to position mode, slave axis in absolute position mode

VYECTOR

VE Controller Programming Manual A T

High speed rotation of the slave axis may occur

e /' Slave axis absolute position mode
P MC_CamTableSelect. SlaveAbsolute:=True

= [aster position

0 i
MC_Camln Execute=1

When the slave axis is in absolute position mode, it will be adjusted to the position required
by CAM when it enters CAM operation, and if the deviation is relatively large, automatic
adjustment of the high-speed movement will occur.

Countermeasures according to application characteristics.

For equipment where alignment operation is necessary, such as fixed length cutting rotary
knives as cam slave must be in absolute position, programming with attention to the zero
position operation of the rotary knives before the first rotary cutting action.

setting the spindle position range of the cam table reasonably to avoid position adjustment
of the cam in the opposite direction at the start of the next cycle.

Run SMC_GetCamSlaveSetPosition to set the slave position of the cam entry point to the
current coordinates of the slave axis.

For applications where relative position mode can be used, try to use relative position mode
as far as possible..

MC_CamTableSelect.SlaveAbsolute:=False; or set MC_Camln.StartMode:=1; (relative mode)
Caution.

When the slave axis is set to absolute mode with "limited length”, the controller will select a
closer direction to return to zero when making zero adjustments, if either left or right
rotation is possible. When designing the range of the cam table, particular care should be
taken not to allow the range of the cam table to exceed the actual range of operation
required, otherwise instantaneous high speed rotation of the servo slave axis may occur,
resulting in mechanical shock.

4) Explanation of errors

€ The master axis and slave axis cannot be specified as the same axis, otherwise there will
be an error output.

€ The CamTable must be edited correctly, otherwise it will be outputted incorrectly.

Note]: Please read "Appendix C Error Code Descriptions” to understand the error code
descriptions.

VE Controller Programming Manual A T

7.4.5 MC_Camlin

It puts the cam slave axis into synchronous operation with the cam spindle and controls
the adjustment of the cam slave axis to the corresponding target point according to the
current position of the spindle and the position relationship of the cam table; the execution
of this command has no effect on the spindle. The master-slave axis offset value, scaling
ratio and operating mode can be specified according to the application requirements.

Once MC_Camin has been triggered, the slave axis follows the position of the spindle
according to the position correspondence in the cam table, note that it is a position
correspondence and not a speed correspondence.

Once in cam operation, each EtherCAT interrupt parses the CAM cam table, calculates
the next target point for the slave axis based on the current position of the spindle and sends
the next target position to the slave axis to make it run.

- 5 ——]
Current position point ﬂf"'“

300
P

¥ - %
200+ i T+ Targetpoint-from
1004 - - -

IMaster axis target points

{] wcapscd asnps

masier position
L]

L] 1
|-

T | 1 T
160 200 20 24 X0 28D 3\1.-'\’. 2o 30

L2h

80 100 20 140 160

] - 2
o Fal il

1) Command format

Instructions | Name Graphical representation ST Performance
MC CamIn0(
Ela' 3
Execute:= ,
MC_Camin
—Master InSync—
—ISlave Busy — MasterScaling:=
—IExecute : . Commandaborted|— glavescalmg: *
—|MasterOffset Errorf— Ppi—— i
tartMode:=
—SlaveOffsat /- ErrorID — CamTableID
Start of | —{MasterScaling EndOfProfile}— s =
l\/ICfCamIn . —Slavescaling ! : Happes)— ;:c;l;;;u:n 1=
cam action :?;?:_;:%?;D Deceleration:=
— velocityDiff
—Acceleration “
—{Deceleration
—Jerk Buny=>
—TappetHysteresis CommandAborted=> ,
>
Tappeta=>);
2) Related variables
... input and output variables
Enter the The data Effective The initial
Name Describe
output variable type range value
Maps to the axis, AXIS_REF_SM3 instance of
Master Spindle | AXIS_REF - -
the property
From
Maps to the axis, AXIS_REF_SM3 instance of
Slave the AXIS_REF - -

the property
axis

VE Controller Programming Manual

Precautions for use:

The spindle and the from axis cannot be specified as the same axis, otherwise there will

be an error output.

Enter variables

, The
Enter the The data Effective . _
, Name initial Describe
variable type range
value
Perform
cam work
TRUE, Up the edge, perform the electronic
Execute to enter | BOOL FALSE
FALSE cam
the energy
block
Spindle Negative, Moves the phase of the spindle with
MasterOffset LREAL 0
bias positive, 0 the specified offset value
Biased
Negative, Moves the phase from the axis with the
SlaveOffset from the | LREAL 0
positive, 0 specified offset value
axis
Spindle
Zoom in/out of the phase of the
MasterScaling pre-edited | LREAL >0.0 1
spindle at a specified scale
shift ratio
Move the
scale from
Zoom in/out the phase from the axis at
SlaveScaling axis LREAL >0.0 1
a specified scale
pre-editin
g
The output 0: absolute absolute position :
mode from 1: relative relative position:
MC_
StartMode the shaft absolute | 2:ramp_in (slope cut).
StartMode
relative to 3: ramp_in_pos (front ramp cut)
the cam 4: ramp_in_neg reverse ramp cut in
Defines the use of cam tables,
Table
CamTablelD MC_CAM_ID MC_CamTableSelect with the output
number
point CamTablelD of the computer
The ramp_in different from the
VelocityDiff LREAL
maximum speed
Acceleration LREAL ramp_in at the time of the change
Deceleration LREAL ramp_in at the time of the change
Jerk LREAL ramp_in acceleration of the car
Tapped
LREAL The damping coefficient of the lift bar
Hysteresis
® The output variable
The _ The
The data | Effective . ,
output Name initial Describe
. type range
variable value

VE Controller Programming Manual A T
After the spindle and the axle establish cam
The cam is TRUE, relations, InSync is positioned and InSync is
InSync BOOL FALSE
in effect FALSE reset when the execution condition of the
instruction is OFF.
When Execute enters the rising edge, position
Running TRUE, true indicates that the cam relationship
TRUE,
Busy synchronou | BOOL FALSE coupling requires a Cam_out command reset,
FALSE
sly and the instruction execution condition reset
cannot reset the state.
The
Command instruction TRUE, The output from the axis is interrupted by
BOOL FALSE
Aborted is FALSE other control instructions as TRUE
interrupted
If an error is detected, the Error bit is set, and
TRUE,
Error Error BOOL FALSE when the execution condition of the
FALSE
instruction OFF is OFF, the Error bit is reset.
The error | SMC_ See SMC_ When an exception occurs, the error code is
ErrorlD 0
code ERROR ERROR output
If the periodic parameter is 0 (non-periodic)
when the MC_CamTableSelect instruction is
EndOf The curve executed, the EndOfProfile bit is positioned
BOOL FALSE
Profile is complete once the cam curve is executed, and the
EndOfProfile bit is reset when the execution
condition of the instruction IS OFF.
SMC_ An associated cam lift bar can be read
Tappets
TappetData MC_GetTappetValue command

3) Function description

Execute rising edge, no error is reported on the axis, this instruction is activated if the cam
table is selected correctly.

To call a cam curve in a cam system, first call the MC_CamTableSelect instruction to select
the corresponding cam table and then execute MC_Camin; if the cam curve is to be changed,
call the MC_CamTableSelect instruction again to reselect the cam table.

The Camout instruction is used to break the cam coupling between the master and slave
axes. When this instruction is executed, the cam relationship between the slave axis and the
master axis will be released and the CommandAborted output will be TRUE when the slave
axis of this instruction executes another motion command.

4) Command details
The following is a detailed description of the command:

€ Command start conditions
This command can be activated in any state during spindle stop, position control, speed
control or synchronous control

VE Controller Programming Manual A T

Note: The cam follower position setting must be within the software limit value, otherwise it
will result in an incorrect output command.

€ Calculation of the point of contact in a cam curve

Master Slave
offset T Scaling
Masler ———-— Slave
i O —> P P
pasition T + pasitian
Master
Scaling

The calculation from the figure above is as follows:

Position_Slave = SlaveScaling*xCAM(MasterScaling*MasterPosition + MasterOffset) +
SlaveOffset

The spindle position and the axle position in the formula do not represent the position of
the actual physical axis, but rather the spindle position associated with the cam function
curve. The relationship between the main-axis position and the main-from solid axis position
is described in detail.

€ The cam spindle MasterScaling calculation
By default, the system is on MasterScalingl,and if the user program modifies the variable:

Slave position

CAN ta bl'j:-"/’--__ =

U P: ‘Master position

pa=

Master relative position mode
MC_CamTableSelect MasterAbsolute:=Tiwe

|
|
_— = = -
Mhano ey e i | Master
" X = MasterPosbon"MastarScaling(n) » MasterDtfaat]
| 0 ; : = T position
—I—FH—H—!—I—H—H—H—!—FFH+H+H+H+FFH+FH—|—H—}—FH—H—{—H—|+H—H—J+ t
04k 180 360

MC_Camin Execube=1

The proportional SCALE value is set for the cam spindle, and the position of the spindle can
be scaled linearly so that its corresponding position relationship with the cam table meets
the requirements of the expectation.
If the offset setting for the spindle is taken into account, the calculated position of the
spindle(X)in the cam table will be:

X - MasterPosition-MasterScaling (n) - MasterOffset

VE Controller Programming Manual A T

This parameter can be used to fine-tune the dimensions of the equipment machining work
pieces.

#The cam is calculated from the shaft SlaveScaling
By default, the system is on SlaveScalingl,and if the user program modifies the variable:

Slave position

CAM table _— e
.:f"’-__ E: Master
" position
Slave axis relative position mode
f MC_CamTabiaSelsct SlaveAbsolube:=True
= CAM(X |"SlaveScaling(n) » SlaveOffse

E _\._h Master position

MG_Camin Executes1

Set the proportional SlaveScaling value for the cam slave from the shaft to scale linearly from
the position of the slave shaft so that the output of the cam control meets the desired
position of motion from the shaft.
If the offset setting from the axis is taken into account, the output position of the cam from
the shaft(Y)is:
Y = CAM(X)*SlaveScaling(n) + SlaveOffset

This parameter can be used to fine-tune the dimensions of the equipment machining work
pieces.
Examples of usage:

When MasterScaling is 1.0, SlaveScaling is 1.0, MasterOffset is 0, slaveOffset is 0, the
cam curve is the planned cam curve as shown in the following illustration:

A Cam slave axis

| 3
Cam Master axis 60

When MasterScaling=1.0, SlaveScaling=2.0, MasterOffset=0, SlaveOffset=0, the cam curve is
as shown below:

VE Controller Programming Manual A T

Cam slave axis

360

-

Cam master axis 360

When MasterScaling is 2.0, SlaveScaling is 1.0, MasterOffset is 0, slaveOffset is 0, the cam
curve is shown in the following image:

Cam slave axis

.
Cam master axiz 180 360

When MasterScaling is 1.0, SlaveScaling is 0.5, MasterOffset is O, SlaveOffset is 0, the cam
curve is shown in the following image:

Cam slave axis

Cam master axis 360

-

When MasterScaling is 0.5, SlaveScaling is 1, MasterOffset is 0, slaveOffset is 0, the cam curve
is shown in the following image:

VE Controller Programming Manual A T

Cam slave axis

L)

Cam master axis

When MasterScaling is 1, SlaveScaling is 1, MasterOffset is 20, and Slave Is 30, the cam curve
is shown in the following image:

Cam slave axis

'

First spindle cycle Second spindle cycle

210

)
?{f Cam master axiz 30 100

Y

Offset, Scale usage featuresand considerations for cam operation:

(1) Spindle position mode, from the station position mode, in addition to the special
requirements of the application system, it is recommended to use relative mode as far as
possible, so that simple programming, the possibility of mechanical system impact is
relatively small;

(2) Cam meter spindle startand endrange, Offset,Scale and other settings, can make up for
the design deviation of the CAM table, it is recommended to refer to the default settings as
far as possible, so that easy to debug and maintenance, the chance of running errors can
also be reduced;

(3) When the CAM cam table cycle is completed /or exited/or switched, the
MC_Camin re-entry is performed again, and the system clears the settings of Offset,Scale,
etc. in the memory and reverts to the default values, requiring attention.

VYECTOR

VE Controller Programming Manual A T

€ Periodic mode in relation to EndOfProfile
Periodic mode Non-periodic mode determines whether the electronic cam is to be
performed again after the spindle has reached the end position.
(1 Non-periodic mode: MC_CamTableSelect instruction Periodic selects False
In non-periodic mode, the cam completes the EndofProfile signal with True, and the
EndofProfile output is FALSE if FALSE is entered.

<—Rising edge start

ISSTS=SESSS =
Note: The spindle period refers to the range of the electronic cam spindle position from
the start position to the end position.

(@Periodic mode: MC_CamTableSelect command Periodic select TRUE

In this case the cam completes one spindle cycle and the next cycle is executed, and the
EndofProfile signal TRUE is output for only one task cycle.

Caution:

When the cam spindle position is greater than or equal to the cam end position,
the EndofProfile signal output is TRUE and the cam spindle position is updated to: cam start
position + partly greater than end position.

For example, if the electronic cam spindle start position is 0, the end position is 360, the
master and slave axis scaling is set to 1, the master and slave axis offset value is set to 0, the
task cycle is 2 ms and the spindle speed is 100, when the cam spindle position is 359.99 in
one task cycle, then the EndofProfile output is TRUE in the next cycle and the spindle
position becomes The start and end positions of the cam profile in cycle mode should ideally
be smooth, otherwise there will be jumps. For example, if the start speed is O and the end
speed is not 0, this will cause the spindle to jump at the end of the cycle and at the start of a
new cycle.,

VYECTOR

VE Controller Programming Manual A T

€ Relationship between StartMode and the absolute relative mode of the master and slave
axes in MC_CamTableSlect

Absolute mode: At the start of a new e-cam cycle, the e-cam is calculated independently of
the current slave axis position. If the starting position of the slave axis with respect to the
master axis is different from the ending position of the slave axis with respect to the master
axis, this will cause a jump.

Relative mode: The new electronic cam changes according to the current slave axis position;
i.e. the position of the slave axis at the end of the previous electronic cam cycle is calculated
as a "slave axis offset" by the current electronic cam movement. However, if the slave
position corresponding to the starting position of the main axis is not 0 in the electronic cam
definition, this will cause a jump.

Ramp input: The potential jump at the start of the electronic cam is prevented by adding a
compensating motion (motion based on the limit value VelocityDiff, acceleration,
deceleration). Thus, as long as the slave axis is in a rotating mode, the forward ramp input
option compensates only in the forward direction, while the reverse ramp input
compensates only in the reverse direction. For slave axes with linear motion, the direction of
compensation can be achieved automatically, i.e. the forward ramp input and the reverse
ramp input can be interpreted in the same way as the ramp input.)

The relationship table is shown in the following table:
MC_CamTableSelect.MasterAbsolute | Spindle mode

absolute Absolute mode

relative Relative mode
MC_CamlIn.StartMode MC_CamTableSelect.SlaveAbsolute | Slave mode
absolute TRUE Absolute mode
absolute FALSE Relative mode
relative TRUE Relative mode
relative FALSE Relative mode

VE Controller Programming Manual A T
ramp_in TRUE Slope-cut absolute mode
ramp_in FALSE Slope cut relative mode
_ Forward slope cut
ramp_in_pos TRUE
absolute
_ Forward slope entry
ramp_in_pos FALSE)
relative mode
_ Reverse slope entry
ramp_in_neg TRUE
absolute
_ Reverse slope entry
ramp_in_neg FALSE)
relative mode

The detailed relationships are described as follows.
Cam master range (0-360), cam slave range (0-180), cycle mode, master-slave offset
value 0, master-slave scaling ratio 1. The designed cam table is shown in the following figure:

[n [amz (Wi [LHEE

4
[n) vosod anes;

Evo0 I N R S WU WS MU UL S i i SUTR. S . R S

200+

Ew
T T

T T T T
20 40 80 80 ri: IZI'G Wb léO \éD 2:')[‘ 253 2-'5? Zé;' Zéﬁ 300 320 340

B StartMode is 0 (absolute mode)

1) When the MC_CamTableSlect command MasterAbsolute is set to FALSE and
SlaveAbsolute is set to TRUE.

The master axis is in relative mode and the slave axis is in absolute mode. When the
cams are activated along the Excute rise, the camshaft starts at the cam table "start position"
(0) and the camshaft slave calculates the output according to the "Cam table tooth
combination formula" as described above, with the slave real axis command position being
equal to the tooth combination calculated output value. If, for example, the camshaft start
position is 0 and the camshaft real axis position is 20 at the start of the camshaft, then the
start of the camshaft real axis position command is 0, resulting in a jump.

Note: In this case the start position of the slave axis (real axis) is not in the cam slave
start position and a jump will occur.

VE Controller Programming Manual A T

1.0

1
1
. :*—Ffizing edge start
|
|
|
|
|

-
¥
200
I
1066 1
|
|
| it
W0 | Pasition of the
200= i cam spindle
1
L] i
|
S |
140 Position of the
100
B |
&0 |
p |
‘, i
150 I - -]
120 Slave axis [solid / - _//
1 . . b /"
5 axis) position 7
L]
o L i N\ /
' SEEmr
° == - g ey 794
I.- l-.l'.i :Jh "HI..\

(2@ When the MC_CamTableSlect command MasterAbsolute is set to FALSE and
SlaveAbsolute is set to FALSE

The master axis is in relative mode and the slave axis is in relative mode. When the cam
is activated along the Excute rise, the camshaft starts at the cam table "start position” (0) and
the camslave calculates the output according to the "cam table gearing formula" as
described above, with the slave real axis command position equal to the gearing calculated
output (camslave position) + start. camshaft position) + camshaft real position at start-up.

If, for example, the cam starts with a solid slave shaft position of 20 and the cam table
starts with a slave shaft position of 0, then the cam starts with a solid slave shaft position
command of 20, which is followed by 20 + the cam table calculated value, with a peak value
of 20 + the maximum cam table calculated value (180 in this case) = 200.

VE Controller Programming Manual VECTOR
g I -— s I
| Rising edge start :
] | |
| |
| |
= L I
: i , : . |
10 M Spindle {solid axis) Ll
0= 1 | I
o] 1 | |
| . :
r 1
|
o ! Cani spindle :
: |
b I position |
o] | i
| T |r_’_-‘_--'
e Cam slave
-
:E_ position :
sood
B |
<3 |
% |
I ? S e Sy |
:;‘:E: [Stave axis {solid i '"”"-5_\ |
=) axiz} position / \‘\‘ : [
<] //"’ E H
e 1 =2 H
= — "“-—-1—|—-'I""II/
|20s

@When the MC_CamTableSlect command MasterAbsolute is set to TRUE and SlaveAbsolute
is set to FALSE

The master axis is in absolute mode and the slave axis is in relative mode. When the cam is
activated along the Excute rise, the camshaft starts from the current "Master axis
real position” and the Slave axis real position command = the calculated value of
the cam table tooth fit (cam slave position) + the slave axis position at start-up.

Caution:

1 If the spindle (solid axis) start position is not at the camshaft start position in this case, a
jump will occur.

2 The master axis position should be within the camshaft position range.

VE Controller Programming Manual A T
I | I
I_ | | |
:-ﬁ—-{ | = otart aleng] 1
| P |
:If I rising : I
Oribmteg | |
3 |
= | | l'//;
B e |
""".-i: | Main shaft
o ' (sslid skt

cam master =i

|

|

|
position L,,-

bialiiialiviiliig

i\

R A RNk S o S B A R RN | UL AR DN o EONUSN Cun Zn N D oy S o i
il=] 208 i =] &

et | -l | - 4 l
ok | I Cam slave - | Pl i I
12— e [;
100 | Dersrtnom Y | r |
= | - |
|
0y | : |
i
ol 4 1
00 : — I — l
L] 3 2B | 1
W3 / Slave axis | I
20— - |
b | J (solid axis) |
50 I I 1
o | o posthion I 1
ot i 2 e A
¥ T t
_ I

@ When the MC_CamTableSlect command MasterAbsolute is set to TRUE and
SlaveAbsolute is set to TRUE

The master axis is in absolute mode and the slave axis is in absolute mode. When the Excute
rises, the camshaft starts from the current "MasterAbsolute position” and the SlaveAbsolute
command = the calculated value of the cam table tooth fit (cam slave position).

Caution.

1 If the starting position of the main shaft (solid axis) in this case is not at the starting
position of the cam main shaft and the slave axis position is not at the starting position of the
cam slave axis, a jJump will occur.

2 The main shaft position should be within the range of the cam main shaft position.,

VECTOR

VE Controller Programming Manual B i

#
[
#
R

"

|

T Start E||:=-n;|:
rizing :
|

|

|
|

= {lain shaft

(=alid shaft)

AP TP (TP I PR AR

g B B
dikidd

3 7
o :]
! |
.l.l"g I = ; I.
el I-._lem master |
1 =iti I
ol : position I'
o il e
: 1 - | [
I | |
i ' |
| Cam slave — |
i i
T positian : I i
[1 | -1
:i; 1 e ™ Slave axs (shlid !
et | | —] |
o | | i xis) position |
o I | ! |
T .] |
L s | ,.._.r-'" e

B StartMode is 1 (relative mode)

1) When the MC_CamTableSlect command MasterAbsolute is set to FALSE and
SlaveAbsolute is set to TRUE or False

The master axis is in relative mode and the slave axis is in relative mode. When Excute
rises, the camshaft starts from the "Cam table start position” and the slave real axis position
command = Cam table tooth fit calculated value + Cam table tooth fit calculated value (cam
slave position).

VE Controller Programming Manual A T

== Start along rising

1
xi%’_’l/ Main shaft
1 e

i {zolid shaft]

L]
cam master

J-:':'; r
o e e |

0y position i

e |
0% (i

I !

4 ~

ek | ! Cam slave —g

| |

x: | position

K= |

ot |

L :
' I

20 : . i i

.,:'_f I Slave axis {solid ?p--“"’" """-m._h_‘q

et | I : e

=& | axiz) position

.:"._‘I I

i |

S

T o

@ When the MC_CamTableSlect command MasterAbsolute is set to TRUE and
SlaveAbsolute is set to TRUE or False

The master axis is in absolute mode and the slave axis is in relative mode. When the
Excute rises, the cam spindle starts from the "current position of the spindle” when the cam is
activated and the slave real axis position command = slave position at start + cam table
tooth fit calculation (cam slave position).

Caution.

1 If the spindle (solid axis) start position in this case is not at the cam spindle start
position then a jump will occur.

2 The master axis position should be within the camshaft position range

VE Controller Programming Manual A T

- Start along

rising

e :
3 = :
.l Iain shaft !
; I Pt]
% | {zolid shaft) —
: | I 4
Ly I :
bl | cam master_ :
[
position !
| |
- — """'-'-'-'il
e i i
- | I i
el Cam slave —= :
g | ?
4 i position . |
i | i I
= | b
md i — - i
o | 1 — a7 ’fﬂ —\\ I
ek S _1"‘ 3 i
153 | Slave axiz — / i
£ = [
- : isolid EIXIS:'.\\ i
&
T —] pocibion uu-—"’/ o
:1 Xi

M StartMode is 2 (rampin ramp-in mode)

(1) When the MC_CamTableSlect command MasterAbsolute is set to TRUE and
SlaveAbsolute is set to TRUE

The master axis is in absolute mode and the slave axis is in absolute mode. When the
cam is activated along the Excute rise, the cam spindle starts at the "current position of the
spindle” and the slave axis adds a compensating movement to avoid potential jumps during
cut-in by setting VelocityDiff, Acceleration, Deceleration.

Slave real axis position command = cam table tooth fit calculation (cam slave position)
+ f(VelocityDiff,Acceleration,Deceleration)

VE Controller Programming Manual A T

a— {solid shaft]

T
hq,,-—‘?"-p-‘_ Msin shaft

I 4

|

J |

|

|

:,..-l-"'"'—#

|

|

|

0 |

| cam master {

ek | = |

3 position = |
o | |

i | ’_‘.—-""'F/_ |

14 v i
L | | |
ot I i
13 | Cam siave |
"'1‘

15

o I position = I
Ht——— |
¥ {a— '

4 | 1
== p— I
b [-""f 1‘-\ |
e ! i I
=g | = sETEET == \\"-\. i
CE Slave axiz (solid axish—e . |
wd | ""\

:-'E-,_._-_[_‘ position .~ S |

i L S —

e = ———
|

(2 When the MC_CamTableSlect command MasterAbsolute is set to FALSE and
SlaveAbsolute is set to TRUE

The master axis is in relative mode and the slave axis is in absolute mode. When the cam is
activated along the Excute rise, the cam spindle starts from the "cam spindle start position”
and the slave adds a compensating motion to avoid potential jumps during cut-in by setting
VelocityDiff, Acceleration, Deceleration. The slave axis adds a compensating motion to avoid
potential jumps during cut-in by setting VelocityDiff, Acceleration, Deceleration.

Slave real axis position command = calculated cam table tooth fit (cam slave position) +
f(VelocityDiff, Acceleration,Deceleration).

VE Controller Programming Manual A T

#*— Start along rising

ad
| |
i I
a4 |
|
4]
u-i h {
| cam master position—s
b 2]
1 |
g ;
1 [
i |
)
54 i
b Cam slave —= !
o I I
Lk - posrtion |
| - i
&
nd |
3
|
e —————— i
s > ——— -
4 Slave axis (solid — |
g =
| ’
B =] -y }
B 1 ;xis, positicn
| 1 o ~ I
o ST T T —
£ S | — e p—
frr—— LM S 1 U S S S .. L1 o

=

@When the MC_CamTableSlect command MasterAbsolute is set to TRUE and SlaveAbsolute
is set to FALSE, the spindle is in absolute mode and the slave is in relative mode. When the
Excute rises, the cam starts

The cam spindle starts at the "current position of the spindle” and the slave axis adds a
compensating motion to avoid potential jumps during cut-in by setting VelocityDiff,
Acceleration, Deceleration.

Slave real axis position command = Slave current position + Cam table tooth fit
calculation value (cam slave position) + f(VelocityDiff, Acceleration,Deceleration).

Note: The cam curve may vary significantly from the design curve during the first
spindle cycle in this method

VE Controller Programming Manual A T
* o= Start along
rising

Maif shaft fzalid

I
5. | !
_ha#:, |
| 1
{,..--
4
E 1
N cam master . 1
3 | =
xﬂ : pesition 1|
3 L}
——] II"H
by |
it | ! :
P e Cam zlave I
= ! gt :
k4] position, J
i 1 |
3 i Ir ; |
=3 I
Fi i el st '
3 I Slave axis {solide s \ 1
= i
= o i
e | | gxis) position I
e - I |
:E : ’/- H\"".. } \\ |
i
" |Ify"r \‘ I

g
¥

@ When the MC_CamTableSlect command MasterAbsolute is set to FALSE and
SlaveAbsolute is set to FALSE, the master axis works in relative mode and the slave axis works
in relative mode. When the Excute rises, the cam spindle starts from the "cam spindle start
position” and the slave axis adds a compensating motion to avoid potential jump during
cut-in by setting VelocityDiff, Acceleration, Deceleration. The slave axis adds a compensating
motion to avoid potential jump during cut-in by means of the set VelocityDiff, Acceleration,
Deceleration.
Slave real axis position command = current position of the slave axis +
calculated value of the cam table tooth fit (cam slave position)
+f(VelocityDiff,Acceleration,Deceleration).
Note: The cam curve may vary significantly from the design curve during the first spindle
cycle in this method

VYECTOR

VE Controller Programming Manual A T

T
1 -

i
|
| Start along rising
|
|

Main zhaft

—
(zolid shaft}

cam.master |
\
position —

e |

i I :__,.--"""'-F-
o | |
154 { I
d | = 7 I
[i Cam slave —* .
] = e i [
| position
- | .
"] i
'II | g T — 2
Vi34 i slawe axis (sohd™ —
e J N — .
b | ' axis} position Y -
| i " - 1
e -
- | P s 4
::' i /_, HHN-\ i -
" o e S —

T

M StartMode is 3, 4 (forward ramp in ramp_in_pos, reverse ramp in ramp_in_neg)

When the axis is in "rotary mode" ramp_in_pos only compensates in the direction of
forward axis movement and ramp_in_neg only compensates in the direction of reverse axis
movement, when the axis is in linear mode ramp_in_pos, ramp_in_neg and ramp_in are
automatically adjusted for the direction of compensation, i.e. if the axis is set to work in
linear mode the ramp_in_pos, ramp_in_neg and ramp_in start modes work in the same
way.

@ Electronic cam restart

Basically, the two e-cams can be switched at any time, but there are a number of cases to
consider: in the e-cam editor, the position of the slave is defined as the calculated output
of the e-cam function, which is calculated on the basis of a master position within the
range of the master axis, and can thus be illustrated by the following simple formula.
SlavePosition = CAM(MasterPosition)

Since the actual period of the spindle drive is generally different from the spindle range
defined by the electronic cam, the spindle position must be scaled to the function
definition in order to satisfy the correct input to the electronic cam function.

SlavePosition = CAM(MasterScale*MasterPosition + MasterOffset)

In a similar way, if an electronic cam is started in absolute mode and produces an upward
jump, the function output (i.e. the virtual slave position) will also be corrected
proportionally: the

SlavePosition = SlaveScale*CAM(MasterPosition) + SlaveOffset

In the worst case, both of these scaling corrections must be applied, so that in fact the

VE Controller Programming Manual A T

slave position (SlavePosition) is calculated by the more complex formula

Slaveposition = SlaveScalexCAM(MasterScalexMasterposition + MasterOffset) +
SlaveOffset

At the end of each e-cam cycle, the scale and offset can be changed to obtain more
suitable parameters. Unfortunately, the restart of the MC_Camlin module of the electronic
cam will delete its memory and include the scale and offset values. As a result, the defined
electronic cam function will be adapted to the different slave values in general. For this
reason, it is recommended to restart MC_Camin-FB only if a different electronic cam
needs to be processed.

5) Timing diagram.

Periodic mode (MC_CamTableSelect.Periodic set to TRUE) is shown below.

Note: The MC_Camout instruction only cuts off the cam coupling between the master and
slave axes, if the slave axis speed is not O when it is cut off, the slave axis will not
automatically decelerate to 0.

In spindle

relative mode

L

Expcutn -| i i

EndofProliie

MC_Camout
Do

The non-periodic mode (MC_CamTableSelect.Periodic set to FALSE) is as follows:

VE Controller Programming Manual A T

Insync

EndofProfile

CommandAb
orted

Camout

6) Error Description
The command setup information does not match the Camslect command setup
information.
The axis is not enabled.
When an exception is detected by starting this instruction, Error becomes TRUE.
See the output of ErrorID (error code) and read "Appendix C Error Code Descriptions” for
a description of the error code.

VE Controller Programming Manual

7.4.6 MC _CamOut

Disconnect the cam coupling relationship from the shaft. When the slave is running on the

cam, triggering the execution of the function block causes Slave to exit the cam run state

from the shaft and enter a continuous running state (Continuios_Motion, i.e. Axis.nAxisState

5), and the execution of the instruction has no effect on the spindle. Note: After executing

this instruction, the axis continues to run at the pre-separation speed, so it needs to be used

with instructions such as MC_Stop.

1) Instruction format

Instructions Name Graphical performance ST performance
MC_CamOut (
; MC_CamOut Slave:= '
Disconnect | | Bone ——
MC_CamQOut | cam —Execute Busy Done=» ,
. Errar Busy=> ,
coupling ErrorID Error=s ,
ErrorID=>);
2) Related variables
input and output
Enter the , The
The data Effective . _
output Name initial Describe
_ type range
variable value
From Map to the axis, which AXIS_REF_SM3
Slave AXIS_REF -
the axis instance of the property
Input
Enter the The data Effective The initial ,
_ Name Describe
variable type range value
Execute the The rising edge signal executes
Execute BOOL - -
instruction the instruction
The output
The —
, The initial .
output Name | The data type | Effective range | Describe
. value
variable
Complete the cam coupling
Done Complete BOOL TRUE,FALSE - - FALSE
disconnect from the spindle
Busy In action BOOL TRUE,FALSE FALSE The instruction is executed
When an exception occurs, it
Error Error BOOL TRUE,FALSE FALSE
is set to TRUE
The error When an exception occurs,
ErrorlD SMC_ERROR See SMC_ERROR 0
code the error code is output

3) Function Description

Execute this instruction to disarm the cam coupling

relationship from the shaft,excute the

VE Controller Programming Manual A T

cam coupling relationship from the shaft is broken whenexcute rises, and the cam
relationship does not necessarily stop after the cam relationship is disconnected;

If the speed of the from the shaft is not 0 before the instruction is executed, the cam
coupling relationship is broken after the instruction DONE signal is completed but runs at
the pre-cut speed from the shaft at will;

If the execution is performed from the axis without a cam coupling relationship, the ERROR
output.

4) Timing diagram

Spindle positicn

L

;EimuFtam:enus ;

;bperqti:r? iy i
[: . Deceleratian |
=tap

g‘rscaénzﬂ 1g'l..?.-x~

-.'é.'_.'n iﬂ.l

From axis position

v

Execute

I

I

1

I

I

I

I
RENEEN
SN T SR S T — 1
BIBE I3

ssp L [1 1 b | =

pr——t—l
- ::I

I

I

I

I

|

I

]

I

Done

vy

Error

MC_Stop Excute

MC_Stop done

5) Example of use

This example applies cam-related commands to introduce the creation of cam relationships
and the relevant motion states of the axes when running and disengaging

The cam editor creates the following cam table (cam):

ECTOR

2 d

VE Controller Programming Manual oa M
ENEEN AT
X Y v A) TER minfP. maxiP. max(V.. max(A.
o] 0 0 0
L] Polys 0 180 1.8745.. 0.0320...
® 180 180] 0 o
L] Poly5 o 180 1.8749.. 0.0320..
360 a 1] o o
| (oms|wt [HFx
] i i i
H | | i
= i i i
- N ! o - AL L
il ilion
0 330 330
| = = ————
g
E
5 master pokibon [y
320
Program:
MPO 2 MP1 PEx
MC_Power = MC_Power 1=
Vinual X —Axis Status— Axis Axis Status—
TRUE Enable bRegulstorRealState— TRUE Enable bRegulztorRezStatg—
TRUE bRegulztorOn D RezlS TRUE bRegulatorOn bDr RealS
TRUE —bDriveStan Busy— TRUE —bDrveStan Busy—
Emor[— Emor—
EmorD[- EmordD [~
MC_Camin_0 =
MC_Camin —
Virtual X Maszts InSyne—
Axis DSlave Busy—
[Camin ——fExecue CommandAboned—
0 MasterOffset Emorf—
0 {SlkaveDffset EmorD}—
MC_CamTableSslect_0 1 End0fProfie—
MC_C; k 1 Tappets—
“{Master 1
Skave
SiCamTable
CamSelect Execute
TRUE Penodic CamTablelD
FALSE bsolu
FALSE SlveAbsoh
MC_MoveVelocity 0 (T Acis
MC_MoveVeboty —
Aoz InVelocity—
MasterRun Exscute Busy—
100 [Velocity CommandAboned—
300 Accal Emor[~
300 [leraty EmorD [~
Jerk
IW—}—Dimeﬁan

Master and slave axes are automatically enabled after power-up, MasterRun is set to TRUE

to run the spindle at 100 speed

CamSelect is set to True to select the cam table, then Camln is set to True to start the

electronic cam.

When the electronic cam needs to be disconnected set MC_CamOut0.Execute to True.

6) Error description

If an error occurs when starting this command, the Error output is True.

VYECTOR

VE Controller Programming Manual A T

See ERRORID and refer to "Appendix C Error Code Descriptions” for SMC_ERROR error
codes.

VE Controller Programming Manual

7.4.7 MC _Gearln

Set the gear ratio between the shaft and the spindle for electronic gear action.

1) Instruction format

Instructions Name Graphical performance ST performance
MC GearlInO(
Master:=
Slave:=
MC_GearIn Execute:= ,
X —Master InGear — RatioNumerator:= ,
Electronic —Slave Busy [— RatioDenominator:=
—Execute CommandAborted — Kiceleratitim
MC_Gearln gear function —RatioNumerator Error|— - ration:=,
— RatioDenominator ErrorlD f— Deceleration:= ,
block — Acceleration Jerk:= ,
—Deceleration InGear=> ,
—Jerk Buay=> ,
CommandAborted=> ,
Error=> ,
ErrorlD=>):
2) Related variables
input and output variables
Enter the , The
The data | Effective | . . _
output Name initial Describe
_ type range
variable value
Map to the axis, AXIS_REF_SM3 instance of
Master Spindle | AXIS_REF - -
the map
From Map to the axis, AXIS_REF_SM3 instance of
Slave AXIS_REF - -
the axis the map
Enter variables
Enter the The data Effective The initial ,
_ Name Describe
variable type range value
Rise the edge and start
Execute Perform BOOL TRUE- Cutter FALSE
executing the instructions
Gear ratio Positive,
RatioNumerator DINT 1 Gear ratio molecules
molecules negative
Gear score
RatioDenominator UDINT Positive 1 Gear score mother
mother
Acceleration Acceleration LREAL Positive or 0 Specifies acceleration
Reduce the Specifies a reduction in
Deceleration LREAL Positive or 0
speed speed
Jerk the degree LREAL Positive or 0 Acceleration
The output variable
The , The
The data Effective o _
output Name initial Describe
_ type range
variable value
gear ratio True, the target speed is reached
InGear BOOL TRUE- Cutter - FALSE
arrived from the axis

VE Controller Programming Manual A T
True, the instruction is being
Busy In action BOOL - TRUE,FALSE FALSE
executed
Command True, interrupted by other control
Interrupt BOOL TRUE,FALSE FALSE
Aborted instructions
When an exception occurs, it is
Error Error BOOL TRUE,FALSE FALSE
set to TRUE
The error See SMC_ When an exception occurs, the
ErrorlD SMC_ERROR 0
code ERROR error code is output

3) Function description

Execute rising edge to start the electronic gear action.

To uncouple the electronic gear after execution, the GearOut command must be used.

This instruction is a speed e-gear function and the loss of synchronisation distance caused
during acceleration is not automatically compensated.

If the Busy signal is TRUE during the execution of the instruction, the new rising edge of
Execute will not affect the target speed of the slave axis if it is not reached.

If the Busy signal is TRUE during instruction execution, the new rising edge of Execute will
not affect it if the target speed of the slave axis is reached. When the target speed is reached,
InGear is TRUE and the slave axis travel = master axis travel =
RatioNumerator/RatioDenominator.

Please take care when using this command if the spindle speed is changing in real time.
Note: Do not use the MC_SetPosition instruction during the execution of the instruction to
avoid accidents caused by the motor running rapidly.

€ Timing diagram.:

A
Execute
pt
Ll
Busy
>t
InGear p
CommandAb
orted » t
SLAVE_Velocity -
p t
GearQut >t
>
ERROR =
> t
ERRORID l 16400 ‘

The timing diagram for the restart command after changing the gear ratio parameter is as

VE Controller Programming Manual A T
follows:
A
Execute
p
InGear » t
Busy P
SLAVE_Velocity
/ » t

4) Error description

An error is output when the ERROR is TRUE for a start-up command.

Please read "Appendix C Error Code Descriptions” for a description of the relevant error
codes.

VE Controller Programming Manual

7.4.8 MC GearOut

To terminate an MC_Gearln in MC_GearlnPos order.

1) Instruction format

Instructions | Name Graphical performance ST performance
4C_GearOutO (
Th -
€ Slave:=
; MC_GearQut
electronic _letme Honel Execute:= ,
MC_GearOut gear —Execute Busy — Done=> ,
Error—
coupling is ErroriD Busy=> ,
broken Error=> ,
ErrorID=>);
2) Related variables
input and output variables
Enter the The , The
Effective — :
output Name data initial Describe
_ range
variable type value
From Maps to the axis, AXIS_REF_SM3 instance of
Slave AXIS_REF - -
the axis the property
Enter variables
The
Enter the The data _ — .
, Name Effective range initial Describe
variable type
value
Rise the edge and start executing the
Execute Perform | BOOL TRUE- Cutter Fakse
instructions
The output variable
The _ o
Effective The initial ,
output Name | The data type Describe
, range value
variable
True, the coupling between the
Done Complete BOOL TRUE- Cutter FALSE shaft and the spindle electronic
gear is broken
True, the instruction is in the
Busy In action BOOL TRUE,FALSE FALSE
process of being executed
When an exception occurs, it is
Error Error BOOL TRUE,FALSE FALSE
set to TRUE
The error See SMC_ When an exception occurs, the
ErrorlD SMC_ERROR 0
code ERROR error code is output

VYECTOR

VE Controller Programming Manual A T

3) Function description

Execute rising edge, executes cut-out electronic gear action.

If Excute is TRUE and ERROR is FALSE, the Busy output is TRUE and the Done output is TRUE.
When the electronic gear is cut out, the speed of the slave axis is the speed before it is cut
out, so the slave axis must be stopped with the MC_Stop command.

Execute is FALSE, Done is FALSE

MC_Stop instruction executes the reset Busy signal

A

Execute

v

Busy

v

ERROR

v

ERRORID e t

SLAVE_Velo

city /

4) Error description

An error in the setting of the relevant parameter will result in a command alarm.

Axis not enabled will cause the command to alarm.

Note]: Please read "Appendix C Error Code Descriptions” for the description of the relevant
error codes.

VE Controller Programming Manual

7.4.9 MC _GearlnPos

Set the ratio of electronic gears between the spindle and the axle to perform electronic gear

movements.

Specify the spindle position at which synchronization begins, the synchronization distance

from the axis position, and the spindle to complete the cut-in electronic gear movement.

1) Instruction format

Instructions | Name Graphical performance ST performance
MC_GearInPosO(
The T Master:=
specie s,
. . ML= Ceorlubos RatioNumerator:= ,
position is :;:\S:' Sfa;g::i: 55tl;:§ncmfnatﬁti= '
: —{Execute Busy|— MasterSyncPosition:= ,
MC G InP cut Into —RatioNumerator CommandAborted — SlaveSyncPositicn:= ,
_LearinFos —RatioDenominator Errorj— MasterStartDistance:= ,
the —{MasterSyncPosition ErrorlD — AvoidReversal:= ,
. —SlaveSyncPosition rartSynes:
electronic —{MasterStartDistance ?:f.hsim .
—|avoidreversal & ch) .
gear Busy=> ,
CommandAborted=> ,
coupling
2) Related variables
input and output variables
Enter the The , The
Effective L :
output Name data initial Describe
. range
variable type value
Maps to the axis, AXIS_REF_SM3 instance of
Master Spindle | AXIS_REF -
the property
From Maps to the axis, AXIS_REF_SM3 instance of
Slave AXIS_REF -
the axis the property
Enter variables
The , The
Enter the Effective | . . _
, Name data initial Describe
variable range
type value
The instruction TRUE Rise the edge and start executing the
Execute BOOL -FALSE
is executed TICK instructions
Ratio Gear ratio
DINT - 1- The molecule of the spindle velocity ratio
Numerator molecules
Ratio Gear score The denominator of the spindle velocity
DINT 1
Denominator | mother ratio
The spindle
Master The spindle position when the spindle gear
synchronization | LREAL
SyncPosition ratio is coupled
position

VE Controller Programming Manual A T
Synchronize
Slave The position from the shaft when the
position from | LREAL
SyncPosition spindle gear ratio is coupled
axis
A smooth curve is calculated from the axis
according to the position value and the
Performs the
MasterSyncPosition and SlaveSyncPosition
Master synchronization
LREAL values so that the axle is synchronized with
StartDistance | spindle
the spindle gear at SlaveSync, with a curve
position
spindle range of "MasterStartDistance,
MasterSyncPosition”
Set to FALSE if reversed from the physical
position of the axis ahead. Set to TRUE if the
Reversal is TRUE reversal is not physically possible from the
AvoidReversal BOOL FALSE
prohibited Fakse axis or causes a hazard. Only under the
modal axis. If the reversal cannot be
avoided, the axis stops incorrectly.
The output variable
The The
The data , o :
output Name Effective range initial Describe
: type
variable value
Start coupling True, start the electronic gear
StartSync BOOL TRUE- FALSE ALSE
processing coupling process
True, electronic gear coupling
InSync coupling BOOL TRUE- FALSE FALSE is complete and the spindle
gear ratio is coupling
The instruction True, the instruction is in
Busy BOOL TRUE,FALSE FALSE
is in process process
Command The instruction Interrupted by other control
BOOL TRUE,FALSE FALSE
Aborted is interrupted instructions
When an exception occurs, it
Error Error BOOL TRUE,FALSE FALSE
is set to TRUE
When an exception occurs,
ErrorlD The error code SMC_ERROR See SMC_ERROR 0
the error code is output

3) Function description

Execute The rising edge signal starts the execution of the command. After the start of the

action, the Slave takes the speed of the Master multiplied by the gear ratio as the target

speed and accelerates and decelerates.

The process from the start of synchronisation to the end of synchronisation is essentially an

electronic cam in which the slave follows the master axis during the synchronisation interval.

range (MasterSyncPosition - MasterStartDistance, MasterSyncPosition), the slave range

(current position, SlaveSyncPosition), and the slave range (current position).

The command will automatically design a cam curve based on the set gear ratio and the

three parameters mentioned above, so that the slave axis follows the master axis during

VE Controller Programming Manual A T

synchronisation.

Note that if the master and slave axes are in linear mode, it is recommended that the master
and slave axes are in cyclic mode, as the above parameters must be set correctly otherwise
the gear action will not be carried out correctly. Example.

The master and slave axes work in linear mode both in forward motion, if the command is
executed with

Master position > MasterSyncPositionMasterStartDistance, or Slave position >
SlaveSyncPosition, the electronic gear action cannot be cut in.

Sample timing diagrams for several different parameters are given below.

When the master axis is operating in cyclic mode (360 cycles) and the slave axis in cyclic
mode (360 cycles):

(D MasterSyncPosition=280, MasterStartDistance=50, SlaveSyncPosition=60, spindle
speed is 50, spindle speed is 50.
AvoidReversal=FALSE

F3

L J

L 2

w

Y

¥

e
wehacrty

L

ERRIOR

1Y

errosn | e

C) MasterSyncPosition=300, MasterStartDistance=370, SlaveSyncPosition=60,
spindle speed is 50, AvoidReversal=FALSE

VECTOR

2]
k]
B
b
R

VE Controller Programming Manual

L

Y

—

v

E‘Spir.dle interval betwean lwél
fpoints 370 E
-

Master

position

v

Slave
et Ll

L J

Slawve
welocity

B
>

]

(@MasterSyncPosition=300, MasterStartDistance=50, SlaveSyncPosition=60, spindle
speed 50, AvoidReversal=FALSE, slave start position greater than 60

Eietutm

L

L)

[

v

b

Melaitar

o iticn
¥

v

5l

position

Y

Slave
wa ity

ERROR -

ERROSID | Ty | 1

The target speed is reached at the same time as the synchronisation is completed (InSync is
TRUE), after which

Slave axis travel = Master axis travel = RatioNumerator/RatioDenominator.

For AvoidReversal: MC_GearInPos tries to avoid the reversal of the slave axis if the slave axis

VYECTOR

VE Controller Programming Manual A T

is a modal axis and the spindle speed (multiplicative relationship of gear ratios) is not relative
to the speed relationship of the slave axis. It tries to "stretch” the slave motion by adding 5
slave cycles. If this "stretch” is not effective, then an error occurs and the slave axis stops
incorrectly. If the slave axis speed is related to the main axis speed (a multiple of the gear
ratio), then an error will occur and the axis will stop incorrectly. If the slave axis is a linear axis
mode axis, then an error will occur when the rising edge of the Execute input is processed.

4) Timing diagram:

A
Execute
Pt
>
Busy o
>
StartSync »
InSync ! > i
MasterStart: MasterSync
Masterposito Distance Pasition =
n s
SlaveSyncP
osition
Pt
Slavepositon L
ERROR P t

5) Error description

€ An error in the setting of the relevant parameter will lead to a command alarm.

€ The command alarm will be caused if the axis is not enabled.

[Note]: Please read "Appendix C Error Code Descriptions” for the description of the relevant
error codes.

VE Controller Programming Manual

7.4.10 MC_Phasing

Specifies the phase deviation between the spindles.

1) Instruction format

Instructions Name Graphical performance ST performance
MC Phasing0 (
Master:=
MC_Phasing Sleve‘i; ;
—{Master - Donef— Erem‘;e'it
The primary is | —slave Busy|— FnageshireI Sy
MC_ —Execute CommandAborted f— velocity:
offset from the | —{Phaseshift Errorf—
Phasing —lVelocity ErrorID —
axis phase —{Acceleration
—|Deceleration
—{Jerk
2) Related variables
input and output variables
Enter the) The
The data | Effective | . . _
output Name initial Describe
_ type range
variable value
Maps to the axis, AXIS_REF_SM3 instance of
Master Spindle | AXIS_REF - -
the property
From Maps to the axis, AXIS_REF_SM3 instance of
Slave AXIS_REF - -
the axis the property
Enter the relevant variables
The , .
Enter the Effective | The initial _
, Name data Describe
variable range value
type
The
Rise the edge and start executing the
Execute instruction is | BOOL TRUE- Cutter | FALSE
instructions
executed
The value of
the main
The main phase deviation value of the
phase
PhaseShift LREAL 0 spindle, and the positive number
deviation
represents the lag from the axis.
from the
axis
The maximum velocity value when the
Velocity Speed LREAL 0
phase offset is performed
The maximum acceleration value when the
Acceleration Acceleration | LREAL 0
phase offset is performed
Reduce the The maximum deslevel value when the
Deceleration LREAL 0
speed phase offset is performed

VE Controller Programming Manual A T
Velocity
The maximum Jerk value when the phase
Jerk secondary LREAL 0
offset is performed
conductor
Output related variables
The The
The data , L .
output Name Effective range initial Describe
: type
variable value
True, if the phase offset is
Done Complete BOOL TRUE- FALSE FALSE
complete
The
True, the instruction is in
Busy instruction is | BOOL TRUE,FALSE FALSE
process
in process
The
Command Interrupted by other control
instruction is | BOOL TRUE,FALSE FALSE
Aborted instructions
interrupted
When an exception occurs, it is
Error Error BOOL TRUE,FALSE FALSE
set to TRUE
The error | SMC_ When an exception occurs, the
ErrorlD See SMC_ERROR 0
code ERROR error code is output

3) Function description

Execute the phase shift on the rising edge, the slave axis automatically calculates a smooth
curve and completes the phase shift of the slave axis to the main axis, the phase difference
between the master and slave axis is the PhaseShift value of the input signal, a positive value
means that the slave axis lags behind the main axis.

The Done signal is output as True after the offset is completed.

The master-slave phase difference is compensated according to the set PhaseShift, Velocity,
Acceleration and Deceleration.

When the phase difference between the master and slave axes reaches PhaseShift, the Done
signal is output.

The spindle command position and the feedback position remain unchanged during the
execution of the command, while the slave axis is adjusted.

The final result of this instruction is a phase shift between the given values of the axes, so the
actual feedback value of the real axis may not match the final shift.

This instruction can be used in conjunction with the MC_Gearln instruction as follows: the
spindle is Virtual_x, the slave is Virtual_y, the EX12 rising edge performs the spindle speed
control and the master and slave electronic gear action, then the phase shift is performed. It
can also be used with the electronic cam, where the slave axis acts as the "electronic cam
spindle” to achieve the electronic cam spindle phase shift effect.

ECTOR

e

VE Controller Programming Manual

MC MoveVelocity 1
MC MoveVelocity

Virtual X —Haxis InVelocity ——
Busy—
EXi2 Commandibeorted —
H Execute Error|—
10 —|Velocity ErrorlD —

100 — Acceleration
100 — Deceleration

100 —(Jerk
—Direction
MC_GeazIn 0
MC GearlIn
Virtual X —Master - InGear ——
Virtnal ¥ —S5lave Busv i
CommandAborted —
EX12 Errox -

—ﬂ []—Execute ErrorID—

1 —Raticlumesrator

1 —RatioDenominator
100 —Aceeleration
100 —Deceleration
100 —(Jerk

MC Phasing 0

MC Phasing
Virtual X —SMaster Done —
Virtual_Y —Hsiave Buay -
Commandhborted —
PHRSING _EXCUTE Errorp-
H H Execute ErrorID—

-30 —PhageShift

100 —{Velocity

300 —Acceleration

300 —Deceleration
1000 —Jerk

VE Controller Programming Manual A T
4) : o
kposition ; phase shift master position "seen” by slave
360 '
-~
l | “»
t
) physical master position
A !
e nciy phase velocity
mastervelocity
0 >
t
-
Execute
>
4 t
Done

4) Timing diagram
With the master and slave axes moving in 360 cycles, the rising edge of the Execute signal
performs the adjustment and the phase deviation between the slave axis and the main axis

after the adjustment is completed is
The value set by PhaseShift

A t
Execute B t
Busy ot
>
Done Pt
>
360 /

) /

e >

Masterpositon L
PhaseShift
ERROR Pt

5) Error Description

VYECTOR

BOHE MR

VE Controller Programming Manual
@ If the error output is TRUE when starting the command, an error has occurred.

€ Check the ErrorlD, check SMC_ERROR in the help to determine the alarm information,
please read "Appendix C Error Code Description” for the related error code description.

VE Controller Programming Manual

7.4.11 SMC_CAMBounds

When the slave axis is coupled to the spindle cam this function block can be used to
calculate the maximum position, speed and acceleration of the slave axis.

The spindle moves under the input maximum speed, acceleration and deceleration limits.

This instruction is used to check the correctness of the curve when designing the cam table,

provided

maximum acceleration and deceleration of the spindle, speed, etc. are known

1) Instruction format

Instructions Name Graphical performance ST performance
MC Phasing0(
Master:=
Slave:=
N SMC_CAMBounds] Execute:= ,
—bExecute bBusy— PhaseShift:= ,
Cam upper | —dMmasterveiMax bErrorf— Velocity:= ,
—dMasterAccMax nErroriD — DR TN i
SMC_CAMBounds | and lower | —dMasterScaling dMaxPosk— :Ccule-&t}cn:A '
—dslaveScaling dMinPosi— Deceleration:= ,
limits dMaxvell— Jerk:= ,
dMinvelfl— Done=> ,
dMaxAccDect— =
dMinAccDec — Busy=> ,
CommandAborted=> ,
Error=> ,
ErrorID=>)

2) Related variables

input and output variables

The
Enter the output Effective
Name The data type initial Describe
variable range
value
Maps to the cam, which is MC_CAM_REF of the
CAM Cam MC_CAM_REF - -
property
Enter variables
The , The
Enter the Effective o _
, Name data initial Describe
variable range
type value
The
Rise the edge and start
bExecute instruction is | BOOL TRUE- Cutter FALSE
executing the instructions
executed
Maximum Maximum spindle speed in
dMasterVelMax LREAL - 1
speed absolute mode.
Maximum Maximum spindle acceleration
dMasterAccMax LREAL - 0
acceleration in absolute mode
The spindle cam applies the
dMasterScaling Ruler factor LREAL - 1
ruler factor
dSlaveScaling Ruler factor LREAL - 1 Apply the ruler factor from the

VE Controller Programming Manual A T
shaft cam
The output variable
The The
The data . . .
output Name Effective range | initial Describe
: type
variable value
True, if the -calculation is
bDone Complete BOOL TRUE- FALSE FALSE
complete
The
True, the instruction is in
bBusy instruction is | BOOL TRUE,FALSE FALSE
process
in process
When an exception occurs, it
bError Error BOOL TRUE,FALSE FALSE
is set to TRUE
The error When an exception occurs,
nErrorlD SMC_ERROR See SMC_ERROR 0
code the error code is output
The The maximum position from
dMaxPos maximum LREAL 0 the shaft is calculated from
position the cam table
The The minimum position from
dMinPos minimum LREAL 0 the shaft is calculated from
position the cam table
Maximum
dMaxVel LREAL 0 Calculate the maximum speed
speed
Minimum The minimum speed s
dMinVel LREAL 0
speed calculated
Maximum The maximum acceleration is
dMaxAccDec LREAL 0
acceleration calculated
Minimum The minimum acceleration is
dMinAccDec LREAL 0
acceleration calculated

3) Function description

bExecute rising edge to combine the input variables "dMasterVelMax", "dMasterAccMax",
"dMasterScaling"”, "dSlaveScaling", etc. with the cam table data to calculate the minimum

position of the slave axis "max position".

The "dSlaveScaling” values and the cam table data are used to calculate the "maximum
position” and the minimum position of the slave axis. Example: spindle period 360, cam table

A straight line with a slope of 2 is calculated as shown in the figure below.

This command can be used when the spindle is running in absolute mode or when the

spindle is set to cycle mode and the modulus is set to the spindle cycle.

The cam table is XYVA (valid in polynomial mode), not valid for 1D arrays, 2D arrays etc.

VECTOR

VE Controller Programming Manual BOM oA MK
SMC CAMBounds 0
SMC CAMBounds
camMs —Hcau - SN TRUE gan
bBusy =
testi bError = BN
I bExecute nErrorID -

500 —{dMasterVelMax dMaxFos [—
1000 —|dMasterAccMax dinPos — [0/ |
1 —dMasterScaling dMaxVel (—
1 —|dSlaveScaling dMinVel
dMaxAccDec
dMinAccDec [

4) Timing diagram

bERROR - [=8

5) Error description

Cam table format is not polynomial mode.

The cam table MC_CAM_REF setting does not match the actual cam table.

[Note]: Please read "Appendix C Error Code Descriptions” for the relevant error code

descriptions.

VE Controller Programming Manual

7.4.12 SMC_CAMBounds_Pos

When the from the shaft is coupled with the spindle cam, the maximum position of the from

the shaft, with the minimum position, can be calculated by this function block. This function

block is SMC_

calculations such as maximum acceleration compared to camBounds, and the other

functions are consistent.

1) Instruction format

Instructions Name Graphical performance ST performance
SMC_CAMBounds_Pos0 (
CAM:= ’
The bExecute:= ,
upper dMasterVelMax:= ,
and i SMC_CAMBounds_Pos - dMasterAccMax:= ,
— ane—
SMCﬁ —|bEeaite B bBusy|— dMasterScaling:= ,
lower —(dMasterVelMax bErrorf— dSlaveScaling:= ,
CAMBounds Pos —dMasterAccMax nErrorIDf— bl
- limits of | —dmasterScaling dMaxPos}— i
—dSlaveScaling dMinPosi— bBusy=> ,
the cam bError=> ,
position nErrorlID=> ,
dMaxPos=> ,
dMinPos=>);
2) Related variables
input and output variables
The
Enter the Effective
Name The data type initial Describe
output variable range
value
Maps to the cam, which is MC_CAM_REF of the
CAM Cam MC_CAM_REF - -
property
Enter variables
, The
Enter the The data Effective o _
, Name initial Describe
variable type range
value
The
Rise the edge and start executing
bExecute instruction BOOL TRUE- Cutter FALSE
the instructions
is executed
Maximum Maximum spindle speed in
dMasterVelMax LREAL 1
speed absolute mode.
Maximum Maximum spindle acceleration in
dMasterAccMax LREAL 0
acceleration absolute mode
The spindle cam applies the ruler
dMasterScaling Ruler factor | LREAL 1
factor
Apply the ruler factor from the
dSlaveScaling Ruler factor | LREAL 1
shaft cam

VE Controller Programming Manual A T

The output variable

The : The
The data Effective . _
output Name initial Describe
. type range
variable value
bDone Complete | BOOL TRUE- FALSE FALSE True, if the calculation is complete
The
instruction
bBusy . . BOOL TRUE,FALSE FALSE True, the instruction is in process
is in
process
When an exception occurs, it is set
bError Error BOOL TRUE,FALSE FALSE
to TRUE
The error When an exception occurs, the
nErroriD SMC_ERROR See SMC_ERROR | 0
code error code is output
The The maximum position from the
dMaxPos maximum LREAL 0 shaft is calculated from the cam
position table
The The minimum position from the
dMinPos minimum LREAL 0 shaft is calculated from the cam
position table

3) Function description

bExecute rising edge to combine the input variables "dMasterVelMax", "dMasterAccMax”,
"dMasterScaling”, and

The "dSlaveScaling” values and the cam table data are used to calculate the "maximum
position” and the minimum position of the slave axis.

This command can be used when the spindle is running in absolute mode or when the
spindle is set to cycle mode and the module value is set to the spindle cycle.

The cam table is XYVA (valid in polynomial mode), not valid for 1D arrays, 2D arrays etc.

4) Error description

The cam table format is not polynomial mode; the set value of cam table MC_CAM_REF does
not match the actual cam table.

Note]: Please read "Appendix C Error Code Descriptions” for the relevant error code
descriptions.

VE Controller Programming Manual

7.4.13 SMC_WriteCAM

The program runs to store the edited cam table as a file. so that it can be MC_Camln such as

instructions. The resulting file contains a content reference called Cam Format.
This instruction can be used SMC_ReadCAM with other users.
1) Instruction format

Instructions Name Graphical performance ST performance
Cam
upper SMC_WriteCAM
—CAM bDonef—
SMC_WriteCAM and —bExecute -~ bBusy—
—sFileName bErrorf—
lower ErrorID}—
limits
2) Related variables
input and output variables
The
Enter the Effective
Name The data type initial Describe
output variable range
value
Maps to the cam, which is MC_CAM_REF of the
CAM Cam MC_CAM_REF - -
property
Enter variables
Enter The) The
Effective o .
the Name data initial Describe
_ range
variable type value
The
instruction Rise the edge and start executing the
bExecute BOOL TRUE,Tick FALSE
is instructions
executed
File names in ASCIl format that contain cam
sFileName | Filename STRING descriptions can be viewed by helping to "Cam
Format" inside.
The output variable
The The
The data , o .
output Name Effective range initial Describe
: type
variable value
True, if the cam is written into
bDone Complete BOOL TRUE- FALSE FALSE
the file to complete
The
True, the execution of the
bBusy instruction is | BOOL TRUE,FALSE FALSE
instruction was not completed
in process
When an exception occurs, it is
bError Error BOOL TRUE,FALSE FALSE
set to TRUE
nErrorlD The error | SMC_ERROR See SMC_ERROR 0 When an exception occurs, the

VE Controller Programming Manual BOM oA MK

| code output is erred

3) Function description

€ DbExecute rising edge, command execution - stores the cam information of the "CAM"
connection in a file connected by the file name "sFileName".

The bDone signal is output as true.

@ The stored cam table information is limited by the hardware memory.

€ Note: This function is performed while the program is running and the cam table information
can also be stored manually in the offline information.

Fle Edt View Project |Cam | Buld Onlne Debug Tools Window Help
b=

B = G & Read Cam Data from ASCII Table _J & Cﬁ -
Write Cam Data into ASCII Table |
||~ cear_mpos Read Cam Orline Fle {VA_TEST @ Trace @ Cam2 x
p. "m Write Cam Online File |
- R Display generated Code :
{4 12 ; ;
@ 1
5 8 i
2 18 |
o =3
" 3" T B - =1 I RC SRR AR b - s i i - - = e - o - -

4) Error description

€ This command can only complete the cam table in XYVA polynomial mode, one-dimensional,
two-dimensional, etc. will cause an error output

@ sFileName The connected file name does not exist or the information is wrong.

[Note]: Please read "Appendix C Error Code Descriptions” to understand the error code

descriptions.

VE Controller Programming Manual

7.4.14 SMC3_PersistPosition

This instruction is used to maintain the position of the record solid-axis absolute value

encoder (after the power-off restarts the controller, the position-recording value before the

power-off is restored). If the servo motor is using an absolute value encoder, use this

function block in conjunction.

1) Instruction format

Instructions | Name Graphical performance ST performance
SMC3_PersistPositiono (
SMC3_PersistPosition_0 Exis:= g
SMC3_PersistPosition.. PeraistentData:= ,
The axis =\Axis bPositionRestored bEnable:= ,
SMC3_ " . “PersistentData bPositionStored bEositionRestored=>
) o position Is —bEnable bBusy o3itio =
PersistPosition bEror bPositionStored=> ,
maintained bBusy=> ,
eEmorlD P st
eRestoringDiag TTOE=F |y
eErrorID=> ,
eRestoringDiag=>):

2) Related variables

... input and output variables

Enter the) The
The data | Effective | . . _
output Name initial Describe
_ type range
variable value
Map to the axis, AXIS_REF_SM3 instance
Axis Axis AXIS_REF - -
of the property
Keep the | SMC3_Persist The power-off-hold data structure that
PersistentData
data Position_Data stores location information
Enter variables
Enter) The
The data Effective o _
the Name initial Describe
_ type range
variable value
True function blocks are executed, false does
not execute function blocks, and tO
restore the last stored location
bEnable Perform | BOOL TRUE,FALSE FALSE) L
during initialization, the value
must be set to true when the
application starts
The output variable
The
The output The data , o .
_ Name Effective range | initial Describe
variable type
value
bPosition Location TRUE, position recovery completes
BOOL TRUE,FALSE FALSE
Restored recovery after axis restart
bPosition Location TRUE, the call function is done
BOOL TRUE,FALSE FALSE
Stored save quickly after saving the location

VE Controller Programming Manual

bBusy

FB in action

BOOL

TRUE,FALSE

FALSE

TRUE, the function block is not

executed

bError

Error

BOOL

TRUE,FALSE

FALSE

TRUE, an exception occurs

ekrrorlD

The error

code

SMC_
ERROR

SMC_NO_ERROR

When an exception occurs,

The error code is output

eRestoringDiag

Restore

diagnostics

SMC3_Persi

stPositionD

iag

SMC3_
PersistPositionDiag.
SMC3_PPD_
RESTORING_OK

Diagnostic information in location
recovery
SMC3_PPD_RESTORING_OK:
Location recovery
SMC3_PPD_AXIS_PROP_CHANGED:
The axis parameters have changed
and bit
SMC3_PPD_DATA_STORED_DURIN
G_WRITING cannot be recovered:
the function block copies the data
from the axis parameter data
structure instead of from the
PersistentData data. Possible causes:
non-synchronous persistent

variable, controller crash crash

3) Function Description
@ |f the PLC restart bEnable signal is TRUE, the output of bPositionRestroed is TRUE.

€ The dummy axis is not supported to follow the logic axis.

€ Timing diagram

bEnable

bPosition
Restored

bPosition

stored

bERROR

4) Error description

€ An input axis that is a virtual axis or a logical axis will result in an error output.
€ There is an error in the axis.

Note]: Please read "Appendix C Error Code Descriptions" for the error code descriptions.

VE Controller Programming Manual A T

7.4.15 SMC_FollowVelocity

Set the speed directly to the shaft without doing any checks. This instruction is different from
MC_MoveVelocity in that each task cycle gives the axis speed instruction (the
MC_MoveVelocity instruction speed changes andmust be refreshed to takeeffect).

1) Instruction format

Instructions | Name Graphical performance ST performance
SMC_FollowVelocity 0

The Axis:= ,
axis SMC_Followvelodity bExecute:= ,

SMC e i) fSetVelocity:= ,

B . speed —{bExecute hCommandAborted—

FollowVelocity | . —fsetvelocity bEmor|— bBusy=> ,
IS LEGi oy bCommandAborted=> ,
given bError=> ,

iErrorID=>);

2) Related variables
input and output variables

Enter the output The data Effective | The initial ,
_ Name Describe
variable type range value

Maps to the axis,
Axis Axis AXIS_REF - - AXIS_REF_SM3 instance of
the property

Enter variables

Enter the The data Effective The initial)
_ Name Describe
variable type range value
The rising edge executes
bExecute Perform BOOL TRUE,FALSE FALSE
the function block
Set the
fSetVelocity LREAL 0 The speed set by the axis
speed
The output variable
The _ The
The data Effective o)
output Name initial Describe
, type range
variable value
True. In the execution of
instructions, where the axis is
synchronized, as in the cam
bBusy In action BOOL TRUEFALSE | FALSE MC_Camlin instruction
runtime axis state, the bBusy state
can be cleared with MC_Camout
instructions
The True: The axis is interrupted by other
bCommand
instruction is | BOOL TRUE,FALSE FALSE control commands (when bExecute is
Aborted
interrupted True).
bError Error BOOL TRUE,FALSE FALSE True, exceptions are generated

VYECTOR

VE Controller Programming Manual A T

The error | SMC_
iErrorlD Reference SMC_Error
code ERROR

3) Function description

After SMC_FollowVelocity has been started by the rising edge of bExecute, the axis sends a
velocity command to the axis every task cycle. bBusy is the same as the MC_Camin
command when the axis is in synchronous operation, and can be cleared with the
MC_CamOut command.

When the bExecute signal is TRUE, bBusy changes from TRUE to FALSE when the command
is interrupted by another control command.

€ Timing diagram

A
bEecute Bt
Ll
bBusy + E .; t
bCommandA : =
borted H >t
Error > +

4) Error description

bExecute on rising edge.

Axis variable connected to a non-AXIS_REF_SM3 type structure variable, Error output.

Axis is not enabled, Error is output.

If the instruction is running and the axis is wrong, the error is output.

[Note]: Please read "Appendix C Error Code Descriptions” for related error code descriptions.

VE Controller Programming Manual

7.4.16 SMC_FollowSetValues

Like the other SMC_Follow functions, it is a direct axis command. However, this command

includes not only the other SMC_Follow commands but also acceleration, current, torque

and other control signals, so it can be considered a comprehensive version. The

DwValueMask value is used to select the desired command.

1) Instruction format

Instructions Name Graphical performance ST performance
SMC_FollowSetValues 0(
Axis:= .
SMC_FollowSetvalues bExecute:= ,
—axis bBusy|— dwValueMask:= ,
. —bExecute bCommandAborted— fSetPosition:= ,
Axis-related | —paort bEmort— | fservelocity:= ,
SMC —dwValueMask iErrorID f— £SetAcceleration:=
- commands | —fSetposition e
FollowSetValues | | —fsetvelodity S
given —fSetAcceleration fSetTorque:=,
—fSetlerk fSetCurrent:= ,
— fSetTorque bBusy=> ,
—fSetCurrent bCommandAborted=> ,
bError=> ,
iErrorID=>);
2) Related variables
input and output variables
, The
Enter the The data Effective . _
, Name initial Describe
output variable type range
value
A A AXIS REF Maps to the axis, AXIS_REF_SM3
Xis is | - -]
instance of the property
Enter variables
The , The
Enter the Effective | . .. _
, Name data initial Describe
variable range
type value
Implementati Rising edge execution function block
bExecute BOOL TRUE,FALSE FALSE
on
DwValue Control BiteO:TRUE:fSetPosition active FALSE:
DWORD 0
Mask Management ignored
Interrupt Bitel:TRUE: fSetVelocity active FALSE:
bAbort BOOL TRUE,FALSE FALSE
ignored
Set position Bite2:TRUE: fSetAcceleration active FALSE:
fSetPosition LREAL 0
ignored
fSetVelocity Set speed LREAL 0 Bite3: TRUE: fSetJerk active FALSE: Ignored
fSetAccel Set Bite4:TRUE: fSetTorque active FALSE:
LREAL 0
eration acceleration Ignored
Set jump Bite5:TRUE: fSetCurrent active FALSE:
fSetlerk LREAL 0
value ignored
fSetTorque Set torque LREAL 0 Rising edge interrupt function block
fSetCurrent Set current LREAL 0 Axis set position (calibrated units)

VE Controller Programming Manual A T

The output variable

The) The
The data Effective o _
output Name initial Describe
. type range
variable value
During True- During the execution of
bBusy BOOL TRUE,FALSE FALSE
execution the instruction, the
Instruction (the axis is in a synchronized
interrupted state, the same as when the cam
bCommand MC_Camlin instruction is
BOOL TRUE,FALSE FALSE
Aborted running), the bBusy state can be
cleared with the MC_Camout
instruction
Error True- The axis is interrupted by
bError BOOL TRUE,FALSE FALSE
another control command
iErrorlD Error code SMC_ERROR True, exception generated

3) Function description

€ After SMC_FollowSetValues has been started by the rising edge of bExecute, the axis
sends the selected parameter command to the axis every task cycle.

€ When the bBusy signal comes, the state of the axis is synchronous and the state of the
slave axis is the same as when the MC_Camln instruction is in effect, which can be cleared by
the MC_CamOQut instruction.

When the bExecute signal is TRUE, bBusy changes from TRUE to FALSE when the command
is interrupted by another control command.

€ The control parameter is selected by the DwValueMask value, for example, if
DwValueMask is 1, the position is sent for each task cycle, just like the SMC_FollowPosition
instruction. A DwValueMask of 2 is the output of a separate speed command. A
DwValueMask of 3 is the output of a position velocity command. A DwValueMask of 7 is the
output of a position, velocity, acceleration command, etc.

€ Timing diagram

A
bEecute »
bBusy } %
bCommandA e
borted >t
Error » -
L

4) Error description
bExecute on rising edge.
Axis variable is connected to a non-AXIS_REF_SM3 type structure variable, Error output

VYECTOR

VE Controller Programming Manual A T

Axis is not enabled, Error output.
The instruction is running, the axis is wrong, Error is output.
Note]: Please read "Appendix C Error Code Descriptions” for the error code descriptions.

VE Controller Programming Manual A T

7.4.17 SMC_SetControllerMode

Set the current operating mode of the servo, default to the synchronization cycle position
control, control mode related settings please refer to the servo control mode.

1) Instruction format

Instructions Name Graphical performance ST performance
SMC SetControllerModeoO (
SMC_SeiControllerMode_0 Lyig:= .
Set the 1
SMC_SelControllerMode bExecute:= ,
SMC_ shaft S Axis bDone nControllerMode:= ,
SetControllerMode | control —pEmcue BBy bDone=> ,
—nConirollerMode bError bBusy=> ,
mode nErrorD bError=> ,

nErrorlD=>):

2) Related variables
input and output variables

Enter the The : The
Effective o _
output Name data initial Describe
) range

variable type value

Maps to the axis, AXIS_REF_SM3 instance of
Axis Axis AXIS_REF - -

the property

Enter variables

, The
Enter the Effective o _
, Name | The data type initial Describe
variable range
value
The rising edge executes the function
bExecute Perform | BOOL TRUE,FALSE FALSE
block
Shaft control mode
1: torque control mode: SMC_torque
nController Control | SMC_CONTR SMC_ 2: speed control mode,: SMC_Velocity
Mode mode OLLER_MODE Position 3:position control mode
SMC_Position
4: current control mode, SMC_Current
The output variable
The _ The
The data | Effective o)
output Name initial Describe
. type range
variable value
The mode
True, the mode setting is
bDone setting is | BOOL TRUE,FALSE FALSE
complete
complete
True - In the execution of
bBusy In action BOOL TRUE,FALSE FALSE
instructions,
bError Error BOOL TRUE,FALSE FALSE True, exceptions are generated

VYECTOR

VE Controller Programming Manual A T

iErroriD | The error code SMC_ERROR | | Reference SMC_Error

3) Function description

€ SMC_SetControllerMode, which gives the servo drive the control mode command after
the rising edge of bExecute is started, or the control mode can be set by the
Axis.out.oyModesofOpreation value after axis configuration (object dictionary 6060h has to
be added to the process data).

PDO Assignment (1621C12): db Insert [Edit X Delete & MoveUp
= PDO Content (1621600):

Index Size Offs Name Type

E - f:' — . 3

€ Conditions to be met for the use of the function block.

1: The axes must meet these control conditions, e.g. dummy axes cannot use the function
block.

2: The synchronisation period supported by each mode must be the same (refer to the
manual of "EtherCAT Servo" of WKD)

3: The axes must be in a state other than "errorstop”, "stopping” or "homing” when the
command is executed, otherwise an error will occur.

@ |f the axis does not change to the set control mode after 1000 cycles of the command, the
command will report an error and bError will change from false to true.

€ When the axis control mode changes from low level to high level (torque -> velocity,
torque->position, velocity->position), the function block will calculate the set value of the
high level mode. For example, when there is a change from torque mode to position mode,
the function block will superimpose an expected position distance (calculated by the current
actual velocity and the time offset in the task cycle) to compensate for the time lag between
the actual and set values.

€ When the bDone signal is triggered after the command has been executed, the axis will
still run during the time between the command trigger and the bDone signal trigger.
However, if the bDone signal is triggered and there is no other control command to continue
setting values for the axis, the axis will stop immediately and an error will be reported, so the
rising edge of the bDone signal should be used to trigger commands such as MC_Halt,
MC_MoveVelocity or MC_MoveAbsolute to smooth out the axis.

4) Timing diagram

VE Controller Programming Manual

VECTOR

A

bEecute

bBusy

bDone

P+

Pt

Error

5) Error description
bExecute On rising edge.
Axis invalid

Axis state is invalid.

The axis does not satisfy the control mode.
Axis error is reported and Error is output.

[Note] : Please read "Appendix C Error Code Descriptions” for descriptions of the relevant

error codes.

VE Controller Programming Manual

7.4.18 SMC_CheckLimits

The instruction function is to check whether the current drive setting value exceeds the

maximum value configured by the controller.

1) Instruction format

Instructions

Name

Graphical performance

ST performance

SMC_
CheckLimits

Axis
Limits

Check

SMC_CheckLimits
Axis
bEnable
bCheckvel
bCheckAccDec

. IErrorID
bLimitsExceeded

bBusy
bError

SMC_CheckLimits0 (
Axis:= 3
bEnable:= ,
bCheckVel:= ,
bCheckAccDec:= ,
bBuay=> ,
bError=> ,
iErrorID=> ,
bLimitsExceeded=>);

2) Related variables

input and output variables

Enter the The) The
Effective | . . -
output Name data initial Describe
. range
variable type value
Maps to the axis, AXIS_REF_SM3 instance of the
Axis Axis AXIS_REF - -
property
Enter variables
Enter the The data | Effective | The initial)
_ Name Describe
variable type range value
TRUE,
bEnable Perform BOOL FALSE TRUE: In the execution of the check
FALSE
TRUE, TRUE: Speed check, false: Do not
bCheckVel Speed check | BOOL FALSE
FALSE perform speed check
Add a TRUE: Perform a deceleration check,
TRUE,
bCheckAccDec deceleration BOOL FALSE false: Do not perform a deceleration
FALSE
check check
The output variable
The The
The data , o .
output Name Effective range | initial Describe
. type
variable value
True - Perform axis check,
bBusy In action BOOL TRUE,FALSE FALSE
False: Do not perform axis check
bError Error BOOL TRUE,FALSE FALSE True, exceptions are generated
The error
iErrorID SMC_ERROR Reference SMC_Error
code
TRUE: Currently set speed, or add
Check
bLimits or decelerate over
Limit BOOL TRUE,FALSE FALSE
Exceeded Axis.fSWMaxVelocity,
Output
Axis.fSWMaxAcceleration

VE Controller Programming Manual A T

| | | | Axis.fSWMaxDeceleration

3) Function Description

bEnable is TRUE, bBusy outputs TRUE. bEnable checks the axis velocity and acceleration.

If the set speed or acceleration/deceleration of the current axis exceeds the set values of
Axis.fSWMaxVelocity, Axis.fSWMaxAcceleration, Axis.

fSWMaxDeceleration, the bLimitsExceeded signal is output as TRUE

Note: This function only checks that the current command speed or
acceleration/deceleration exceeds the set limit value, it does not stop the axis.

4) Timing diagram

&
Enable B
L
hBusT =
biBus: =
blisitsEx -
ceded -
Lirriit walses
Sat valusy s
i i ;
Erzor L] i B

5) Error description

bExecute on rising edge.

Axis error reported, Error output.

Invalid axis input, Error output.

[Note]: Please read "Appendix C Error Code Descriptions” for the relevant error code
descriptions.

VE Controller Programming Manual

7.4.19 SMC_GetMaxSetAccDec

The command reads the maximum acceleration and deceleration of the axis.

1) Instruction format

Instructions Name Graphical performance ST performance
. SMC GetMaxSeticcDec 0
Maximum i &
Lxisz:= .
axis SMC_GetMaxSetAccDec bEnable:= ,
SMC_ —Axis bvalidi— Ti :=
increase —bEnable bBusy [~ e
GetMaxSetAccDec —{dwTimestamp fMaxAcceleration f— bValid=> ,
and dwTimeAtMax f— bBusy=> ,
. fMaxlceeleration=> ,
deceleration
dwlimeRtMax=>);
2) Related variables
input and output variables
Enter the) The
The data Effective o _
output Name initial Describe
. type range
variable value
Map to the axis, AXIS_REF_SM3 instance of
Axis Axis AXIS_REF - -
the map
Enter variables
, The
Enter the The data Effective . _
, Name initial Describe
variable type range
value
bEnable Perform | BOOL TRUE,FALSE FALSE TRUE: Perform a read
dwTimeStamp Dword Optional timestamp input;
The output variable
The The _ The
Effective . ,
output Name data initial Describe
. range
variable type value
TRUE,
bValid Effective BOOL FALSE True, the instruction execution is valid
FALSE
TRUE,
bBusy In action BOOL FALSE True, reading data
FALSE
Maximum plus-deceleration value
Maximum
fMaxAcce (positive acceleration, negative
plus-deceleration | LREAL 0
leration deceleration, plus-deceleration absolute
value
maximum value is final)
The dwTimeStamp value corresponding
The maximum
to the maximum acceleration (e.g. when
dwTime value
Dword 0 the acceleration continues to increase, the
AtMax corresponds to
value is updated with dwTimeStamp, the
the timestamp
fMaxAcceleration value is also updated,

VE Controller Programming Manual A T

and once the acceleration reaches the
maximum, the fMaxAcceleration record
maximum, and the dwTimeStamp
corresponding to the maximum value is

also recorded)

3) Function description

bEnable is TRUE, no error, bValid outputs TRUE.

When the absolute value of acceleration/deceleration is greater than the previous value,
fMaxAcceleration and dwTimeAtMax will be refreshed.

The dwTimeAtMax value is the corresponding dwTimeStamp value for the maximum
acceleration and deceleration, so dwTimeStamp should be set to a variable value, e.g. with
the task period or a fixed time period. (see sample program)

€ Sample program

SMC_GetMaxSetAccDec 0

SMC_GetMaxSetAccDec
Axis —Axis bvalid p=—{E—
bBusy M=
GET_START fMaxhcceleration -
0 1 bEnable dwTimeAtMax - 113
COUNT dwTimeStamp

=t

=1 = 1 IF GET_STARTRGUE] THEN -
2 COUNT[228 |:=1+COUNI[__ 2% |
3 END_IF

= 4 IF NOT GET_STARTRGEIE] THEN
: COUNI[__ 228 J:=1:
& END IF

= 7/ IF COUNI[__ 238 _ b=400 THEN
: COUNT[25 J:=1:
9 GET_STARTEENN: =czls¢=;

m

100 % |[&R

]

VE Controller Programming Manual

7.4.20 SMC_GetMaxSetVelocity

The instruction function is: Read the maximum speed of the axis.

1) Instruction format

Instructions Name Graphical performance ST performance
. SMC_GetMaxSetVelocity 0(
Maximum H—
DAxis:= .
axis . SMC_GetMaxSetVelocity _ bEnable:= ,
SMC_GetMax — s bvalid(— dwTlimeStamp:=
. increase —bEnable bBusy— Valide '
SetVelocity —|dwTimeStamp fMaxVelocity— Valld=>
and dwTimeAtMax}— bBusy=> ,
. fMaxVelocity=> ,
deceleration)
dwlimeAtMax=>);
2) Related variables
input and output variables
Enter the The , The
Effective | = | :
output Name data initial Describe
_ range
variable type value
Maps to the axis, AXIS_REF_SM3 instance of the
Axis Axis AXIS_REF - -
property
Enter variables
, The
Enter the The data Effective o _
, Name initial Describe
variable type range
value
bEnable Perform | BOOL TRUE,FALSE FALSE TRUE: Perform a read
dwTimeStamp Dword Optional time stamp input;
The output variable
The _ The
The data Effective . ,
output Name initial Describe
, type range
variable value
bValid Effective BOOL TRUE,FALSE FALSE True, the instruction execution is valid
bBusy In action BOOL TRUE,FALSE FALSE True, reading data
The
Maximum velocity value (positive, negative
fMaxVelocity | maximum LREAL 0
reverse, absolute maximum final)
speed value
The The dwTimeStamp value at maximum
maximum speed (e.g., when the speed continues to
dwTime
value Dword 0 increase, the value is updated with
AtMax
corresponds dwTimeStamp, the fMaxVelocity value is
to the also updated, and once the maximum

VE Controller Programming Manual

timestamp

speed is reached, the fMaxVelocity record
maximum, and the dwTimeStamp
corresponding to the maximum value is

also recorded)

3) Function description

bEnable is TRUE, no error, bValid outputs TRUE.

fMaxVelocity and dwTimeAtMax are refreshed when the absolute value of the velocity is

greater than the previous value.

The dwTimeAtMax value corresponds to the dwTimeStamp value for maximum velocity, so

dwTimeStamp should be set to a variable value, e.g. with the task cycle or a fixed time period.

(see sample program)

€ Sample program

SMC_GetMaxSetVelocity 0

-

SMC_GetMaxSetVelocity
Axis —Saxis rvalid
bBusy [
GET_STRRT fMaxVeleccity |-
T pEnable dwTimehtMax —
COUNT [388 |—{dwTimeStamp
EXECUTE

IF GET_STARTIGNE THEW
COUNI[3% |:=1+COUNI[__3% |
END IF
IF NOT GET_STARTIEGNEN THEN
COUNI[__3% |:=1;
END_IF
IF COUNT[__ 3% b=400 THEN
COUNT[@8 J:=1:
GET_STARTIGNEN:=t=13¢:

100 % (&R

»

m

1

VE Controller Programming Manual

7.4.21 SMC_InPosition

The instruction function is to monitor the deviation between the current axis set position

value and the actual value, and to determine whether the axis is within the required deviation

range through the set deviation window.

1) Instruction format

Instructions Name Graphical performance ST performance
SMC_InPositionO(
Axis:=Rkxis ,
. SMC_InPosition bEnable:= ,
Axis _‘SXLS o bInP%sition— fPosWindow:= ,
. . —bEnal Busy— = A
SMC_InPosition | deviation | _|o anindow e B __?srim:-— '
H H —fPosTime fTimeCut:= ,
monitoring _ltTimeout bInFosition=> ,
EBusy=> ,
bTimeOut=>);
2) Related variables
input and output variables
Enter the , The
The data | Effective | = _
output Name initial Describe
_ type range
variable value
Maps to the axis, AXIS_REF_SM3 instance of
Axis Axis AXIS_REF - -
the property
Enter variables
The , The
Enter the Effective | . _
, Name data initial Describe
variable range
type value
TRUE,
bEnable Perform BOOL FALSE TRUE: Perform a read
FALSE
Set the window for deviation monitoring,
fPosWindow and Distance (the deviation between
Bias
fPosWindow LREAL 0 the instruction position and the feedback
window
position), and the true position is based on the
fPosTime time output bPositionInPosition
The The deviation is within the window range time
fPosTime trigger LREAL 0 and is used to trigger bInPosition units in S
time (seconds)
Time-out
fPosTiOut LREAL 0 Deviation timeout in S (seconds)
time
The output variable
The _ The
The data Effective o ,
output Name initial Describe
, type range
variable value
bInPosition The BOOL TRUE,FALSE FALSE True, the deviation is within the set

VE Controller Programming Manual A T
deviation is window
normal

bBusy In action BOOL TRUE,FALSE FALSE True, in action

Current deviation detection related
bTimeOut Timeout LREAL TRUE,FALSE FALSE
to byDeaTimeCycles values

3) Function Description

bEnable is TRUE, if the detected deviation is less than the set window fPosWindow and lasts
fPosTime seconds then binPosition triggers TRUE. binPosition outputs FALSE as soon as the
detected deviation is greater than the set window.

Note: The fPosTime must be set at a reasonable time otherwise bTimeOut will be triggered
(e.g. for a cam with a 2 second cam period and a continuous deviation not exceeding the set
window of 1.5 seconds, fPosTime set to greater than 1.5 seconds will cause binPosition not
to be triggered).

bEnable is TRUE, bBusy output is true.

The deviation value monitors the data fCurrentDistance in the SMC_InPosition structure.

If bEnable is TRUE, binPosition is not triggered TRUE after the time set by fPosTime, then
bTimeOut is triggered TRUE.

€ Timing chart sample program

SMC_InPosition_ 1
SMC InPosition
nxis —Saxis " bpInPosition
bBusy ~ sl
INPOSTION Enble bTimeOut = NG
ﬂ.ﬂ bEnable
20 —fPosWindow
0.01 —fPosTime
3 —fTimeOut

4 Sample program

VE Controller Programming Manual

VECTOR

A 4

- Configuration
Addvariable

mm FUN_TESTSMC_InPosition_L.bInPosition

0

B FUN_TEST.SMC_InPosition_LfCurrentDistance
20,326207041723264

Add variable

[mm FUN_TEST.SMC_InPosition_1.bInPosition e
0

i- FUN_TEST.SMC_InPosition_1.fCurrentDistance
19.982306485215304

binPosition becomes TRUE after 4 task cycles (2.5ms) within the setting window, which

corresponds to the program setting of 0.01S

4) Timing diagram

VE Controller Programming Manual BOM oA MK

A&

bEnable .

bBusy ' .. =

bInPesiti

o :
fPosWinds foreves = =
* :
H
Deewintion valus : '
i i fPosTime
bTimelut H - F L3
- -

fPosTime fPosTime

VE Controller Programming Manual A T

7.4.22 SMC_ReadSetPosition

The instruction function is to read the instruction position of the axis (the converted user
unit).

1) Instruction format

Instructions Name Graphical performance ST performance
SMC_ReadSetPosition0 (
Read the SMC_ReadSetPosition A '
. —Axis Valid —
SMC_ axis —Enable Busy —
ReadSetPosition command Er:;rrf[; B
- Positionf—
position
):
2) Related variables
input and output variables
Enter the The , The
Effective o :
output Name data initial Describe
, range
variable type value

Maps to the axis, AXIS_REF_SM3 instance of
Axis Axis AXIS_REF - -
the property

Enter variables

The
Enter the The data _ L :
, Name Effective range initial Describe
variable type
value
Enable Perform BOOL TRUE,FALSE FALSE TRUE: Perform a read
The output variable
The _ The
The data Effective _)
output Name initial Describe
, type range
variable value
Valid Effective BOOL TRUE,FALSE FALSE True, read valid
Busy In action BOOL TRUE,FALSE FALSE True, in action
Error Error BOOL TRUE,FALSE FALSE True, exceptions are generated
The error
ErrorlD SMC_ERROR Reference SMC_Error
code
The position
The command position of the
Position of the | LREAL 0
current task cycle
instruction

3) Function description

Enable is TRUE, Valid if no error, Busy output is TURE.

Position is the value of Axis.fSetPosition.

If Enable is FALSE, , then Valid and Busy output is FALSE. Position stays at the value before

VE Controller Programming Manual B OH

FALSE.
€ Timing chart sample program

SMC_ReadSetPosition 0
SMC ReadSetPosition
Axis —Haxis valid jErno—
Busy = s
READ SETPositicn EN Error = BpNei)
|].|] Enable ErrorID
Position

4) Error description

bExecute on rising edge: Axis error, Error output; Invalid axis input, Error output.

[Note]: Please read "Appendix C Error Code Descriptions” for the relevant error code
descriptions.

VE Controller Programming Manual

7.4.23 SMC_SetTorque

The instruction function is to set the shaft torque (valid when in torque control mode).

1) Instruction format

Instructions Name Graphical performance ST performance
SMC_SetTorgue0 (
Axis:=)
| SMC_SetTorque —
Torque —pxis bBusy}—
SMC_SetTorque fTorque:= ,
settin —bEnable bError—
9 bBusy=>
—fTorque nErrorlD — . !
bError=> ,
nErrorID=>):;
2) Related variables
Enter the output variables
Enter the The) The
Effective | . . -
output Name data initial Describe
_ range
variable type value
Map to the axis, AXIS_REF_SM3 instance of the
Axis Axis AXIS_REF - -
map
Enter variables
Enter the The data Effective The initial)
_ Name Describe
variable type range value
Rise the edge and set
bEnable Perform BOOL TRUE,FALSE FALSE
the shaft torque
fTorque Set the torque LREAL 0 The unitis 0.1
The output variable
The
The output : L .
_ Name The data type Effective range initial Describe
variable
value
Busy In action BOOL TRUE,FALSE FALSE True, in action
True, exceptions are
Error Error BOOL TRUE,FALSE FALSE
generated
The error
ErrorlD SMC_ERROR Reference SMC_Error
code

3) Function description

bEnable Rising edge, no error then bBusy output is TURE.

This instruction only sets the torque value for the axis and is not a torque control function.

The axis control mode is valid in the torque control mode, i.e. you need to use the

SMC_SetControllerMode instruction to set the servo to torque mode first and then execute

this instruction.

VE Controller Programming Manual A T

€ Timing diagram sample program

SMC_SetTorque_0

SMC SetTorque
Axis —Haxis bBus v r~j—
PError = BENes
TORQUE_START nErrorID
[bEnable
80 —fTorque

4) Error description

bExecute on rising edge.

Axis error reported, Error output; invalid axis input, Error output.

Axis control mode error, Error output, error code SMC_ST_WRONG_CONTROLLER_MODE
[Note]: Please read "Appendix C Error Code Descriptions” for descriptions of the relevant
error codes.

VE Controller Programming Manual

7.4.24 SMC_BacklashCompensation

The instruction function is: to compensate for the main shaft gap, for example, the virtual
axis in the belt transfer is the main axis, the axis is a virtual axis synchronization mirror, due to
external reasons, there is a gap between the position of the shaft and the spindle, the
instruction can be used to compensate for this gap.

This instruction function is similar to the phase offset instruction (MC_Phasing) and its phase
depends on the direction in which the spindle operates.

1) Instruction format

Instructions Name Graphical performance ST performance
SMC_BacklashCompensation0 (
SMC_BacklashCompensation_0 &7 Master:=
SMG._BacklashCompensation = Slave:= ;
SMaster bBusy — bExecute:= ,
HSlave bCommandAborted — fBacklash:= ,
SMC_ —|bExecute bError — fCompensationVel:= ,
Gap —fBacklash iErrorlD — s ~pensat~f:n{.c::= i
BacklashCom) —fCompensationVel bCompensaling — fCompensaticnDec:= ,
) compensation e eBacklashMode:= ,
pensation P) eBacklashStartState:= ,
—fCompensationDec
. bBusy=> ,
—fCompensationJerk bCommandAborted=> ,
—eBacklashMode EErrorss ,
—eBacklashStartState iErrorID=> ,
bCompensating=>);
2) Related variables
input and output variables
Enter the The , The
Effective L :
output Name data initial Describe
_ range
variable type value
Maps to the axis, AXIS_REF_SM3 instance of
Master Spindle | AXIS_REF - -
the property
From Maps to the axis, AXIS_REF_SM3 instance of
Slave AXIS_REF - -
the axis the property
Enter variables
, The
Enter the The data | Effective | . . _
, Name initial Describe
variable type range
value
TRUE,
bExecute Perform BOOL FALSE Rise edge, set offset
FALSE
fBacklash LREAL 0 Compensate for the gap
fCompensationVe The speed at which compensation
LREAL 0
I is made
fCompensationAc
LREAL 0 Acceleration at compensation
c
fCompensationD LREAL 0 Reduce the speed when

VE Controller Programming Manual

ec

compensating

eBacklashMode

SMC_
BACKLASH
_MODE

SMC_BL
_AUTO

Compensation mode:
SMC_BL_AUTO: Spindle direction
determines compensation
direction SMC_BL_POSITIVE:
Forward
compensation, independent of
spindle direction
SMC_BL NEGATIVE: Reverse
compensation, independent of
spindle

No

direction SMC_BL_OFF:

compensation

eBacklash

StartState

SMC_
BACKLASH_
STARTSTATE

SMC_BL_
START_
NEGATIVE

Describes the working state of the
axis at which the instruction works.
SMC_BL _START_NEGATIVE: The
motion from the axis is pulled in
the negative direction and does
not need compensation in the
negative direction, once the
forward motion is

the fBacklash to

called twice

establish compensation
SMC_BL_START_POSITIVE: the
forward motion is pulled in the
positive direction, no
compensation is required in the
positive direction, and once the
reverse motion needs to be
compensated by twice
the fBacklash
SMC_BL_START_NONE: the
distance compensation of

the fBacklash value is generated in
the positive or opposite direction

movement.

The output variable

The output
variable

Name

The data
type

Effective range

The
initial Describe
value

bBusy

In action

BOOL

TRUE,FALSE

FALSE True, in action

bCommandAborted

The

instruction is

BOOL

TRUE,FALSE

FALSE
other

True - interrupted by

control

VE Controller Programming Manual A T
interrupted commands
True, exceptions are
bError Error BOOL TRUE,FALSE FALSE
generated
The error Reference
iErrorlD SMC_ERROR
code SMC_Error
bCompsating compensation | BOOL TRUE,FALSE FALSE

3) Function Description
bEecute rising edge, no error, bBusy output is TURE, bCompsating output is true,
bCompsating output is false when compensation is complete.
The mode of operation is: eBacklashMode - the compensation direction is "positive",
eBacklashStartState is "positive", fBacklash is positive. Before the bBusy signal comes, it is
better that the master and slave axes are in the same position, otherwise the slave axes will
be adjusted to spindle phase synchronization after the bEecute rising edge comes, and if the
bBusy signal is already present then the bEecute rising edge is refreshed, please observe.

€ Timing diagram sample procedure

SMC_ BacklashCompensation |

"
{9

€ Sample program

SMC BacklashCompensation
SM Drive Virtual —Master bBusy
SM Drive Virtual_ 1l —Hslave bCommandAborted
bError
COPENSATION iErrorID—
"lﬂ bExecute bCompensating
—|fBacklash
1000 —fCompensationVel
2000 —|fCompensaticonAcc
2000 —{£CompensaticnDec
—eBacklash¥ode
—eBacklashStartState

T
&hms

4) Error description

Configuration
Add varisble

[}

—

SMC NO ERR

FALSE

mm
A
BB
tn § tn
ol 15

= 5M1_Drive_Virtual_1fSetPosition
157.6483916085869
mm FUN_TEST.SMC_BadklashCompensation_0.bCompensating

= SM_Drive_Virtual.fSetPosition
| 107.6483918085869

VYECTOR

VE Controller Programming Manual A

bExecute on rising edge.
Axis error, Error output; Invalid axis input, Error output.
[Note]: Please read "Appendix C Error Code Descriptions” for the error code descriptions.

VE Controller Programming Manual A T

7.4.25 SMC3_PersistPositionSingleturn

This instruction is used to maintain the position of the recorded solid-axis single-turn
absolute value encoder (after the power-off restarts the controller, the pre-power-off
position record value is restored).

1) Instruction format

Instructions | Name Graphical performance ST performance
SMC3_PersistPeositionSingleturn 0(
SMC3_PersistPositionSingleturn_0 @) Axis:= '
SMC3..PersistPositionSingletum = Rersigtentintas=
SMC3_ The axis | SAxs bPositionRestored— tE:?able:=ﬂ;“ .
) - o) SPersistentData bPositionStored— ua:.m.ml_be_.,_ﬂbsclute_lta.= d
PersistPosition position is | |- o bPositicnRestered=> ,
nable bBusy] "
; bPositionStored=> ,
Singleturn maintained —usiNumberOfAbsoluteBits bErrar— bBusy=> ,
eErrorlD— bBError=> ,
eRestoringDiag— eErrorID=> ,
eRestoringDiag=>);
2) Related variables
input and output variables
Enter the , The
The data Effective | = _
output Name initial Describe
_ type range
variable value
Maps to the axis, AXIS_REF_SM3 instance of
Axis Axis AXIS_REF - -

the property

A map to a recorded location structure
Keep SMC3_
SMCS3_ PersistPosition_Data of a

PersistentData the PersistPosition
structure variable that must be power-off
data Singletrun_Data
hold
Enter variables
The) The
Enter the Effective | . . _
i Name data initial Describe
variable range
type value
True function block execution, false does not
TRUE, perform function block
bEnable Perform | BOOL FALSE
FALSE PLC restart after the need for true to restore
the pre-restart storage location.
The
usiNumberof How many bits of absolute value encoder
number | UINT 16
AbsoluteBites (e.g. 20 bits, 24 bit encoder, etc.)
of digits
The output variable
The output The data Effective . _
) Name The initial value Describe
variable type range
bPositionRestored Location BOOL TRUE, FALSE TRUE, position recovery

VE Controller Programming Manual A T
recovery FALSE completes after axis
restart
TRUE, the call function is
Location TRUE,
bPositionStored BOOL FALSE done quickly after
save FALSE
saving the location
FB in TRUE, TRUE, the function block
bBusy BOOL FALSE
action FALSE is not executed
TRUE, TRUE, an exception
bError Error BOOL FALSE
FALSE occurs
When an exception
The error SMC_NO_
eErrorlD SMC_ERROR occurs, the error code is
code ERROR
output
SMC3_Persist
Restore SMC3_PersistP PositionDiag. Diagnostic information
eRestoringDiag
diagnostics | ositionDiag SMC3_PPD_ in location recovery
RESTORING_OK

3) Function description

The PLC restart bEnable signal is TRUE, the bPositionRestroed output is TRUE.
The dummy axis is not supported to follow the logic axis.

€ Timing diagram

A

bEnable »

| s
bPosition

Restored s &
bPosition " Bt

stored -

One scan

bERROR P -

4) Error description

An input axis that is a virtual axis or a logical axis will result in an error output.

There is an error in the axis.

[Note]: Please read "Appendix C Error Code Descriptions" for error code descriptions.

VE Controller Programming Manual

7.4.26 SMC_CheckAxisCommunication

The instruction function is to check the current drive traffic status.

1) Instruction format

Instructions | Name Graphical performance ST performance
SMC_CheckAxisCommunication_0 = SKC_Ch?n:k}‘.xisScmmunicatian(
= — 23] Axis:= .
Axis SiAxis bValid - Einib;f’z .
SMC_ limit —|bEnable bError— Eéa o _; y
rror=> ,
CheckLimits S P
check bOperational— - W
eComState— b-:perauyfa Sl
WwCamStata | eComState=> ,
wComState=>)
2) Related variables
input and output variables
Enter the The) The
Effective | . -
output Name data initial Describe
. range
variable type value
Maps to the axis, AXIS_REF_SM3 instance of the
Axis Axis AXIS_REF - -
property
Enter variables
, The
Enter the The data Effective . _
, Name initial Describe
variable type range
value
bEnable Perform BOOL TRUE,FALSE FALSE TRUE: In the execution of the check
The output variable
The The _ The
Effective | . .. :
output Name data initial Describe
. range
variable type value
TRUE,
bValid In action | BOOL FALSE True, the instruction execution is valid
FALSE
TRUE,
bError Error BOOL FALSE True, exceptions are generated
FALSE
The error | SMC_ER
ekrrorID Reference SMC_Error
code ROR
True, communication is normal (code 100)
Commu
bOpera TRUE, Operation
nication BOOL FALSE
tional FALSE False, communication is not normal, not axis
is normal
operation
The SMC_CO
Contains: SMC_COMSTATE_NOT_STARTED,
commun | MMUNI))
eComState | communication does not start
ication CATION
SMC_COMSTATE_VARIABLE_INITIALIZATION,
status STATE)))
communication variable

VE Controller Programming Manual A T

initialization
SMC_COMSTATE_BASE_COM_INITIALIZATION,
basic port

initialization
SMC_COMSTATE_DRIVE_INITIALIZATION,
communication driver

initialization
SMC_COMSTATE_DRIVE_WAITING_FOR_SYNC,
synchronous

warning
SMC_COMSTATE_INITIALIZATION_DONE,
initialization complete
SMC_COMSTATE_OPERATIONAL, communication
can be used normally
SMC_COMSTATE_REINITIALIZATION,
communication re-initialization
SMC_COMSTATE_ERROR,

communication errors
SMC_COMSTATE_UNKNOWN the

communication status is unknown

Same as the axis structure variable in the input

and output: Axis

The

wCommunicationState value, the code
commun

wComState | WORD that represents the current

ication

communication state, refer to AXIS_REF SM3
code

reference

1013

3) Function description

bEnable is TRUE, no error, bValid is TRUE.

When the bValid output is TRUE, the axis communication status is checked and the
bOperational output is TRUE when the eComState output is
SMC_COMSTATE_OPERATIONAL.

€ Sample program

SMC_CheckAxisCommunication 0
SMC CheckAxisCommunication
Axis —axis Valid r—jEii——
bError = RIS
TRUE eErrorID[—
1 i bEnable bOperational =
eComState
wComState [~ | 100

4) Error description
bExecute on rising edge: axis error reported, Error output.
Invalid axis input, Error output.

VYECTOR

VE Controller Programming Manual A T

Note]: Please read "Appendix C Error Code Descriptions” for the relevant error code
descriptions.

VE Controller Programming Manual A T

7.4.27 SMC_FollowPosition

The instruction function is to set the position directly to the shaft without doing any checks.
This instruction differs from MC_MoveAbsolute in that each task cycle gives the axis position
command regardless of the axis's state after the up-edge model is executed. (The user can
write the cam function using the instruction instead of using MC_Camlin, etc.).

1) Instruction format

Instructions | Name Graphical performance ST performance
SMC_FollowPosition 0(
. — Axis:= ¢
The axis SMC_FollowPosition . LR Gt ,
SMC_ —pxis Busy — - astEionsm 0 ON
position | —bExecute 720 bCommandAborted— ;izzf;ilm“n' PRI STERARE
FollowPosition —fSetPosition ' bErrarf— o
: : _ bCommandAborted=> ,
IS given iErrorID — 3
bError=> ,
iErrorID=>):
2) Related variables
input and output variables
Enter the The) The
Effective | . -
output Name data initial Describe
. range
variable type value
Maps to the axis, AXIS_REF_SM3 instance of the
Axis Axis AXIS_REF - -
property
Enter variables
, The
Enter the The data Effective L _
) Name initial Describe
variable type range
value
The rising edge executes the function
bExecute Perform BOOL TRUE,FALSE FALSE
block
Set the
fSetPosition LREAL 0 The position set by the axis
position
The output variable
The _ The
The data Effective o ,
output Name initial Describe
, type range
variable value
True - In the execution of the
instruction, the axis is synchronized
and, like the cam MC_Camin
bBusy In action BOOL TRUE,FALSE FALSE
instruction runtime axis state, the
bBusy state can be cleared with the
MC_Camout instruction
The
bCommand True - The axis is interrupted by
instruction BOOL TRUE,FALSE FALSE
Aborted . other control commands
is

VYECTOR

VE Controller Programming Manual A T
interrupted

bError Error BOOL TRUE,FALSE FALSE True, exceptions are generated
The error

iErrorlD SMC_ERROR Reference SMC_Error
code

3) Function description

After SMC_FollowPosition has been started by the rising edge of bExecute, the axis
sends position commands to the axis every task cycle. bBusy signal comes with the axis in the
same synchronous state as the MC_Camin instruction and can be cleared with the
MC_CamOut instruction.

Axis velocity - calculated from the position increment of the difference between the two

task cycles of the axis, velocity: AL/ At, AL current task cycle

The difference between fSetVelocity and fSetVelocity of the previous task cycle, At is

the scan time.

When the bExecute signal is TRUE, bBusy changes from TRUE to FALSE when another
control command interrupts the instruction.

€ Timing diagram

A
bEecute] Bt
T Ll
bBusy } . Pt
bCommandA e
borted H >t
Error [

4) Error description

bExecute on rising edge.

Axis variable connected to a non-AXIS_REF_SM3 type structure variable, Error output.

If the axis is not enabled, Error is output.

The instruction is running, the axis is wrong, Error is output.

Note]: Please read "Appendix C Error Code Descriptions” for the description of the relevant
error codes.

5) Example
Use SMC_FollowPosition to implement the electronic cam function.

VYECTOR

VE Controller Programming Manual A T
CAM BUILD 1
CAM_BUILD
360 —|Master_peridec Mater_position
End profile
M_CAM_START bBusy =
EDE bExcute
ﬂlﬁ bPeriod
360 —|Slave_peridec
SM Drive Virtual —Mate r hxis
Axis —H{Slave_Axis

Function block variable definition section.
FUNCTION_BLOCK CAM_BUILD

VAR_INPUT// Input variable definition
Master_peridec:REAL; // master_cycle

bExcute:BOOL; // instruction execution
bPeriod:BOOL; // Cam period execution, false Single cycle execution
Slave_peridec:REAL; // Slave cycle

END_VAR

VAR_OUTPUT// Output variable definition
Mater_position:LREAL;// spindle position (spindle position calculated after the start of
command execution)

End_profile:BOOL; // curve completion output flag bit
bBusy:BOOL; // Execution in progress

END_VAR

VAR// Function block intermediate variable definition
SMC_FollowPaosition_0: SMC_FollowPosition;
SET_POSITION: LREAL;

SET_POSITIONOLD: LREAL;
Mater_positionOLD:LREAL;

bExcute_old:BOOL;

INC:LREAL;

Y:LREAL;

X5:LREAL;

X4:LREAL;

X3:LREAL;

X2:LREAL;

X1:LREAL;

MC_Stop0: MC_Stop;

STOP:BOOL;

COUNTNUM:DINT;

SET_INC:LREAL;

YOLD:LREAL;

SMC_FollowPositionVelocity_0: SMC_FollowPositionVelocity;
K:REAL;

K_OUT:REAL;

MC_CamOut_0: MC_CamOut;

VYECTOR

VE Controller Programming Manual A T

VAR_IN_OUT// Input and output variable definitions
Mater_Axis:AXIS_REF_SMS;
Slave_Axis:AXIS_REF_SMS3;

END_VAR

Program section.

IF bExcute AND NOT bExcute_old THEN // Rising edge initialization parameter
Mater_position:=0;
Mater_positionOLD:=Mater_Axis.fActPosition;
End_profile:=FALSE;
SET_POSITION:=Slave_Axis.fActPosition;
SET_POSITIONOLD:=Slave_Axis.fActPosition;
COUNTNUM:=0;

YOLD:=0;

K:=0;

ELSE

IF bExcute_old THEN

INC:= Mater_Axis.fActPosition-Mater_positionOLD;// Spindle task cycle increment
IF INC<0 THEN // Spindle encoding position past zero (when axis is set to modulo- modulo
mode)

INC:= Mater_Axis.fActPosition-Mater_positionOLD+Mater_Axis.fPositionPeriod;
END_IF

Mater_position:=INC+Mater_position;// current spindle position
Mater_positionOLD:=Mater_Axis.fActPosition;

/[x=xxxxxx judge curve completion xxxxkxxex//

IF Mater_position>=Master_peridec THEN

End_profile:=TRUE;

ELSE

End_profile:=FALSE;

END_IF

IF bPeriod THEN

IF Mater_position>=Master_peridec THEN
Mater_position:=Mater_position-Master_peridec;

END_IF

END_IF

END_IF

END_IF

IF bExcute_old THEN

X1:=(Mater_position/Master_peridec);

X2:=X1*X1;

X3:=X2xX1;

X4:=X3xX1;

X5:=X4*X1;

Y:=(6+X5-15+X4+10+X3)*Slave_peridec;// From axis position, curve

VYECTOR

VE Controller Programming Manual A T

K:=(30%X4-60+X3+30*X2)*Slave_peridec/Master_peridec;// Slope of the curve
SET_INC:=Y-YOLD;

IF SET_INC<0 THEN
SET_INC:=Slave_peridec-YOLD+Y;

END_IF

YOLD:=Y;

IF bPeriod THEN
SET_POSITION:=SET_POSITION+SET_INC;

ELSE

IF End_profile THEN
SET_POSITION:=SET_POSITIONOLD+Slave_peridec;
ELSE

SET_POSITION:=SET_POSITION+SET_INC;

END_IF

END_IF

IF SET_POSITION>=Slave_Axis.fPositionPeriod THEN
SET_POSITION:=SET_POSITION-Slave_Axis.fPositionPeriod,;
END_IF

END_IF

SMC_FollowPosition_0(

Axis:=Slave_Axis,

bExecute:=bExcute,

fSetPosition:=SET_POSITION ,

bBusy=>bBusy ,

bCommandAborted=>,

bError=>,

iErrorID=>);

IF NOT bExcute AND bExcute_old THEN
STOP:=TRUE;

END_IF

MC_CamOut_0(

Slave:=Slave_Axis,

Execute:= STOP,

Done=>,

Busy=>,

Error=>,

ErrorlD=>),

MC_Stop0(

Axis:=Slave_Axis,

Execute:= MC_CamOut_0.Done OR MC_CamOQut_0.Error,
Deceleration:=20000 ,

Jerk:= 20000,

Done=>,

Busy=>,

VYECTOR

VE Controller Programming Manual A T

Error=>,

ErroriD=>),

IF MC_Stop0.Done OR MC_Stop0Q.Error THEN
STOP:=FALSE;

END_IF

IF NOTbExcute_old THEN
End_profile:=FALSE;

END_IF

bExcute_old:=bExcute;

VE Controller Programming Manual A T

7.4.28 SMC_FollowPositionVelocity

The instruction function is the SMC_FollowPosition the same as the use function, but the
speed setting is increased. Note: The speed setting to meet the position setting change is:
the speed setting is set by setting a difference between the

task cycle position and a guide to the time. For example:

if the two inter-cycle positions are set consistently, the speed should be set to 0, otherwise
the motor will vibrate violently.

1) Instruction format

Instructions Name Graphical performance ST performance
The
aXiS SMC FollowPositionVelocity O(
Axis:=
SMC positio SMC_FollowPositionVelocity bExecute:= ,
- o) —Axis bBusyl— | fSetPosition:= ,
FollowPositionVelocit | N and | —bexete bcommandabortedt— [setvelocity:= ,
—{fSetPosition | bErrorp— | bBusy=> bBusy,
Yy speed —ffSetVelocity i iEffofiDf— | PbCommandAborted=> ,
bError=> ,
are iErrorID=>);
given
2) Related variables
input and output variables
Enter the The . The
Effective . _
output Name data initial Describe
: range
variable type value

Maps to the axis, AXIS_REF_SM3 instance of
Axis Axis AXIS_REF - -

the property

Enter variables

The ,
Enter the Effective . _
, Name data The initial value Describe
variable range
type
The rising edge
bExecute Perform BOOL TRUE,FALSE FALSE executes the function
block
Set the The position set by the
fSetPosition LREAL 0
position axis
Set the The position set by the
fSetVelocity LREAL 0
speed axis
The output variable
The The _ The
Effective L :
output Name data initial Describe
. range
variable type value
bBusy In action BOOL TRUE,FALSE FALSE True - In the execution of

VE Controller Programming Manual

instructions,

the bBusy state can be cleared with
MC_Camout instructions when the
axis is in sync, as is the status of the
cam MC_Camin instruction when it is

run

The
bCommand True - The axis is interrupted by
instruction is | BOOL TRUE,FALSE FALSE
Aborted other control commands
interrupted
bError Error BOOL TRUE,FALSE FALSE True, exceptions are generated
The error | SMC_
iErroriD Reference SMC_Error
code ERROR

3) Function description

SMC_FollowPositionVelocity After starting by the rising edge of bExecute, the axis will send

set position and set velocity commands to the axis every task cycle.

When the bBusy signal comes in, the axis is in the same state as when the MC_Camln

instruction is in effect and can be cleared with the MC_CamOut instruction.

The set speed of the axis must be the same as the set position: fSetVelocity= AL/ At, ALis

the difference between the fSetVelocity of the current task cycle and the fSetVelocity of the

previous task cycle, At is the scan time.

When the bExecute signal is TRUE, bBusy changes from TRUE to FALSE when another control

command interrupts the instruction.

€ Timing diagram

A

bEecute

bBusy

bCommandA

borted

Error

4) Error description

bExecute on rising edge.

Axis variable connected to a non-AXIS_REF_SM3 type structure variable, Error output.

Axis is not enabled, Error is output.

If the instruction is running and the axis is wrong, the error is output.

[Note]: Please read "Appendix C Error Code Descriptions" for related error code descriptions.

VE Controller Programming Manual

7.4.29 SMC_AxisDiagnosticLog

The instruction function is to periodically write a parameter of the axis to the file.

1) Instruction format

Instructions Name Graphical performance ST performance
SMC_AxisDiagnosticLog(
Axia:=
bExecute:= ,
SMC_AxisDiagnosticlog bCloseFile:= ,
—jhxis bDone sFileName
—bExecute ~ bBusy bSetPo
AXxis —bCloseFile bError BActDo
—isFileName ErrorID bSetVeloc .
SMC_ parameters —bSetPosition bRecording bActValoc)
:Eg&gfﬂiﬁyﬂ bSetAcceleration:= ,
AxisDiagnosticLog | are written | —pactvelocity bActAccelerationi= ,
—bSetAcceleration b}‘Sepa:a:e:’:nf
to the fl|e —IbActAcceleration sRecordSeparator .
—bySeparatorChar eMode:= ,
—sRecordSeparatorstring bhone=> ,
—eMode
bRecording=>):
2) Related variables
input and output variables
Enter the : The
The data | Effective | . _
output Name initial Describe
. type range
variable value
Maps to the axis, AXIS_REF_SM3 instance of
Axis Axis AXIS_REF - -
the property
Enter variables
, The
Enter the The data Effective . _
i Name initial Describe
variable type range
value
Up the edge, perform the
bExecute Perform BOOL TRUE,FALSE FALSE
function block
Close the TRUE, the instruction
bClosefile BOOL TRUE,FALSE FALSE
file immediately closes the file
The stored file name (before
sFileName Filename STRING(80) !
the path.)
TRUE, record the set position
Record the
bSetPosition BOOL TRUE,FALSE FALSE when executing the
set position
instruction
Record the TRUE, record the actual
bActPosition actual BOOL TRUE,FALSE FALSE location when executing the
location instruction
TRUE, record the set speed
Record the
bSetVelocity BOOL TRUE,FALSE FALSE when executing the
set speed
instruction

VE Controller Programming Manual A T
The actual
TRUE, the actual speed is
speed
bActVelocity BOOL TRUE,FALSE FALSE recorded when the
several
instruction is executed
rounds
Record the TRUE, record the set
bSetAcceleration set BOOL TRUE,FALSE FALSE acceleration when executing
acceleration the instruction
Record the TRUE, record the actual
bActAcceleration actual BOOL TRUE,FALSE FALSE acceleration when executing
acceleration the instruction
ASCIl code value, written
bySeparatorChar BYTE 9
between two different values
sRecord The string written at the end
'$REN'
SeparatorString of the date
log_continuous: Record to
file continuously
log_at_close: Record
SMC_ LOG_
eMode continuously to the buffer
LOGGERMODE | CONTINUOUS
(10kbyte). When bclosefile is
true, the buffer's data is
written to the file
The output variable
The) The
The data Effective o _
output Name initial Describe
. type range
variable value
bDone Complete BOOL TRUE,FALSE FALSE True, the save is complete
bBusy In action BOOL TRUE,FALSE FALSE True, in action
True, exceptions are
bError Error BOOL TRUE,FALSE FALSE
generated
The error
ErrorlD SMC_ERROR Reference SMC_Error
code
True, the argument is being
bRecording recorded BOOL TRUE,FALSE FALSE
saved in the record

3) Function description

This function block is used to write a set of parameter values belonging to an axis cyclically
to a file. This output file is ideally suited for diagnostic purposes. As it usually takes some
time to write data on the data media, this block stores the collected data in a buffer of

10kbyte size and the data is not written until the module action WriteToFile is called. To

prevent interference with the actual action task and the action itself, this action call should be

placed in a slower (~50 ms) lower priority task. Once the buffer has been exceeded, the

module will create an error output.

4) Error description

A VYECTOR
VE Controller Programming Manual : .

bExecute on rising edge: axis error reported, Error output.
Invalid axis input, Error output.

Note]: Please read "Appendix C Error Code Descriptions” for the error code descriptions.

VE Controller Programming Manual A T

7.4.30 SMC_ChangeGearingRatio

The instruction function is: to change the user-set electronic gear ratio (pulse-to-user unit
ratio) and drive type. Note: The function block rear axle needs to be restarted
SMC3_ReinitDrive to ensure that the variable

1) instruction format can be initialized correctly

Instructions Name Graphical performance ST performance
SMC_ChangeGearingRatiof(
Ch kxiz:= i
ang SMC_ChangeGearingRatio bExecute:= ,
SM Cﬁ —lAxis bDone dwRatioTechUnitsDenom:= ,
) |l e the | —peeue bBusy| iRatioTechUnitsNum:= ,
ChangeGear|ngRat| —ldwRatioTechUnitsDenom 20 bError frositionferiod:= ,
gear —{iRatioTechUnitsNum nErrorlD iMovementType:= ,
0 —{fPositionPeriod bDone=> ,
ratio —liMovementType bBusy=> ,
bError=> ,
nErrorID=>);
2) Related variables
input and output variables
Enter the , The
The data | Effective | = | _
output Name initial Describe
_ type range
variable value
Maps to the axis, AXIS_REF_SM3 instance of
Axis Axis AXIS_REF - - the . The gear ratio will be changed to the
shaft
Enter variables
, The
i The data Effective L .
Enter the variable Name initial Describe
type range
value
Up the edge, perform the
bExecute Perform | BOOL TRUE,FALSE FALSE
function block
Pulse units converted to
dwRatioTechUnitsDenom DWORD 0
application units (eg:mm)
The
dwRatioTechUnitsDenom
iRatioTechUnitsNum DINT 0
value corresponds to the
desired application unit
Position cycle (mould value)
fPositionPeriod LREAL is only valid for rotating
motors
0: modulo axis (module axis),
iMovementType INT 1: finite axis (limited long
axis).
The output variable
The The data Effective The initial ,
Name Describe
output type range value

VE Controller Programming Manual A T
variable
True, the execution set is
bDone Complete BOOL TRUE,FALSE FALSE
complete
bBusy In action BOOL TRUE,FALSE FALSE True, in action
bError Error BOOL TRUE,FALSE FALSE True, exceptions are generated
The error
nErrorlD SMC_ERROR Reference SMC_Error
code

3) Function Description

bEecute rising edge, no error then, bBusy output is TURE, finish bDone output is true, bBusy

output is false.

For example, if a 20-bit encoder servo motor with a 10:1 reduction ratio drives a screw

(10mm pitch), the motor turns 10 revolutions and the screw moves 10mm, setting
dwRatioTechUnitsDenom 1048576*10 and iRatioTechUnitsNum to 10.
The function block serves to dynamically modify for the program the parts shown in the

following diagram:

4 Axis X
General Axis type and limits
N . [] virtual mode i .
il B Modido Modulo value [ul: 360.0
Commissioning
SM_Drive_ETC_GenericDSP402: 1/0 Software error reaction
Mapping [¥| Decelerate Deceleration [u/s2]: 0
Status Max, distance [u]: 0
Information Dynamic limits
Velocity [ufs]: Acceleration [ufs?] Deceleration [u/s?] Jerk [u/s3]:
1000 1000 1000
A Axis X
= Sealing
i [7] Invert direction
Scaling/Mapping 16=100000 increments <=> motor turns 1
1 motor turns <=> gear output turns 1
Commissioning
1 gear output turns <=> units in application 350
SM_Drive_ETC_GenericDSP402: /O
Mapping
Mapping
Status J] Automatic mapping
4) Error description
bExecute On rising edge.
€ The axis reports an error, Error output.
€ Invalid input value, Error output , Error code SMC_CGR_ZERO_VALUES
L 2 Axis in command-controlled operation, Error output , Error code
SMC_CGR_DRIVE_POWERED
L 2 The input modulus value is invalid (eg: <0), Error output , Error code

VYECTOR

VE Controller Programming Manual A T

SMC_CGR_INVALID_POSPERIOD
Note]: Please read "Appendix C Error Code Descriptions” for the error code descriptions.

VE Controller Programming Manual A T

7.4.31 SMC_ReadFBError

The instruction function is: MC, SMC function block error .
1) Instruction format

Instructions | Name Graphical performance ST performance
SMC_ReadFBError
Axis:= ’
Read SMC_ReadFBError pEnable:= ,
s il bValid=>
; —!|bEnable bBusy}— WALy
SMC_ function e beeror|—
ReadFBError block phyErrT:t?rfsrtr;:iz:
strErrorInstancef—
error tTimeStamp— pbyErrorInstance=> ,

strErrorInstance=> ,
tIimeScamp=>)’

2) Related variables
... input and output variables

Enter the : The
The data | Effective | . . _
output Name initial Describe
) type range

variable value

Maps to the axis, AXIS_REF_SM3 instance of
Axis Axis AXIS_REF - -

the property

Enter variables

Enter the The data) The initial)
_ Name Effective range Describe
variable type value
bEnable Perform | BOOL TRUE,FALSE FALSE TRUE: Perform a read
The output variable
_ The
The output The data Effective _ ,
_ Name initial Describe
variable type range
value
bValid Effective BOOL TRUE,FALSE FALSE True, read valid
bBusy In action BOOL TRUE,FALSE FALSE True, in action
bFBError Error BOOL TRUE,FALSE FALSE True, there is an FB error
The error
nFBErroriD SMC_ERROR Reference SMC_Error
code
POINTER TO The function block of the
pbyErrorinstance
BYTE output point is misaled
Point to error function blocks
strErrorinstance STRING (programs, sub-programs,
function blocks)
The timestamp at which the
tTimeStamp TIME
error occurred

3) Function description
Enable is TRUE, no error is Valid, Busy is TURE.
If there is a function block alarm, bFBError is true.

ECTOR

e

VE Controller Programming Manual

If Enable is FALSE, , then Valid, Busy output is FALSE.

€ Timing diagram sample program

SMC_ReadFBError_ 0
SMC ReadFBError

Axis —Haxis bValid
bBusy
TRUE bFEError = iy
Il bEnable nFBErrorID |- [SMC ADL BU|
pbyErrorInstance —
strErrorInstance [—

tTimeStamp — [T#1h3TmSés6llms |

€ Sample program

i

r
Prepare Value

Expression: SMC_ReadFBError_0.nFBErrorID
Type: SMC_ERROR
Current value: SMC_ERROR.SMC_ADL_BUFFER_OVERRUN

What do you want to do?

(@) Prepare a new value for the next write or force operation:
EMC_NO_ERROR b d

Remove preparation with a value.

Release the force, without modifying the value.

Release the force and restore the variable to the value it had
before forang it.

' o][conce

@ Error ID

VECTOR

VE Controller Programming Manual

Prepare Value ﬁ

2]
k]
B
b
R

Expression: SMC_ReadFBError_0.strErrorInstance
Type: STRING
Current value: Device.Application.FUN_TEST.SMC_AxisDiagnosticLog_0

What do you want to do?

U @ Prepare a new value for the next write or force operation:

' |

Remove preparation with a value.

Release the force, without modifying the value.

Release the force and restore the variable to the value it had
v before forcing it.

o J[conc

SMC AxisDiagnoaticleg 0
SMC AxisDiagnosticlog

Axis —jAxis bDone
bBusy
LOG_EXE bError
!] |] bExecute ErrorlD
bRecording
CLOSEFILE
!]Dﬂ bCloseFile

["zeszizst |—jsFileName

TRUOE

|].|] bSetPosition

TRUE

I]lﬂ bActFosition
TRUE

i].ﬂ bSetVelocity
TRUE

i].ﬂ bActVelocity
TRUE

l]ll] bSectAcceleraticon
TRUE

i].ﬂ bActAcceleration

[5 | {bySeparatorChar
L —|sRecordSeparacorScring

LOG AT CLO | —|eMode

The function block where the error occurred

VECTOR

VE Controller Programming Manual

4) Error description

bExecute on rising edge.

Axis error reported, Error output.
Invalid axis input, Error output.

Note]: Please read "Appendix C Error Code Descriptions” for the relevant error code
descriptions.

VE Controller Programming Manual

7.4.32 SMC_ClearFBError

The instruction function is to clear FB errors from the function block.

1) Instruction format

Instructions | Name Graphical performance ST performance
Clears the
SMC_ function SMC_ClearFBError TEST:=SMC_
—{pDrive SMC_ClearFBErrar
ClearFBError block ClearFBError(pDrive:=ADR(Axis));
error

2) Related variables

...input variables
; The
Enter the The data Effective o _
) Name initial Describe
variable type range
value
Maps to the axis, AXIS_REF_SM3 instance of
pDrive Axis AXIS_REF - -
the property
The output variable
The output The data Effective The initial ,
_ Name Describe
variable type range value
SMC_ClearFBError | Clear the error BOOL TRUE,FALSE FALSE True, clear

VE Controller Programming Manual A T

7.5 Vector special instructions

7.5.1 VECNSMC. VecCheckHardware

The instruction function is: Check that the controller hardware ID is correct. (The library
NSMCLib needs to beinstalled.)
1) Instruction format

Instructions Name Graphical performance ST performance
Hardwar
VECNSMC. elD VecCheckHardware_0 3
VecCheckHardwar | detection VECNSMC.VecCheckHardware VecCheckHardware (Enable:= | CheckO¥=> |;
. —Enable CheckOK
e function
block

2) Related variables
Enter variables

; The
Enter the The data Effective o ;
i Name initial Describe
variable type range
value
Enable function Enable hardware ID to detect
in_Enable BOOL TSTREET,FALSE | FLASE
blocks function blocks
The output variable
; The
The output The data Effective . ,
) Name initial Describe
variable type range
value
When hardwarel D is
The detection was
CheckOK BOOL TRUE,FALSE FALSE detected to be correct, it
successful
is placed as T RUE

VE Controller Programming Manual

7.5.2 VECNSMC.NS_MC_SpecialCamin

The instruction function is: for establishing a special cam relationship between the two axes.
(Library NSMCLib1) instruction format needs to be installed

Instructions Name Graphical performance ST performance
N5_MC_SpecialCamIn(
in Enable:= ,
in_Execute:= ,
in_Stop:= ,
in feedPulse:= ,
in_feedVPulse:= ,
in SlaveCurrentTargetPulse:= ,
NS_MC_SpecialCamIn in_MasterPPU:= ,
—{in_Enable out_Execute_old— in SlavePPU:=
—lin_Execute out_Busyf— i Agl
. —in"stop —rl in_MasterOverflow:= ,
Special 1 . e
in_feedPulse out_EndOfProfilef— in_Distance0ffset_Master head:= ,
VECNSMC. —jin_feedVFulse out_Stop_Donef— in_DistanceAdd:= ,
cam —in_SlaveCurrentTargetPulse out_Plan_VPulsef— A0 D3 manceSimcss
—lin_MasterPPU out_Plan_Pulse}— o R 4
N87M67 X —in_SlavePPU out_MasterFeedPulsef— in DistanceDec:= ,
functlon —in_MasterOverflow out_camPositionf— in_DistanceQffset_Master_tail:= ,
H —{in_DistanceOffset_Master_head out_camPulsef— in Mode:=
Spemalcamln —lin_DistanceAdd out_camSinglef— T E d 1d=>
block —lin_DistanceSync OuY EXeCULG: 0lk=2 ¢
—iin_DistanceDec out_Busy=> ,
—jin_DistanceOffset_Master_tail out_InSync=> ,
—{in_Mode out_EndOfProfile=> ,
out_Stop_Done=> ,
out_Plan VPulse=> ,
out_Plan_Pulse=> ,
out_MasterFeedPulse=> ,
out_camPosition=> ,
out_camPulse=> ,
out_camSingle=>);

2) Related variables
...input variables

The , The
_ Effective — -
Enter the variable Name data initial Describe
range
type value
Enable
Enable special cam function
in_Enable function BOOL | TSTREET,FALSE | FLASE
blocks
blocks
The An up-edge of the input will
in_Execute execution BOOL | TSTREET,FALSE | FLASE initiate the processing of the
condition function block
One of the rising edges of the
Stop the input will lift the cam and stop
in_Stop BOOL | TSTREET,FALSE | FLASE
cam from the axis after the current
cam cycle is complete
Associate the spindle and enter
Spindle The range of
in_feedPulse LREAL 0 the given position of the
position data
spindle, which isf Setposition
Associate the spindle and enter
Spindle The range of
in_feedVPulse LREAL 0 the given speed of the spindle,
speed data
whichis f Setvelocity
From the From the target position of the
The range of
in_SlaveCurrentTargetPulse axis target | LREAL 0 axis, that is, from the axis off
data
position Setposition

VE Controller Programming Manual A T
Spindle
The range of Electronic gears for spindles
in_MasterPPU electronic LREAL 0
data (default 1)
gear
Electronic
The range of Electronic gear from shaft
in_SlavePPU gear from | LREAL 0
data (default setting 1)
shaft
The number The module of the spindle is to
The range of
in_MasterOverflow of cam cycle | LREAL 0 be paired with this value in the
data
spindle units user unit
How many positions the spindle
Spindle front The range of
in_DistanceOffset_Master_head LREAL 0 moved before the cam action
offset data
was made from the axis
Accelerate The acceleration distance from
The range of
in_DistanceAdd the distance | LREAL 0 the axis from rest to the
data
from the axis synchronization zone
Synchronize The synchronous running
The range of
in_DistanceSync the distance | LREAL 0 distance from the axis to the
data
from the axis sync zone

Slow down
The deceleration distance from

the distance The range of
in_DistanceDec LREAL 0 the axis from the
from the data
synchronization zone to rest
shaft
How many more positional
Spindle rear The range of offsets do the spindles take
in_DistanceOffset_Master_tail LREAL 0
offset data after the cam action is made

from the axis?

The range of
in_Mode Mode INT 0 Working mode
data

Note:

(1) Modulus is used for both master and slave axis types in the cam module.

(2) No other motion control can be performed on the slave axes bound in the cam function
block.

(3) When modulus is used for both master and slave axes, the slave axis modulus

in_DistanceAdd+ in_DistanceSync+ in_DistanceDec and the master axis modulus =
in_DistanceAdd*30/16+ in_DistanceSync+ in_DistanceDec*30/16;
The output variable

, The
The output The data Effective . _
) Name initial Describe
variable type range
value
The function block
Execute signal outputs TRUE when it
out_Execute_old BOOL TRUE,FALSE FALSE
output receives the Ex ecute
signal
out_Busy The instruction | BOOL TRUE,FALSE FALSE The current instruction is

VE Controller Programming Manual

is being

executed

in execution and is set to

TRUE

Reach a uniform

The constant speed is

out_InSync speed from the | BOOL TRUE,FALSE FALSE reached from the shaft
shaft and is set to TRUE
The cam action After each cam action is
out_EndOfProfile completes the | BOOL TRUE,FALSE FALSE completed, it is set to
signal TRUE
Stop completing When the stop s
out_Stop_Done BOOL TRUE,FALSE FALSE
the signal complete, set to TRUE
Speed from the The range of The speed from the axis,
out_Plan_VPulse LREAL 0
axis data in userunits/S
From the axis The range of Encoder position in
out_Plan_Pulse LREAL 0
position data pulses
Feedback on the
Feedback on the position
number of cam The range of
out_MasterFeedPulse LREAL 0 of the spindle once cam
cycle spindle data
cycle walk (in user units)
units
Feedback cam The position (in user
cycle from the The range of units) where the feedback
out_camPosition LREAL 0
number of shaft data 1 cam cycle d'a walks
units fromthe axis;
The number of
pulses from the Feedback on the position
The range of
out_camPulse shaft for the | LREAL 0 of one cam cycle walk
data
feedback cam from the shaft (in pulses)
cycle
Used to determine the
position relationship
between the cam and the
cut point, the initial
The range of position is 0 before the
out_camSingle Cam output LREAL 0

data

shaft passes through the
cutpoint, and after
the cut point the
cut point is0 (units:

units).

€ Example: The imaginary axis (Axis_Master) is used as the main axis with the real axis

(Axis_Slave) running cam movement:

Cam spindle: Axis_Master (dummy axis).

Cam slave and gear spindle: Axis_Gear (dummy axis).

Gear slave: Axis_Slave (real axis)

Note:

VE Controller Programming Manual BOM oA MK

(1) The special cam function block must be used in conjunction with the VecCheckHardware
function block. The special cam function block can only be used when the CheckOK output
of the VecCheckHardware function block is TRUE.

(2) Since we cannot assign a value to the fSetPosition of the real axis directly, but can assign
a value to the fSetPosition of the imaginary axis, we need to use the MC_Gearln function
block to establish the gear relationship, so that the imaginary axis Axis_Gear is the main axis
of the gear and the real axis Axis_Slave is the slave of the gear; as follows.

S PCLage s| var_oorroT
= £} Application | Ewoar
.I] Library Manager =] € VAR
ﬂ] Camin (FB) [Gear_Ex: BOOL:
[? AccDec: LREAL:=1000;
[E] GearIn (FB)

- | 9 MC_GearIn_0: MC_GearIn;
[@] Gear_IN FB) ' =

[£] pLc_PrG (PRG)
= E Task Configuration

= & EtherCAT_Task (IEC-Tasks) M;(-:G:;:f

@ PLC_PRG Axis_Gear —"’IMaster - InGear—
= §& VISU_TASK (NewGroup) Axis_Slave ASlave Busyr—
@ VISUE]EMS.VISU_PFQ GE-BI‘_EX Execute Activer
B? s 1 RaﬁoNumtor CommandAborted
- 1 RatioDenominator Errort—
- @ MEEEE AccDec —Acceleration ErrorlD -

B s {:?:rkee*mﬂon

E Visualization _lBufferMode

[EtherCAT Master_SoftMotion (EtherCAT Master SoftM
= %8 VECServo (VECServo)
HgP Axis_Slave (SM_Drive_GenericDSP402)

The cam function is then used as follows: The main axis Axis_Master and the imaginary axis
Axis_Gear are then allowed to establish a cam relationship so that the real axis Axis_Slave can
be cammed with the imaginary axis Axis_Gear via the gear.

The cam function is used by first enabling (in_Enable) the cam module and then triggering
(in_Execute) the cam

b e VecCheckHardware 0
0 Fugs m‘
i Enable ChackOK] MC_MoveValociy 0 :
@) Camin (F8) [MCMoveVebey 0)
= MC_MoveVebery o |
8] Gearln () Asis_Master iy InValocay
m = Vel Ex Execute Busy-
- Vel Vale Velocty Activel~
%] PLC_PRG (PRG) 1000 Co
- @B asme |:Dmh-wn Emor(-
& . ek EmoriD |-
3 EtherCAT Tesk (0EC Tesks) NS_MC_SpecaiCarmin_0 — [}——fowaton
&) ric_rro VECNSMC.NS_MC_SpecaiCamin —
3-8 VISU TASK Newtir Cam En in_Enable out_Exacute_olf~
V) TS oo BT aut_Buf-
&) visuBlems. Visu_Prg in_Stop out_InSyng—
Avis_Master fSetPosiion in_faedPuise out_EndOfProfid-
& Trace “Aois, Stop_Dor
out_Stop_Dong—
- Al nEEes Rode: out Plan_VPuls-
ﬁ EfFNE out_Plan_Pulsel
& out_MasteFaedPulsa— 3
] visusization out_samPosiiorl—— | o GeacFietPason 9

[EtherCAT_Master_SoftMotion (EtherCAT Master SoftMotion)
= Ml VECServo (VECServo)
HgP Axis_Slave (SM_Drive_GenericDSP402)
‘3 SoftMotion General Auis Pool
& Axis_Master (SM_Drive_Virtual)
& Axis_Gear (SM_Drive_Virtual)

out_camPulse—
out_camSingld—

@ Timing diagram

The following diagram shows the timing diagram of the routine. When using the cam
function block, you need to set in_Enable to TRUE first, then give in_Execute a rising edge
trigger, and then trigger the spindle speed to carry out the cam action (triggering the spindle

\Z!ECTOR

VE Controller Programming Manual oa M

speed first and then triggering in_Execute of the cam module is also feasible); when you need
to stop the cam, trigger in_Stop on the rising edge, and the slave cam action will stop after
completing the current cam cycle.;

71‘0 o - BE
i | e
0.5
- E®l =
& w= PLC_PRG.Camln_1.Cam_En
10 - B2
] mm PLC_PRG.CamIn_1.Cam_Ex
05 = PLC_PRG.Camin_1.Vel_Ex
] - B3
o == PLC_PRG.Camln_1.Cam_Stop
L = EE4
o5 = Axis_Master.fSetPosition
= ME#%s
0 mm Axis_Slave.fSetPasition
E - B%s
fil = Axis_Master.fSetVelocity
400
] = Ek7
g - 1 Axis_Slave.fActVelocity
0
EEs
B R
200
0
30079
sptesia b cda bk denlisd cles e el adea dcadosidec e dd sl inalsn diaitn
100
IO DU RO SPUUG [e S ST NN NSRS S SRS
3004 +
200 +
L e s S e e B i
0 : o
7T r—r—— "
10s 20s 30s

VE Controller Programming Manual

7.5.3 VECNSMC.NS_MC_Rotaryln

The instruction function is: used to establish a wheel-cutting relationship between the two

axes.

(Library NSMCLib1) instruction format needs to be installed

Instructions

Name

Graphical performance

ST performance

VECNSMC. ut
NS_MC_Rotaryln

Wheel-c

function

block

in_Enable
in_Execute
in_Stop

in_SlavePPU

in_Cutter_Ci

in_Sync_Len,
in_obj_h
in_Mode

HEEENEEEEN NN

NS_MC_Rotaryln

in_feedPulse
in_feedVPulse
in_SlaveCurrentTargetPulse
in_MasterPPU

in_MasterActivationPosition
in_MasterOverflow

%

in_Cut_Length

gth

out_Execute_old|

out_EndOfProfile
out_Stop_Done|
out_Plan_Pulse|
out_Plan_VPulse}
out_MasterFeedPulse]
out_camPosition|
out_camPulse]
out_camSingle]

out_Busy|
out_InSync

FTTTTTTTTTT

NS_MC Rotaryln(
in_Enable:= ,
in_Execute:= ,
in_Stop:= ,
in_feedPulse:= ,
in_feedVPulse:= ,
in_SlaveCurrentTargetPulse:= ,
in_MasterPPU:= ,
in_SlavePPU:= ,
in_MasterActivationPosition:= ,
in_MasterOverflow:= ,
in_Cutter Cir:= ,
in Cut_Length:= ,
in_Sync_Length:= ,
in_obj_h:= ,
in_Mode:= ,
out_Execute_old=> ,
out_Busy=> ,
out_InSync=> ,
out_EndOfProfile=> ,
out_Stop_Done=> ,
out_Plan Pulse=> ,
out_Plan_VPulse=> ,
out_MasterFeedPulse=> ,
out_camPosition=> ,
out_camPulse=> ,
out_camSingle=>);

2) Related variables
...input variables

Enter the variable

Name

The data
type

Effective
range

The
initial
value

Describe

in_Enable

Enable
function

blocks

BOOL

TSTREET FAL
SE

FLASE

Enable special cam function

blocks

in_Execute

The
execution

condition

BOOL

TSTREET,FAL
SE

FLASE

An up-edge of the input will
initiate the processing of the

function block

in_Stop

Stop the

round cut

BOOL

TSTREET,FAL
SE

FLASE

One of the rising edges of the
input will lift the cam and stop
from the shaft at 180 degrees at

the cut point

in_feedPulse

Spindle

position

LREAL

The range of

data

Associate the spindle and enter

the actual position of the

spindle, which isf Setposition

in_feedVPulse

Spindle

speed

LREAL

The range of

data

Associate the spindle and enter
the given speed of the spindle,

whichis f Setvelocity

in_SlaveCurrentTargetP

ulse

From the axis

target

position

LREAL

The range

of data

From the target position of the
axis, that is, from the axis off

Setposition

VE Controller Programming Manual A T
Spindle
The range The electronic gear of the
in_MasterPPU electronic LREAL
of data spindle, write 1 by default
gear
Electronic
The range From the electronic gear of the
in_SlavePPU gear from | LREAL
of data shaft, write 1 by default
shaft
The first time the knife to the cut
point, the spindle walks the
in_MasterActivationPosi | The spindle The range
LREAL distance, Mode 1 is available
tion start distance of data
(requires more than half of the
knife's perelong)
The number
of spindle The module of the spindle is to
The range
in_MasterOverflow units for the | LREAL be paired with this value in the
of data
wheel-cuttin user unit
g cycle
Knife per per The range Knife perigle (corresponding to
in_Cutter_Cir LREAL
se of data the die from the shaft)
The range Cut length (corresponding to
in_Cut_Length Cut long LREAL
of data the die of the spindle)
Synchronize
The range The synchronization distance
in_Sync_Length the distance | LREAL
of data from the axle cut action
from the axis
The thickness
The range Material thickness, using the
in_obj_h of the | LREAL
of data initial value by default
material
The range
in_Mode Mode INT Working mode
of data
Caution:

(1) Modulus is used for both master and slave axis types in the wheel-cutting block.

(2) No other motion control can be performed on the slave axes bound in the wheel-cutting

function block.

(3) When modulus is used for both master and slave axes, slave modulus = in_Cutter_Cir,

master modulus = in_Cut_Length,

The output variable

, The
The output The data Effective o _
) Name initial Describe
variable type range
value
The function block
Execute is a outputs TRUE when it
out_Execute_old) BOOL TRUE,FALSE FALSE
valid output receives the Ex ecute
signal
out_Busy The instruction | BOOL TRUE,FALSE FALSE The current

VE Controller Programming Manual

is being

executed

instruction is in
execution and is set

to TRUE

Reach a uniform

The constant speed

is reached from the

out_InSync speed from the | BOOL TRUE,FALSE FALSE
shaft and is set to
shaft
TRUE
The cam action After each cam
out_EndOfProfile completes the | BOOL TRUE,FALSE FALSE action is completed,
signal itis set to TRUE
When the stop is
Stop completing
out_Stop_Done BOOL TRUE,FALSE FALSE complete, set to
the signal
TRUE
Speed from the The range of The speed from the
out_Plan_VPulse LREAL 0
axis data axis, in userunits/S
From the axis The range of Encoder position in
out_Plan_Pulse LREAL 0
position data pulses
Feedback on the Feedback on the
number of cam The range of position of the
out_MasterFeedPulse LREAL 0
cycle spindle data spindle's one-wheel
units cut cycle walk (units)
Feedback is provided
Feedback cam on the position
cycle from the The range of (units) that go from
out_camPosition LREAL 0
number of shaft data the axis to the
units wheel-cutting cycle
at onetime;
The number of Feedback on the
pulses from the position of one
The range of
out_camPulse shaft for the | LREAL 0 wheel-cutting cycle
data
feedback cam from the axis (in
cycle pulses)
Used to determine
the position
relationship between
the cam and the cut
point, the initial
The range of position is 0 before
out_camSingle Cam output LREAL 0
data the shaft passes
through the
cutpoint, and

after the cut
point the cut

point iSO (units:

VE Controller Programming Manual A T

€ Example procedure: Imaginary axis for spindle with real axis slave running wheel
tangent motion:

Cam spindle: Axis_Master (dummy axis).

Cam slave and gear spindle: Axis_Gear (dummy axis).

Gear slave: Axis_Slave (real axis)

Note:

(1) The wheel cut function block must be used in conjunction with the VecCheckHardware
function block and the special cam function block can only be used when the CheckOK
output of the VecCheckHardware function block is TRUE.

(2) Since we cannot assign a value to the fSetPosition of the real axis directly, but can assign
a value to the fSetPosition of the imaginary axis, we need to use the MC_Gearln function
block to establish the gear relationship, so that the imaginary axis Axis_Gear is the main axis
of the gear and the real axis Axis_Slave is the slave of the gear; as follows:

[E]Y PLC Logic : S Ll
=} Application 5 m:m
m Library Manager =] € VAR
ﬂ CamIn (FB) Gear_Ex: BOOL:
EI Gearln (FB) : AccDec: LREAL:=1000;

= g MC_GearIn_0: MC_GearIn;
] Gear_IN (FB) : =

[£] pLc_PrG (PRG)
= E Task Configuration

= & EtherCAT Task (IEC-Tasks) MC_Gearln_0
o MC_Gearin
& PLC_PRG Axis_Gear —"’IMaster InGear|-
= 8 VISU_TASK (NewGroup) Axis_Slave Slave Busy—
8] visuElems. Visu_Prg Gear_Ex Execute Active—
a‘q T 1 RatioNumerator CommandAborted —
. 1 RatioDenominator Error—
- NEERsE PecDec —Acceleration ErrorlD -
;'E BirnE i:l}aoelemﬁnn
A . Jerk
Visualizati
E ISuaiizaton —&rﬁerMoﬁe

[EtherCAT Master_SoftMotion (EtherCAT Master SoftM
= %8 VECServo (VECServo)
ﬂ? Axis_Slave (SM_Drive_GenericDSP402)

The cam's main axis Axis_Master and the imaginary axis Axis_Gear are then allowed to
establish a wheel-cutting relationship so that the real axis Axis_Slave can be wheel-cut with
the imaginary axis Axis_Gear by means of a gear.

To use the wheel-cutting function, first enable (in_Enable) the wheel-cutting module and
then trigger (in_Execute) the wheel-cutting module

VE Controller Programming Manual oa M
@) Rotaryln (F8) | s |2
- ame MG_MoveVelocity_0 7
= & EtherCAT Task (IEC-Tasks) VecCheckHardware_0 = MC_MoveVelogty =
- ® sy o R = Enable CheckOK. Vel_Ex Execute Busy-
&8 iy Vel_Value Velocity Active—
8] Visulems. Visu_Prg 1000} o
f Trace kD«zlﬂahnn Emor—
-) EEs NS_MC_Rotaryln_0 ™ Jerk ErrorlD -
B BsnE VECNSMC NS_MC_Rolaryin =1 [——pirection
&) vswsization out_Execute_old —{BufferMode
= [{] EtherCAT Master_SoftMotion (EtherCAT M .,.:ur,:::::
= B VECServo (VECServo) Zuns_Master fSePositon out_ EndOfFrofile -
HgP Avis_Slave (SM_Drive_GenericD§ Auis_Master fSetVelocity f out_Stop_Done [~
=3 SoftMotion General Axis Pool Axdis_Gear fSetPosition in_SlaveCurrentTargetPulse out_Plan_Pulse —
& Asis_Master (SM_Drive_virtual) 1 out_Plan_VPulse~
g 1 {MasterFeedPulse - ~
9 e 50 rve e o MeomchvbonPoson Rperysimsicnd
1000 _MasterOverflow out_camPulse -
360 —in_Cutter_Cir out_camSingle[~
1000 ——in_Cut_Length
100 ——iin_Sync_Length
—jin_obj_h
|I}—m Mode
€ Model description
in_Mode Model description
0 Point O from axis in line with tangent point
1 Point O from axis at 180° from the tangent point

@ Timing diagram

The following diagram shows the timing diagram of the routine. When using the
wheel-cutting function block, you need to set in_Enable to TRUE first, then give in_Execute a
rising edge trigger, and then trigger the spindle speed to carry out the cam action (triggering
the spindle speed first and then triggering in_Execute of the wheel-cutting module is also
feasible); when you need to stop the cam, trigger in_Stop on the rising edge, and the slave
axis will stop at 180° of the tangent point;

@

mE

- BR: E
mm PLC_PRG.RotaryIn_1.Rot_En

- B#2
mm PLC_PRG.RotaryIn_1.Rot_Ex
= PLC_PRG.CamIn_1.Vel_Ex

= B3
mm PLC_PRG.RotaryIn_1.Rot_Stop

l i I

o
< o
siaalasn

=]

(Y i ot st e s o s o o Bt

: i : i i mm Axis_Master.fSetPosition
H Ee - BAs
t . i | i \ = Axis_Slave.fSetPosition
= B#s

B Axis_Master.fSetVelocity
= BT

mm Axis_Slave.fActVelocity

piailiragyl

VE Controller Programming Manual A T

7.6 CNC Instructions

7.6.1 SMC_ReadNCFile2

The instruction function is: Read and write C NC files withG code.
1) Instruction format

Instructions Name Graphical performance ST performance

SMC_ReadNCFile2(
bExecute:= ,
sFileName:= ,
pvl:i= ,
fDefaultvel:= ,
fDefaultAccel:
fDefaultDecel:

Read e —_— fDefaultVelFF:

fDefaulthccelFF:

fDefaultDecelFF:= ,

—hexete bBus]
—sFileName b

—o Emori|
theCNC —iDefauitvel ermorPo:
—fDefastaceel ErorPrograman
—iDefasitDece] sentencest

b3DMode:= ,
SMC_ReadNCFile2 file —Joduhvert sieriesad

bStepSuppress:= ,
:P.,:E:ﬁi:ﬂii i) aSubProgramDirs:= ,
function :;ﬁ:;:;w A bParenthesesAsComments:= ,
et it bDisableJumpBuffer:= ,
block bBusy=> ,
bError=> ,
ErrorlD=> ,
errorPos=> ,
ErrorProgramName=> ,
sentences=> ,
adwFileSize=> ,
adwPos=>);

EEEEEEE)

2) Related variables
input variables

; The
; The data Effective o ;
Enter the variable Name initial Describe
type range
value

An up-edge of the
The
input will initiate the
bExecute execution BOOL TSTREET,FALSE | FLASE

processing of the
condition

function block

The file path for the file
The range of that contains the g
sFileName Filename STRING(255)
data code

(e.g._cnc/CNC_3.enc)).

The list of variables
defines the type and
address of each
The list of | POINTER variable that can be
pvl TSTREET,FALSE | FLASE
variables TO SMC_VARLIST used from the g code.
If there are no variables
in the g code, this input

is not used

The default The range of Use this input if speed
fDefaultVel LREAL 0
speed data (F) is not specified in

VE Controller Programming Manual

the CNC file. Note:
Only for main
programs, not

sub-programs.

fDefaultAccel

The default

acceleration

LREAL

The range of

data

Use this input if
acceleration (E-plus) is
not specified in the
CNC file. Note: For
main programs only,

not for sub-programs

fDefaultDecel

The default
speed

reduction

LREAL

The range of

data

Use this input if you do
not specify speed
reduction (E -)in the
CNC file. Note: For
main programs only,

not for sub-programs

fDefaultVelFF

GO default
speed

LREAL

The range of

data

The default speed of
GO(FF),which is used if
the speed is not
specified in the CNC
file. Note: For main
programs only, not for

sub-programs

fDefaultAccelFF

GO the
default

acceleration

LREAL

The range of

data

GO defaults to
acceleration degree EF
plus. Use this input if
acceleration is not
specified in the CNC
file. Note: For main
programs only, not for

sub-programs

fDefaultDecelFF

GO slows
down by

default

LREAL

The range of

data

GO Default Speed
Reduction EF -. Use
this input if the
reduction speed is not
specified in the CNC
file. Note: For main
programs only, not for

sub-programs

b3DMode

3D mode

BOOL

TSTREET,FALSE

TSTREET

If true, the G17
command (activates 3D
mode) is implicitly

executed

bStepSuppress

Comment

BOOL

TSTREET,FALSE

FLASE

When this input is

VE Controller Programming Manual

processing

TRUE, the line that the
CNC program begins
with /" is ignored.

For FALSE, it will be

aSubProgramDirs

Sub-program

ARRAY [0.4] OF
STRING(174)

processed
Tasks that are
frequently repeated,

such as cavity milling,
hole drilling, and tool
changes, can be
replaced with G
code subp programs
and called from here;
For subprograms
named "SUB", start with
the directory
aSubProgramDirs, and
search for the file
"sub.cnc” (in small case)
in ascending order. The
first matching file is
used. The first empty
directory name ends

the search.

bParenthesesAsComments

Parenthesis is
a multi-line

comment

BOOL

TSTREET,FALSE

TSTREET

Set T RUE,which uses
parentheses in G code
to be considered
multi-line comments,
and FALSE, which can
be used in expressions
(‘a-b)*c") for
sub-program calls in g
code such as ('N10

sub(17)").

bDisableJumpBuffer

Jump buffer

BOOL

TSTREET,FALSE

FALSE

True, this input disables
the internal jump
buffer, which is used to
improve the
performance of g code
processing with jump

(G20).

The output variable

VE Controller Programming Manual A T
, The
The output Effective o _
, Name The data type initial Describe
variable range
value
The The current
instruction instruction is in
bBusy BOOL TRUE,FALSE FALSE
is being execution and is set
executed to TRUE
When it isT RUE,
bError Error BOOL TRUE,FALSE FALSE the function block
reports an error
The error code that
The error was output when
ErrorlD SMC_ERROR
code the function block
reported an error
The wrong source
The wrong
errorPos SMC_NC_SourcePosition location was
location
detected
The name
The wrong
of the
ErrorProgramName STRING program name was
wrong
detected
program
You can enter
Sentence SMC_NClnterpreter
sentences SMC_GSentenceQueue
queue sentence queue in
the file
The file | ARRAY[O..(NUM_PARSER_CHAI | The range of
adweFileSize File size, in bytes
size NS - 1)] OF DWORD data
The cursor is in its
Read the | ARRAY[0.(NUM_PARSER_CHAI | The range of
adwPos current position in
location NS - 1)] OF DWORD data

the file

VE Controller Programming Manual

7.6.2 SMC_NClnterpreter

The instruction function is: the G code read to the read file function block is interpreted as a

list SMC_GEOINFO the file.

1) Instruction format

Instructions

Nam
e

Graphical performance

ST performance

SMC_NClinterpreter

Decod
e the

functio

n

block

SHC NCInterpreter(
sentence
bExecute:= ,

bAbort:= ,

bAppend:= ,
piStartPosition:= ,
vStartToolLength:= ,
nSizeOutQueue:= ,
pbyBufferCutQueus:= ,
bEnableSyntaxChecks:= ,
e0riConvi= ,

'

dCircleTolerance:= ,
plnterpretersStack:= ,
nlnterpreterStackSizeBytes:= ,
bDone=> ,

bBusy=> ,

bError=> ,

wErrorID=> ,
errorPos=> ,
pogDatalut=> ,
iStatus=> ,
iLineNumberDecoded=> ,
GCodeText=> ,
CallstackInfo=> ,
ahActivePrograms=>);

2) Related variables

input variables

Enter the Effective | The initial _
, Name The data type Describe
variable range value
Sentence SMC_GSentenceQu The input queue for the g
sentences
queue code statement
The An up-edge of the input
TSTREET,FA
bExecute execution BOOL FALSE will initiate the processing
LSE
condition of the function block
If true, the current
Abort TSTREET,FA
bAbort BOOL FLASE processing of this feature
processing LSE
block is aborted
If true, triggering
bExecute does not result in
Additional TSTREET,FA a reset of the queue.
bAppend BOOL FLASE
data LSE Instead, the newly entered
data is written out of the
end of the queue
The
The range The starting position of the
piStartPosition starting SMC_POSINFO 0
of data path
position
The The range
vStartToolLength SMC_Vector3d 0 The starting tool length
starting of data

VE Controller Programming Manual

tool length

nSizeOutQueue

The size of

the buffer

UDINT

The range

of data

This variable contains the
size of the data buffer and
is written to SMC_GEOINFO
list of structured objects.
The buffer must hold at
least five SMC_GEOINFO
objects. Otherwise, the
function block will not
perform any action at all. Its
size can be predefined, but
can only be modified later
during the reset. It s
recommended to create a
buffer

Array .50 of SMC_Geolnfo;

asfollows: BUF:

The operator is then used
to retrieve the appropriate

buffer size, size size (BUF);

pbyBufferOutQueu

e

Point to the

store

POINTER TO ARRAY
[0.0]OF
SMC_GEOINFO

The range

of data

This input must point to the
SMC_OUTQUEUE assigned
to the store of the structure.
This area must be at least as
large as defined in
NSizeOutQueue

Asdefined: BUF:

(1..50) OF SMC_GEOINFO

ARRAY

Then the ADR(BUF)pOINts
to thisinput;

bEnableSyntaxChec

ks

Grammar

detection

BOOL

TSTREET,FA
LSE

TRUE

Turn on syntax detection,
which detects an invalid G
code and stops in this case

as an error.

eOriConv

Directional

explanation

SMC_ORI_CONVEN
TION

SMC_ORI_CO
NVENTION.
ADDAXES

Defines how the direction in
the A/B/C word is

interpreted.

dCircleTolerance

The
definition

of a circle

LREAL

Tolerances determine
whether the definition of a
circle makes sense.

Case is defined by the
target position and radius:
If the distance between the
start and end positions

(both projected onto the

VE Controller Programming Manual

circle plane) is greater than ,
the circle is converted to a
straight line. 2 s the radius
and MAX (fCircle Tolerance,
1e-06) case definition by
target position and center
maximum

position: the

value of the distance
between the starting and
center position x and the
distance between the target
location and the center
position (projecting

everything onto the

circular plane). If these

distance differences are

greater than , the circle is
converted to a straight line.
MAX(fCircleTolerance, 0.1 *

X)

Provides a buffer for the
interpreter stack. If it is O,

the default buffer with a

Stack
pinterpreterStack POINTER TO BYTE size of 10240 bytes is used.
buffer
A given buffer will be used
if the buffer is 0. This input
is read per cycle.
The size of the buffer that
The size of
ninterpreterStackSiz plnterpreterStack points to.
the stack | UDINT
eBytes Note that the size should
buffer

be at least 1024 bytes

The output variable

_ The
The output Effective . :
_ Name The data type initial Describe
variable range
value
The
execution
The current instruction
of the
bDone BOOL TRUE,FALSE FALSE execution is complete
instruction
. and is set toT RUE
is
complete
The The current instruction
bBusy instruction | BOOL TRUE,FALSE FALSE is in execution and is
is being set to TRUE

VE Controller Programming Manual A T
executed
When the function
bError Error BOOL TRUE,FALSE FALSE block is reported as an
error, it isT RUE
The error code that
The error was output when the
wErroriD SMC_ERROR
code function block reported
an error
The wrong The wrong source
errorPos SMC_NC_SourcePosition
location location was detected
A SMC_OUTQUEUE to
Position
POINTER a structure that
pogDataOut data
TO SMC_OUTQUEUE manages decoded
output
SMC_GEOINFO objects
The
Status current SMC_DEC_STATUS The current state
state
iLineNumberDec The line The range of The currently decoded
DINT
oded number data G-line number
G code The range of
GCodeText SMC_GCODE_TEXT G code text
text data
Stack
Callstackinfo informatio | SMC_NCCallstackinfo
n
aActivePrograms saves
the name of the (sub)
program that is
Currently currently being
active interpreted. If it is a
ARRAY[0..(SoftMotion_NC2_
programs subprogram, then
aActivePrograms Constants.IPR_CALLSTACK _SI
and aActivePrograms saves
ZE - 1)] OF STRING
sub-progr the name of the calling
ams (sub) program, and so

on. The list of active
programs terminates

with an empty string.

VE Controller Programming Manual

7.6.3 SMC_Interpolator

The instruction function is: This function block is used to convert the continuous path
described by the SMC_GEOINFO object to a discrete path location point, taking into account
the defined speed curve and time pattern. These location points are then typically converted
through an IEC program (for example, converted to drive shaft positions) and sent to the

drive.

1) Instruction format

Instructions

Nam
e

Graphical performance

ST performance

SMC_Interpolator

Interp
olation
functio

n

LLLL L il

blocks

SMC_Interpolator(
bExecute:= ,
pogDataln:= ,
bSlow Stop:= ,
bEmergency_Stop:= ,
bWaitAtNextStop:=
dOverride:= ,
iVelMode:= ,
dwIpoTime:= ,
dLastWayPos:= ,
bAbort:= ,
bSingleStep:= ,
bAcknM:= ,

[bExecute
pogDataln

1= FALSE]

bDonef
bBusy|
bError]

bQuick_Stop:= ,
dQuickDeceleration:= ,

[bSlow_Stop
bEmergency_Stop
(bWaitAtNextStop
doverride 1]
iVelMode

dwipoTime 2= 0]
[dLastWayPos i=0]
bAbort
[bSingleSten
bAdkn!]

bQuick_Stop
GQuickDeceleration
JericMax

dQuickStoplerk
bSuppressSystemMFunctions

iActObjectSourceNol

dActObjectiengthRemaining|

wErrorlD
piSetPosition|
iStatus|
bWorking|

dActObjectLength

dvel
vechdTangent]
iLastSwitchy
dwSwitches
dwayPos|

L 0 e

WM
sdToolLength|

dJerkMax:= ,
dQuickStopJerk:= ,
bSuppressSystemMFunctions:= ,
bDone=> ,

bBusy=> ,

bError=> ,

wWErroriD=> ,

Act_Object]

;

piSetPosition=> ,
iStatus=> ,
bWorking=> ,
iActObjectSourcelo=> ,
dActObjectlength=> ,

dvel=> ,
vecActTangent=> ,
ilastSwitch=> ,
dwSwitches=> ,
dWayPos=> ,

wM=>
adToolLength=> ,
Rct_Object=>);

2) Related variables

input variables

Enter the
variable

Name

The data type

Effective
range

The initial

Describe
value

bExecute

The
execution

condition

BOOL

TSTREET,FA
LSE

FALSE

of the function block

pogDatain

Location

data entry

POINTER
TO SMC_OUTQUEU
E

The variable

object of

SMC_GEQINFO

dActObjectlengthRemaining=> ,

An up-edge of the input

will initiate the processing

points

SMC_OUTQUEUE structure

object, which contains the

Typically it points to the

VE Controller Programming Manual A T
pogDataOut of the
preprocessed function

block output

bSlow_Stop

Stop slowly

BOOL

TSTREET,FA
LSE

FLASE

If you set this variable to
FALSE, the path is passed
non-stop. Set to TRUE,
SMC_Interpolator will
reduce the speed to O
based on the defined speed
curve (byVelMode) and
the maximum deceleration
(dDecel) of the current
SMC_GEOINFO object, and
wait until bSlow_Stop to

reset it to FALSE

bEmergency_Stop

Stop

immediatel

y

SMC_POSINFO

The range

of data

As soon as the input gets
TRUE, SMC_Interpolator
stop immediately, which
means that the current
location is preserved.
Therefore, the speed is

immediately set to 0

bWaitAtNextStop

Wait for
the next

stop point

SMC_Vector3d

The range

of data

As long as this variable is
FALSE(the default), thepath
ispassed non-stop.
Otherwise,
SMC_Interpolator stop at
the next regular point until
bWaitAtNextStop resets it
to FALSE

dOverride

Speed

factor

LREAL

The range

of data

This variable can be
overwritten online. Less
than 0.01 is not allowed.
The multiply wused to
change the interpolation
speed, such as dOverride
plus 2, doubles the speed.
Note: The multiply can be
modified at any time, but
can only be applied if there
is currently no acceleration

or deceleration.

iVelMode

Speed

mode

SMC_INT_VELMOD
E

TRAPEZOID

This input defines the speed
SMC_INT_VELMODE

VE Controller Programming Manual

defined in the data set

dwlpoTime

Cycle time

DWORD

The range

of data

This variable must be set for
each call. It represents the

cycle time in microseconds

dLastWayPos

The last
extension

path

LREAL

The range

of data

This input allows the user to
measure the extension of
the path protruding from
the interpolator. The output
of this module, dWayPos, is
the same as the distance
covered by dlastWayPos
and the current period. If
dLastWayPos is set to
equal the output dWayPos,
dWayPos will always
increment in the current
path segment, resulting in
the total length of the travel
path. dLastWayPos can be
reset to O or other values at

any time.

bAbort

Abort

processing

BOOL

The range

of data

FALSE

If true, the current
processing of this feature

block is aborted

bSingleStep

Stop a

cycle

BOOL

The range

of data

FALSE

The purpose of this input is
that the interpolator stops a
cycle at the transition
between the two path
objects (also at the same
transition where the cut is
made). If you set its
bSingleStep to TRUE during
the move, the interpolator
stops at the end of the
object and can reach that
target without exceeding
the predetermined deslevel
value. If the interpolator
should stop at the next
possible stop position (i.e. a
point with a speed of 0),
bWaitAtNextStop must be

used.

bAcknM

The M

BOOL

The range

FALSE

This input can be used to

VE Controller Programming Manual

function is of data confirm the M function. If
confirmed the input is TRUE, the
output wM is cleared and
path processing continues
If this input is TRUE, the
interpolator reduces the
speed to zero until
bQuick_Stop reset it to
FALSE. Decelerates
according to the defined
Stop The range speed curve (by VelMode)
bQuick_Stop BOOL FALSE
quickly of data and the deceleration given
in the(dQuickDeceleration)
path. If secondary speed
mode is used, the impact is
limited.
max(dJerkMax, dQuickStop]
erk)
The
desdation The range The bQuick_Stop used to
dQuickDeceleration THEREAL 0
value of the of data reduce the value
quick stop
The
Only for secondary speed
amplitude
mode. It must be positive
of the The range
dJerkMax THEREAL 0 and cannot be changed
maximum of data
while the interpolator is
acceleratio
running
n
If one of the secondary
Fast-stoppi
velocity modes is selected,
ng The range
dQuickStopJerk THEREAL 0 the emergency stop uses a
acceleratio of data
sharp amplitude to reduce
n
acceleration
If this option is set, the
output wM is not set for the
bSuppressSystemM | Output wM The range
BOOL FALSE internal M feature created
Functions flag bit of data
by the G75 or G4
commands
The output variable
_ The
The output Effective o :
_ Name | The data type initial Describe
variable range
value
bDone The BOOL TRUE,FALSE FALSE The current instruction

VE Controller Programming Manual

execution execution is complete and is set
of the toT RUE
instruction
is
complete
The
instruction The current instruction is in
bBusy BOOL TRUE,FALSE FALSE
is being execution and is set to TRUE
executed
When the function block is
bError Error BOOL TRUE,FALSE FALSE
reported as an error, it isT RUE
The error code that was output
The error
wErrorID SMC_ERROR when the function block
code
reported an error
It reflects the calculated set
Calculate position and contains the
SMC_NC_SourceP
piSetPosition the set Descartes coordinates for the
osition
position next position and the status of
the attached axis
The enumeration variable
reflects the SMC_INT _STATUS
of the function blocks defined
in the database. Possible
state:PO_UNKNOWN (0):
Internal state changes that may
not occur after
SMC_Interpolator. IPO_INIT
(2): Initialized state;
IPO_ACCEL (2): Acceleration
IPO_CONSTANT (3): Constant
The motion IPO_DECEL (4):
Status current SMC_INT_STATUS IPO_INIT Deceleration IPO_FINISHED (5):
state Path complete. Any other

objects that SMC_GEOINFO will
not be processed by pogDataln.
IPO_WAIT (6): Wait for one of
the following:bEmergency_Stop
sTRUEbSlow_Stop s TRUE and
dVel s true anddVels true
bWait_At_Next_Stop anddVels 0
IPO_INCREASING_ACCEL(7):

Increase acceleration
IPO_DECREASING_ACCEL (8):

Reduce acceleration

VE Controller Programming Manual

IPO_INCREASING_DECEL (9):
Increase deceleration
IPO_DECREASING_DECEL (10):

Lower Slow down

The T RUE only if list processing has
The range of
bWorking current BOOL FALSE started but has notyet been
data
state completed
The
The runtime displays the line
current
iActObjectSource The range of number of the current
interpolati | DINT -1
No data interpolation in real time, which
on line
is -1 when bWorking is FALSE
number
The
The length of the current object
dActObjectlengt | current The range of
LREAL is output when bWorking is
h object data
TRUE
length
The
remaining
When bWorking is TRUE, the
dActObjectLengt length of The range of
LREAL remaining length of the current
hRemaining the data
object is output
current
object
The
current The range of This variable contains the
dVel LREAL 0
path data current path speed
speed
The actual This structure contains path
vecActTangent SMC_VECTOR3D
path cut slices, or unit vectors
This output contains the
number of the last passed
Last The range of
iLastSwitch INT 0 switch. Note: If more than one
switch data
switch passes in a cycle, only
the last one is mentioned
Describes the current switching
statusof all switches 1 - 32. BitO
means switchl, Bit31 means
Multi-swit The range of
dwSwitches DWORD 0 switch32. Compared to
ch bit data
iLastSwitch, this bit field also
contains multiple switches in a
cycle
The
The range of
dWayPos extended THEREAL See Enter dLastWayPos
data
path
wM The M | WORD The range of If the interpolator passes the M

VE Controller Programming Manual

function data function, this output is set to
associates the value associated with the M
the value function. The interpolator will
stop until the M function
(bAcknM) is entered
Tool
length
Parameters for tool length
compensa | ARRAY [0.2] OF | The range of
adToollLength compensation (set by G43 |
tion LREAL data
//K).
parameter
S
Point to
A pointer to the current
the POINTER
Act_Object interpolation path element. It
interpolati | TO SMC_GEOINFO

on path

could be 0

VE Controller Programming Manual A T

8 Comprehensive configuration debugging
8.1 Modbus Communications

8.1.1 ModBusRTU Slave

The VE motion controller supports standard ModeBusRTU communication, connecting
to the touch screen serial port via a communication serial port. The following step touch
screen as an example, through the serial RS232/485, VE controller connected to two touch
screens, touch screen as the main station, VE controller as a startingstation, the wiring
diagram is as follows:

Foot position Defined
1 RS485 -
2 RS485 +
5 GND

Install ModbusRTU_Slave

To use the ModeBusRTU_Slave first install the device by clicking onthe toolbar
"Tools—=>Device Repository"”

ols | Window Help

To
@ Package Manager...

Library Repository...

Device Repository... I
Visualization Style Repository...
License Repository...

= = o=

License Manager...

Scripting 3
Customize...

Options...

Import and Export Options...

Then click "Install" to find the device description file"ModBusRTU_Slave.xml" andselect
and clickOpen

VE Controller Programming Manual B Mo
2 Device Repository
| |
| Location System Repository v Edit Logations... |
' (C:\ProgramData\CODESY5\Devices) |
|
| £
|
Installed device descriptions
|Smng for a fulltext search Vendor: <Al vendors=> v Install...
I 1
& T LY s e s
| 4] NewModbusRTU_Slave.devdesc ... | 20 XML S5 14 K8
4] NewModbusTCP_Slave.devdesc ... 2020 3:51 XML ST 14 KB
&) NewModbusTCP_Slave.devdesc ... 2020 XML T 14 KB

v | All supported description fil ~

3] =

Close

Displays that the installation was successful, which indicates that the device was installed

successfully and can be added for use.

= D:\Desktop\NewModbusRTU_Slave.devdesc - pr256.xml
- ## Device "ModbusRTU_Slave" installed to device repository.

Add an RTU device

After the new project is created, select "Right-click = Device Add Device
Mod->BUSRTU_SlaveAdd Device" to confirm that the—>RTUdevice isadded and that the VE
controller will be added to the project as a from the station.

=) NewTCPER#H®2 F256DI

[# @ Device (vector ARM Cortex-Linux-sM-CNC-TV-MC) | @ Add Device x
‘] % Cut
e Name [ModbusRTU_Save_1
@ Paste Action
¥ Delete (@ Append device (O Update device
Refactoring »
o o = ‘Smng for a fultext search ‘ Vendor <All vendors> >
roperties...
{1 Add Object N Name Vendor Version Description
& Add Folder.. - Bu ‘
) [Adapevee 3 |ﬂi ModbusRTU Slave |Vector 3.5.4.0
Update Device “-1d ModbusTCP_Slave Vector 3.5.4.0
5 Edit Object * (@ risdbuses
Edit Object with...
Edit 10 mapping
Import mappings from CSV...
Export mappings to CSV...
% Online Config Mode...
Reset Origin Device [Device]
Group by category [Display all versions (for experts only) [Display outdated versions
Simulation

i

Name: ModbusRTU_Slave ~
Vendor: Vector

Categories:

Version: 3.5.4.0

Append selected device as last child of
Device

o (You can select another target node in the navigator while this window is open.)

1]

Close

VE Controller Programming Manual

When the addition is complete, double-click to open as follows.

Eﬂ“ ModbusRTU_Slave x L

= PCI-Bus IEC Objects Internal Parameters = Internal /O Mapping Status .} Information

Parameter Type
Vendor STRING
ModelName STRING
Chance_Online_State BOOL
1D WORD
Baud WORD
Data_bits WORD

@ Check WORD

- # Stop bits WORD

Parameter settings

Value Default Value Unit

"Vector' "Vector'
‘ModbusRTU' ‘ModbusRTU'
0 0

1 i

9600 9600

8 8

0 0

1

Description

Vendor of the device

Model name of the device

Parameter to change the online state of the device
ModbusRTU slave ID

ModbusRTU baud rate

ModbusRTU bata bites

ModbusRTU Check. 0:no, 1:0dd, 2:even.
ModbusRTU Stop bits.

After double-clicking expands, the VE controller sets the parameters as shownbelow,
modBusRTU_Slaverelated parameter settings include: station number, baud rate, data bit,

parity, stop bit.

1] ModbusRTU_Slave X

= PCI-Bus [EC Objects Internal Parameters

ID Station number WORD
Baud Baud rate WORD
Data_bits Data bits worD
Check Checksum WoRD
stopbits Stop bits worD

Parameter Type
Vendor STRING
ModelName STRING
#® Chance_Online_State BOOL

¥ Internal I/O Mapping Status) Information

Value Default Value Unit
Vector' 'Vector'
‘ModbusRTU' ‘ModbusRTU'
a 0
1 1
9600 9600
8 8
0 0
1 1

Description

Vendor of the device

Model name of the device

Parameter to change the online state of the device
ModbusRTU slave ID

ModbusRTU baud rate

ModbusRTU bata bites

ModbusRTU Check. 0:no, 1:odd, 2:even.
ModbusRTU Stop bits.

At the same time, the touch screen engineering also needs to set the corresponding

station number and related parameters

Type of

oxmmmcation | HoTeord
Baud rate 9600
Data bits 8

Parity Mo parity
Stop bits 1

Arasdcast
r_ stadtsan mum ber

VE Controller Programming Manual BOM oA MK

You also need to set up a data scan refresh cycle, as shown below, selecting Main_Task
as the task for the scan, allowing the user to select other tasks (non EtherCAT_Task) and set
the task cycle time.

[ModbusRTU_Slave x -
= PCI-Bus IEC Objects Internal Parameter Status {3 Information |
| Find 1 Filter Show all -+ 4k Add FB for IO Channel... |

Variable Mapping Channel Address Type Unit Description

% input Y%IW772 ARRAY [0..256] OF WORD

+" output %QW772 ARRAY [0..256] OF WORD

- input_bits %IB2058 ARRAY [0..256] OF BYTE

+-" output_bits %(QB2058 ARRAY [0..256] OF BYTE
| Always update variables Enabled 2 (always in bus cyde task) v

) Use parent device setting
‘% = Create new variable " = Map to existing variable nabled 1se pus cyde task | Jse

2 |_Errabled 2 (always in bus cycle task)
Bus Cycle Options
Bus cyde task MainTask >
Use parent bus cyde setting

E-.Cross Reference List
Address-associated variables

In the ModBusRTU_Slave device, the mapping address is provided as follows:

Type Channel Description
input[0] ~ input[1023] Enter the register power-down
input
hold area
(Address type:
input[1024] ~ input[4095] The input register power-down
4X).
does not hold the zone
output
(Address type: output[0] ~ output[4095]
3X).
input_bit[0]~input_bit[1023] Enter the coil power-down hold
input_bit
area
(Address type:
input_bit[1024]~input_bit[4095] Enter that the coil is powered
0X).

down and does not hold the zone

VE Controller Programming Manual A T

output_bit
(Address type: ooutput_bit[0]~output_bit[4095]

1X).

Touch screen address types: 0X, 1X, 3X, 4X, corresponding to ModBusRTU_Slave
address channels are:input_bit,output_bit,output,input.

Variables determine the number of channels occupied according to their own data type,
such as INT variables occupy one WORD, REAL, DINT variables occupy two WORDS, LREAL,
LINT variables occupy 4 WORDS, and so on.

= PCI-Bus IEC Objects Internal Parameters = Internal I/OMapping Status <) Information

Find Filter Show all » o Add FB for 10 C
Variable Mapping Channel Address Type Unit Descrip
- 4P input YelW418 ARRAY [0..256] OF WORD
+- 9 output %QW403 ARRAY [0..256] OF WORD
+ B input_bits %IB1350 ARRAY [0..256] OF BYTE
+ e output bits %QB1320 ARRAY [0..256] OF BYTE
Attention:

1, when the variable type is 32 bits (such as REAL) or 64 bits (such as LREAL), the address
map should start from a double address mapping, such as REAL data can not be mapped to
the address %IW5, can only be mapped to %IW4 or %IW6 and other double address,
otherwise compilation will report errors.

2, the associated address should be associated according to the channel's starting
address, as shown below, the variable wants to associate to the channel input

=4 input %IW386 ARRAY [0..256] OF WORD
-4 input[0] %IW336 WORD
FE™ input{1] %IW387 WORD
+ 4 input(2] %IW388 WORD
- input[3] %IW353 WORD
-4 input[4] %IW350 WORD
- input[5] %IW391 WORD
+ input(s] %IW392 WORD

r 1 =

In a device, io addresses are mapped to variables in two ways.
Method 1: Map addresses in variable declarations, as shown below.

Input type:

VECTOR

B
k]
B
b
R

VE Controller Programming Manual

FROGRAM POUL

VAR
£ input
Al AT SIWl:INI; //INT
A2 AT %INZ2:REAL: //REAL
A3 AT SIW4:UINT; /UINT
Ad AT RIX5.0:BOOL: /BO0OL
Bl AT %0x0.0:B00L: / BoOL
B2 AT RQWl:I

END VAR

Table type:

Scope Mame Address Datatype [Initialization Comment Attributes

* VAR Al SeNVl INT

* VAR A2 a2 REAL

¥ VAR A3 L UINT

* VAR A4 L6550 BODL

* VAR Bl SHO00 BOOL

* VAR B2 SROW1 INT 10

Method 2: Select a variable in the io mapping list.

Internal Parameters = Internal YO Mapping Status {3 Information

Find Filter Show all
Variable Mapping Channel Address Type
e input(5] %IWS WORD
+ My input[6] %IW6E WORD
+ A input[7] %IW7 WORD
.4 input[8] %IWS WORD

VE Controller Programming Manual BOM oA MK
Text Search Categories
Variables 4+ Name Type Address Origin
= ﬁApplicatiﬂn Application
+[5] pLC_PRG PROGRAM
=[5 pour PROGRAM
© @ AL INT 96IW1
A2 REAL 2
<@ A3 UINT %I
. & A4 10/0)] G50
2 # A6 INT
- @ Bl BOOL %BQX0.0
- @ B2 T %QW1L
+ {} BPLog Library Breakpoint Loggi..
+ gl ToConfig_Globas VAR_GLOBAL
+ {} SM3_Basic Library 5M3_Basic, 4.6.0..
+ {} sM3_Math Library SM3_Math, 4.5.0...
Structured view Filter |None &l

Insert with arguments

Insert with namespace prefix

Documentation
A6: INT; ~
(VAR)
v

HMI settings

2]

Taking the step touch screen as an example, the system parameters are set as follows:

Type o

T
Baud rate
Data bits

Farity

Stop bits

Arasdcast
r_ stadtsan mum ber

The PLC parameters are set as follows:

R5485-2
9600
8

Mo party

i

PLCEME

pLC |

W 5.

==

The VE motion controller corresponds to the human ModBus address as follows:

VE Controller Programming Manual A T
Motion controller channel address - Human-machine address - 1
The channel type The controller address type | The type of

human-machine address

inputbit input_bit[0] 0X1
input_bit [1] 0X 2
input_bit [2] 0X3
input input[3] 4X 4
input[500] 4X 501
outputbit ooutput_bit[0] X1
output output[500] 3X 501

VE Controller Programming Manual A T

8.1.2 ModBusTCP Slave

The VE motion controller supports standard ModeBusTCP communication, connected
to a touch screen or switch via the EtherNet communication port. The following is an
example of the Veronton touch screen, through the switch, VE controller EtherNet network
port to connect two touch screens, touch screen as the main station, VE controller as a
starting station, the specific operation steps are as follows:

Install ModBusTCP_Slave device

To use the ModeBusTCP_Slave first install the device by clicking onthe toolbar
"Tools—=>Device Repository”

ols | Window Help

To
@ Package Manager...

Library Repository...

Device Repository... I
Visualization Style Repository...
License Repository...

= = o=

License Manager...

Scripting 3
Customize...

Options...

Import and Export Options...

Then click "Install" to find the device descriptionfileVEC_ModBusTCP".xml Slave"and
select and click Open

'ﬁ ﬁi‘ e ; J" & 2 Device Repository - . 5 d
2 x (] ModbusRTU_Slave X | Location |System Repository v| | Edit Locations... F
) ¥/~ || = pCIBusIEC Objects Internal Paramd (C:\ProgramData\CODESYS\Devices) I
Find p
— Installed Device Descriptions (1)
Variable Mapg
5 |String for a full text search ‘ Vendor | <All vendors> ~
+ g ‘ Name Vendor Version Description
| - + - [Miscelaneous
Install Device Description x
&« v « XML& > VEfEMESMODBUS TCP_xml v [J] 2= "VEfEMWIEMODBUS T
|n - R = [@
A 4 - EaraE peel
. WPS@Q ';FT 5‘55\'._4 Ses
o s | 32869_1001 0008_3.5.4.0.devdesc.xml 2020/8/21 13:17 XML 3785
Pous (2) -
> A360 Drive
B s Close
= BA L -
¥ T | v
b E5
| =E v < 3 D
ITAEE(N): v| |Sercos XML device descripti v
3) §I3F(0) s — | 4

b |F| ter by Symbol, POU, Variable, Access, Context, Type, Address, Object

Displays that the installation was successful, which indicates that the device was installed
successfully and can be added for use.

VE Controller Programming Manual BOM oA MK

= & D:\Desktop\codesysrfHiHBAH\VET 3545 +HE\VEC ModBusTCP.xml
4% Device "ModbusTCP_Slave" installed to device repository.

Add a TCP device

After the new project is created, select Right-click - Device Add
Device>ModBusTCP_SlaveAdd Device to confirm that the->TCPdevice is added and that the
VE controller isadded to the project as a from the station.

Devices o
= O TCPEaERZTE (exp) s i~
ut 3 4d De
|, [Device (Vector ARM cOrtex—UrE Copy Add De
= PLC Logic Paste
1 = £ Application X Belote Name [ModbusTCP_Save
i Library Manager 3 Action
e Refactorin »
- [E] PLC_PRG (PRG) : g S e e i G it e
= (& Task Configuration Properties...
=& MainTask (EC-Taly Add Object » ‘Str'\ng for a fultext search | Vendor <Al vendors> v
PLC_PRG 5 . "
% Softiot @Ge 7IAx = Name Vendor Version Description
etion. Seneral Axis Add DEVI(E.-.. = miscetaneous
2 Update Device... (@ ModbusRTU_Slave ~ Vector 3.5.4.0

L‘E

Edit Object

3 | ModbusTCP_Slave Vector 3.5.4.0 |
Edit Object with...

(@ Peldbuses

Edit IO mapping

Import mappings from CSV...

Export mappings to CSV...
% Online Config Mode...

Reset Origin Device [Device]

Simulation

Group by category [] Display all versions (for experts only) [Display outdated versions

@ Name: ModbusTCP_Slave ol
Vendor: Vector

Categories: %}
Version: 3.5.4.0 =
=N
Append selected device as last child of
Device

® (You can select another target node in the navigator while this window is open.)

4 o] o=

3 Devices | PoUs

When the addition is complete,double-click on the following,ModBusTCP_Slave's
EtherNet default IP is 192.168.1.123, consistent with the host, and requires the touch screen
IP to be set in the same band, distinguished by port number.

VE Controller Programming Manual

VECTOR

2]
k]
B
S
R

[ModbusTCP_Slave x

= PCI-Bus IEC Objects Internal Parameters = Internal /O Mapping Status (_} Information

Chance_Online_State BOOL

0

#® port WORD 502

‘Vector'
'ModbusTCP'
0

502

Parameter Type Value Default Value Unit
Vendor STRING "Vector'
ModelName STRING 'ModbusTCP'

Description
Vendor of the device
Model name of the device

Parameter to change the online state of the device

ModbusTCP port number

In the same way, add a ModBusTCP_Slave device.

Parameter settings

Under the same network segment, the VE controller distinguishes between two touch
screen devices by port number. As shownbelow, the modBusTCP_Slave port number is set to
"502"andthe ModBusTCP_Slave-1 port number is set to 503

@ ModbusTCP_Slave x| ModbusTCP_Siave_1
Internal Parameters = Internal /O Mapping Status .} Information

}Eﬂ Device |

Parameter Type
vendor STRING
ModelName STRING
Chance_Online_State BOOL
port WORD

Value Default Value Unit

'Vector'

‘ModbusTCP'

0
502

"Vector'

'ModbusTCP'

0
502

Description

Vendor of the device

Model name of the device

Parameter to change the online state of the device
ModbusTCP port number

_,'ﬂi ModbusTCP_Slave '] ModbusTCP_slave 1 xfﬂ Device |
= PCI-Bus IEC Objects Internal Parameters = Internal I/O Mapping Status

(3 Information

Parameter Type
Vendor STRING
ModelName STRING
Chance_Online_sState BOOL
port WORD

‘ModbusTCP'

Value Default Value Unit

'Vector'

0
503

'Vector'

'ModbusTCP'

0
502

Description

Vendor of the device

Model name of the device

Parameter to change the onine state of the device
ModbusTCP port number

At the same time, the two touch screen projects also need to set the corresponding IP

address and port number

IP :]192.168.1.123,

port =502

[1 Use UDP (User Datagram Protocol)

192.168.1.123,

a

port =503

[] Use UDP (User Datagram Protocol)

VE Controller Programming Manual BOM oA MK

At the same time, you also need to set the data scan refresh cycle, as shown in the
figure below, select Main_Task as the scanning task, the user can choose other tasks and set

the task cycle.

@ modbusTCP_Slave x 1 -
= PCI-BusIEC Objects Internal Parameter Status {_} Information
| Find Filter Show all - 4 Add FB for IO Channel...)
Variable Mapping Channel Address Type Unit Description
- input %IW0 ARRAY [0..256] OF WORD
+." output %QWO ARRAY [0..256] OF WORD
E input_bits %IB514 ARRAY [0..256] OF BYTE
w9 output_bits %QB514 ARRAY [0..256] OF BYTE
Always update variables Enabled 2 (always in bus cycle task) i
Use parent device setting
“% = Create new variable "% = Map to existing variable Enabled 1 (use bus cycle task if not used in any task
2 Enabled 2 (always in bus cycle task)
Bus Cycle Options
Bus oycle task MainTask ~
:; Use parent bus cycle setting

i-cross Reference L'st_- |
Address-associated variables

In the ModBusTCP_Slave device, the mapping address is provided as follows:

Type Channel Description

input input[0] ~ input[1023] Enter the register power-down
(Address type: hold area

4X). input[1024] ~ input[4095] The input register power-down

does not hold the zone

output
(Address type: output[0] ~ output[4095]
3X).
input_bit input_bit[0]~input_bit[1023] Enter the coil power-down hold
(Address type: area
0X). input_bit[1024]~input_bit[4095] Enter that the coil is powered
down and does not hold the zone
output_bit

ooutput_bit[0]~output_bit[4095]
(Address type:

VE Controller Programming Manual A T

1X).

Each channel data size is IN BOOL and WORD, and the address is expressed as %IX
and %QX, or %IW and %QW. Variables determine the number of channels occupied according
to their own data type, such as WORD variables occupy 16 BOOL-type positions, INT-type
variables occupy one WORD, REAL variables occupy two WORD, LREAL variables occupy 4
WORD,and so on.

= PCI-BusIEC Objects Internal Parameters = Internal /O Mapping Status) Information

Find Filter Show all + &= Add FB for IO Channe
Variable Mapping Channel Address Type Unit Description
Ei input %IV 418 ARRAY [0..256] OF WORD
-9 output %QW403 ARRAY [0..256] OF WORD
4 input_bits %IB1350 ARRAY [0..256] OF BYTE
+ "y output_bits %QB1320 ARRAY [0..256] OF BYTE

Note:

1, when the variable type is 32 bits (such as REAL) or 64 bits (such as LREAL), the address
map should start from a double address mapping, such as REAL data can not be mapped to
the address %IW5, can only be mapped to %lW4 or %W6 and other double address,
otherwise compilation will report errors.

2, the associated address should be associated according to the channel's starting
address, as shown below, the variable wants to associate to the channel input

= input %IW336 ARRAY [0..256] OF WORD
EE input{0] %IVW336 WORD
+ B input{1] %IW387 WORD
+ % input[2] %IW388 WORD
+ 4 input(3] %IVi389 WORD
+ 4 input[4] %IV390 WORD
H Y% input(5] %IW391 WORD
- input([] %IW392 WORD

In a device, io addresses are mapped to variables in two ways.

Method 1: Map addresses in variable declarations, as shown below.

Input type:

VECTOR

B
k]
B
b
R

VE Controller Programming Manual

FROGRAM POUL

VAR
£ input
Al AT SIWl:INI; //INT
A2 AT %INZ2:REAL: //REAL
A3 AT SIW4:UINT; /UINT
Ad AT RIX5.0:BOOL: /BO0OL
Bl AT %0x0.0:B00L: / BoOL
B2 AT RQWl:I

END VAR

Table type:

Scope Mame Address Datatype [Initialization Comment Attributes

* VAR Al SeNVl INT

* VAR A2 a2 REAL

¥ VAR A3 L UINT

* VAR A4 L6550 BODL

* VAR Bl SHO00 BOOL

* VAR B2 SROW1 INT 10

Method 2: Select a variable in the io mapping list.

Internal Parameters = Internal YO Mapping Status {3 Information

Find Filter Show all
Variable Mapping Channel Address Type
e input(5] %IWS WORD
+ My input[6] %IW6E WORD
+ A input[7] %IW7 WORD
.4 input[8] %IWS WORD

VE Controller Programming Manual

VECTOR

2]
k]
B
b
R

Text Search Categories

Variables 4+ Name Type Address Origin
= QApplimtion Application
+[5] pLC_PRG PROGRAM
- [F rout PROGRAM
© @ AL INT 96IW1
A2 REAL 2
<@ A3 UINT %I
B AA 0! 265 0
2 # A6 INT
- @ Bl BOOL %BQX0.0
- @ B2 INT WBOWL
+ {} BPLog Library Breakpoint Laggi..
+ gl ToConfig_Globas VAR_GLOBAL
{} 5M3_Basic Library 5M3_Basic, 4.6.0...
+ {} sM3_Math Library SM3_Math, 4.5.0...

Structured view

Insert with arguments

Filter |None

Insert with namespace prefix

Documentation
A6: INT; ~
(VAR)
v

HMI settings

Cancel

Taking the Willon pass touch screen as an example, the system parameters are set as

follows:

RE HVIEHE BT R O AOER rREECE #RRE TH/EGESE miERs/ESe 6

RETIE 2451 PC 1 1P
B B REEE FE peiiton)
3 i iP (800 X 480) - -
4 MODBU... Z4l_MODBUS TCP/IP LA (1P=192.168.1.123, 35[15=502) _TCP/IP
MODBU... MODBUS Server LARIM (IP= » TmHS=5000) TCP/IP

Set up like this interface

|' OB/ TS | e RE.
L GEERE TEE) New device/server
EtEEE:

SCADA FHTILEN. MODBUS TCP/IP Server SRFEUSEHIE. (A5EHIE—1 MODBUS TCP/IP Server 3E/=SMA

[MODBUS TCP/IP FI32])

§ v Address Mapping Table

mE || mE

=8

VE Controller Programming Manual A T

ModBusTCP device parameters are set as follows, note the IP address and port number

settings, reference parameter settings:

|] e x
INDOWLj &# : [MoDaUS TCR/P
N | () w1 [OF37]
FRIE R @ |47 v B

= FREEEENE oy FIEE R FIREEEEHMED v, BIEE R

Tylpe of equipment | gz . MODEUS TCP/ TP |
8% 1D : 58, V.2.60, MODBUS_TCPIP.e30.

Interface type |¥%D¥¥: E\AM Ethernet v|[fIHEEEETS. ..

= F uvr LR EEN (8 18-12358).

IP:192.168.1.123 , port number = 502

: EM:‘;%‘?}E% 1P : [192.168.1.123, YR S=502 -
WIAREE D 1% F UDP (User Datagram Protocol)
Preset station number | BEMRMS : |
SCADA &risar]) Ofaigk Skt STE
[MODBUS TCP, CemrEes

1 4EBE ERIEIPR (words) : |32 < | R BRI
B iR TH (words) : | 120 v HiiEsEm A ..

BASAFH (words) : 120 ~

OK HWE ub]

The corresponding relationship between the motion controller and the man-machine
ModBus address is as follows:
Motion controller channel address - Human-machine address -1

The channel type The controller address type | The type of
human-machine address
inputbit %IX0. 0 0X1
%IX1. 0 0X 2
%IX2. 0 0X 3
input %IW3 4X 4
%IW500 4X 501
outputbit %QX0.0 X1
output %QW500 3X 501

VE Controller Programming Manual

8.1.3 ModBusRTU Master

The VE motion controller supports standard ModeBusRTU communication methods,

connecting individual stations via the communication serial RS232/485,with the VE

controlleras the primary station. The serial wiring diagram is as follows:

Foot position Defined
1 RS485 -
2 RS485 +
5 GND

Install ModBusRTU_Master device

(1) Click on the toolbar's "Tools" and click on "Device Store"

Tools | Window Help Automation Serve

fJ Package Manager... -

m Library Repository...
|ﬂ Device Repository... (1) |

® Click "Install"
® Select the ModbusRTU_Master.xml file

® (Click Open

||® visualization Style Repository.. i
ll License Repository... ks

VE Controller Programming Manual B #
{ %P Device Repository |
|
l Location | System Repository v Edit Locations...
lJ (C:\ProgramData\CODESYS\Devices)
:f Installed Device Descriptions (2)
'F
| iﬁtﬂng for a full text search Vendor | <all vendors> ~
= - — — =
X
sEEEMODBUS RTU xml v 0 #E"VEfEEISMODBUS R...
: W @
ZFF EyHE i
| ModbusRTU_Master.devdesc.xml 2020/9/3 16:39 XML 378
(3)
Close
< > B
v | | Sercos XML device descripti v
4) [770 T

¢

(5) shows that the installation was successful, which indicates that the installation of the

device was successful and can be added for use.

& Device "ModbusRTU_Master” installed to device repository

Add ModBusRTU_Master device

After the new project is created, select Right-click Device Add Device =2

2>ModBusRTU-MasterAdd = Device to confirm that the RTUdevice is added and that the VE

controller will beadded to the project as the primary station.

VE Controller Programming Manual

* Device (Vector ARM Cortex-Linux-SM-CNC-TV-MC)

M

Add Object
Add Folder...

Add Device...

(2)

Update Device...
[J Edit Object

Edit Object With...

Edit 10 mapping

Online Config Mode...

Simulation

Import mappings from CSV...
Export mappings to CSV...

Reset Origin Device [Device]

@ Add Device

Name [ModbusATU Master

Action
@ Appenddevice | Insert devics Plug device (O Update device '
1
St fora Al text search | vendor | <cal vendors> |
Name (3)Vendor Version Description
= (@) macelaneous
| 3 ModsAT paster _ Vector | 3.5.40
@ ModbaRTU Save Vectr 3540
@ ModbusTCP Master Vector 3.5.40
@ ModbusTCP Save vectr 3.5.40
@ Fedouses
(%] gory (] Display [Display outdated versions
@ mame: ModbusaTy,
Vendor: Vector
Version: 3.5.4.0 i
Order Number: 777
Description:
Append selected device as last child of
Device
@ (You can select anothar targat node in the navigator while this window is open.)

@) o

When the addition is complete, double-click to open as follows.

(@ ModbuskTU_Master X |

= PCl-Bus IEC Objects Internal Parameters %= Internal I/O Mapping Status 4} Information

Parameter
Vendor
® ModelName
Chance_Online_State
Baud
Data_bits
Check

- # Stopbits
#*- @ Modbus Channels

Type

WORD
WORD
ARRAY [0.,255] OF Channel

Value
‘Vector'
‘ModbusRTU'

s lel8 s

Default.. Unit Description

Vendor of the device

Model name of the device

Parameter to change the online state of the device
ModbusRTU baud rate

ModbusRTU bata bites

ModbusRTU Chedk. 0:no, 1:odd, 2:even.
ModbusRTU Stop bits.

This is Modbus Channels

VE Controller Programming Manual A T

Parameter settings (“Internal parameters" introduction)

After double-clicking expand, click "Internal parameters" and the VE controller sets the

parameters as follows:

2] ModbusRTU_Master x

= PCI-Bus IEC Objecty Internal Parameters | = Internal /0 Mapping Status {_)} Information

Parameter Type Value Default.. Unit Description
% Vendor STRING "Vector’ "Vector' Vendor of the device
% ModelName STRING ‘ModbusRTU' ‘ModbusRTU' Model name of the device
% Chance_Online_State BOOL 1] 0 Parameter to change the online state of the device
#8aud Baud rate worp 9600 9500 ModbusRTU baud rate
Data bis Data bits worp 8 8 ModbusRTU bata bites
chek (Check Bits Wworp 0 0 ModbusRTU Check. 0:no, 1:odd, 2:even.
stopbits__Stop bits woro 1 1 ModbusRTU Stop bits.
+ ARRAY [0..255] OF Channel This is Modbus Channels
Communication channel

ModBusRTU-Master-relatedparameter settings include Baud rate, data bit, check bit,

stop bit, communication channel.

¥ Modbus Channels[0] (1)
Slave_Add (2) WORD
3)

Reg_Add (3) worp
Fun_Num (4) worp
Channel_ Add (5) worD
Length (6) worp

Once the Modbus Channels are expanded, a total of 256 channels are available, with an
example of expanding the first channel here:
® Channel number: the channel currently in use is Channel 0;
® Slave_Add: from the station number;
® Reg_Add: from the station register address;
® Fun_Num: function code;
® Channel_Add: Transfer data using the first channels in the
output/outpu_bit or receive (input/input_bit) of the Internal I/O map;
® | ength: Data length (how many channels are occupied);

Note: Every time you change the Internal parameter to download, you need to power it

up again to take effect, otherwise you will report an error.

\":;!ECTOR

VE Controller Programming Manual oa M

Address Association Variables (Internal I/0 Mapping Introduction)

Click "Internal I/0 Map" to see 4 IO mapping channels and one error viewing channel
(error_bits);
® First, you need to select Enable 2 (always in the bus loop task);
® Then select the bus loop task to use, and the example here selects

MainTask;
4] ModbusRTU_Master X . -

= PCI-Bus IEC Objects Internal Parameters = Internal I/OMapping dtatus () Information
Find Filter Show all « b Add FB for 10 Channel... = Go to Instance ‘

Variable Mapping Channel Address Type Unit Description

®- % input %IW804 ARRAY [0..99] OF WORD

#-"g output %QW789 ARRAY [0..99] OF WORD

R] input_bits %IB1808 ARRAY [0..99] OF BYTE

+ "¢ output_bits %QB1778 ARRAY [0..99] OF BYTE

+ error_bits %IB1908 ARRAY [0..255] OF BYTE
| ResesMar Always updatevariables |Enabled 2 (always in bus cyde task) o

) Use parent device setting

@ = Create new variable "% = Map to existing variable Enabled 1 {use bus cyde task if not used in any task

(1) Enabled 2 (always in bus cyde task)
Bus Cyde Options
Bus cyde task MainTask fo (2)
Use parent bus cyde setting

EtherCAT Task

Here's a look at the IO channel:

| == PCI-Bus IEC Objects Internal Parameters = Intenal [/OMapping Status () Information

| Find Filter Show all - & Add FB for IO Channel.. *=¢
Variable Mapping Channel Address Type Unit Description
i] input oLIWB04 ARRAY [0..99] OF WORD
£-T9 output %QW789 ARRAY [0.,95] OF WORD
H- 1y input_bits %IB1808 ARRAY [0..99] OF BYTE
+ "9 output_bits %QB1778 ARRAY [0.,99] OF BYTE
- error_bits %IB1908 ARRAY [0..255] OF BYTE

In the ModBusRTU_Masterdevice, the mapping address is provided as follows:

Type Channel

input input[0] ~ input[2047]

output output[0] ~ output[2047]
input_bit input_bit[0]~input_bit[2047]
output_bit ooutput_bit[0]~output_bit[2047]

VE Controller Programming Manual A T

e Modbus function codes 1, 2 corresponding to the channel is:nput_bit;

e Modbus function code 3, 4 corresponding channels are: input;

e Modbus function codes 5, 15 corresponding channels are: output_bit;

e Modbus function code 6, 16 corresponding channels are: output;
Attention:

1, variables according to their own data type to determine the number of occupied

channels, such as INT-type variables occupy a WORD, REAL, DINT-type variables occupy two
WORD, LREAL, LINT-type variables occupy 4 WORDS, and so on.

2, the associated address should be associated according to the channel's starting
address, as shown below, the variable wants to associate to the channel input

Variable Mapping Channel Address Type Unit Description
= input %IWS04 ARRAY [0..99] OF WORD

E R input{0] %I04 WORD

H- input{1] %IWS05 WORD

4 input[2] %IWS06 WORD

+ 4 input(3] %IVWB07 WORD

- input(4] %IW803 WORD

+ g i #TET sLTIAIGNA Wwnon

In a device, the io address is mapped to a variable in two ways:
Method 1: Map addresses in variable declarations, as shown below.

Input type:

PROGRAM PFOUL
VAR

Al AT RIWN1:INT;
A2 AT SIW2:PEAL: REAL
A3 AT SIW4:UINT; EFINT
A4 AT RIX5.0:BO0OL;

Bl AT SON0.0:BO0OL: S BOOT
B2 AT %QW1:INT:=10;
END VAR

Table type:

VE Controller Programming Manual A T
Scope MName Address Datatype Initialization Comment Attributes
" VAR AL SelWl INT
* VAR AD SeTW2 REAL
* VAR AJ L UINT
" VAR A4 S50 BOOL
* VAR Bl Se0.0 BOOL
* VAR B2 DWW INT 10

Method 2: Select a variable in the io mapping list.

Internal Parameters = Internal /O Mapping Status (_} Information

Find Filter Show all
Variable Mapping Channel Address Type
P 1 input[5] %IWS WORD
) [] input{6] %IWE WORD
.4 input[7] SeIW7 WORD
.4 input[8] %eIWE WORD
Text Search Categories
Variables « Name Address Origin
= {?Applicﬂtiun
+[g] pLC_PRG
= (2] pou1
AL
A2
A3 UINT
.Y | 200!
2 | # A6 INT
B1 BOOL %QX0.0
B2 I Qw1
+-{} BPLog Breakpoint Loggi
+ “[uCunﬁgiG\cbas
+-{} sM3_Basic
+-{} sm3_math

structured view

Documentation

Filter |None

Insert with arguments

)

Insert with namespace prefix

A6: INT;
(VAR)

.

Cancel

Note: When writing multiple words (above 16 bits) or multiple single-word parameters,

be sure to define the variable address (i.e. method one) in your program, and you need

to empty the occupied multi-digit channel, otherwise you will report an error.

Example: As shown below, a WORD type (32-bit) variable C3 is established and associated

with channel 5;

VECTOR

VE Controller Programming Manual

2]
k]
B
b
R

LE

AT %QW5:D :=£5537;

[
5]

After running the program, you can see that channel 5 can only put 16 bits of data, if you

store 32 bits of variables in this channel need to occupy two channels, that is, channel 6 also

occupied.

% input %IW0 ARRAY [0..99] OF WORD

= output | %QW0 ARRAY [0..95] OF WORD
+- " output[0] %QW0 WORD 111
+ " output(1] %QW1 WORD 0
+ "9 output[2] %QW?2 WORD 0
- "¢ output[3] %QW3 WORD 0
+ "y output[4] %0OW4 WORD 0
"9 output{s] %QWS WORD 1
+ g output[s] %QWE WORD 1
"y output[7] %QW7 WORD 0

Here's how the Internal I/O map mis-views the channel (error_bits):

- input %IW0 ARRAY [0..99] OF WORD
+ "¢ output %QWO0 ARRAY [0..99] OF WORD
¥ input_bits %IB200 ARRAY [0..99] OF BYTE
| %" output_bits %QB200 ARRAY [0..99] OF BYTE
I + error_bits %IB300 ARRAY [0..255] OF BYTE |

Expand the channel and you can see the communication status of each communication

channel (Modbus Channels):

+ 9 input SIw ARRAY [0,.99] OF WORD
| % " output SLOWO ARRLAY [0..55] OF WORD
[% input_bits %IA200 ARRAY [0..95] OF BYTE
| % "9 output_bits %OBI00 ARRAY [0..95) OF BYTE
=% error_bits %IE300 ARRAY [0..255) OF BYTE
+ error_bits{0] %IB300 BYTE 1
- error_bits[1] %IB301 BYTE 1
: » error_bits[Z] SIB302 BYTE 1 ERROR
» ermor_bits(3] %IB303 BYTE 1
+ g error_bits[4] %IB304 EYTE 1
+ error_bits[5] %IB305 BYTE 1
-y error_bits[s] *%IB306 BYTE 1
+ error_bits[7] %IB307 BYTE (1]
+ Ay error_bits{d] IR 308 BYTE 1]
] erroe_hits(d] %IBI09 BYTE o MNormal

As shown above, when the current value of the channel is 1, it indicates a channel

communication error, and when the current value is 0, it indicates normal communication;

VE Controller Programming Manual A T

Introduction to the use of function codes

The function codes (e.g.) available when the VE controller is the ModeBus Fun_Num are

described below:

Function code (de-order) Description of the function
1 Read the coil register
2 Read discrete input registers
3 Read hold register
4 Read the input register
5 Write a single coil register
6 Write a single hold register
15 Write multiple coil registers
16 Write multiple hold registers

® Function code 1 (read coil register):

Bit parameters used to read writeable (RW) in the master station, the master to the from
the station;
Read a single bit parameter example: When reading a single bit parameter, Length (data

length) is 1 because only 1 channel is used;

Slave_Add WORD 1
Reg_Add WORD 0
% Fun_Num WORD 1
Channel_Add WORD 0

[& Length WORD 1|

Read multiple bit parameter examples: When reading 10 bit parameters with consecutive

addresses in the station, Length (data length) is 10 because 10 channels are required;

Slave_Add WORD 1
$ Reg_Add WORD 0
Fun_Num WORD 1
® Channel_Add WORD 0

Length WORD 10

VE Controller Programming Manual A T

® Function code 2 (read discrete input register):

Used to read bit parameters in the master to the station that can only be read (R) from
the master;

® Function code 3 (read hold register):

Used to read the word parameters that can be read and writeable (RW) in the master
station to the master station;
Read a single word example: when reading a 16-bit single-word parameter, Length (data

length) is 1, because only 1 channel is used;

® Slave_Add WORD 1
% Reg_Add WORD 1]
Fun_Num WORD 3
Channel_Add WORD 0
9 Length WORD 1

Read multiple single-word parameters or multi-word parameter examples: read from the
station address consecutive 2 16-bit single-word parameters or 1 32-bit double-word

parameters, Length (data length) is 2, because the need to occupy 2 channels;

@ Slave_Add WORD 1
Reg_Add WORD 0
@ Fun_Num WORD 3
Channel_Add WORD 0
Length WORD 2

® Function code 4 (read input register):

Used to read word parameters that can only be read (R) from the master to the station
in the master station, and to read multiple consecutive or multi-word parameters in the
same way as function code 3.

® Function code 5 (write a single coil register):

A state write for a single bit parameter of a readable writeable (RW) from the master
station;

® Function code 6 (write a single hold register):

For the primary station to write data to a single single word parameter of the station
readable and writeable (RW);

® Function code 15 (write multiple coil registers):

VE Controller Programming Manual A T

Used for the primary station to state write to multiple address consecutive bit
parameters of the station readable writeable (RW);

® Function code 16 (write multiple hold registers):

For the main station to write data to multiple address consecutive single-word or

multi-word parameters of the readable and writeable (RW) from the station;

Example of use

The following example shows how a master can write a double word parameter
to the 7th register address of a slave with station number 1:

(1) Double-click to open the POU to be used.

(2) Define a double-word variable and assign it an unoccupied address (here

the example %QWS5).;

v 3 X 5] test1 x| [{] ModbusRTU_Master [) Device
FEmodbus RTUZEE (VEFEMN g} - BS:BOOL:=1;
| Device (Vector ARM Cortex-Linux-SM-CNC-TV-MC) : B10:BOOL:=17
& i 8 bE C2 AT $CWO:WORD:=]
= 1L} Application
[I=SEES 17 C3 AT $QWS5:DWORD:=£5537; (2)
[£) pLc_PrG (PRG) s
= END VAR
|E] testl (PRG) =
- @ rrmE
= é’e MainTask (IEC-Tasks) 1
] PLC PRG
et | (1)
|_"j ModbusRTU_Master (ModbusRTU_Master)

(3) Double-click on "ModbusRTU_Master” to open it.
(4) Click on "Internal /0O mapping".
(5) Find the channel corresponding to the variable address just defined (%QWS5) and learn

that the channel number is 5 (output[5]);

VE Controller Programming Manual

VECTOR

2]
k]
B
b
R

1) ModbusRTU_Master x

(3)

= PCl-Bus IEC Objects Internal Parametersl 2 Internal /O Mapping |5tatus) Information

Find | |Filter show all (%) ~ & Add F8 for IO Channe
Variable Mapping Channel Address Type Unit Description
ER input %IW804 ARRAY [0..99] OF WORD
=-"¢ output %QW783 ARRAY [0,.95] OF WORD

"9 output{0] %QW7BI WORD

+ "9 output[1] %QW790 WORD

+ e output[2] %QW791 WORD

" output[3] %OW792 WORD

* "y output[4] %QW793 WORD

+ "p [Toutputls] QW74 WORD (5)

+ g output[s] %QW795 WORD

"¢ output{7] %QW796 WORD

(6) Click on "Internal parameters”.

(7) Expand a communication channel.

(8) The Slave_Add value is set to 1.

(9) The Reg_Add (slave register address) value is set to 7.

(10) The value of Fun_Num (function code) is set to 16, which means that multiple holding

registers are written.

(11) The value of Channel_Add is written to the channel number corresponding to the

variable address %QWS5.0 queried in step (5): 5.

(12) The value of Length is written to 2, because the double word needs to occupy two

channels;

7 ModbusRTU_Master X

= PCI-Bus IEC Objects| Internal Parameters | ® Internal I/O Mapping Status) Information

Default ...

(13) Login and run.

Parameter (6) Type
+ & Modbus Channels[4]
+ @ Modbus Channels[5]
+ % Modbus Channels[6]
. & Modhus Channels[7]
= % Modbus Channelssl |] (7)
¥ Slave_Add WORD
Reg_Add WORD
Fun_Num WORD
Channel_Add WORD
Length WORD
= @ Modbus Channels[s]
Slave Add WORD

(14) Click on "Internal I/0 Mapping".

Value

16

(11) s

(12)

2

Unit

Description

This is Modbus Channels
This is Modbus Channels
This is Modbus Channels
This is Modbus Channels
This is Modbus Channels

This is Modbus Channels

VECTOR

VE Controller Programming Manual BOM oA MK
(15) You can see that the data for variable C3 has been successfully sent;
b 220 Aulomauorn derver
| S0+ (7" | ¥4 | Application [Device: PLCBE] - & » g |(ZF=2== 3 |2 B | =
(13
[5] testt ' ({) ModbusRTU_Master x |] Device | [E] PLC_PRG
Internalzgy | = Intemal/OBS | s O 28
it (14) 3% =7 - 4 SIOBEENFB... * &
TE igy BE stk =i =gEiE
ER input %IW0 ARRAY [0..99] OF WORD
= output %QWO ARRAY [0..99] OF WORD
"9 output[0] %QW0 WORD 0
+ "9 output{1] %QW1 WORD 0
+ " output[2] %QW2 WORD 0
& "9 output[3] %QW3 WORD 0
¥ "9 output[4] %QW4 WORD 0
"¢ output[s] %QWS WORD 1
"9 output[] %QWE WORD 1 (1 5)
£ output[7] %QW7 WORD 0

(16) Turning on the slave you can see that the correct data has been received in the 7th

register of the slave's input;

L | input{s) %IWS WORD 0
-9 input[s) %IW6 WORD 0
% input{7] %IWT WORD 1
vy (16) input(s] %IWS WORD 1
E . | input[g] %IW9 WORD 0

VYECTOR

VE Controller Programming Manual A T

8.1.4 ModbusTCP_Master

The VE motion controller supports standard ModeBusTCP communication, connected
to a touch screen or switch via the EtherNet communication port. The following two VE as an
example, through the switch, VE controller one for the host, one for the machine, from the
machine installation configurationreference: ModBusTCP_Slave,from the machinelP address
to: 192.168.1.122 (modification method reference: product configuration and module
instructions), the host installation configuration steps are as follows:

Install the device description file

To use ModBusTCP_Master,first install the device by clicking onthe toolbar
"Tools—=>Device Repository"

Tools | Window Help

Package Manager...

Library Repository...

Device Repository... I‘
Visualization Style Repository...
License Repository...

= = glan a

License Manager...
Scripting »
Customize...

Options...
Import and Export Options...

Then click "Install” to find the device description file"VEC ModBusTCP.xml Master"and
select andclick Open

VECTOR

VE Controller Programming Manual BOM oA MK
{ ¥ Device Repository bod
“ Location | System Repository v Edit Locations...

me (C:\ProgramData\CODESYS\Devices)

-~

Installed Device Descriptions
|Str|ng for a full text search | Vendor | <All vendors> v

Name Vendor Version Description

|| * Ifﬂ Miscellaneous

X
(EfEEREMODBUS TCP_xml ' o ' BE"VEfEEISMODBUS T...
v 1 @
LT~ 4 <] $EHEE -t
|] Modbus TCP_Master.devdesc.xml 2020/11/12 8:51 XML 3755
2
Close
b —717
v < > i
- : -~ i ¥ |
sus_TCP_Master.devdesc.xml v | |Sercos XML device descripti v [:
L
3 $T71(0) _ Bl 3

Displays that the installation was successful, which indicates that the device was installed
successfully and can be added for use.

€ Device "ModbusRTU_Master” installed to device repository
Add a device
After the new project is created, select Right-click = Device Add Device

Mod->BusTCP_Master Add Device toconfirmthat the—=>TCPdevice is added and that the VE
controller will beadded to the project as a fromstation.

e

ECTOR

VE Controller Programming Manual

=l 2 - A
= Name |ModbusTCP_Master 1
Device (Vector ARM Cortex-Linux-SM-CNC-TV-MC) | & Cut e b 4
= =0 PLC Logic
=€) Application 1 IQ% Copy (® Append device O Update device
& cam N, Paste g for o i et s Vendor | <llvendors> =
m Library Manager il (Delete Name Vendor Version Description
[E] PLC_PRG (PRG) Refactoring »
,[‘ﬂ POU (F8) Properties... A5L0
[8] rou_1 pre) 3.5.4.0
EI POU_2 (PRG) ii] Add Object » 35.4.0
i Pou_3 (PrG)) Add Folder... 3.5.4.0
= (@ Task Configuration [Add Device... I 2
= @ EtherCAT Task (IEC-Tasks) Update Device...
&) pc_prG (3" Edit Object
& ManTask (NewGrowp) Edit Object With... |] Group by category [[] Display all versions (for experts only) [] Display outdated versions
& Trace Edit 10 mapping @ WameMotbustcr_asier
= [EthercaT_Master_SoftMoton (EtherCAT Master Soft Import mappings from CSV... Vendor: Vector
= I VECServo (VECServo) Export mappings to CSV... c‘v:::-s.‘!.u §
B Axis1 (SM_Drive_GenericDSP402) & Online Config Mode... S T
= B8 VECServo_5 (VECServo) Description:
P Reset Origin Device [Device]
[f ModbusTCP_Slave (ModbusTCP_Slave) Simulation
[ModbusRTU_Slave (ModbusRTU_Siave)
[ModbusRTU_Master (ModbusRTU_Master) Append selected device as last child of
= A SnfiMntion Ganaral Avis Panl .o Device
> @ (You can select another target node inthe navigator while this window is open.)
=
\eference List 1 A |

S — =1 = T

Host parameter settings

When you're done, double-click to open asfollows,usTCP_the Mod B and Master
interfaces are as follows:

:— [ModbusTCP_Master x|
‘|| = PpCI-BusIEC Objects Internal Parameters %= Internal IJOMapping Status () Information
Parameter Type Value Defau.. Unit Description
% Vendor STRING ‘Vector' ‘'Vector' Vendor of the device
% ModelName STRING ‘Modbu... ‘Medbu... Model name of the device
Chance_Online_State BOOL 0 0 Parameter to change the online state of the device
port WORD 502 502 ModbusTCP port number
Slave IP STRING '192.1... ‘'192.1... ModbusTCP Slave IP
+ % Modbus Channels ARRAY [0..255] OF Channel This is Modbus Channels

The communication parameters between the device and the from the station include:

(1) From the station port number, ModbusTCP_Slave default port number is 502;

(2) From the station IP address, ModbusTCP_Slave's IP address changed to:
192.168.1.122, if not changed will conflict with the host IP.

The host device consists of 256 Modbus channels, each of which can be set with a separate
Modbus function code, register address, channel address, and configuration length in
WORD, as shown below.

= @ Modbus Channels ARRAY [0..255] OF Channel This is Modbus Channels
= & Modbus Channels[0] This is Modbus Channels
Reg_Add WORD Register Address
& Fun_Num WORD Function Code
Channel_Add WORD Channel start address
Length [worp Data lehgth

For feature codes, ModbusTCP_supported by Master are as follows:

The function code | Describe | Bit/word operation The number of

B

VYECTOR

VE Controller Programming Manual BOM oA MK
operations

1 Read the coil Bit operation single or more
register

2 Read discrete input Bit operation single or more
registers

3 Read hold register Word operation single or more
Read the input Word operation single or more
register

5 Write a single coll Bit operation Single
register

6 Write a single hold Word operation Single
register

15 Write multiple coill Bit operation Multiple
registers

16 Write multiple hold Word operation Multiple

registers

This example configures the function code and other channel parameters as follows:

Parameter

Type
- % |Modbus Channels[] |
® Reg_Add WORD
Fun_Num WORD
#® Channel_Add WORD
® Length WORD
= % Modbus Channels[1]
#® Reg_Add WORD
® Fun_Num WORD
® Channel_Add WORD
Length WORD
= & Modbus Channels[2]
Reg_Add WORD
® Fun_Num WORD
Channel_Add WORD
® Length WORD
= Modbus Channels[3]
® Reg_Add WORD
® Fun_Num WORD
Channel_add WORD
Length WORD
= & Modbus Channels[4]
Rea Add WORD

Value Defau..

16

15

16

Description
This is Modbus Channels

Slave register start address is 0
Read input register

Master channel start address
Read length 16 WORD

This is Modbus Channels

Write multiple holding registers

This is Modbus Channels

Read discrete input registers

This is Modbus Channels

Write multiple coil registers

This is Modbus Channels

Inaddition, the description of the I/O mapping channel is consistent with the "address

association variable” ("Internal I/O mapping"”) description of 8.1.3

From the machine parameter settings

The from-machine parameters are set as follows, and the default port number for the

from-machine is: 502, which is not changed here.

file:///C:/Users/67024/Desktop/Internal_I/O映射

| VECTOR
VE Controller Programming Manual BOM oA MK
7 | [ModbusTCP_Master x| -
j ¥ PCI-Bus [EC Objects Internal Parameters % Internal I/OMapping Status) Information
Parameter Type Value Defau.. Unit Description
vendor STRING Vector' ‘Vector' Vendor of the device
% ModelName STRING ‘Modbu... 'Modbu... Model name of the device
@ Chance_Online_State BOOL 0 0 Parameter to change the online state of the device
 port Port number worp 502 502 ModbusTCP port number
@ Slave IP STRING '192.1... '192.1.. ModbusTCP Slave IP
+ - @ Modbus Channels ARRAY [0..255] OF Channel This is Modbus Channels

Online monitoring

(1) 4 function code

Variable Ma... Channel Address Type Unit

| " input LI ARRAY [0..256] OF WORD

|- " output QWO ARRAY [0..256] OF WoRD |

| W output{0] BOWO WORD 1
. ¥ output{1] SOW1 WORD 2
** Slave output{2] WQW2 WORD 3
" output{3] WOW3 WORD 4
« "y output{4] SRlANS WORD 5
£ output{s) %QWS WORD d
= output(6] RO WORD 0

input |oetwzrs ARRAY [0..99] OF WORD
+ input{0] HIW2TE WORD 1
- Master input[1] B:IW279 WORD 2
. input(2] SEIWZE0 WORD 3
+ input{3] %eIW281 WORD 4
] input{4] SelW282 WORD 5
+ input{5] SLIW283 WORD &
+ input[s] SRIW2E4 WORD 1]

(2) 16 function code

% - nput WIW2T8 ARRAY [0..99] OF WORD

|- "* output %QW1S0 ARRAY [0..99] OF WORD |
P output[o] WOW1S0 WORD 7
+ " output1] WOQW1S1 WORD 8
8 N output{2] WOWI52 WORD]
" output{3] WOWIS3 WORD 10
+ " output{4] WOWIS4 WORD 1
T output]s] WOW1S5 WORD i

- I:_‘; nput SIWD ARRAY [0..256] OF WORD
. input]d] 2IWD WORD
L input{1] %IW1 WORD
- Slave input(2] %IN2 WORD 9
¥ Y% nput{3] %Iw3 WORD 10
e nput{4] ESE] WORD 11
] input{s] BEIWS WORD (1

(3) 2 function code

VECTOR

VE Controller Programming Manual BOM oA MK
W input LE AT ARRAY [0..256] OF WORD
s " output SGEWO ARRAY [0..256] OF WORD
£ % input_bits %IB514 ARRAY [0..256] OF BYTE
e output_bits %QB514 ARRAY [0..256] OF BYTE |
e output_bs[0] %QB514 EYTE 1 |
. output_bits[1] %OBS1S BYTE 1
* :’ Slave output_bits{2] %QBS1E EYTE 1
L output_bits[3] %0QB517 BYTE 0
o output_bits[4] 908518 EYTE i
L output_bits[5] %QAS19 BYTE 1
-0 output_bks[5] %QBS20 BYTE 1
5-e nput %IW278 ARRAY [0..99] OF WORD
) output SLOWI50 ARRAY [0..99] OF WORD
= input_bits 3:IB756 ARRAY [0..9-‘9]0FB‘!"TE|
W nput_bits[0] %IB756 BYTE i
% nput_bits[1] SIB7ST BYTE 1
« w Master nput_bits[2] 9%IB7S8 BYTE 1
] nput_bits{3] %IB759 BYTE 0
W nput_bis[4] %IBTE0 BYTE 1
- input_bits{5] SHIBTE1 BYTE 1
input_bits[&] SIBT62 BYTE 1
(4) 15 function code
i nput lW278 ARRAY [0..99] OF WORD
- Master output %QWI150 ARRAY [0..95] OF WORD
+ input_bits 3IB756 ARRAY [0..99] OF BYTE
=" output_bits %QBS00 ARRAY [0..99] OF BYTE |
output_bis[0] 2QBS00 BYTE 1
"0 output_bis[1] %eQBS01 BYTE 0
i output_bRs[2] %QBS02 BYTE 1
& "o output_bke[3] 2%QB503 BYTE o
+ " output_bits[4] %QBS04 BYTE 1
& "o output_brs[5] %60B505 BYTE o
"9 output_brs[6] %QBS06 BYTE 1
"y output_bes[7] swQBS0?7 BYTE 0
i "0 output_bis[8] 9QBS08 BYTE 1
- T . nput %W ARRAY [0..256] OF WORD
+ "# output WD ARRAY [0..255] OF WORD
B nput_bits %1851 ARRAY [0..256] OF BYTE |
v nput_bis(0] %IBS14 BYTE 1
B- nput_bits[1] %IB515 BYTE 0
- input_bits[2] %IBS16 BYTE 1
- input_bis[3) %IB517 BYTE 0
= % nput_bitsf4] %,IB518 BYTE 1
5 input_hirs{5) %IB519 BYTE]
nput_bits[6] YIB520 BYTE 1
- input_bits[7] 9418521 BYTE o
- input_bits[8] 0418522 BYTE 1

VE Controller Programming Manual

VECTOR

8.1.5 OPCserver

OPC Server Architecture:

OPC Client

COMIDCOM

H miFie |

| OPC Server

—— TCP/IP

—— g UDP

| PLCVSd—l Application |

DataServer |—| ,PLC3 Application®

Symbols |—

Application

—— ©.9. serial CAN

PLC3 Application

| povs
(embedded)

Application |

1. Add "symbols configuration” to "Applications” in the background of the program

|

& Cut

i) iorary Manager % Copy

5] rLc_PrG (PRE) & Paste

POU_1 (PRG) Refactoring Alarm Configuration...

|- Application...

! PopL2 g{; 2 Properties... A:P:a o

b9 rous = — s Group...

- Task Configuration [l)b Md Object Cam table...

| = B EtherCAT Task (E(=) Add Folder... CNC program...

~ @pcpre | Edit Object CNC settings...
& MainTask (NewGrol Edit Object With... Data Sources Manager...
- @ Trace ©8 Login DUT...

EtherCAT_Master_SoftMotion
= ; Delete appication from device Exsnal e

" HgP Axis1(5M_Drive_GenericDSP402)

B VECServo_5 (VECServo)

B Axis2 (SM_Drive_GenericDSP402)
ModbusTCP_Slave (ModbusTCP_Slave)
ModbusRTU_Slave (ModbusRTU_Slave)
ModbusRTU_Master (ModbusRTU_Master)
ModbusTCP_Master (ModbusTCP_Master)

SnfiMntinn Gensral Avie Panl

POU...

| POUs

PEEASRIDBEE S NBRGERORB

tion. GearIn.Gearln_1

-

Global Variable List...
Global Variable List (tasklocal)...
Image Pool...
Interface...
Network Variable List (Receiver)...
Network Variable List (Sender)...
Persistent Variables...

POU for implicit checks...
Recipe Manager...

Corfigusation
¥

m
)
4

|

@ E [Fiter by Symbal, POU, Var

&
, VYECTOR
VE Controller Programming Manual BOM oA MK
Add Symbol Configuration =
B

Create a remote access symbol configuration.

Name

; Symbol Configuration i

[] include comments in XML

[] support OPC UA features

Client Side Data Layout
(O Compatibility Layout
(@ Optimized Layout

2. Select as POCsever to communicate data with PLC

™3 Symbol Configuration X | [E] POU_Persistant]
N View ~ [#¥]Buid | [z Settings ~ Tools ~

Changed symbol configuration will be transferred with the next download or online change

Symbols Access Rights Maximal Atirbute Type Members Comment
+-[] |g] Constants

+ [7] [£] evi_for_cam

+ [[E] 1oConfig_Globas

+ [] |g] PLC_PRG

+ [0 [E] pou_persistant

#-[][E] Constants
[][] ToConfig_Globals
=-[J|5) PLC_PRG

~@ e P " " INT
V] P2 " £ WORD
=-[¥|[E] POU_Persistant
Ve Al K " WORD
V] » A2 " " INT
@ eB1 e e WORD
V] » B2 " " INT
“@ec e e WORD
W ec2 " " INT
@ ec3 e e T
@ eca " " INT

3. Click on the arrow under "Access Permissions” to select the permission

[|[E] Constants

+ [7|E) IoConfig_Globals

= [7]E] PLC_PRG

. @em " o —
‘@er2 WORD

<
&

4. After the selection is complete, click "Compile”

VECTOR

VE Controller Programming Manual BOM oA MK

#%| Build | = Settings ~ Tools ~ |

1 There are 10 configured variables which are not referenced by the IEC code. Reading and writing to them may not have the desired effect(s). Remove.

Changed symbol configuration will be transferred with the next download oronline change

Symbols Access Rights Maximal Attribute Type Members Comment
| [E] Constants
= GVL_for_Cam
£] IoConfig_Globals

PLC_PRG

o pessivi |

s
il

[T (T (TR [

*
ME OO

5, after confirmation, click on the toolbar "compile >generated code”, the software
automatically in the engineering directory to establish the corresponding "project name."
Device.Application.xmlfile.

| Build | Online Debug Tools Window

» |4 Build F11
Rebuild
_‘ Generate Code

Generate Runtime System Files...

X Clean

Clean all

6, connect the VE controller Ethernet and touch screen network port, open the touch screen
(support OPCserver) software interface, here to Theron pass touch screen as an example
configuration, as follows, the construction project, equipment configuration as follows

VE Controller Programming Manual

\;/EcTOR

MM

R HMIERE —REE R Ea RPER VRS Sl TGRS sEme e 85

EMFE Sl P B P e
s 4N GEED] RN
Local HIAI 8L MTEOT LP/WTBOT it (500 x 480} - .
I CODESYS T, CODESYSVA(Eemel | BUAM (1P=192.1681.123, BEN=11740) TCR/P
\f 2 =
, , &5 [cooees |
This machinzis -
; : el Ea -]]
equipped with 4 L. o " . AR
= B E ST e BRE TR TR ER SR ey ARE AW
Type of equipment ﬂiml:"l CIESTS ¥5 (Eehernat) [n |
2 277, VAS, DODESYS V], ETHERMET 030
Interface type #02% [(3M_Fiherpet “]nsessurs
"i * F ot £ SRR, (R o 1050, E
|
IP; 192.168.1.123 , port number = 11740
Falesaean g, ﬂﬂiull!ﬂn 1. . I
WG = v3 TP
BEEENE]
SCADA TR FELTRI
|NSCDELS TCPAR
Cemrfss
cure
o
e M wm

7, click on the device, click on the "import label” to find the newly established file "project

name. Device.Application.xml,select Import

U
. VECTOR
VE Controller Programming Manual :

B
k]
B
b
R

ERpain

B HMER —EER FE DR APST FEGEE SaEE TSR enams e s

TR S PC 1 1P (A

E-1 0N s W]

Liocal HWI ZERL MTGOTTiPMTEDTLIP x 4800 - =
CODESYS L (CODESYS V3 (Ethemnet) | A (IF=192.168,1,123, RCHE=11740) TCPAP |

’ Import ’
Tags ARG L B
BIEE... PR e
* L BT R R (AR

S

SCADw, SRIFEILANET MODBUS TCRAP Server TIPS, (RRmEE— MODBUS TCPAP Server FEELESH

MOBBUS TERAP B])
'
t‘ ! A Mgy ot
-
e
o]

OK
(==] =n

g

EasyBuilder Pro "
Successful import of

label information
HEHhE A FEET

8, open the touch screen component properties, as follows, the device selects the

established "CODESYS", the label selects the corresponding variable, as shown in the
following image

ECTOR

g

]
BF
®
®

VE Controller Programming Manual

—EEE mEes. X T BN TE RER

e | i
I
IE A A Tk
g x
I
W T B L ER
Read/write address
/ set
ipment| ss-[covess “ =
Tags H=]f‘? =)
50
oem
Ok £
(=] = o e
»F5 Tags %= Application * %2 PLC_PRG * o[]
v B9 Tags E=iid izl f
L' 1 i e - |
% PLC_PRG an HE|
%z POU_Persistant | P2 WORD
] SR
Tag : |Application.PLC_PRG.P1 [o

After selecting the corresponding tab, the HMI components can be associated with

program variables.

VE Controller Programming Manual B #

8.2 Simulation and debugging

8.2.1 Simulate the VE controller

When the user is programming debugging, they may not have VE controller hardware
at hand, and codeSYS simulation can be used to debug the logic of the user program. The
method of turning on the simulation function is as follows, —>click on the online simulation,

in the simulation state, the simulation status prompt with red font under the programming
software.

Online | Debug Tools Window Help Automation Server

©f Login Alt+F8
Logout Ctrl+F8
Create Boot Application - - "
3 D 4 Persist v | | Properties
] Download
_— W Fiter ~ | ¥%
Online Change | N
Source Download to Connected Device ot referer £ sortorder -
e Property
Multiple Download... d with the
ts | 1=
Description
et Cold
RBeset Orgin
1 v
¥| Simulation | | > & visualzat.. |8
Security »
Operating Mode ¥ e P | B
fariable Access Coftext Type Address

Dedaration PROGRAM POU_Persistant POU_Persistant

0 n‘essage,s,l l
Precompile / _ Project user: (nobody)

In the simulation state, you can click "compile” the user program, "log in" to the controller,
and then click "start", the user program loaded into the COMPUTER emulator, you can
actually access the controller to monitor the user program, force modify the operation of
parameters, observe the user program performance, as shown in the following image:

ou_3 a) A MC_Powerl (Axis:=Axisl,bDriveStar
|E] POU_Persistant (PRG) 2 MC Power2(Axis:=Axis2,bDriveStarth
=2 symbol Configuration i
= E Task Configuration
= 4B EtherCAT Task (IEC-Tasks)
&)|pLc_pre
48] pou_persistant
@ MainTask (NewGroup) i LLL () + EETORN]
& Trace
-A Lﬂ EtherCAT_Master_SoftMotion (EtherCAT Master SoftMotion)
= AN vECServo (VECServo)
HgP Axis1 (SM_Drive_GenericD5P402)
= AXE VECServo_5 (VECServo)
WP Axis2 (SM_Drive_GenericDSP402)

Attention:

ALF Device fronnected] (Vector ARM Cortex-Linux-SM-CNC-TV-MC) Expression Type Value Prepared \
= [E0 pLC Logic + @ MC_Powert MC_Power
= L} Application [run] ® # MC_Power2 MC_Power
& cam + @ MC_Power3 MC_Power
!_IJ Library Manager ¥ @ MC_Powerd MC_Power
; PLC_PRG (PRG) + @ MC_Powers MC_Power
b
.J POU (FB) # @ MC_Power§ MC_Power
i F # Pow Fn RO ca o]
5 e)
& A
] #c

=Pow_En@NER) ;

MC_Velocityl (Axis:=Rxisl,Executc R :=vel exBNEE), Velocity 143 » |:=.
MC_Velocity2(Axis:=RAxis2,ExecutcEE:=vel exENEH, Velocity[1E/@ ¥ |:=.

1, here can not be the operation of the network bus simulation, but can be forced on

VE Controller Programming Manual A T

the servo axis data structure parameters, you can still observe the execution logic of the
program, check the implementation of the program.

2,"login”, you can click "run”, "stop" to execute the user program, need to modify the user
program, to "exit" the login state.

8.2.2 Simulate servo drives

When writing a debugging MC operation application, the programmer has a VE
controller on hand, but no servo drive, or does not have a sufficient number of servo drives,
to debug debug the user program, you can use the "virtual axis" way to replace the servo
drive real axis, as shown in the following illustration:

- T e 4 SIS =] e o asue =] reernw . .

] PoU_1 (PR ¥~ || Gereral |scalingMapping Commissioning SM_Drive_ETC_GenericDSP402: Parameters % SM_Drive_ETC_Gener
i Pou_ Axis type and limits Velodity ramp typ
g POE:l P 13 t (PRG) $$Z?vi;iz Negative [u] 0.0 T lsdinsiiing
E _Persistan : :)
"8 Symbol Configuration LI Nt oo | QO sin2 .

(®) Finite 4 |22 1| | | O Quadratic

= E Task Configuration

(O Quadratic (sn
= §& EtherCAT _Task (IEC-T:

Software error reaction

\{Eﬂ PLC_PRG Deceleration [ufs2]: 0 Identification
8] Pou_persistan Max. distance [u]: 0 | ID:
& MainTask (NewGr Dynamic limits Position lag super
~ & Trace velocity [u/s]: Acceleration [u/s?] Deceleration [u/s?] Jerk [u/s%]: Henciiored
= (i) EtherCAT_Master_SoftMotign (EtherCAT T
Sl veCServe (VECServ [3000 J {muu J 1000 | [10000 | Lag limit [u)
[HgP Axis1 (S Drive_GenericDsP4 | By checking the "Virtual Mode" box, the controller will run as
= M8 VECServo_S (VECServo) a simulation of the axis during commissioning,
HgP Axis2 (SM_Drive_GenericDSP4 and once the actual servo axis is available,
[ModbusTCP_Slave (ModbusTCP_Slave) the option can be removed for actual operation

[l ModbusRTU_Slave (ModbusRTU_Slave)

In programming debugging, if the number of servo axes accessed and the number
configured in the user program is different, the system will alarm, can not be normal
debugging, if connected to this virtual axis, the system will not alarm, but in the software
simulation of the servo way of operation. You can visually see the "running" status of the axis
and verify the correctness of our MC control procedures.

The virtual axis is also an axis, although it is a "virtual axis”, but the operation logic of the axis
state still needs to be programmed according to the state transfer logic in the PLCopen
specification, such as the need to run MC_Power before running, the error after the
MC_Reset and so on, so that we can debug and exclude logical errors in the user program.
If the actual servo axis is connected, you can simply cancel the "virtual axis mode" of the
corresponding axis in the figure above and you will be ready to function properly.

VE Controller Programming Manual A T

8.3 Security management and user rights settings

Codesys can effectively manage and set up security for engineering files and devices,
and this document focuses on the security settings for engineering files, security settings for
devices, and permission settings for POU.

8.3.1 Device login permissions settings

To minimize exposure to PLC and control networks onopen networks and the Internet
(letting someone else sign in to your PLC),Codesys can set the device's login password to
keep device data secure.

The following describes the device username and password settings, the method of
logging on to the device and the method of canceling the device login password.

Add the user and password

Mode 1:
(1) Scan the device that needs to set the password first, and click Sync to see the user
in the device by clicking "Sync" in the Device directory, as shown.

Communication Settings Applications Backup and Restore Files Log PLC Settings PLC Shelj Users and Groups |AccessRights Symbol Right * | *
= Device user: Anonymous

Offline 50 TS notsupported by the device, switch to synchronized mode to edit the user management.

(2) Click Add to enter the username and password, as shown in the figure.

, VYECTOR
VE Controller Programming Manual BOM oA MK
Add User *
Name adminl
Default group Administrator x
Password ‘n..on. |
Confirm password ‘oooooo |

Passwordstrength l:l [] Hidepassword

E Password can be changed by user

[[] Password must be changed at first login

(3) When the user is added, the Everyone user needs to be deleted and click on the
"Following" so that the user and password set will take effect, as shown in the figure. Be sure
to remember one of the users' passwords before deleting Everyone, or you'll need to
re-swipe your machine to sign in to your device.

Users

+ 8 admini © Add..

. T
4 Edit.
& Delete

(4) After the download is complete, you can view the user information status of the
device by clicking Sync, as shown in the figure.

L, - & Device user: admini

Synchronized mode: All changes are immediately downloaded to the device.

Users
=-8 adminl |[e add...
8 is member of group 'Administrator’ © Import...
81 is member of group ‘Everyone'
2
&
Mode 2:

(1) Log in to the device, in the menu bar "Security” select "Add online users" to set the
user name and password, as shown in the figure.

Online IDebug Tools Window Help ion Server
@5 Login 1 Alt+F8 Application [Device: PLC Logic] ~ @8 %
Logout Cirl+F8

Create Boot Application

Download
pplications Badkup and Restore Files Log I

er: adminl

Online Change

Source Download to Connected Device

thanges areimmediately downloaded to the device.
Multiple Download...

eset Warm

R

t Cold 3f group 'Administrator’

ese
Reset Origin f group ‘Everyone'
: Simuylation .
[I Security 2 I L 1 Logoff Current Device User

Operating Mode 4 Add Device User.. 3 | \

Change Password Device User...

Remove Device User...

ree R

VECTOR

VE Controller Programming Manual BOM oA MK

(2) Follow the prompt to log in again, the user password is effective, as shown in the
figure.

Add Device User X

Name admin2

Default group Administrator s
| Password [lll.ll |

Confirm password [--aon- I
1 Passwordstrength @ [Hidepassword
E @ Password can be changed by user

[[] Password must be changed at first login

|

(3) At this point, sync the device userinformation in the same wayas (4) in Mode 1, you
can see that the Everyone user has been deleted, as shown in the figure.

=] T

Synchronized mode: All changes are immediately downloaded to the device.

Users
+ 8 admini © Add.
* 8 admn2 ¢ Import...
A
e

Sign in to the device

After you add user information as described above, you can sign in to the device with any
of the added usernames and passwords, as shown in the figure.

Device User Logon X

(=Y You are currently not authorized to perform this operation on the device. Please enter the name
ﬁ and password of an user account which has got the sufficient rights.

Device name Device (Vector ARM Cor tex-Linux-5M-CNC-TV-MC)

Deviceaddress

User name |admin1
Password ssssss
QOperation: View
Object: "Device”

Exit the current user

Once you're signed in to your device, you can opt out of the current user by selecting Sign
out of the current online user in the menu bar, Security

VE Controller Programming Manual A T

|On|ine |\ Debug Tools Window Help Automation Server
@ Login 1 Alt+F8 Application [Device: PLC Logic] ~ O

Logout Cirl+F8

Create Boot Application

Bpplications Badkup and Restore Files Log I

: adminl

d to Connected Device

thanges areimmediately downloaded to the device.

Logoff Current Device User I 3 ‘

Operating Mode » Add Device User...

Change Password Device User...

reelz

Remove Device User...

Cancel your account password login

Preferred to log in to your current device with your account password, and then do the
following:

(1), click "Change Communication Policy" under "Device" in the "Communication Settings"
tab of the device window, change to "Optional XXXXXXXXX" in the window thatappears, and
click "OK" to confirm.

[#1 viuaizavon_1 |8 Rt Gantry ' Device x[l5) PoU /8] Rntaxs [

Scan Network = Gateway ~ | Device ~
Options v

Rename Active Device...
Wink Active Device
Send Echo Service...

Encrypted Communication

Change Communication Policy...
Gateway
Gateway-1 ~] |copesy:
IP-Address: Device N
localhost CODESY:
Port: Device A
1217 0001
Target IC
0000000
Target Ty
4102
Target Ve
35 -5ma
. . . - R
Change Communication Policy X
‘Communication
Current policy Optional encryption
New policy | EOptiona1 encryption v

The device supports both encrypted and unencrypted communication.
This can be decided by the user.

Device User Management

Current policy Optional user management

New policy Optional user management &

The user management is optional on the device.
Itis up to the user to activate the user management or leave the device unprotected.

o

2, in the left side of the software DeviceTree window to Device right-click, select "Reset
Origin Device", and so on the device program cleared and then reconnect the download

VECTOR

a
s
B
S
=

VE Controller Programming Manual

program will not need an account and password.

e ~ & x|lmton B sol

= AxsGroup 3.5.15 .v_‘ Ii
% Communication S¢

= Device (C o a Vo

= Bl PLC I
Co
=) Ap| 2

@ Paste
¥ Delete Sl

Refactoring »
Properties...

Add Object »
= Add Folder...

Add Device...

Update Device...

Edit Object

Edit Object With... ups

LB W R LS
0E @

L

Edit 10 mapping

Import mappings from CSV...
Export mappings to CSV...
Online Config Mode...

&

Reset Origin Device [Device] ‘

Simulation

Visualzation Manager ” T
I

ent

8.3.2 Project file security settings

The written engineering files can be encrypted, only to obtain the correct engineering
file password can open the project files, to ensure the security of the project files. The
following describes the setting of the project file password and how to cancel the password.

Note: Forgetting your password won't get it back!

(1) Password settings: click on the menu bar "Engineering” — "Engineering Settings" —
"Security" to set the project file password, as shown in the figure.

POUs v o x (1] pevice x
— ‘. F g w0 == == == == -
Project Settings '8 4
G‘ Project Settings) - L
2 [f_‘_] Compile options ,T 'CU - . :
@& Compiler warnings
0 o5 otccion Jo et e 4
m Library development _
& page setp (® Password (O) Dongle (O) Certificates]
E\J Seauri If this option is activated, a password is used to encrypt the content of the currently
J Seaurity 3 opened project file. The user must enter this password whenever this project is loaded,
f even ifitis loaded as library reference.
& SoftMotion 11 If you forget the encryption password, your project file will be lost. It is ;
Ii Source Download not possible to restore the file contents in this case. E

§ Static Analysis Light
€ Users and Groups
8 visualization New password "“‘"" | 5 I
l‘;E] Visualization Profile

Confirm new password ‘ L | I

= Your device can be secured. Learn more...
. De,wcesi D POUs | 1

race Dafarancs |ict

VE Controller Programming Manual A T

(2) Every time you open an encrypted file, you'll have a prompt like this.

Encryption Password X
=~k Enter the password for 458 1"
W 'j

o 1| oo

(3) To cancel the password, only need to log in to the project, will (1) in the"enabling
engineering file encryption” check to remove it.

8.3.3 POU permission settings

User and group descriptions

A project file contains multiple OUUs that set different permissions for different users.
When setting permissions on a POU, you need to understand the difference between the
'Owner’ group and the 'Everyone' group, first by describing the difference between the
'Owner’' group and the 'Everyone' group, and then by using an instance of the POU access
settings to illustrate how the POU permissions are set.

(1) About 'Owner’ and 'Everyone'

(1) Before setting up the access rights of the POU, the grouping settings are set in the
menu bar — Engineering Settings— Users and Groups. The system brings two groups and
one user, the Everyone, Owner, and Owner users, as shown. The Owner group user is
granted all authorizations, and the figure shows that the Owner user is a member of the
group Owner.

Project Settings X

[#4] Compile options
® Compiler warnings

Users Groups Settings
m Library development

& Page Setup Name Full name Description
&) security - 8 Owner

%] sFc 81 is member of group Everyone'

& SoftMotion 81 is member of group 'Owner’

Ii Source Download

Static Analysis Light

8i[usersand Groups |

@:I Visualization
CE] Visualization Profile

System default user

Export/Import Add... Edit Remove

]| oo

VE Controller Programming Manual A T

Therefore, the password for the ‘Owner’ user should be set first (the initial password is
empty), as shown in the diagram. If no password is set for the 'Owner’ user, the '‘Owner’ user
identity can access all POUs with an empty password.

[£3] Compie options Account properties
) Compier warnings
) Lorary development

Full name

& Page Setup iption
L‘) 5 ty + 8 o 1 Description

18] sc 0Old password
5
& SoftMotion Pamamond | J
m Source Download
Static Analysis Light

Users Groups Settings Logen name Owner

Confirm password |"". ‘

8 Users and Groups Active
Q] Visualization
Memberships
&) Visuakzation Profile
] Owner
Export/Import Add... Remove
oK This user is also member of the ‘Everyone’ group.

Your device can be secured. Learn more...

" 4 [=] o=

TviEm

(@When a user opens a project file, it is opened by default as a user in the 'Everyone' group.
When the access control attribute of POU_1 in the project is set to "Deny”, POU_1 cannot be
accessed when the project file is opened, and access rights can be obtained through the
'Owner’ identity.

JE% - POUA [Device: PLC iE58: Application]

4] iR CFC Execution Order THIEHTH {7

8 SETIE
=l B'qO E W En/mkEF
&1 Everyone =

THSMxeE: FHANE..

4 . BEEEIEA LBEEE BERIAER
= BRI LR HTEE, BEEIAELE
mHEa:

8 'owner' FEE S IR T ATRIEHL.

Example of POU permission settings

(1 Assume there are three users, A, B and C. A project has three POUs, POUA, POUB and
POUC, and the relationship between users and POU access rights is shown in Table I.

M POUA POUB POUC
J X X
X J X
X X J

U
. VECTOR
VE Controller Programming Manual BOM oA MK

” ” . . ” ”
Note: “V” means access is possible; ”“x” means no access

(20 Add three users A, B and C. When adding them, you need to enter the Owner username
and password, as shown in the figure

ettings «| Add User >3
Compile options Users and Groups Account peoperties
@ Compiler warnings Logon name [A
Users Groups Settings
) Lirary development Full name [
& Page Setup Name Full name Description)
Description [
& searity + 8 Owner
5.] SFC 0ld password
& softMoton Password [*
& source Donrload Confirm password &l
§ statc Analyss Light
8 Users and Groups Active =
&) visualization Memberships
&) visualzaton Profie T owner
Export/Import. Edit Remove
| This useris also member of the Even}ye’ group.
oK Cancel]
| 3 [Co) o

(3) Since the object of setting permissions is groups, you need to add three groups, GA, GB
and GC, which contain users A, B and C respectively

Profhci Scitings B J|| Froveny vams
[#4) Compie options Users and Groups P 2
@ Compi i
piler warnings G
n Library development fes
&) Page Setwp Name Description ‘ i
Name e}

€ searity + 88 Everyone / -

BES + 88 Owner y’ omapten [/

& SoftMotion + 88 ca

@ Source Download

§ static Analysis Light

@3 Users and Groups

53 Visualization

&) visualization Profie

- o
Bperyimport o [T
oK Cancel

Deseription

(4) The settings for POUA, POUB and POUC respectively are shown in the figure. Since the
project files are opened by default by users in the 'Everyone’ group, the access
properties of the 'Everyone’ group in the POUA, POUB and POUC control properties are
set to "Deny "

U
| VECTOR
VE Controller Programming Manual BOM oA MK
T a: ';;“" Prcpenie; - POU_1 [Device: PLC Logic: Application] 3 x
{i) Lrary vanager Common Build CFCErtcuthI Bitmap
[E] PLC_PRG (PRG)
.@ POU (FB) ‘Groups,nmons e .
1 o o= ‘G:::Zm Vi-ew [Modify Remove Add/remove chil
£ POU_Z PR - s
[¥) pou_3 (prG) fufy :: 4 :
[£] Pou_persistant I
&
® 8 Symbol Configurati R = [I]
= (£ Task Configuration Browse . -
= . Ki the symbols: Permission is...
@ %ﬂﬁ;f:':;:sk 0& Refactoring ;3::@“!::;" :r:nte: ss.:not specified, but granted by default
a - Properties... 2 = ..exlicitely denied wnotspedified, but denied by default
‘| POU_Persists ene midier
& MainTask (Newer| 1 Add Object Members ef:heqmup ‘Owner'are granted all permissions,
& Trace) Add Folder...
EtherCAT_Master_SoftMotion| [T Edit Object
Ml VECServo (VECServo) Edit Object With...
H4P Axis1(sM_Drive_GenercDsPaod)
B VECServo_5 (VECServo)
H4P Axis2 (SM_Drive_GenericDSP402)
Mardh TP Slave Madh < TOP Slave) 5 I oK Cancel Apply
The results are as follows:
User P POUA POUB POUC
Everyone Refused Refused Refused
Ga Allow Refused Refused
GB Refused Allow Refused
GC Refused Refused Allow

(5) After saving the project file, re-open the project file, then you need to enter the user
name and password to access the POUs, where the 'Owner' user has access to all POUs.

-

.]} Library Manager

~|E] PLC_PRG (PRG)

4¥] POU (FB

[£] Pou_2 prG)

¥ pou_s (PrG)

[£] Pou_persistant
=8 symbols

!E Task Configuration

= §2 EtherCAT_Task (IECTasks)

&) rLc_rre

@] PoU_Persistant
@ MainTask (NewGroup)

ﬂ@ Trace

herCAT_Master_SoftMotion (EtherCAT Master SoftMotion)

| VECServo (VECServo)

H&P Axis1 (SM_Drive_GenericDSP402)

® For other permissions set up in a similar way as for access permissions.

Logon

2

member of one of the following groups:

In order to perform this action, you must logon as a user which is

GA
Owner

Prompt for group GA and Owner username

Please enter your user name and password

and password 10 10g in wWhen accessing PUU_1

\\ Project/Library Project: 581
User name A
Password I &

! =]

VE Controller Programming Manual A T

Appendix A VECServo supported origin regression

models

Zero return mode setting process
Note: If it is an absolute encoder and the Z point is used as the encoder zero point, please
first pre-set P03.79 - How many pulses the absolute encoder outputs per week.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

Set 6060 = 6 first

Set the return to zero offset 607Ch, the unit of which is the user position unit.
Set return to zero mode 6098h

Set the speed of home switch finding 6099h_01, its unit is rpm

Set the speed of finding the Z point 6099h_02, its unit is rpm

Set the speed of return to zero plus or minus 609Ah, which is in user units/s/s
Set control word 6040h to 6 -> 7 -> 15 -> 31 in order to perform zero return
Read status word 6041h

Zero-back mode-related objects

Back to zero mode 6098h

Index 6098h

Name Back to zero

The object Variable

type

The data There are 8 bits of symbol
type

PDO Mapable
mapping

Read and Readable and writeable
write

properties

The default 0

Set the 0-35

range

A detailed Set the back to zero mode

description
Back to zero speed 6099h

Index 6099h

Name Back to zero speed
The object type Array object
The data type Unsigned 32 bits
PDO mapping Mapable
Read and write Readable and writeable
properties

VE Controller Programming Manual

Index_Child Index

6099h_00

Name

The number of valid sub-indexes of 6099h

The data type

Unsigned 32 bits

PDO mapping Cannot be mapped
Read and write Read-only
properties

The default 2
Index_Child Index 6099h_01

Name

Look for the speed rpm of the origin switch

The data type

Unsigned 32 bits

PDO mapping Mapable

Read and write Readable and writeable
properties

The default P03.53
Index_Child Index 6099h 02

Name

Look for Z-point speed rpm

The data type

Unsigned 32 bits

PDO mapping Mapable
Read and write Readable and writeable
properties
The default P03.54

Back to zero acceleration 609Ah
Index 609AN
Name Zero acceleration back
The object Variable
type
The data Unsigned 32 bits
type
PDO Mapable
mapping
Read and Readable and writeable
write
properties
The default 500000
Set the 0~4294967295
range
A detailed Zero acceleration, unit user unit/s/s
description

VE Controller Programming Manual A T

Back to zero mode

Back to zero is the calibration of a mechanical zero point, after marking, all absolute
positions are used as a reference point to move. VEC bus-type servo has a variety of
back-zero mode, according to the zero-back mode of 6098h settings, the corresponding
back-zero action. Users can choose the appropriate origin back to zero mode according to
site conditions and process requirements.

® Origin back to zero mode 1: Depends on the origin regression of the reverse
operating limit switch and Z pulse

Scenario 1: When the user triggers the execution back to zero, if the reverse running limit
switch state is low, then the axis starts to move reverse at the first speed, when the reverse
run limit switch is at a high level, the direction of motion changes and the second speed
starts to move;
Scenario 2: When the user triggers the execution back to zero, if the reverse running limit
switch state is high, then the positive motion is started directly at the second speed, and the
position of the first Z pulse encountered when the reverse running limit switch state is low is
the origin.

|

: - { Starting point
Case1 C_@_.Pos:‘tive

7 . i O direction
Starting point | : L
Case? 51 .F : @ pPositive

direction
Z pulse H : | i

The negative
limit switch

Homing method 1: Homing on the negative limit switch and Z index pulse

® Origin back to zero mode 2: Dependson the origin regression of the positive
running limit switch and Z pulse

Scenario 1: When the user triggers execution back to zero, if the forward running limit switch
state is low, then the axis starts to move forward at the first speed, when the forward running
limit switch is at a high level, the direction of motion changes and the second speed starts to
move, when the forward running limit switch state is low, the position of the first Z pulse is
the original position.
Scenario 2: When the user triggers execution back to zero, if the positive running limit switch
state is high, then the axis starts the reverse movement directly at the second speed, and the
position of the first Z pulse encountered when the positive running limit switch state is low is

VE Controller Programming Manual A T

the origin position.

Starting point ‘ !
Case1 Reverse; 5 ,) :
direction .

Case2 Revers

IStarting point
direction

Z pulse

%

The positive |
limit switch

Homing method 2: Homing on the positive limit switch and Z index pulse

Mode 3 to Mode 6 depends on the origin switch and the origin zero of the Z pulse

® Origin zero model 3
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
the axis begins to move forward at the first speed, when the origin switch is encountered at a
high level, the direction of motion changes and the second speed starts to move, the
position of the first Z pulse encountered when the origin switch state is low is the origin
position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts the reverse movement directly at the second speed, and the position of
the first Z pulse encountered when the origin switch state is low is the origin position.

® Origin zero model 4

Scenario 1: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move at the first speed, when the origin switch is at a high level, the
second speed is moving positively, the position of the first Z pulse is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts the reverse movement directly at the second speed, when the origin
switch is at a low level, the direction of motion changes and the second segment speed
starts to move, the position of the first Z pulse is the origin position.

VE Controller Programming Manual BOM oA MK

Starting point '
Case1l Revlrse; é :l '
direction [i

Casa? Heverse‘_ﬁ} s | Starting point
direction ; v l ad
s Staflrng point | : Positive
. 0 direction

. | Starting point
B |
Case2 : (@ pPositive
' : direction
Z pulse n X ﬂ

I'he home switch

Homing method 3 ~4 Homing on the home switch and the Z index pulse

® Origin zero model 5
Scenario 1: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts the positive motion directly at the second speed, and the position of the
first Z pulse encountered when the origin switch state is low is the origin position.
Scenario 2: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to reverse at the first speed, when the origin switch is at a high level, the
direction of motion changes and the second speed starts to move, when the origin switch
state is low, the position of the first Z pulse is the origin position.

® Origin zero model 6
Scenario 1: When the user triggers the execution back to zero, if the origin switch state is
high, then the axis starts forward motion directly at the second speed, when the origin switch
is at a low level, the direction of motion changes and the second speed starts to move, the
position of the first Z pulse is the origin position.
Scenario 2: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is at a high level,
the second speed starts to move, and the position where the first Z pulse is encountered is
the origin position.

VE Controller Programming Manual BOM oA MK

I Positive
Case1 I : @ "‘direstian

! i i Starting point
GaEng : Q—@——b Positive
Startir]g point | . direction

[; N !
Case1 Reverse l @ ,} :
direction .

Case2 Reverseq—i(®)
direction i

Starting point ;

l Starting point

Z pulse rl :

The home swiich

Homing method S ~6 Homing on the home switch and the £ index pulse

Mode 7 to Mode 10 depends on the origin switch, the positive operating limit, and the
origin back zero of the Z pulse

® Origin zero model 7
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is at a high
level, the direction of motion changes and the second speed starts to move, when the origin
switch state is low, the position of the first Z pulse is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts to reverse at the second speed, and the position of the first Z pulse
encountered when the origin switch state is low is the origin position.
Scenario 3: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is low and the
forward running limit switch is at a high level, the direction of motion changes and the first
speed starts to move, when the origin switch is at a high level, the second speed starts to
move, the position of the first Z pulse is encountered when the origin switch state is low.

WECTOR

VE Controller Programming Manual B i

o)
[
#
R

Starting point :

direction e
Case2 Reverseq——(7)——]starting point
direction i
« ' Starting pointllﬁ
AR Reverseg—(7)—+—: ;
direction N :

Z pulse H : ' |_|
The home switch |

The positive
limit switch

Homing method 7 Homing on the home switch, positive limit switch, and Z index pulse

® Origin zero model 8
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move at the first speed, when the origin switch is at a high level, the
second speed starts to move, the position of the first Z pulse is the origin position.
Scenario 2: When the user triggers the execution back to zero, if the origin switch state is
high, then the axis directly at the second speed to start the reverse movement, when the
origin switch is at a low level, the direction of motion changes and the second segment
speed to start the movement, encountering the position of the first Z pulse is the origin
position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is low and the
forward running limit switch is high, the direction of motion changes and starts at the first
speed Motion, when the origin switch is at a high level, is still moving at the first speed, when
the origin switch state is low, the direction of motion changes and starts at the second speed,
when the origin switch is at a high level, the second speed starts to move, The position
where the first Z pulse is encountered is the origin position.

WECTOR

VE Controller Programming Manual B i

o)
[
#
R

— StartmE paint E Positive
direction

tarhng point
CaseZ2
DEItI'u'E direction
Sta lngpmnt

Casel

.Posuwe
'dlrectlcln

Z pulse H : n E

The home switch | |

The positive
limit switch

Homing method 8 Homing on the home switch, positive limit switch, and Z index pulse

® Origin times zero model 9
Scenario 1: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is at a high
level, the second speed starts to move, when the origin switch is at a low level, the direction
of motion changes and the second speed starts to move, the position of the first Z pulse is
the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts to move forward at the second speed, when the origin switch is at a low
level, the direction of motion changes and the second speed starts to move, the position of
the first Z pulse is the origin position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is low and the
forward running limit switch is at a high level, the direction of motion changes and the first
speed to start the movement, when the origin switch is at a high level, the second speed to
start the movement, the position of the first Z pulse is the original position.

VECTOR

VE Controller Programming Manual B i

#
[
#
R

Starting point .

Casel : Réverse @)

direction
Starting point .
Case2 Reverse
direction =
+ * Starting point
Case3 Revarse : :
direction v :
Z pulse : ﬂ |

The home switch

.
The positive —
limit switch

Homing method 9 Homing on the home switch, positive limit switch, and Z index pulse

® Origin zero model 10
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move at the first speed, when the origin switch is at a high level, the
second speed is started, when the origin switch is at a low level, the position of the first Z
pulse is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis begins to move at the second speed, and when the origin switch is
encountered at a low level, the position of the first Z pulse is the origin position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is low and the
forward running limit switch is at a high level, the direction of motion changes and the first
speed starts to move, when the origin switch is at a high level, the direction of motion
changes again and starts at the second speed, when the origin switch is low, the first Z pulse
position is encountered.

VECTOR

VE Controller Programming Manual B i

#
[
#
R

Startiqg paint
]

direction

Case2 Starting point |———({g—»Positive
wpel direction

z P
i

Starting point I—IJ
Q_@_,Pns.mée

. direction

Z pulse " H

Casel

The home switch

The positive —
limit switch

Homing method 100 Homing on the home switch, positive limit switch, and & index pulse

Mode 11 to Mode 14 depends on the origin switch, the reverse operating limit, and the
origin zero of the Z pulse

® Origin zero model 11
Scenario 1: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is at a high level,
the direction of motion changes and the second speed starts to move, when the origin
switch state is low, the position of the first Z pulse is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts the positive motion directly at the second speed, and the position of the
first Z pulse encountered when the origin switch state is low is the origin position.
Scenario 3: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is low and the
reverse running limit switch is at a high level, the direction of motion changes and the first
speed starts to move, when the origin switch is at a high level, the second speed starts to
move, the position of the first Z pulse is encountered when the origin switch state is low.

WECTOR

VE Controller Programming Manual B i

o)
[
#
R

Starting point
Caset $: Positive
' direction

Case2 Starting pointp——)—p-Fositive
€ L direction

c—'S!arlingpmql .
Cased .. ¢)—pPositive
: T direction

Z pulse ﬂ 5 ﬂ

The home switch

The negative
limit switch

Homing method 11 Homing on the home switch, the negative limit switch and the £ index pulse

® Origin zero model 12
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is at a high level,
the second speed is the starting point position, the position of the first Z pulse is the origin
position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts forward motion directly at the second speed, when the origin switch is at
a low level, the direction of motion changes and the second segment speed starts to move,
the position of the first Z pulse is the origin position.
Scenario 3: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is low and the
reverse run limit switch is high, the direction of motion changes and starts at the first speed
Motion, when the origin switch is at a high level, still at the first speed, in the origin switch
state is low, the direction of motion changes and the first speed to start the movement, when
the origin switch is at a high level, the second speed to start the movement, The position
where the first Z pulse is encountered is the origin position.

VECTOR

VE Controller Programming Manual

2]
k]
B
b
R

Casel HE"'EFEE-—@—I—A Starting point

dirgctic

Slarling point
CasaZ n.gu?gr_m! @ -]
dirgcticn
f—leatanmgqmm
Gmsed : Heverse! E)
¢ direction n :

Zpuse | [] : .
The homie sw Itm—'_
The nagative I
lirnil &wilch

Homing method 12 Homing en the home switeh, the negative lmil switch anid the £ index pulse

® Origin zero model 13
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is at a high level,
the second speed starts to move, when the origin switch is at a low level, the direction of
motion changes and the second speed starts to move, the position of the first Z pulse is the
origin position.
Scenario 2: When the user triggers the execution back to zero, if the origin switch state is
high, then the axis is directly reverse motion at the second speed, when the origin switch is at
a low level, the direction of motion changes and the second speed starts to move, the
position of the first Z pulse encountered is the origin position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is low and the
reverse running limit switch is at a high level, the direction of movement changes and the
first speed starts to move, when the origin switch is at a high level, the second segment
speed starts to move, the position of the first Z pulse is the original position.

l-5'!3I"|I-"Iﬂ peint
L}
Casel (_@_,Fﬂil!llﬂ-ﬂ.

directs o

Stgriing point
Posidive

diradtiof

Starfing point
Casad L_@_.Puaﬁwe

dlrzu.l nn
Z pulsa : n : n

' '
T '
: . P
.
The hisme swal el

The negati
lirnit switch

Case2

Haming method 13 Homing on the home switch, the negative Bimit switch and the £ indes pulse

VE Controller Programming Manual A T

® Origin zero model 14
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is at a high level,
when the second speed is encountered, when the origin switch is at a low level, the position
of the first Z pulse is the origin position.
Scenario 2: When the user triggers the execution back to zero, if the origin switch state is
high, then the axis starts to move reverse at the second speed, and when the origin switch is
encountered at a low level, the position of the first Z pulse is the origin position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is low and the
reverse running limit switch is at a high level, the direction of motion changes and starts at
the first speed, when the origin switch is at a high level, the direction of motion changes
again and starts at the second speed, when the original point switch is at a low position, the
first Z pulse is encountered.

Reverse .

Casel direction ‘_@—:_|5t3rlmwu i
CaseZ2 Reaversa : '
HER direction ‘_@_!Stajrhrlg paint
G—|Slﬂ|1|r‘~g point; ‘
: Reverse 3 ')

+ direction ;
Zpulse ! I ﬂ .
I'he home switch . !

The negativa
limit switch

Homing method 14 Heming on the home switch, the negative limit switch and the £ ingdes pulse

Casal

Mode 15 - Mode 16 is reserved

® Patterns 15 and 16 are retained as origin regression patterns for later

development.

Mode 17 to Mode 30 requires the origin regression of the Z pulse
Mode 17to mode 30 is similar to mode 1 to mode 14 mentioned earlier, but the positioning
of their origin regression position no longer requires Z pulses, but only according to the
relevant origin switch and limit switch state changes to achieve. Mode 17 is similar to mode 1,
mode 18 is similar to mode 2, mode 19 and mode 20 are similar to the previous mode 3,
mode 21 and mode 22 are similar to the previous mode 5, mode 23 and mode 24 are similar
to the previous mode 7, mode 25 and mode 26 are similar to the previous mode 9. Modes
27 and 28 are similar to the previous mode 11, and modes 29 and 30 are similar to the
previous mode 13.

® Origin back to zero mode 17: Depends on the origin back zero of the reverse

VECTOR

2]
k]
B
b
R

VE Controller Programming Manual

operating limit switch

Scenario 1: When the user triggers execution back to zero, if the reverse running limit switch
state is low, then the axis starts to move reverse at the first speed, when the reverse run limit
switch is at a high level, the direction of motion changes and the second speed starts to
move;

Scenario 2: When the user triggers the execution back to zero, if the reverse running limit
switch state is high, then the axis starts the positive motion directly at the second speed, and
the position at the reverse running limit switch state is the origin position when the state of
the reverse running limit switch is low.

i
P
v
P
i

1 & v
Starting point
: 1
Caset %.) > Positive
direction

Starting point -

Case? | @ > Positive
- direction

The negative
limit switch

Homing method 17; Homing on the negative limit switch

® Origin back to zero mode 18: Depends on the origin regression of the positive
running limit switch

Scenario 1: When the user triggers the execution back to zero, if the forward running limit
switch state is low, then the axis starts to move forward at the first speed, when the forward
running limit switch is at a high level, the direction of movement changes and the second
speed starts to move, the position at the forward running limit switch state is low when the
position is the original position.
Scenario 2: When the user triggers the execution back to zero, if the positive running limit
switch state is high, then the axis starts the reverse movement directly at the second speed,
and the position at the positive running limit switch state is the origin position when the state
of the positive running limit switch is low.

Starting point

Casel Reverse
direction .

Case2 eVerseq @& Istarting point

direction

The positive
limit switch

Homing method 15: Homing on the positive limit switch

B

VECTOR

VE Controller Programming Manual B i

2
BF
2
RE

® Origin zero model 19

Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is at a high
level, the direction of motion changes and the second speed starts to move, when the origin
switch is at a low position is the origin position.

Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts the reverse movement directly at the second speed, and when the origin
switch is encountered at a low position, the position is the origin position.

Starting point

Casel Reayerse :
direction .

Case2 Reverseg | Starting point
direction O— g pe

The home switch

Homing method 19 Homing on the home switch

® Origin zero model 20

Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis begins to move positively at the first speed, and when the origin switch is
encountered at a high position, the position is the origin position.

Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts the reverse movement directly at the second speed, when the origin
switch is at a low level, the direction of motion changes and the second speed starts to move,
when the origin switch is encountered at a high position is the origin position.

Starting point ' Positive
Case1 'E direction

| " .
: Starting point
Case? %@ N Positive
direction

The home switch

Homing method 20 Homing on the home swiich

VECTOR

2]
k]
B
b
R

VE Controller Programming Manual

L Origin zero model 21

Scenario 1: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to reverse at the first speed, when the origin switch is encountered at a
high level, the direction of motion changes and the second speed starts to move, when the
origin switch is encountered at a low position is the origin position.

Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts the positive motion directly at the second speed, and when the origin
switch is encountered at a low position, the position is the origin position.

. {Starting point
Case1 %ﬁ > Positive
direction

— Startmgipmnt : Pj::sitij.re
- direction

The home switch

Homing method 21 Homing on the home switch

L Origin zero model 22

Scenario 1: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts forward motion directly at the second speed, when the origin switch is at
a low level, the direction of motion changes and the second speed starts to move, when the
origin switch is encountered at a high position is the origin position.

Scenario 2: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to reverse at the first speed, and when the origin switch is encountered at
a high level, the position is the origin position.

Starting point :
Casel Heversa; @'

direction

Reverse ' . :
Case? directimﬂ—@?—'ﬁtar!mg point

The home swilch

Homing method 22 Homing on the home switch

VE Controller Programming Manual A T

® Origin zero model 23
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is at a high
level, the direction of motion changes and the second speed starts to move, in the origin
switch state is low when the position is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts the reverse movement directly at the second speed, and the position at
the low level of the origin switch state is the origin position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is low and the
forward running limit switch is at a high level, the direction of motion changes and the first
speed starts to move, when the origin switch is at a high level, the second speed starts to
move, the position at the low level of the origin switch state is the original position.

Starting paint :
Case1 Reverse %i

direction 3
Reverse ' :
Case2 direcTicn{—-@—lSlartmg point

EE!arting pmntlﬁ

Cased Reverse

direction

«—Q

The home switch

0
A
O
¥
¥

The positive
limit switch

Homing method 23 Homing on the home switch, positive limit switch

® Origin zero model 24
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis begins to move positively at the first speed, and when the origin switch is
encountered at a high position, the position is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts the reverse movement directly at the second speed, when the origin
switch is at a low level, the direction of motion changes and the second speed starts to move,
the position when the origin switch is at a high level is the origin position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is low and the
forward running limit switch is high, the direction of motion changes and at the first speed
Start movement, when the origin switch is at a high level, still at the first speed, in the origin
switch state is low, the direction of motion changes and the first speed to start the
movement, when the origin switch is encountered at a high position is the origin position.

VECTOR

VE Controller Programming Manual B i

#
[
#
R

Starting point -
1] @ » ositive
ane direction

Starting point
Casze2 FPositive

direction
+ Starling pmnt)—)
Cased ’
% » Positive
direction
The home 55\'1IE|I4|_‘—§_

The positive
limit switch

Homing method 24 Homing on the home switch, positive limat switch

® Origin zero model 25
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is at a high
level, the second speed is started, when the origin switch is at a low level, the direction of
motion changes and the second speed starts to move, when the origin switch is at a high
position is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts to move forward at the second speed, when the origin switch is at a low
level, the direction of motion changes and the second speed starts to move, when the origin
switch is at a high position is the origin position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is low and the
forward running limit switch is at a high level, the direction of motion changes and the first
speed starts to move, when the origin switch is encountered at a high position is the origin
position.

VECTOR

2]
k]
B
b
R

VE Controller Programming Manual

Sta rting point

I
Case1 Reverse

direction

L.

Starting paint
Reverse
diregtion

v Starting
S Reverse 4

direttion

Case2

oint

== -

-

The home switch

The positive —
limit switch

Homing method 25 Homing on the home switch, positive limit switch

® Origin zero model 26
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move at the first speed, when the origin switch is at a high level, the
second speed is started, when the origin switch is at a low position is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts to move at the second speed, and when the origin switch is encountered
at a low position, the position is the origin position.
Scenario 3: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is low and the
forward running limit switch is at a high level, the direction of motion changes and the first
speed starts to move, when the origin switch is at a high level, the direction of motion
changes again and starts at the second speed, when the origin switch is at a low position.

Starting point 2 .
Cased L—-—@—b Positive

direction

iy . Positive
Casel Starting p?!nt!——ﬁ-a—l- dirachion

E ; Sta rting paoint "
Case3 £ - -

i Positive

bi " directon

The home switch !

The positive II_
limit switch

Homing meihod 26 Homing on the hame switch, positive limit swiich

VE Controller Programming Manual BOM oA MK

® Origin zero model 27
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is encountered
at a high level, the direction of motion changes and the second speed starts to move, the
position at which the origin switch state is low is the origin position.
Scenario 2: When the user triggers the execution back to zero, if the origin switch state is
high, then the axis starts the positive motion directly at the second speed, and the position at
the low level of the origin switch state is the origin position.
Scenario 3: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is low and the
reverse running limit switch is at a high level, the direction of motion changes and the first
speed starts to move, when the origin switch is at a high level, the second speed starts to
move, the position at the origin switch state is low.

Starting point

CaSE1 FﬂEiti'ﬂ'E

L direction

; ” . Positive

Case?2 Starting pmntb 1 direction
F{Starting paint: ’

Cased ' —) » Positive

. . direction

The home switch

T T

The negative
limit switch

Homing method 27 Homing on the home switch, the negative limit switch

® Origin zero model 28

Scenario 1: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to reverse at the first speed, and when the origin switch is encountered at
a high position, the position is the origin position.

Scenario 2: When the user triggers the execution back to zero, if the origin switch state is
high, then the axis starts forward motion directly at the second speed, when the origin switch
is at a low level, the direction of motion changes and the second speed starts to move, when
the origin switch is encountered at a high position is the origin position.

Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is low and the
reverse run limit switch is high, the direction of motion changes and at the first speed Start
movement, when the origin switch is at a high level, still at the first speed, in the origin switch
state is low, the direction of motion changes and the first speed to start the movement, when

VECTOR

VE Controller Programming Manual B i

#
[
#
R

the origin switch is encountered at a high position is the origin position.

Casef Reverse «——(———{Starting point
direction =3

Starting point ;
Case2 Reverse
directipn

Startinp point :

Reverse ¢ d
- direction -

Cased

The home switch

The negative |
limit switch

Homing method 28 Homing on the home switch, the negative limit switch

® Origin zero model 29
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is at a high level,
the second speed is started, when the origin switch is at a low level, the direction of motion
changes and the second speed starts to move, when the origin switch is encountered at a
high position is the origin position.
Scenario 2: When the user triggers the execution back to zero, if the origin switch state is
high, then the axis is completely reverse motion at the second speed, when the origin switch
is encountered at a low level, the direction of motion changes and the second speed starts to
move, when the origin switch is encountered at a high position is the origin position.
Scenario 3: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is low and the
reverse running limit switch is at a high level, the direction of motion changes and the first
speed starts to move, when the origin switch is encountered at a high position is the origin
position.

VECTOR

2]
k]
B
b
R

VE Controller Programming Manual

L i .
1Starting point
Case1 %9 p Positivel
: direction
; Stzirtmg point
Case2 % Posfive

direction

== Starting point £ L
Cased C_@_.F’usitw&

. diregtiof

The home !i'l.'l.'lti.'hi

The negative
limit switch

Homing method 29 Homing on the home switch, the negative limit switch

® Origin zero model 30
Scenario 1: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is at a high level,
the second speed is started, when the origin switch is at a low position is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts to move reverse at the second speed, and when the origin switch is
encountered at a low level, the position is the origin position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is low and the
reverse running limit switch is at a high level, the direction of motion changes and the
movement begins at the first speed, when the origin switch is at a high level, the direction of
motion changes again and the movement begins at the second speed, when the origin
switch is at a low position.

Case gﬁ;ﬁt"iﬁi—@——-—qsmrling point

Case? Reverse o @3 starting point

direction

(,—{Starting point '
Casel i TR
: Reverse ¢ Q i
i direction ’ . v

The home su-itfhE

The negativa
limit switch

Homing method 30 Homing on the home switch, the negative limit switch

Mode 31 and mode 32 are reserved

VECTOR

VE Controller Programming Manual BOM oA MK

® Patterns 31 and 32 are retained as the origin regression modes for
later development.

Mode 33 to Mode 34 depends on the origin regression of the Z pulse

® Origin zero model 33
In mode 33, when the user triggers execution back to zero, the axis begins to reverse at the
second speed, and when the first Z pulse is encountered, the position is the origin position.

® Origin zero model 34
In mode 34, when the user triggers execution back to zero, the axis begins to move
positively at the second speed, and when the first Z pulse is encountered, the position is the
origin position.

gﬁ;gtﬁ%‘—@ﬂ Starting point

Pasitive
- direction

Z pulse ” ﬂ ﬂ H

Homing method 33 ~ 34 Homing on the £ index pulse

Starting point

® Origin back to zero mode 35: Origin regression depending on the current
position
In mode 35, when the user triggers execution back to zero, the axis does not move and the
current position of the axis is considered the position of origin regression.

VE Controller Programming Manual A T

Appendix B Quick reference list of CiA402 common
objects supported by VECServo

PDO
Sub-ind Default
Index Name Access Size Unit Setting range Mappi
exes value
ng
603F 00 Error Code RO UINT16 - TPDO

This object gives the most recent fault code or warning code of the drive, corresponding to the lower 12 bits. To view the fault log,

you can use 200B:22 and 23 to view up to 10 latest fault log codes.

6040 | 00 Control words | RW UINT16 | - | 0~65535 | 0 | RPDO
Status guidance after servo power-up, command control in each servo mode
6041 | 00 Status word | RO UINT16 | - | TPDO | |
Reacts to the servo drive operating status.
6050 | 00 | Slow down time | RW | UDINT32 | ms | 0-U32MAX | 5000 |
Servo slow stop time setting
6051 | 00 | Fast downtime | RW | UDINT32 | ms | 0-U32MAX | 50 |
Servo quick stop time setting
Quick stop method
605A 00 RW INT8 0~7 2 -

selection

0~7: Selects the drive quick stop method

Suspension stop
605D 00 RW INT8 1=3 1 -
method selection

Select drive pause method

Fault response

605E 00 RW INT16 - 0-4 0
options

0-4

0 - Direct break enable

1-Fast stop break enable

2-Slow stop break enable

3-Fast stop hold enable

4-Slow stop hold enable
Servo mode

6060 00 RW INT8 - 0~10 0 RPDO
selection

1- Contour position mode (pp)

3- Profile velocity mode (pv)

4- Contour torque mode (pt)

6- Zero return mode (hm)

8- Periodic synchronous position mode (csp)
9- Cyclic synchronous velocity mode (csv)

10- Periodic synchronous torque mode (cst)

Servo operation
6061 00 RO INT8 - TPDO
mode display

VE Controller Programming Manual A T
PDO
Sub-ind Default
Index Name Access Size Unit Setting range Mappi
exes value
ng
Actual mode of operation
Location Command
6062 00 RO INT32 TPDO
commands unit
Position command value per position loop cycle time, command units
Encoder
6063 00 Location feedback RO INT32 TPDO
units
The current position of the motor fed back by the motor encoder.
Command
6064 00 Location feedback RO INT32 TPDO
unit
Position feedback value after inverse gear ratio calculation. 6063=6064x Gear ratio
Excessive position Command
6065 00 RW UINT32 0~232-1 3145728 RPDO
deviation threshold unit
The drive reports an excessive position deviation (Er.B00) fault when the position deviation 60F4 is greater than +6065. This fault
can be reset by bit 13=1 of 6041 in contour position mode at the same time.
Position reaches Command
6067 00 RW UINT32 0~65535 7 RPDO
threshold unit

When the position deviation 60F4 is less than this value and the time reaches 6068, the DO signal for positioning completion is

valid and bit 10 of 6041 = 1. If either of these conditions is not met, the position arrival is invalid.

Location arrival
6068 00 RW UINT16 ms 0-65535 0 RPDO
window time
When the position deviation 60F4 is less than this value and the time reaches 6068, the DO signal for positioning completion is
valid and bit 10 of 6041 = 1. If either of these conditions is not met, the position arrival is invalid.
Speed command
6068 00 RO DINT32 0.1RPM TPDO 0
value
Servo speed command value
606C | 00 Actual speed | RO | INT32 | s TPDO |
This object displays the position feedback per second (command unit)
Speed reaches
606D 00 RW UINT32 rpm 0~65535 10 RPDO
threshold
When the difference between the motor speed feedback and the speed command is within +606D and the time reaches 606E, the
DO signal for speed arrival is valid and bit10=1 of 6041. if either of these conditions is not met, speed arrival is invalid.
Speed arrival
606E 00 RW UINT16 ms 0-65535 0 RPDO

window time

When the difference between the speed feedback and the speed command is within 606D and the time reaches 606E, the DO

signal for the speed arrival is valid and bit10=1 of 6041. if either of these conditions is not met, the speed arrival is invalid.

Zero speed

606F 00 RW UINT16 0.1rpm 0-65535 50 RPDO
threshold

Zero speed threshold for servo

6071 | 00 Target torque | RW | INT16 | 0.1% -5000~5000 | 0 | RPDO

Target torque setting in torque mode

VE Controller Programming Manual A T
PDO
Sub-ind Default
Index Name Access Size Unit Setting range Mappi
exes value
ng
Maximum torque
6072 00 RW UINT16 0.1% 0~5000 0 RPDO
command

Maximum torque limit value.

6074 | 00 | Torque command RO | INT16 | 0.1% | -5000~5000 | 0 | TPDO
Torque output command after internal calculation of the drive
6075 | 00 | Motor rated current | RO | UDINT32 | mA | - | - | TPDO
Motor rated current
6077 | 00 | Actual torque RO | INT16 | 0.1% | -5000~5000 | 0 | TPDO
Feedback torque value obtained by the drive
Percentage of
6078 00 RO INT16 0.1% - - TPDO
actual drive torque
Percentage of actual drive torque
Command
607A 00 Target location RwW INT32 -231-(231-1) 0 RPDO
unit

The target position is given by the upper computer, and according to the position factor, i.e. the control word,

the servo motor travels in response to the displacement increment.

Command
607C 00 Origin deviation RW INT32 unit -231-(231-1) 0 RPDO
Position of mechanical origin offset mechanical zero point
Software absolute location restrictions
Sub—inde | Number of
RO UINT8 - 2 2 -
xes sub-indexes
Minimum Position User
607D 01 Limit RW INT32 Location -231-(231-1) -231 RPDO
Units
Maximum position User
02 limit RW INT32 location -231-(231-1) 231-1 RPDO
units

Once the home return to zero is complete, the minimum and maximum position limit values allowed to operate are set

by combining with the 607C. Position commands exceeding this value will stop when the limit is reached.

607E 00 | Command polarity RW UINT8 - 0-255 | 0 | RPDO

BIT7- Position command polarity :0- Maintain original polarity, 1- Reverse polarity

BIT6- Speed command polarity :0- Maintain original polarity, 1- Reverse polarity

BIT5- Torque command polarity :0- maintain original polarity, 1- polarity reversed
Command

607F 00 Maximum speed RW UDINT32 0~232-1 104857600 | RPDO
unit /s

Maximum speed limit value allowed.

Setting method.

607F = maximum permissible motor speed (rpm) * encoder resolution /60

6080 00 | Maximum motor | RW UDINT32 0.1RPM - | - | RPDO

VE Controller Programming Manual A T
PDO
Sub-ind Default
Index Name Access Size Unit Setting range Mappi
exes value
ng
speed
Maximum motor speed
Contour running
6081 00 RW UINT32 User Units 0~232-1 0 RPDO
speed
In profile position mode, the motor is set to run at a constant speed within this displacement
Contour Command 17476266
6083 00 RW UINT32 1~232-1 RPDO
acceleration unit /s2 67
Acceleration in pp, csv, pv modes.
Default value 1747626667 Command unit /s2 means: acceleration from Orpm to 1000rpm in 10ms.
Contour Command 174762666
6084 00 RW UINT32 1~232-1 RPDO
deceleration unit /s2 7
Deceleration in pp, csv, pv modes.
Default value 1747626667 Command unit /s2 means that it takes 10ms to accelerate from Orpm to 1000rpm.
User
Rapid stop 174762666
6085 00 RwW UINT32 acceleration | 1~232-1 RPDO
deceleration 7
units

Acceleration of the deceleration section at 605A=2 when the upper unit issues a fast stop command (bit2=0 of 6040).

Default value 1747626667 Command unit /s2 means: 10ms for acceleration from Orpm to 1000rpm.

Operating curve
6086 00 RW INT16 - 0 0 RPDO
selection
Set the motor running curve in profile position mode.
Currently only linear movements are supported.
OXFFFFFF
6087 00 Torque ramp RwW UINT32 0.1%/s 0 RPDO
FF
Set the torque command increments per second in profile torque mode
Gear ratio
Number of
00 RO UINT8 2 2
sub—indexes
6091
01 Motor resolution RwW UINT32 - 0~232-1 1 RPDO
Load axis
02 RW UINT32 - 1-232-1 1 RPDO
resolution
Establishing a proportional relationship between encoder units and command units.
Origin reversion
6098 00 RW INT8 - 0-35 0 RPDO
method
Supports 35 zero return methods as defined by the DS402 protocol
High—speed search Command
01 RwW UINT32 0~232-1 1747626 RPDO
for speed bumps unit /s
6099
Search home low Command
02 RW UINT32 07232-1 174762 RPDO
speed unit /s
609A 00 Return to zero | RW UINT32 Command 17232-1 1747 RPDO

VE Controller Programming Manual A T
PDO
Sub-ind Default
Index Name Access Size Unit Setting range Mappi
exes value
ng
acceleration unit /s2

The acceleration of the variable speed segment in home return to zero mode. Default value 1747 Command unit /s2 means:

acceleration from Orpm to 1000rpm in 10ms.

Position Offset Command
60B0Oh 00 RW INT32 =231l=(@31=1) 0 RPDO
units
Speed bias Command
60B1h 00 RW INT32 -231-(231-1) 0 RPDO
unit /s
60B2h 00 Torque bias RW INT32 0. 1% -5000-5000 0 RPDO
60B8h 00 Probe mode RW UINT16 - 0-65535 0 RPDO
60B9h 00 Probe state RW UINT16 - 0-65535 0 RPDO
Probe 1 rising Command
60BAh 00 edge position | RW INT32 unit -231-(231-1) 0 RPDO
value
Probe 1 falling Command
60BBh 00 edge position | RW INT32 unit -231-(231-1) 0 RPDO
value
Probe 2 rising Command
60BCh 00 edge position | RW INT32 unit -231-(231-1) 0 RPDO
value
Probe 2 falling Command
60BDh 00 edge position | RW INT32 unit -231-(231-1) 0 RPDO
value
Forward torque
60EOh 00 RW UINT16 0. 1% 0-5000 2000 RPDO
limiting
Reverse torque
60E1h 00 RW UINT16 0. 1% 0-5000 2000 RPDO
limiting
Supported Zero
60E3h 00 RW UINT16 = - - -
return methods
Position
60E6h 00 calculation RW UINT16 - 0-1 0 -
method
Position Command
60F4h 00 RO INT32 -231-(231-1) 0 TPDO
deviation unit
Position deviation, command units
60FDh 00 DI Status RO UINT32 - 07232-1 0 RPDO
60FEh 00 DO status RO UINT32 - 07232-1 0 RPDO
Target speed Command
60FFh 00 RW INT32 -231-(231-1) 0 RPDO
unit /s
Set speed command in synchronous cycle speed mode
6502 00 Support for drive | RO UINT32 0000 TPDO |

VE Controller Programming Manual A T
PDO
Sub-ind Default
Index Name Access Size Unit Setting range Mappi
exes value
ng
modes 03ADhex

Displays the relevant modes supported by the drive.

VE Controller Programming Manual

VECTOR

a
s
B
S
=

Appendix C Error Code Descriptions

SMC_ERROR: Records the error sequence number returned by the motion control

function block.

Code Source of generation

Variable name

Description of the cause of the error

0 All

SMC_NO_ERROR

No errors

Drive interfaces

SMC_DI_GENERAL_COMMUNICATION_

ERROR

Communication error (e.g. Sercos ring breakage)

2 Drive Interface

SMC_DI_AXIS_ERROR

Shaft error

Drive Interface

The soft limit is activated.

When bSWLimitEnable is enabled, the current

10 SMC_DI_SWLIMITS_EXCEEDED
position of the axis is not in the
fSWLimitPositive and fSWLimitNegative range
11 Drive Interface SMC_DI_HWLIMITS_EXCEEDED Hardware limit switch is activated
Drive Interface SMC_DI_HALT_OR_QUICKSTOP_NOT_ Drive status stopped or fast stop not supported
13
SUPPORTED
14 Drive interface SMC_DI_VOLTAGE_DISABLED Drive is not enabled
Drive interface The drive is currently giving an incorrect position
15 SMC_DI_IRREGULAR_ACTPOSITION
format. Check communication.
Drive interfaces Position hysteresis error. Limit values exceeded in
16 SMC_DI_POSITIONLAGERROR
set and current position
All modules created by The controller is not enabled or the holding brake
20 SMC_REGULATOR_OR_START_NOT_SET
motion control is not open
Axis in wrong control Axis is not in a correct control mode
21 SMC_WRONG_CONTROLLER_MODE
mode
Drive interface The module created by the motion control is not
30 SMC_FB_WASNT_CALLED_DURING_MOTION
called before the end of the motion
All modules The given AXIS_REF variable is not of type
31 SMC_AXIS_IS_NO_AXIS_REF
AXIS_REF
Axis in wrong control | SMC_AXIS_REF_CHANGED_DURING_ AXIS_REF- The return value of the variable is
32
mode OPERATION processed before the module is activated
Drive interface Axis not activated when moving
33 SMC_FB_ACTIVE_AXIS_DIABLED
(MC_Power.bRegulatorOn)
All modules created by The axis cannot process the current command in
34 SMC_AXIS_NOT_READY_FOR_MOTION

motion control

the current state

40 Virtual drives

SMC_VD_MAX_VELOCITY_EXCEEDED

Maximum velocity reached (fMaxVelocity)

Virtual drives Maximum acceleration reached
41 SMC_VD_MAX_ACCELERATION_EXCEEDED
(fMaxAcceleration)
Virtual drives Maximum deceleration reached
42 SMC_VD_MAX_DECELERATION_EXCEEDED
(fMaxDeceleration)
50 SMC_Homing SMC_3SH_INVALID_VELACC_VALUES Invalid velocity or acceleration value
Module requires end limit switch (for safety
51 SMC_Homing SMC_3SH_MODE_NEEDS_HWLIMIT

purposes)

VE Controller Programming Manual

B

VYECTOR

BOHE MR

Code Source of generation Variable name Description of the cause of the error
SMC_ Mode not supported
70 SMC_SCM_NOT_SUPPORTED
SetControllerMode
SMC_ The control mode used in the current mode is not
71 SMC_SCM_AXIS_IN_WRONG_STATE
SetControllerMode supported
Axis is not a correct control mode and needs to be
75 SMC_SetTorque SMC_ST_WRONG_CONTROLLER_MODE
in torque mode
80 SMC_ResetAxisGroup SMC_RAG_ERROR_DURING_STARTUP Error at start of axeset
SMC_ Incorrect variables
90 SMC_CGR_ZERO_VALUES
ChangeGearingRatio
SMC_ Drive ratio cannot be changed in drive control
91 SMC_CGR_DRIVE_POWERED
ChangeGearingRatio mode
SMC_ Improper position cycle (<= 0)
92 SMC_CGR_INVALID_POSPERIOD
ChangeGearingRatio
Axis does not contain any information during the
110 MC_Power SMC_P_FTASKCYCLE_EMPTY
scan cycle (fTaskCycle = 0)
120 MC_Reset SMC_R_NO_ERROR_TO_RESET Axis does not have an error reset
121 MC_Reset SMC_R_DRIVE_DOESNT_ANSWER Axis does not perform an error reset
122 MC_Reset SMC_R_ERROR_NOT_RESETTABLE Error cannot be reset
123 MC_Reset SMC_R_DRIVE_DOESNT_ANSWER_IN_TIME Communication with the axis does not respond
MC_ReadParameter, Parameter serial number position
130 SMC_RP_PARAM_UNKNOWN
MC_ReadBoolParameter
An error occurred during the transfer of
parameters to the drive. See also
MC_ReadParameter,
131 SMC_RP_REQUESTING_ERROR Function block example Error in
MC_ReadBoolParameter
ReadDriveParameter (SM_
DriveBasic.lib)
MC_WriteParameter, Parameter serial number position or no write
140 SMC_WP_PARAM_INVALID
MC_WriteBoolParameter operation allowed
Refer to the module example
MC_WriteParameter,
141 SMC_WP_SENDING_ERROR WriteDriveParameter for errors
MC_WriteBoolParameter
(Drive_Basic.lib)
170 MC_Home SMC_H_AXIS_WASNT_STANDSTILL Axis not in standard condition
171 MC_Home SMC_H_AXIS_DIDNT_START_HOMING An error occurred while performing a zero return
172 MC_Home SMC_H_AXIS_DIDNT_ANSWER Communication error
Execution of zero return error stopped. Check to
173 MC_Home SMC_H_ERROR_WHEN_STOPPING
see if deceleration is set.
180 MC_Stop SMC_MS_UNKNOWN_STOPPING_ERROR Unknown error at stop
181 MC_Stop SMC_MS_INVALID_ACCDEC_VALUES Unsuitable speed or acceleration value
182 MC_Stop SMC_MS_DIRECTION_NOT_APPLICABLE Direction=shortest not available
The axis is in an error stop state. Stop cannot be
183 MC_Stop SMC_MS_AXIS_IN_ERRORSTOP
processed.
184 MC_Stop SMC_BLOCKING_MC_STOP_WASNT_CALLED An instance of MC_Stop, locked axis

VE Controller Programming Manual

B

VYECTOR

BOHE MR

Code Source of generation Variable name Description of the cause of the error
(Execute=TRUE), cannot be called. Please call
MC_
Stop(Execute=FALSE).
201 MC_MoveAbsolute SMC_MA_INVALID_VELACC_VALUES Unsuitable speed or acceleration values
202 MC_MoveAbsolute SMC_MA_INVALID_DIRECTION Wrong direction
226 MC_MoveRelative SMC_MR_INVALID_VELACC_VALUES Unsuitable velocity or acceleration value
227 MC_MoveRelative SMC_MR_INVALID_DIRECTION Wrong direction
251 MC_MoveAdditive SMC_MAD_INVALID_VELACC_VALUES Unsuitable velocity or acceleration value
252 MC_MoveAdditive SMC_MAD_INVALID_DIRECTION Wrong direction
276 MC_MoveSuperimposed SMC_MSI_INVALID_VELACC_VALUES Unsuitable velocity or acceleration value
277 MC_MoveSuperimposed SMC_MSI_INVALID_DIRECTION Wrong direction
301 MC_MoveVelocity SMC_MV_INVALID_ACCDEC_VALUES Unsuitable velocity or acceleration value
302 MC_MoveVelocity SMC_MV_DIRECTION_NOT_APPLICABLE Direction=shortest/fastest not supported
325 MC_PositionProfile SMC_PP_ARRAYSIZE Wrong alignment size
326 MC_PositionProfile SMC_PP_STEPOMS Step time = #0s
350 MC_VelocityProfile SMC_VP_ARRAYSIZE Wrong alignment size
351 MC_VelocityProfile SMC_VP_STEPOMS Step time = t#0s
375 MC_AccelerationProfile SMC_AP_ARRAYSIZE Wrong alignment size
376 MC_AccelerationProfile SMC_AP_STEPOMS Step time = t#0s
400 MC_TouchProbe SMC_TP_TRIGGEROCCUPIED Trigger condition has been activated
401 MC_TouchProbe SMC_TP_COULDNT_SET_WINDOW Drive interface does not support window function
402 MC_TouchProbe SMC_TP_COMM_ERROR Communication error
410 MC_AbortTrigger SMC_AT_TRIGGERNOTOCCUPIED Trigger condition has been terminated
SMC_ Unsuitable speed or acceleration values
426 SMC_MCR_INVALID_VELACC_VALUES
MoveContinuousRelative
SMC_ Wrong direction
427 SMC_MCR_INVALID_DIRECTION
MoveContinuousRelative
SMC_ Unsuitable velocity or acceleration value
451 SMC_MCA_INVALID_VELACC_VALUES
MoveContinuousAbsolute
SMC_ Wrong direction
452 SMC_MCA_INVALID_DIRECTION
MoveContinuousAbsolute
SMC_ Direction= fastest not available
453 SMC_MCA_DIRECTION_NOT_APPLICABLE
MoveContinuousAbsolute
600 SMC_CamRegister SMC_CR_NO_TAPPETS_IN_CAM CAM does not contain any tappets
601 SMC_CamRegister SMC_CR_TOO_MANY_TAPPETS Tappet group ID reaches MAX_NUM_TAPPETS
602 SMC_CamRegister SMC_CR_MORE_THAN_32_ACCESSES More than 32 interfaces in one CAM_REF
625 MC_CamiIN SMC_CI_NO_CAM_SELECTED No CAM selected
626 MC_CamiIN SMC_CI_MASTER_OUT_OF_SCALE Spindle out of range
For ramp_in function block speed and acceleration
627 MC_CamiIN SMC_CI_RAMPIN_NEEDS_VELACC_VALUES
must be specified exactly
Scale variable fEditor/TableMasterMin/Max
628 MC_CamiIN SMC_CI_SCALING_INCORRECT

incorrect

VE Controller Programming Manual

B

VYECTOR

BOHE MR

Code Source of generation Variable name Description of the cause of the error
SMC_CAMBounds, Function blocks in the given CAM format are not
640 SMC_CB_NOT_IMPLEMENTED
SMC_CamBounds_Pos supported
675 MC_Gearln SMC_GI_RATIO_DENOM RatioDenominator = 0
676 MC_Gearln SMC_GI_INVALID_ACC Acceleration is not suitable
677 MC_Gearln SMC_GI_INVALID_DEC Acceleration inappropriate
725 MC_Phase SMC_PH_INVALID_VELACCDEC Velocity, acceleration, deceleration inappropriate
726 MC_Phase SMC_PH_ROTARYAXIS_PERIODO Rotation axis fPositionPeriod = 0
All modules using MC_ Given CAM not type MC_CAM_REF
750 SMC_NO_CAM_REF_TYPE
CAM_REF as input
If the data obtained from the CamTable is not the
SMC_CAM_TABLE_DOES_NOT_COVER_
751 MC_CamTableSelect spindle area (xStart and xEnd) obtained by data
MASTER_SCALE
transformation.
Spindle changes direction of rotation during slave
775 MC_GearlnPos SMC_GIP_MASTER_DIRECTION_CHANGE
coupling
The gear return ratio (fBacklash) is too large
SMC_
800 SMC_BC_BL_TOO_BIG (>position
BacklashCompensation
periode/2)
1000 | CNC & ZHZAUIND)RE SMC_NO_LICENSE The target is not authorised for CNC.
1001 SMC_Interpolator SMC_INT_VEL_ZERO Path cannot be processed because velocity = 0.
1002 | SMC_lInterpolator SMC_INT_NO_STOP_AT_END Previous path object Vel_End > 0.
Warning: GEOINFO- list is processed in Dataln,
but the list is not set at the end. Reason: Forgot to
1003 | SMC_lInterpolator SMC_INT_DATA_UNDERRUN
set EndOfList in Dataln or SMC_lInterpolator is
faster than path compiler module
1004 SMC_Interpolator SMC_INT_VEL_NONZERO_AT_STOP Stop speed > 0.
Use too many SMC_Interpolator calls for
1005 | SMC_lInterpolator SMC_INT_TOO_MANY_RECURSIONS
SoftMotion- errors.
Input-OutQueue Dataln is not used as the final
1006 SMC_Interpolator SMC_INT_NO_CHECKVELOCITIES processing module for SMC_
Final processing module for CHeckVelocities
1007 SMC_Interpolator SMC_INT_PATH_EXCEEDED Internal / numerical error error
Velocity, acceleration or deceleration is null or too
1008 | SMC_lInterpolator SMC_INT_VEL_ACC_DEC_ZERO
low.
1009 | SMC_lInterpolator SMC_INT_DWIPOTIME_ZERO FB call dwlpoTime = 0
1050 SMC_Interpolator2Dir SMC_INT2DIR_BUFFER_TOO_SMALL Data buffer too small
1051 SMC_Interpolator2Dir SMC_INT2DIR_PATH_FITS_NOT_IN_QUEUE Path is not fully contained in the queue
Velocity, deceleration or acceleration value is not
1100 | SMC_CheckVelocities SMC_CV_ACC_DEC_VEL_NONPOSITIVE
positive
The amount of change in
1120 | SMC_Controlaxisbypos SMC_CA_INVALID_ACCDEC_VALUES fGapVelocity/fGapAcceleration/fGap.

fGapDeceleration is not a positive value

1200

SMC_NCDecoder

SMC_DEC_ACC_TOO_LITTLE

Acceleration values are not allowed

VE Controller Programming Manual

B

VYECTOR

BOHE MR

Code Source of generation Variable name Description of the cause of the error
1201 SMC_NCDecoder SMC_DEC_RET_TOO_LITTLE Deceleration values are not allowed
1202 SMC_NCDecoder SMC_DEC_OUTQUEUE_RAN_EMPTY Data below Queue is read and is empty.
Jumped line number cannot be executed because
1203 | SMC_NCDecoder SMC_DEC_JUMP_TO_UNKNOWN_LINE
the line number is unknown
1204 SMC_NCDecoder SMC_DEC_INVALID_SYNTAX Syntax error
SMC_DEC_3DMODE_OBJECT_NOT_ These objects do not support 3D mode
1205 | SMC_NCDecoder
SUPPORTED
1300 | SMC_GCodeViewer SMC_GCV_BUFFER_TOO_SMALL Buffer too small
1301 SMC_GCodeViewer SMC_GCV_BUFFER_WRONG_TYPE Buffer element type is wrong
1302 | SMC_GCodeViewer SMC_GCV_UNKNOWN_IPO_LINE The current interpolation line cannot be found
All function blocks using The given CNC program is not of type
1500 SMC_NO_CNC_REF_TYPE
SMC_CNC_REF SMC_CNC_REF
All function blocks that use The given OutQueue is not of type
SMC_ SMC_OUTQUEUE
1501 SMC_NO_OUTQUEUE_TYPE
OUTQUEUE function
blocks
1600 | CNC function blocks SMC_3D_MODE_NOT_SUPPORTED This function block is only available in the 2D path
2000 SMC_ReadNCFile SMC_RNCF_FILE_DOESNT_EXIST File does not exist
2001 SMC_ReadNCFile SMC_RNCF_NO_BUFFER No buffer allocation
2002 | SMC_ReadNCFile SMC_RNCF_BUFFER_TOO_SMALL Buffer is too small
Low buffered data in the swap area is read and is
2003 | SMC_ReadNCFile SMC_RNCF_DATA_UNDERRUN
empty
2004 SMC_ReadNCFile SMC_RNCF_VAR_COULDNT_BE_REPLACED Placeholder variables cannot be replaced
2005 SMC_ReadNCFile SMC_RNCF_NOT_VARLIST input pvl cannot point to SMC_VARLIST object
2050 SMC_ReadNCQueue SMC_RNCQ_FILE_DOESNT_EXIST File cannot be opened
2051 SMC_ReadNCQueue SMC_RNCQ_NO_BUFFER No buffer definition
2052 | SMC_ReadNCQueue SMC_RNCQ_BUFFER_TOO_SMALL Buffer too small
2053 | SMC_ReadNCQueue SMC_RNCQ_UNEXPECTED_EOF Unknown file endings
2100 | SMC_AxisDiagnosticLog SMC_ADL_FILE_CANNOT_BE_OPENED File cannot be opened
Out of range buffering; WriteToFile must be called
2101 SMC_AxisDiagnosticLog SMC_ADL_BUFFER_OVERRUN
more often
2200 | SMC_ReadCAM SMC_RCAM_FILE_DOESNT_EXIST File cannot be opened
2201 SMC_ReadCAM SMC_RCAM_TOO_MUCH_DATA Too much data saved to CAM
2202 | SMC_ReadCAM SMC_RCAM_WRONG_COMPILE_TYPE Wrong compile mode
2203 | SMC_ReadCAM SMC_RCAM_WRONG_VERSION Wrong file version
2204 SMC_ReadCAM SMC_RCAM_UNEXPECTED_EOF Unknown document endings
SMC_
3001 SMC_WDPF_CHANNEL_OCCUPIED SMC_WDPF_TIMEOUT_PREPARING_LIST
WriteDriveParamsToFile
SMC_ File cannot be created
3002 SMC_WDPF_CANNOT_CREATE_FILE
WriteDriveParamsToFile
SMC_ SMC_WDPF_ERROR_WHEN_READING_ Error when reading file parameters
3003

WriteDriveParamsToFile

PARAMS

VE Controller Programming Manual

pu

WECTOR

BOHE MR

Code Source of generation Variable name Description of the cause of the error
SMC_ Wrong time when preparing parameter list
3004 SMC_WDPF_TIMEOUT_PREPARING_LIST
WriteDriveParamsToFile
The conversion factor of the decoder reference
5000 | SMC_Encoder SMC_ENC_DENOM_ZERO
(dwRatioTechUnitsDenom) is 0.
5001 SMC_Encoder SMC_ENC_AXISUSEDBYOTHERFB Other modules are processing the decoding axis.
5002 Driver interface SMC_ENC_FILTER_DEPTH_INVALID Inappropriate filter selection

	1 PLCopen Introduction to the Code
	2 VEC-VE AND CODESYS
	2.1 VEC-VE controller
	2.1.1 Product overview
	2.1.2 Product configuration and module description

	2.2 CODESYS Software overview
	2.2.1 CODESYS Introduction to the software
	2.2.2 Software access and installation requirements
	2.2.3 The software installation procedure
	2.2.4 Install Package
	2.2.5 Install the device description file
	2.2.6 Uninstall CODESYS

	3 The motion control system is composed of procedure
	3.1 The motion control system of the VE controller con
	3.2 The VE controller motion control program consists
	3.2.1 The user program of the VE controller is composed
	3.2.2 The type of task in the VE controller
	3.2.3 The benefits of a user program consisting of multi
	3.2.4 How the user program can do both logical control a

	3.3 Typical steps to write a user program
	3.3.1 The configuration of the user system
	3.3.2 The writing of the user program
	3.3.3 The user program variable is associated with the p
	3.3.4 How the user program is executed and how it is con
	3.3.5 Program compilation and login download

	4 A simple user program
	4.1 Create a project and download debugging
	4.1.1 Create a new standard project
	4.1.2 System configuration and parameter setting
	 Add EtherCAT_Master_Softmotion
	 Add VECServo
	 Add CiA402 Axis

	4.1.3 The user controls the program writing
	 Create an object
	 Open the programming environment
	 Define variables
	 Program writing

	4.1.4 Bus and task cycle
	 Bus task cycle
	 The program task cycle

	4.1.5 Mission sub-core
	4.1.6 Sign in to the device
	 Connect the controller
	 Scan the network
	 Set the bus control gate
	 Sign in to download

	4.1.7 Start debugging
	4.1.8 Add a Trance trace
	 Add Trance
	 Configure Trance

	4.1.9 Stop debugging

	4.2 Common configuration instructions for devices
	4.2.1 Device tree and device editor
	 The device tree
	 The device editor

	4.2.2 Device device
	 CommunicationSetting communication settings
	Applications app
	 Backup and Restore backup restore
	 Files file
	 Log log
	PLC Settings PLC settings
	 Users and Groups users and groups
	 Access Rights access
	 Symbol Rights symbol permissions
	 Task deployment task deployment
	 Status status
	Information

	4.2.3 Library Manager Library Manager

	4.3 EtherCAT busses are commonly used
	4.3.1 EtherCAT_Master main station
	 General(General).
	 Sync Unit Assignment
	 Parameters

	4.3.2 EtherCAT_ slaveslave from the station
	 General(General).
	 Process Data（过程数据）
	 Expert Process Data（专家过程数据）
	 Startup Parameters（启动参数）
	 EtherCAT Parameters（EtherCAT参数）
	 EtherCAT I/O Mapping(EtherCAT Input and Output M
	 Online（在线）
	 CoE Online（CoE在线）

	4.3.3 SM_Drive_GenericDSP402 Shaft configurations
	 General（通用）
	 Scaling/Mapping（缩放/映射）
	 Commissioning（调试）
	 Parameters（参数）
	 I/O Mapping（I/O映射）
	 IEC Objects（IEC对象）
	 Status（状态）
	 Information（信息）

	4.3.4 EtherCAT bus cycle behavior
	4.3.5 Ether CAT specific variables
	4.3.6 EtherCAT Library
	 The primary instance
	 The from the station instance
	 Check the chained list of all slaves

	4.3.7 IODrvEtherCAT
	 ETC_CO_SdoRead
	 ETC_CO_SdoRead4
	 ETC_CO_SdoRreadDWord
	 ETC_CO_SdoWrite
	 ETC_CO_SdoWrite4
	 ETC_CO_SdoWriteDWord
	 ReadMemory
	 WriteMemory

	4.3.8 SoftMotion General Axis Pool
	 Position control drives
	 Free encoder
	 Virtual drives

	5 VE controller program execution mechanism
	5.1 User engineering tasks and configuration
	5.1.1 Key points of task configuration
	5.1.2 Prioritisation of tasks
	5.1.3 Execution cycle setting in task configuration

	5.2 Data flow analysis in EtherCAT bus networks
	5.2.1 Network overview of the EtherCAT bus
	5.2.2 Synchronous clocking of the EtherCAT bus

	5.3 Communication flow between VE controller and servo
	5.3.1 Step-by-step description of the control informatio
	5.3.2 CiA402 Data Object Dictionary and Servo Common Obj
	5.3.3 Configuration of servo shaft motor parameters
	5.3.4 EtherCAT network state initialization and manageme
	5.3.5 Detect the EherCAT communication status
	 EtherCAT main station status flag bit
	 EtherCAT from the station detection

	5.4 The MC motion controls the timing of the transmiss
	5.5 The processing mechanism of the MC function block
	5.5.1 Cycle synchronization position mode
	5.5.2 The data structure of the servo axis
	5.5.3 Servo axis status machine and transfer conditions
	5.5.4 The execution logic of the MC function block:
	5.5.5 Data interactions between different priority tasks

	6 Programming Languages and References
	6.1 Data types
	6.1.1 BOOL Boolean types
	6.1.2 Integer
	6.1.3 REAL/LREAL Floating point type
	6.1.4 STRING String type
	6.1.5 WSTRING
	6.1.6 TIME time type
	6.1.7 LTIME
	6.1.8 UNION Joint Statement
	6.1.9 BIT bit
	6.1.10 __UXIN and __XWORD are pseudo-data types
	6.1.11 POINTERS pointer
	 The syntax declaration of the pointer
	 A function pointer to an external function
	 The index access pointer

	6.1.12 REFERENCE Reference
	6.1.13 ARRAY array
	 An array of fixed lengths
	 An array of arrays

	6.1.14 Structure structure
	Initializing the structure
	Accessing structure members
	Bit access in structures

	6.1.15 Enumerations
	6.1.16 Subrange Types

	6.2 Variable
	6.2.1 Local variable -VAR
	6.2.2 Enter the variable - VAR_INPUT
	6.2.3 Output variable - VAR_OUTPUT
	6.2.4 Input and output variables -VAR_IN_OUT
	6.2.5 Global variable - VAR_GLOBAL
	6.2.6 Temporary variable - VAR_TEMP
	6.2.7 Static variable - VAR_STAT
	6.2.8 External variable - VAR_EXTERNAL
	6.2.9 Instance variable - VAR_INST
	6.2.10 Configuration variable - VAR_CONFIG
	6.2.11 Constant variable - VAR CONSTANT
	6.2.12 Persistence variable -PERSISTENT
	6.2.13 Reserved variable - RETAIN
	6.2.14 Special variables -SUPER

	6.3 Operators
	6.3.1 Arithmetic operator
	Add "ADD" to the operation
	“MUL” Multiplication operations
	“SUB” Subtraction operations
	“DIV” Division operations
	"MOD"take-out operation
	“MOVE” Assignment operations
	“SIZEOF“Byte operations

	6.3.2 Bit-Serial Operators
	“AND”
	“OR”
	“NOT”
	“XOR”
	“AND_THEN”
	“OR_ELSE”

	6.3.3 Shift operators
	“SHL” Left shif
	“SHR” Right shift
	“ROL” Cyclic left shift
	“ROR” Cyclic right shift

	6.3.4 Selection operators
	“SEL” Select
	“MAX” Maximum value
	“MIN” Minimum value
	“LIMIT” Limit values
	“MUX” Multiplexing

	6.3.5 Comparison operators
	“GT” greater than
	“LT” Less than
	“LE” Less than or equal to
	“GE” Greater than or equal to
	“EQ” equals
	“NE”Not equals

	6.3.6 Address operators
	“ADR”
	“Content Operator”
	“BITADR”

	6.3.7 Calling operators
	“CAL” Call

	6.3.8 Numerical operators
	“ABS” Absolute values
	“SQRT”
	“LN” Natural logarithm
	“LOG” Constant logarithm
	“EXP” Exponent of the natural number e
	“EXPT”（ Yth power of X）
	“SIN” Sine function
	“COS” The cosine function
	“TAN” tangent function
	“ASIN” Sine function anyway
	“ACOS” The inverse cosine function
	“ATAN” Anyway tangent function

	6.3.9 Type conversion operators
	“BOOL_TO”
	“TO_BOOL”
	“TO_ <xxx>”
	“<INT Type>_TO_<INT Type>”
	“REAL_TO- / LREAL_TO”
	“TIME_TO / TIME_OF_DAY_TO”
	“DATE_TO / DT_TO”
	“STRING_TO”
	“TRUNC”

	6.4 Structured text(ST).
	6.4.1 ST Editor
	6.4.2 The ST expression
	6.4.3 ST assignment method
	 The assignment expression
	 The ST assignment operator for the output
	 Extended ST assignments "S", "R""

	6.4.4 ST syntax
	 IF statement
	 The FOR statement
	 CASE statement
	 WHILE statement
	 REPEAT statement
	 RETURN
	 JMP
	 EXIT
	 CONTINUE
	 ST Function Block Call
	 ST COMMENTS

	6.5 Continuous function diagrams（CFC）
	6.5.1 CFC Editor
	6.5.2 The order in which the CFC data flow is executed
	6.5.3 CFC elements
	 Page page
	 Control Point control point
	 Input
	 Output
	 Box运算块
	 Jump
	 Label
	 Return
	 Composer
	 Selector
	 Comment
	 Connection Mark - Source/Sink
	 Input Pin
	 Output Pin

	6.6 Sequential functionmap (SFC).
	6.6.1 SFC Editor
	6.6.2 Theorder in which S FCs are processed
	6.6.3 SFC Action conditions
	6.6.4 SFC Implicit variables and flags
	SFC Implicit variables

	6.6.5 SFC Element
	 Step and Transition
	 Action
	 Branch
	 Jump
	 Macro

	6.7 CFC/LD/IL
	6.7.1 FBD / LD / IL Editor
	6.7.2 FBD/LD/IL Element
	 Network
	 Box
	 FBD/LD/IL Element ‘Box with EN/ENO’
	 Assignment
	 Input
	 Label
	 Jump
	 Return
	 Branch
	 Excute
	 Contact
	 Coil
	 Branch Start/End 分支开始/结束

	7 Motion control instructions
	7.1 Motion control programming for single-axis MC inst
	7.1.1 MC instruction programming points
	7.1.2 MC function blocks commonly used for single-axis c
	7.1.3 MC commands and PDO/SDO configuration

	7.2 Motion control programming for multi-axis CAM cam
	7.2.1 Characteristics of the cam table
	7.2.2 Cam table input
	7.2.3 The internal data structure and array of the CAM c
	7.2.4 Reference and dynamic switching of CAM table

	7.3 Single axis commands
	7.3.1 MC_Power
	7.3.2 MC_Stop
	7.3.3 MC_Halt
	7.3.4 MC_Home
	7.3.5 MC_MoveVelocity
	7.3.6 MC_MoveAbsolute
	7.3.7 MC_MoveAdditive
	7.3.8 MC_MoveRelative
	7.3.9 MC_MoveSuperImposed
	7.3.10 MC_PositionProfile
	7.3.11 MC_Reset
	7.3.12 MC_ReadActualPosition
	7.3.13 MC_ReadAxisError
	7.3.14 MC_ReadBoolParameter
	7.3.15 MC_ReadStatus
	7.3.16 MC_ReadParameter
	7.3.17 MC_AccelerationProfile
	7.3.18 MC_VelocityProfile
	7.3.19 MC_WriteBoolParameter
	7.3.20 MC_WriteParameter
	7.3.21 MC_AbortTrigger
	7.3.22 MC_ReadActualTorque
	7.3.23 MC_ReadActualVelocity
	7.3.24 MC_SetPosition
	7.3.25 MC_TouchProbe
	7.3.26 SMC_MoveContinuousAbsolute
	7.3.27 SMC_MoveContinuousRelative
	7.3.28 MC_Jog
	7.3.29 SMC_Inch
	7.3.30 SMC3_PersistPosition
	7.3.31 SMC3_PersistPositionSingleturn
	7.3.32 SMC3_PersistPositionLogical
	7.3.33 SMC_Homing

	7.4 Axis group instructions (primary/from-axis instruc
	7.4.1 SMC_CamRegister
	7.4.2 SMC_GetCamSlaveSetPosition
	7.4.3 SMC_GetTappetValue
	7.4.4 MC_CamTableSelect
	7.4.5 MC_CamIn
	7.4.6 MC_CamOut
	7.4.7 MC_GearIn
	7.4.8 MC_GearOut
	7.4.9 MC_GearInPos
	7.4.10 MC_Phasing
	7.4.11 SMC_CAMBounds
	7.4.12 SMC_CAMBounds_Pos
	7.4.13 SMC_WriteCAM
	7.4.14 SMC3_PersistPosition
	7.4.15 SMC_FollowVelocity
	7.4.16 SMC_FollowSetValues
	7.4.17 SMC_SetControllerMode
	7.4.18 SMC_CheckLimits
	7.4.19 SMC_GetMaxSetAccDec
	7.4.20 SMC_GetMaxSetVelocity
	7.4.21 SMC_InPosition
	7.4.22 SMC_ReadSetPosition
	7.4.23 SMC_SetTorque
	7.4.24 SMC_BacklashCompensation
	7.4.25 SMC3_PersistPositionSingleturn
	7.4.26 SMC_CheckAxisCommunication
	7.4.27 SMC_FollowPosition
	7.4.28 SMC_FollowPositionVelocity
	7.4.29 SMC_AxisDiagnosticLog
	7.4.30 SMC_ChangeGearingRatio
	7.4.31 SMC_ReadFBError
	7.4.32 SMC_ClearFBError

	7.5 Vector special instructions
	7.5.1 VECNSMC. VecCheckHardware
	7.5.2 VECNSMC.NS_MC_SpecialCamIn
	7.5.3 VECNSMC.NS_MC_RotaryIn

	7.6 CNC Instructions
	7.6.1 SMC_ReadNCFile2
	7.6.2 SMC_NCInterpreter
	7.6.3 SMC_Interpolator

	8 Comprehensive configuration debugging
	8.1 Modbus Communications
	8.1.1 ModBusRTU_Slave
	Install ModbusRTU_Slave
	Add an RTU device
	Parameter settings
	Address-associated variables
	HMI settings

	8.1.2 ModBusTCP_Slave
	Install ModBusTCP_Slave device
	Add a TCP device
	Parameter settings
	Address-associated variables
	HMI settings

	8.1.3 ModBusRTU_Master
	Install ModBusRTU_Master device
	Add ModBusRTU_Master device
	Parameter settings ("Internal parameters" introduc
	Address Association Variables (Internal I/O Mappin
	Introduction to the use of function codes
	Example of use

	8.1.4 ModbusTCP_Master
	Install the device description file
	Add a device
	Host parameter settings
	From the machine parameter settings
	Online monitoring

	8.1.5 OPCserver

	8.2 Simulation and debugging
	8.2.1 Simulate the VE controller
	8.2.2 Simulate servo drives

	8.3 Security management and user rights settings
	8.3.1 Device login permissions settings
	 Add the user and password
	 Sign in to the device
	 Exit the current user
	 Cancel your account password login

	8.3.2 Project file security settings
	8.3.3 POU permission settings
	 User and group descriptions
	 Example of POU permission settings

	Appendix A VECServo supported origin regression mo
	Appendix B Quick reference list of CiA402 common o
	Appendix C Error Code Descriptions

