
VE Controller Programming Manual

VE Controller Programming Manual

Foreword

Thank you for purchasing a VE motion controller! The VE

Motion Controller is a high-performance EtherCAT bus-based

controller developed by our company. This manual describes the

VE Motion Controller software and the quick application of the

motion control functions. For more detailed function descriptions

users can go to the Viktor website athttp://www.szvector.com/.

http://www.szvector.com/

VE Controller Programming Manual

1 PLCOPEN INTRODUCTION TO THE CODE .. 10

2 VEC-VE AND CODESYS ... 11

2.1 VEC-VE controller ...11

2.1.1 Product overview... 11

2.1.2 Product configuration and module description...12

2.2 CODESYS Software overview..16

2.2.1 CODESYS Introduction to the software ...16

2.2.2 Software access and installation requirements ..16

2.2.3 The software installation procedure ...17

2.2.4 Install Package ...19

2.2.5 Install the device description file ..21

2.2.6 Uninstall CODESYS .. 22

3 THE MOTION CONTROL SYSTEM IS COMPOSED OF PROCEDURES ..23

3.1 The motion control system of the VE controller consists of ... 23

3.2 The VE controller motion control program consists of ...25

3.2.1 The user program of the VE controller is composed of ... 25

3.2.2 The type of task in the VE controller ..26

3.2.3 The benefits of a user program consisting of multiple PUS ... 26

3.2.4 How the user program can do both logical control and motion control27

3.3 Typical steps to write a user program...28

3.3.1 The configuration of the user system.. 28

3.3.2 The writing of the user program..29

3.3.3 The user program variable is associated with the port ...29

3.3.4 How the user program is executed and how it is configured to run .. 30

3.3.5 Program compilation and login download..31

4 A SIMPLE USER PROGRAM .. 33

4.1 Create a project and download debugging..33

4.1.1 Create a new standard project ... 33

4.1.2 System configuration and parameter setting... 34

4.1.3 The user controls the program writing... 39

4.1.4 Bus and task cycle ..41

4.1.5 Mission sub-core ... 43

4.1.6 Sign in to the device...44

4.1.7 Start debugging... 47

4.1.8 Add a Trance trace..48

4.1.9 Stop debugging... 50

4.2 Common configuration instructions for devices ... 51

4.2.1 Device tree and device editor ...51

4.2.2 Device device...54

4.2.3 Library Manager Library Manager ...59

4.3 EtherCAT busses are commonly used...61

4.3.1 EtherCAT_Master main station... 61

4.3.2 EtherCAT_ slaveslave from the station.. 65

4.3.3 SM_Drive_GenericDSP402 Shaft configurations .. 77

VE Controller Programming Manual

4.3.4 EtherCAT bus cycle behavior ...82

4.3.5 Ether CAT specific variables ...83

4.3.6 EtherCAT Library .. 83

4.3.7 IODrvEtherCAT ..89

4.3.8 SoftMotion General Axis Pool ...98

5 VE CONTROLLER PROGRAM EXECUTION MECHANISM ..101

5.1 User engineering tasks and configuration.. 101

5.1.1 Key points of task configuration ..102

5.1.2 Prioritisation of tasks ..102

5.1.3 Execution cycle setting in task configuration... 102

5.2 Data flow analysis in EtherCAT bus networks .. 103

5.2.1 Network overview of the EtherCAT bus ... 103

5.2.2 Synchronous clocking of the EtherCAT bus..104

5.3 Communication flow between VE controller and servo slaves ..106

5.3.1 Step-by-step description of the control information process .. 106

5.3.2 CiA402 Data Object Dictionary and Servo Common Objects ... 110

5.3.3 Configuration of servo shaft motor parameters ... 112

5.3.4 EtherCAT network state initialization and management... 115

5.3.5 Detect the EherCAT communication status .. 117

5.4 The MC motion controls the timing of the transmission of the data121

5.5 The processing mechanism of the MC function block... 122

5.5.1 Cycle synchronization position mode... 122

5.5.2 The data structure of the servo axis ...122

5.5.3 Servo axis status machine and transfer conditions .. 124

5.5.4 The execution logic of the MC function block: ..126

5.5.5 Data interactions between different priority tasks POU...127

6 PROGRAMMING LANGUAGES AND REFERENCES ... 129

6.1 Data types ... 129

6.1.1 BOOL Boolean types..129

6.1.2 Integer ... 129

6.1.3 REAL/LREAL Floating point type ..130

6.1.4 STRING String type ... 130

6.1.5 WSTRING.. 130

6.1.6 TIME time type ... 131

6.1.7 LTIME..131

6.1.8 UNION Joint Statement .. 131

6.1.9 BIT bit ... 132

6.1.10 __UXIN and __XWORD are pseudo-data types... 132

6.1.11 POINTERS pointer ... 132

6.1.12 REFERENCE Reference...134

6.1.13 ARRAY array .. 134

6.1.14 Structure structure .. 139

6.1.15 Enumerations .. 141

6.1.16 Subrange Types ... 142

VE Controller Programming Manual

6.2 Variable .. 144

6.2.1 Local variable -VAR ..144

6.2.2 Enter the variable - VAR_INPUT ..144

6.2.3 Output variable - VAR_OUTPUT ... 144

6.2.4 Input and output variables -VAR_IN_OUT .. 145

6.2.5 Global variable - VAR_GLOBAL ... 145

6.2.6 Temporary variable - VAR_TEMP..146

6.2.7 Static variable - VAR_STAT ..146

6.2.8 External variable - VAR_EXTERNAL ..146

6.2.9 Instance variable - VAR_INST...147

6.2.10 Configuration variable - VAR_CONFIG ...148

6.2.11 Constant variable - VAR CONSTANT ..148

6.2.12 Persistence variable -PERSISTENT ..149

6.2.13 Reserved variable - RETAIN ...151

6.2.14 Special variables -SUPER..152

6.3 Operators .. 152

6.3.1 Arithmetic operator.. 155

6.3.2 Bit-Serial Operators ..158

6.3.3 Shift operators ..160

6.3.4 Selection operators ...162

6.3.5 Comparison operators .. 164

6.3.6 Address operators ...166

6.3.7 Calling operators ... 168

6.3.8 Numerical operators .. 168

6.3.9 Type conversion operators ..173

6.4 Structured text(ST). .. 179

6.4.1 ST Editor..179

6.4.2 The ST expression... 180

6.4.3 ST assignment method... 181

6.4.4 ST syntax ...182

6.5 Continuous function diagrams（CFC）...188

6.5.1 CFC Editor ...188

6.5.2 The order in which the CFC data flow is executed...190

6.5.3 CFC elements .. 191

6.6 Sequential functionmap (SFC). .. 196

6.6.1 SFC Editor ...196

6.6.2 Theorder in which S FCs are processed..197

6.6.3 SFC Action conditions ..198

6.6.4 SFC Implicit variables and flags ..199

6.6.5 SFC Element ...201

6.7 CFC/LD/IL .. 208

6.7.1 FBD / LD / IL Editor ...208

6.7.2 FBD/LD/IL Element ..209

7 MOTION CONTROL INSTRUCTIONS ...215

VE Controller Programming Manual

7.1 Motion control programming for single-axis MC instructions ..215

7.1.1 MC instruction programming points ...215

7.1.2 MC function blocks commonly used for single-axis control ..216

7.1.3 MC commands and PDO/SDO configuration..217

7.2 Motion control programming for multi-axis CAM cam synchronization 219

7.2.1 Characteristics of the cam table .. 221

7.2.2 Cam table input ... 222

7.2.3 The internal data structure and array of the CAM cam table .. 223

7.2.4 Reference and dynamic switching of CAM table..224

7.3 Single axis commands.. 226

7.3.1 MC_Power .. 226

7.3.2 MC_Stop..229

7.3.3 MC_Halt ...232

7.3.4 MC_Home...235

7.3.5 MC_MoveVelocity... 238

7.3.6 MC_MoveAbsolute ..241

7.3.7 MC_MoveAdditive ...247

7.3.8 MC_MoveRelative ..251

7.3.9 MC_MoveSuperImposed..254

7.3.10 MC_PositionProfile ..257

7.3.11 MC_Reset ..260

7.3.12 MC_ReadActualPosition..262

7.3.13 MC_ReadAxisError ...264

7.3.14 MC_ReadBoolParameter ...266

7.3.15 MC_ReadStatus .. 268

7.3.16 MC_ReadParameter ..270

7.3.17 MC_AccelerationProfile ...272

7.3.18 MC_VelocityProfile ..275

7.3.19 MC_WriteBoolParameter ..278

7.3.20 MC_WriteParameter ...280

7.3.21 MC_AbortTrigger ...282

7.3.22 MC_ReadActualTorque ... 284

7.3.23 MC_ReadActualVelocity ..286

7.3.24 MC_SetPosition.. 288

7.3.25 MC_TouchProbe .. 290

7.3.26 SMC_MoveContinuousAbsolute ..301

7.3.27 SMC_MoveContinuousRelative ..304

7.3.28 MC_Jog..306

7.3.29 SMC_Inch ..309

7.3.30 SMC3_PersistPosition...312

7.3.31 SMC3_PersistPositionSingleturn.. 315

7.3.32 SMC3_PersistPositionLogical .. 318

7.3.33 SMC_Homing.. 321

7.4 Axis group instructions (primary/from-axis instructions). ... 327

VE Controller Programming Manual

7.4.1 SMC_CamRegister ...327

7.4.2 SMC_GetCamSlaveSetPosition...332

7.4.3 SMC_GetTappetValue..335

7.4.4 MC_CamTableSelect ...338

7.4.5 MC_CamIn..343

7.4.6 MC_CamOut ..365

7.4.7 MC_GearIn ..369

7.4.8 MC_GearOut ..372

7.4.9 MC_GearInPos .. 374

7.4.10 MC_Phasing...379

7.4.11 SMC_CAMBounds ... 384

7.4.12 SMC_CAMBounds_Pos ..387

7.4.13 SMC_WriteCAM..389

7.4.14 SMC3_PersistPosition...391

7.4.15 SMC_FollowVelocity... 393

7.4.16 SMC_FollowSetValues ..395

7.4.17 SMC_SetControllerMode..398

7.4.18 SMC_CheckLimits .. 401

7.4.19 SMC_GetMaxSetAccDec ... 403

7.4.20 SMC_GetMaxSetVelocity .. 405

7.4.21 SMC_InPosition...407

7.4.22 SMC_ReadSetPosition..411

7.4.23 SMC_SetTorque ..413

7.4.24 SMC_BacklashCompensation..415

7.4.25 SMC3_PersistPositionSingleturn.. 419

7.4.26 SMC_CheckAxisCommunication..421

7.4.27 SMC_FollowPosition... 424

7.4.28 SMC_FollowPositionVelocity ... 430

7.4.29 SMC_AxisDiagnosticLog... 432

7.4.30 SMC_ChangeGearingRatio .. 435

7.4.31 SMC_ReadFBError ... 438

7.4.32 SMC_ClearFBError ... 442

7.5 Vector special instructions .. 443

7.5.1 VECNSMC. VecCheckHardware...443

7.5.2 VECNSMC.NS_MC_SpecialCamIn ..444

7.5.3 VECNSMC.NS_MC_RotaryIn ..449

7.6 CNC Instructions ...454

7.6.1 SMC_ReadNCFile2...454

7.6.2 SMC_NCInterpreter...458

7.6.3 SMC_Interpolator ...462

8 COMPREHENSIVE CONFIGURATION DEBUGGING ..469

8.1 Modbus Communications ...469

8.1.1 ModBusRTU_Slave.. 469

8.1.2 ModBusTCP_Slave...477

VE Controller Programming Manual

8.1.3 ModBusRTU_Master ...485

8.1.4 ModbusTCP_Master ... 498

8.1.5 OPCserver ...504

8.2 Simulation and debugging ... 510
8.2.1 Simulate the VE controller ... 510

8.2.2 Simulate servo drives ...511

8.3 Security management and user rights settings ... 512

8.3.1 Device login permissions settings ...512

8.3.2 Project file security settings ...516

8.3.3 POU permission settings .. 517

APPENDIX A VECSERVO SUPPORTED ORIGIN REGRESSION MODELS ...521

APPENDIX B QUICK REFERENCE LIST OF CIA402 COMMON OBJECTS SUPPORTED BY VECSERVO 544

APPENDIX C ERROR CODE DESCRIPTIONS ... 550

VE Controller Programming Manual

Thank you for purchasing VE series motion controller! VE series controller is a
high-performance EtherCAT bus type motion controller developed by our company. This
programming manual describes the VE motion controller programming software and the
use of motion control functions. The user should read this manual carefully before using the
controller and software, and operate correctly under the premise of full attention to safety.

User-oriented
This manual is provided to the following readers: persons with electrical professional

knowledge (qualified electrical engineers or persons with equivalent knowledge).
In addition, the readers of the programming language are those who understand the

content of the international standard IEC 61131-3.

Target product
VE series: VEC-VE-MU

Version update record

Change time version number Change Description

June 2020 Version 001 First edition released

VE Controller Programming Manual

1 PLCopen Introduction to the Code

PLCopen is an independent global organisation that delivers industrial

automation efficiency according to user needs. It was founded in 1992 and is based

in the Netherlands with support offices in the USA, Japan, China and Korea. PLCopen

follows the requirements of market demand and its main focus is to improve automation

efficiency by defining common standards. PLCopen and its members focus on technical

specifications around the IEC 61131-3 standard to reduce the cost of industrial

engineering.

The syntax of the IEC 61131-3 specification presents a set of mechanisms for

implementing programmable controllers across different target platforms. Through

modular planning and design, the specification divides control actions into two

parts: logical operations and hardware actions. The logical part unifies the syntax

defined in IEC 61131-3 in a common description format and implements it, while the

hardware actions are designed with a proprietary firmware library for each hardware,

allowing the control logic to use hardware resources on each target platform. This

design allows different control chips to execute control actions designed in the

IEC 61131-3 syntax, and designers only need to learn the IEC 61131-3 syntax to use

the supported control chips for programmable controller design. The IEC 61131-3

standard defines six standard programming languages.

指令表（Instruction List，IL）

梯形图（Ladder Diagram，LD）

功能块图（Function Block Diagram，FBD）

结构化文字（Structured Text Language，STL）

顺序功能流程图（Sequential Function Chart，SFC）

连续功能图（Continuous Function Chart，CFC）

The VE motion controller uses the CODESYS programming platform, which fully

supports the PLCopen specification and allows the user to refer to many standard

function libraries; the high-level language programming method makes it easy for

PLC manufacturers and users to develop their own proprietary function blocks and

instruction libraries, and to borrow similar control programs to form

industry-specific "process packages", which can significantly improve the user's

programming efficiency.

VE Controller Programming Manual

2 VEC-VE AND CODESYS

2.1 VEC-VE controller

2.1.1 Product overview

The VEC-VE series controller (hereinafter referred to as VE controller) is a
programmable logic controller designed with a modular structure to provide users with
intelligent automation solutions.The VE controller adopts the IEC61131-3 programming
language system and supports the PLCopen standard 6 programming languages. The
system uses a rack layout and each rack supports local expansion modules and remote
expansion of the rack via the EtherCAT bus. local expansion modules of the VE controller
allow IO expansion via internal bus protocols and support a wide range of functional
modules such as digital input/output modules, analogue input/output modules and
temperature modules. High performance motion control functions can be realised via
EtherCAT bus; single axis acceleration/deceleration control functions, electronic gear
functions, electronic cam functions, CNC functions and Robotic functions etc.;
communication functions such as RS485, Ethernet and USB are also supported to meet the
diverse application requirements of users. The VE controller has the following functional
advantages：
 Multiple motion control functions
 Support for a larger number of I/O points；
 Larger program capacity and data storage areas；
 Faster instruction execution；
 support for more EtherCAT buses, Modbus communication；
 easier-to-use software for different user application requirements；
 support for online editing mode

VE Controller Programming Manual

2.1.2 Product configuration and module description

A schematic diagram of the VE controller architecture integration is shown below：

VE controller hardware port description：
（1）Host Interface

① RS232/485 ② MicroSD card

③ USB ④ Ethernet

⑤ EtherCAT ⑥ Power supply modules

（2）Power Module Indicator

VE Controller Programming Manual

Number Always bright Always
extinguished

Blinking

1 5V power
supply

The main unit is
powered properly

The host does not
have power

② Extend the
mesh light

Local extensions are
not accessed

Extended access locally

2 EtherCAT
RUN

EtherCAT RUN EtherCAT STOP

3 Run&Stop Run Stop

⑤ 24V power
supply

IO power supply
access 24V

IO power supply not
connected to 24V

⑥CODESYS In progress/dead In progress/dead CODESYS software in
operation

⑦EtherCAT Error EtherCAT Error EtherCAT Not Error

⑧Error System failure No system failure

（3）Reset and IP setting buttons

VE Controller Programming Manual

Number Name Description

1 Reset button After powering up and running, press and hold the button for 3
seconds, then power up again, which will clear the user
program as well as restore the controller's default IP
(192.168.1.123)

② IP setting
button

After powering up and running, press and hold the button for 3
seconds, then power up again, the last digit of the controller IP
address will be minus one, for example, the default IP minus
one will be: 192.168.1.122

（4）Power Module Wiring

Number Interface name Interface role

VE Controller Programming Manual

1 Mainframe 24V input Mainframe power supply 24V

② Mainframe 0V input Mainframe power supply 0V

③ IO power supply 24V Local IO supply 24V

④ IO power supply 0V Local IO supply 0V

⑤ PE Ground line

⑥ Extended power supply
24V

Local IO supply 24V, connected to ③

⑦ Extended power supply 0V Local IO supply 0V, connected to ④

VE Controller Programming Manual

2.2 CODESYS Software overview

2.2.1 CODESYS Introduction to the software

CODESYS software is standard software for the development and application of VE
programmable motion controller products. CODESYS software platform provides VE
controllers with a complete configuration, programming, debugging, monitoring
environment, flexible and free to handle the powerful IEC language.

The codesYS software enables the management of engineering and equipment,
providing the following configurations for VE controller products:
 CPU configuration;
 I/O module configuration;
 EtherCAT bus;
 ModbusRTU/ModbusTCP bus;
 Standardized programming (IEC61131-3 compliant).
 Supports all six programming languages: Structured Text (ST), Function Block Chart

(FBD), Instruction List (IL), Keystone (LD), Sequential Function Map (SFC), and
IEC61131-3 Extended Programming Language Continuous Function Map (CFC)

 Flexible and comprehensive feature block libraries and support user-defined
libraries

 Offline simulation function, do not need to connect PLC hardware, complete the
program simulation debugging

 Intelligent debugging error check function
 Compile errors, quickly locate programming errors, and diagnose logs
 Sample tracking
 The time series chart of the process variable is established

2.2.2 Software access and installation requirements

(1) Software acquisition
VE programmable motion controller user programming software CODESYS for free
software, installation packages as well

Information on VE controller-related products is available to users through:
 On the official website of Wykoda (www.wikoda.com) szvector.com"page of the

"Services and Support" and "Material Downloads" page for download
 Available for download onCODESYS's official website codesys.cn .4000

(2) Software installation environment requirements
 Windows XP/Windows 7/Windows 8 or Windows 10 operating system
 CPU master frequency: 2GHz or more (recommended)
 Memory: 2GB or more

VE Controller Programming Manual

 Space: More than 5GB of available hard drive memory
 Other: There is an idle LAN port in the local network (with LAN network cable

connection controller)

2.2.3 The software installation procedure

CODESYS Development System is an IEC 61131-3 programming tool for industrial
control and automation technology, with 32-bit and 64-bit versions where users choose
according to the number of system bits on their computer and then start installing (64 bits
are shown here).

1) Double-click to open the installation software icon and start the installation, as shown
in the following image

2）When the prompt screen appears, click "Next"as shown in the following image

3）Select "I accept... ", click next; .

4）Select "I have..." " and then click "Next"

VE Controller Programming Manual

5）Select the installation location, select the default bit here, click "Next"

6）Installation type Select "Complete", install all, click "Next"

7）Click "Install" and the software will start installing

VE Controller Programming Manual

8）After waiting for the installation to be completed, click "Finish" to complete the
installation, click on the desktop icon "CODESYS V3.5" to enter the CODESYS programming
environment

9）The software interface operating language defaults to Chinese Simplified, and if 
you need to switch to a different  language,click: Tool Options Language Settings(Select:
Tools OptionsInternational Settings),click on the languagedrop-downmenu, and select
the language you want

2.2.4 Install Package

Before the software can connect to the controller, You need to install Package, and you
don't need to install it again after the installation is complete.

1） Open：CODESYSToolsPackage ManagerInstall，Open file browsing

VE Controller Programming Manual

2）Find the downloaded CODESYS Control RTE SL.package andopen the installation

3）Check "I have read... " ", click "Next" as shown in the following image

4）Select Complete setup for the full installation, click Next, and wait for the installation
to complete, as shown in the following image

5）Once the installation is complete, click "Finish" as shown in the following image

VE Controller Programming Manual

2.2.5 Install the device description file

Before using a VE controller or VC servo drive, you need to install the motion controller
and the servo drive XML description file, file acquisition please log on to the Wykoda
Technology website：www.szvector.com download，Once the installation is complete, the
controller or servo does not need to be installed repeatedly.

Here is a demonstration of how to install the XML description file：Open CODESYS
ToolsDevice repositoryInstall，Find theE therCAT bus servo description file and click
Open

http://www.szvector.com

VE Controller Programming Manual

Note the settings add file type: EtherCAT XML Device Description Description
Configuration Files (*.xml), the device description file is requested from the servo vendor,
and the Wykoda EtherCAT bus servo description file is"VECServoOML.xml".

When the installation is complete, the following image shows

2.2.6 Uninstall CODESYS

Uninstall CODESYS using the standard Windows system uninstall software method, as
follows:
 Exit the CODESYS software to confirm that Gateway is turned off and, if the

operating system taskbar has a CoDeSys icon, right-click the mouse on that icon
and select Exit to turn off Gateway

 Choose“StartSettingsControl Panel”
 Click "Add/Delete Program"
 Select the software you need to uninstall and find CODESYS
 Right-click to "uninstall" and confirm

VE Controller Programming Manual

3 The motion control system is composed of

procedures

3.1 The motion control system of the VE controller

consists of

The VE controller is a universal programmable controller with SoftMotion motion
control (CAM/CNC/ROBOT) that controls multiple motion axes via the EtherCAT bus, as
shown below for a typical control bus network. The servo uses a VEC-VC bus-controlled
servo, and the IO expansion rack is also connected to the CPU module of the VE controller
via the EtherCAT bus.

As shown in the typical motion control network, where the VE controller is the control
master, servo axis, remote IO, etc. for the access station. The EtherCAT bus is a real-time bus,
and its first station clock will serve as a reference synchronization clock for the entire network,
so the servo should be installed at the front end of the EtherCAT bus network, i.e. the 1-way
reference of the network must be servo, while the EtherCAT remote module does not have a
clock unit inside, and is typically installed in the middle or back end of the network in a
network that requires motion control.

Motion Control is characterized by the controller through software calculations, digital
commands through the EtherCAT real-time bus to control servo operation, the Use of
EtherCAT bus high-speed (100Mbps), high frequency (up to 1ms communication once) to
interact, compared to traditional pulse control methods, motion control can be more timely
and accurate. Some of the resulting programming methods are also different from the
previous keystone logic controls, requiring the use of "function blocks" with more underlying
functionality.

VE Controller Programming Manual

VE Controller Programming Manual

3.2 The VE controller motion control program consists of

VE controller is a controller developed based on multi-tasking operating system, the
system runs multiple functional modules in a multi-tasking manner, for user programs, can
also be divided into multiple tasks, according to the user-set task priority, respectively.

When writing a user program for a VE controller, the user can divide into several
program organization units according to the different types of tasks and urgency processed
in the application system, and can specify different execution trigger conditions for each task,
or the corresponding execution interval (also known as execution cycle), so that the control
response of the application system can be optimal.

3.2.1 The user program of the VE controller is composed of

Ve controllers can use a multitaste execution pattern, in which several tasks can be
performed "at the same time", each of which can have several user program organizational
units (CALLEDUs),typicalof which are shown below:

User engineering consists of several OUUs, which are divided into task groups according
to POU execution characteristics, configuring their execution characteristics, and POU that is
not included in the task configuration will not be executed.

In addition, there are some objects supporting the user program, such as library
functions, global variable gVL, function block FB, cam definition CAM curve, multi-axis
interpolation track definition CNC curve, etc., as part of the user program.

VE Controller Programming Manual

3.2.2 The type of task in the VE controller

Task configuration is to divide the user program into several task groups according to
execution requirements, each of which can set different execution trigger conditions,
execution intervals, priorities, and so on. VE controllers Common tasks are: EtherCAT tasks,
main loop tasks, etc., where the motion control-related user program body is scheduled to
be performed under the EtherCAT task.

The EtherCAT task is one of the most important tasks in the VE controller, and the
real-time processing of motion control functions is done in this task, it is a clock-interrupted
task with a short interval and the highest priority, and once the time conditions are met, it
can unconditionally interrupt other tasks and start performing the EtherCAT task until all the
POU is configured for that task.

In each task, you can specify that multiple user program units (i.e. PUS) are executed in
sequence, in order of task configuration, as shown in the following illustration:

In the figure, the three POUes are executed in the order of PLC_PRG, POU1,POU2, and
when there are global variable update operationsand judgments, care needs to be taken to
arrange the appropriate order.

There is also a EtherCAT_Task task in the figure, which isadded automatically when the
EtherCAT_ Master_SoftMotion device is added, which, depending on the priority, can be
understood as default processing of bus communication tasks performed by the system
when entering the EtherCAT task, including the primary station sending and receiving from
all the PDO of the host station, the update processing of the data structure of each servo axis,
and so on.

3.2.3 The benefits of a user program consisting of multiple PUS

Handlers for different execution cycles should be written in different PUS. For example, a
POU executed by EtherCAT cycle, an external interrupter POU, and a program POU
processed at 20ms time must be written into separate PUS.

In order to improve the readability of the program, according to different control
process segments, different operating objects, different physical structure parts, etc., each
POU is handled with different POU, each POU is named easy to understand the name;

When multiple people work together on programming, each programmer writes and
debugs the POU of the process segment under his or her responsibility, which eventually
becomes a user program project; CODESYS programming software supports 6
programming languages, depending on the type of processing logic required, a language

VE Controller Programming Manual

may be more convenient, while in general, each POU can only be written in one
programming language, and if multiple programming languages need to be used
simultaneously, it is also a good countermeasure to write multiple PUs.

3.2.4 How the user program can do both logical control and motion

control

Application system synchronization control, track control, often have high real-time
requirements, and the timeliness requirements of logical control is relatively low, in the VE
controller user program, the motion control (MC) POU can be executed in the EtherCAT task
cycle, and logical control POU can be executed in the ordinary task cycle. If a specific
program variable is declared as a global variable, the coordinated action with logical control
can be implemented in motion control.

For single-axis MC control, which is mainly controlled by servo driver and motor, servo
enablement, origin regression, positioning control, speed control, torque control, stop and
reset, and for applications of multi-axis synchronous MC control, such as cam control, track
interpolation control, etc., the controller provides corresponding MC function blocks to
complete these operations. Therefore, function blocks are commonly used control
commands in motion control programming, just as prefabribored parts are used in buildings
instead of gravel cement to improve construction efficiency.

The user program can according to the control logic of the application system, control
the function block's operation trigger, terminate execution, etc., at the same time can judge
the function block's execution state, whether there is an error, etc., in the PLCopen
specification, also introduces the axis state data structure, the controller system has
established a corresponding data structure for each servo axis that the user has configured,
and automatically updates its state in time in each EtherCAT cycle, and the user program can
access the variables of the data structure. The operating state of the servo axis can be
monitored and the state variables can be used as the basis for logical control, which makes
logical control and motion control easily implemented in a user program.

VE Controller Programming Manual

3.3 Typical steps to write a user program

A complete user program, writing generally takes 5 steps, users need to pay attention
to.

1) According to the PLC module hardware connection mode of VE controller application
system, the hardware system configuration is carried out.

2) According to the control process of the application system, the user program is
written. Programming user program data storage width, use range, from the defined
variables, can be independent of the hardware configuration;

3) associate the input port variable (I) and output port variable (Q) corresponding to
each hardware port in the system composition with the variable in the user program;

4) Configure the synchronization cycle of network communication (e.g. EtherCAT bus),
according to the real-time requirements of each task, configure the execution cycle of the
user program unit;

5) In the CODESYS programming environment, log on to the VE controller, download
the user program, simulation and debugging modifications, until accurate operation.

3.3.1 The configuration of the user system

In the main screen of CODESYS software, through the right-click left tree
window"Device" item,that is, to enter thedevice add interface, according to the actual
application system used module model, installation order, in turn from the interface of the
device library, double-click selected, or drag placed under "Device", to delete a module, after
selecting the module, press Del key can be deleted.

Placement screen:

VE Controller Programming Manual

3.3.2 The writing of the user program

Double-click on the"PLC_PRG (PRG)" item in the left tree window to open the user
programming interface, which is ST (selected when creating a new project), as shown in the
following image. Similar to C language programming, each variable needs to be declared
before it can be used, if you write the program statement directly, when entering, the
programming environment will automatically pop up the declaration box, let the user fill in,
once click "OK", the variable declaration window will automatically increase the variable
declaration statement, simplifying programming.

3.3.3 The user program variable is associated with the port

On the local bus configuration page, the required hardware ports are associated with
variables in the user program, and the variable valueof "QB00" is shown below, output on
the output port of the first DO module, as follows:

VE Controller Programming Manual

3.3.4 How the user program is executed and how it is configured to

run

When the program is complete, you need to add the program to the task and configure
the task, which defaults to 4 ms once, and if you want to change to other execution methods,
such as repeatedexecution, scheduled execution, execution cycles, and so on, you can set it
separately, as shown in the following image:

VE Controller Programming Manual

3.3.5 Program compilation and login download

Once the program is written, click Compile .Generate the user application, check if

there are errors and if so, click on the error message line to locate the error reporting point
of the user application for easy modification until all errors are eliminated.

The relevant compilation information will be displayed in the following compilation
information
box:

Once compiled, click on "Online ”-“Log in to "， The following dialog box pops up,

select "Yes" "No" "...... Do you wish to create and continue the download?" , select

"Yes"

Once the download is complete, click on "Run ”，Run and debug the program.

VE Controller Programming Manual

The following image shows the monitoring screen of a running user
program.

VE Controller Programming Manual

4 A simple user program

In order to make users more familiar with the software and hands-on programming, this
section will demonstrate how to useCODE SYS to build a simple EtherCAT bus project, using
a VE motion controller, through the EtherCAT bus, control VECServo (Wykoda bus servo), to
complete the enable, position mode operation and stop and other actions.

Note: Engineering is not a standard template and the content is for informational
purposes only.

4.1 Create a project and download debugging

4.1.1 Create a new standard project

1) Once the software is open, click on “File”“New Project”，A dialog box pops up and
select “Projects”，Select "Standard Project" as the project type, choose your own project path,
name the project "ASimpleProject", and click
"OK".

2 ） Entering the standard project screen, the user can select the device type and
programming language for that project. The image below:

VE Controller Programming Manual

Device: Select the model of the main module, select Vector ARM
Cortex-Linux-CNC-TV-MC (embedded platform controller, need to install the XML
description file first: Vector ARM Cortex-Linux-SM-CNC-TV-MC.xml, please refer to the
installation method Install the device description file) ， or CODESYS Softmotion RTE V3
x64(Soft platform controller for real-time control).

Programming language: ST, other programming languages are also available to the
user. The selection can still be modified after entering the project.

Click on "OK", and when it is finished, it will look like
this

4.1.2 System configuration and parameter setting

Add EtherCAT_Master_Softmotion

The EtherCAT Master Softmotion is an EtherCAT master module with real-time motion

VE Controller Programming Manual

control. How to add it: Right click “DeviceAdd DeviceEtherCAT Master SoftmotionOK”，
Adding an EtherCAT master

Once added, as shown in the figure, an EtherCAT_Task is assigned at the same time and
the EtherCAT task-related parameters can be configured.

VE Controller Programming Manual

Add VECServo

After adding the master device, add the slave device below the master, in this case
"VECServo (Viktor EtherCAT Servo)". The servo device description file (.XML) must be
installed before adding the device. Installation process reference :2.2.5 Install the device
description file。This is added as follows:

1 ） If you are offline without a connection to the master, you can access it by
right-clicking “ EtherCAT_Master_Softmotion  Add Device ”， Find the corresponding
manufacturer and device model in the device pop-up window ：
“SZVectorSSC_DeviceVECServo”，Click on Confirm to add the device.

If you are online while logged into the main site, you can also right-click
“EtherCAT_Master_SoftmotionScan For Devices”，Add by scan.

VE Controller Programming Manual

Note: The node address of the device, by default, is automatically assigned, i.e. the node
address is assigned from near to far from the host, this example is not modified and is set by

default.

If you need to assign node addresses manually, you can refer to the following method,
using the VC bus servo as an example：

a） Assign the address as shown below: check "optional" in the additional field for the
slave station, then fill in the station number (1-65535) in the configured station alias

VE Controller Programming Manual

b) Set the parameters P08.41 (servo station number) of 1 and 3, respectively, to reset
the servo or power up again.

c) Then log in to the device Download the program, and if the first connection is not
successful, reset and run again.

d) As long as the alias from the station is the same as the alias configured for the
backgroundproject, it will work regardless of the order.

Add CiA402 Axis

1) The device runs in association with the axis, adding method: right-click
"VECServoAdd SoftMotion CiA402 Axis"to add the motion control axis, as shown below.

After adding the following image, rename the axis "Axis1" for programming
convenience

2) Set the control related parameters, double-click Axis1, open the parameter
configuration page, set the gear ratio

VE Controller Programming Manual

4.1.3 The user controls the program writing

Write a program here that enables the controller to control the servo motor to perform
absolute position commands and make round-trip movements.

Create an object

As shown below, right-click the mouse "ApplicationAdd ProjectPOU",name the
newPOU "MoveAbsolute"in the spring window, type select "Program", programming
language select "Structured Text (ST), click "OK" to complete the addition.

Open the programming environment

Double-click to open MoveAbsolute, as shown below, and the programming interface
includes the variable declaration area and the programming area.

VE Controller Programming Manual

Define variables

Add variables in the variable declaration area, and the variable declaration code is as
follows.

PROGRAM MoveAbsolute1

VAR

iStatus:INT;

Power:MC_Power; //Enable module
MoveAbsolute:MC_MoveAbsolute; //Absolute displacement module

p:REAL:=180; // Displacement value
ActPos:LREAL; //The actual location value

END_VAR

It's important to note here that engineering Whether the library

"SM3_Basic"is added to the library is generally added by default, if not, you need tomanually
right-click "Library ManagerAdd Library",find the library "SM3_ Basic" and then choose
toadd,or you can add morelibraries in this way.

Program writing

The program is added in the programming area as follows. (Program function: when the
program is executed, immediately enable servo, and so on servo enable success, control
motor between position P and starting point 0 to do round-trip movement.))

CASE iStatus OF

0: // Power-on automatic enable servo

Power(Axis:=Axis1, Enable:=TRUE , bRegulatorOn:=TRUE, bDriveStart:=TRUE);

IF Power.Status THEN

VE Controller Programming Manual

iStatus:=iStatus+1;

END_IF

1: // Walk absolute displacement and run to P

MoveAbsolute(Axis:=Axis1, Execute:=TRUE, Position:= p, Velocity:=100 , Acceleration:= 100,

Deceleration:=100);

IF MoveAbsolute.Done THEN

MoveAbsolute(Axis:=Axis1, Execute:= FALSE);

iStatus:=iStatus+1;

END_IF

2: // Walk absolute displacement and run back to 0

MoveAbsolute(Axis:=Axis1, Execute:=TRUE, Position:= 0, Velocity:=100 , Acceleration:= 100,

Deceleration:=100);

IF MoveAbsolute.Done THEN

MoveAbsolute(Axis:=Axis1, Execute:= FALSE);

iStatus:=1;

END_IF

END_CASE

ActPos:= Axis1.fActPosition; // Read the actual location value

Once the program is written, click Compile ，Make sure it's written correctly.

4.1.4 Bus and task cycle

Bus task cycle

When you add EtherCAT Master SoftMotion,the project automatically adds bus tasks
EtherCAT_Task,setting bus execution and cycle times, and taskpriority (0 to 31,0 isthe most
advanced), where EtherCAT _Task priority isset to 0, and other tasks, such as
Main_Taskpriority, are set to 1 to 31.

VE Controller Programming Manual

The program task cycle

Once the program is written, you need to add the program to the task and configure it.
Motion-related POU recommendations are added toEtherCAT _Task, and logic or

computational-related POU recommendations are added to other Tasks (e.g. Main_Task, a
program "PLC PRG" and a task "Main Task" have been established by default when the
project is started, and "PLC PRG" has been added to "Task Task".)。

The new POU object "MoveAbsolute" needs to be manually added to theEtherCAT
_Task task bydouble-clicking "EtherCAT_Task Add  Call", selecting
"MoveAbsolute1"andclicking "OK".

In addition to the default tasks, you can add new tasks yourself, as follows: right-click
Task Configuration, select Add ProjectTask,you can add newtasks,and double-click tasks
to configure tasks.

VE Controller Programming Manual

4.1.5 Mission sub-core

The VE motion controller is designed with a four-core core, which allows the bus to be
sub-coreed for smoother operation. The steps are as follows
(1) Open Task Configuration, click Add Group, Add NewGroup

(2) Add other tasks to a new group, and EtherCAT_Task a separate group

（3) EtherCAT_Taskassigned to the 3rd core and other tasks to the 2nd core to ensure
the stable operation of the EtherCAT mission

VE Controller Programming Manual

Attention:
When the Modbus device sets up tasks, it cannot be addedto the _Task and needs to be

added to other tasks.

4.1.6 Sign in to the device

Connect the controller

The environment in which CODESYS is run on a PC, communication with the VE
controller, user-ordered downloads, start-stop and monitor the operation of user programs,
parameter viewing or modification, and so on.

The VE controller can currently be logged in via the LAN LAN network, a 1-to-1
direct connection between the PC computer and the VE controller can be made over a
network cable, or online via a router or hub, in which case one PC can be connected to
multiple VE controllers or multiple PCs can access the same VE controller.

The IP address of both the PC computer and the VE controller must be the same
network segment by default to log on to the VE controller, otherwise the VE controller will
not be scanned in CODESYS. The factory default IP address for VE controllers is 192.168
1. 。 123,if the IP address of the PC is 192.168. 1.xxx, (here xxx represents the range of 1 to
254, but not the same as the END address of the VE controller IP), then CODESYS can
scan to the VE controller, and can interact with the data, download the user program, run

VE Controller Programming Manual

monitoring, etc. If the IP of the VE controller has been man-made, its address is not in the
IP address segment where the PC is located, the PC cannot be accessed, the VE controller's
IP address can be restored to the factory default IP address:192.168 1. 123,and then
change the address of the PC machine to 192.168. 1.xxx, with which you set up a 1-to-1
online, you can modify the address of the VE controller to the desired IP segment
address.

Scan the network

Double-click "Device" in the engineering tree and pop up the following interface

On this screen, the mouseclicks on the "Communication Set Scannetwork" tab, pops
up the following interface, scans to the VE controller, clicks on its name on the left side
of the window, can see its introduction information on the right side of the window, click OK,
can connect the device:

After logging in, you can modify the device name according to your own needs, change
to a device name that is easy to identify, can be easily identified, in the application of
multiple controllers, very helpful.

VE Controller Programming Manual

Set the bus control gate

Double-click "EtherCAT_Master_SoftMotion"to set up the EtherCAT network card, as
shown, click on"Browse",select the Name of the EtherCAT network card in the spring window
(connect to the servo endnetwork port), click "OK"

Sign in to download

Click on "Build." ”, compile the error-corrected, and then click "Login." ”

Pop up the dialog box, select Yes, and download the program to the controller.

VE Controller Programming Manual

4.1.7 Start debugging

After the login is successful, select“DebugStart ”，The controller is up and running.

Open MoveAbsolute, the program runs as shown in the following image, after the
program performs servo enabling, the motor between position P and starting position 0 to
do round-trip movement.

Modify the value of location P online: Click the preset value of "Prepared Value" for the
variable "P" to enter thevalue "360" and then select"DebugWrite Values" or the shortcut
"Ctrl-F7" to write the value to "Value" to modify the value of the variable "P" online.

VE Controller Programming Manual

4.1.8 Add a Trance trace

Add Trance

To more intuitively observe changes in the position of the servo axis, a logic analyzer is
added to record the motion curve. Right-click "Application", select "Add object 
Trance",pop up the dialog box, name it and then click"Add" to add Trance(tracking), as
shown below.

Configure Trance

1) Click on add_Variable(add variables) and select the button ，Find the variable

"ActPos" in the variable pop-up window, click "OK" and add it to the tracker.

VE Controller Programming Manual

2) Click "Configuration" and select"Main Task" inthe Taskoption, click "OK";

3) Right-click on the oscillostor blank interface, select "Download Trace", download
tracking;

VE Controller Programming Manual

4) Axis1's actual position curve is printed below.

4.1.9 Stop debugging

Once the commissioning is complete, click "DebugStop." ”，Stop executing the

program

VE Controller Programming Manual

4.2 Common configuration instructions for devices

4.2.1 Device tree and device editor

The device tree

In device views, also known as device trees, applications can be organized based on the
target device. In this view, you can view PLC hardware and field bus systems, configure
hardware communication, and assign applications.

The root node of the device tree is a symbol nodeentry: Here's what it is

Insert a device object, also known as a target system, under this node of one or more
PLCs. Each device object represents a specific hardware component, such as a controller,
field bus, bus coupler, driver, I/O module, or monitor. If you are already connected to a
controller network, you can scan the hardware to find available devices and save them to the
currently configured device tree, as shown.

Each device is defined by the device description file and must be installed on the local
system to be plugged into the device tree. Device description files define device properties
for configurability, programmability, and possible connections to other devices.

Example of a device tree:

VE Controller Programming Manual

Device entries in the device tree consist of device symbols, device names, and device
types, such as:

。

Device communication, number of participants, and IO mapping can be configured in
the device editor dialog box. Double-click the device object to open the editor.

The device tree in online mode

When CODESYS is in online mode, the current symbol of the device bar indicates the
device state:

:The PLC is connected, the application is running, the device is running, and the data is
being exchanged.

:The PLC is connected and in the STOP state.
:The PLC is connected and the application is running. Diagnostic information is available.
: The device is in pre-operation mode and is not yet running. Diagnostic information is

available.

: The device did not exchange data, the bus was incorrect, and it was unable to enter
configuration or simulation mode.

: The device runs in demo mode for 30 minutes. After this time, the demo mode will

https://help.codesys.com/webapp/_cds_device_tree_device_editor;product=codesys;version=3.5.15.0

VE Controller Programming Manual

terminate and the field bus will end the data exchange.

: The device is configured, but not fully operational. There is no data exchange.
: Redundancy mode is active. The field bus master does not send any data because the

other master is active.

: The device description could not be found in the device repository.
: The device itself is running, but the child device is not running. The child device is not

visible because the device tree is collapsed.

The names of all connected devices and applications are highlighted in green

The name of the device running in analog mode is displayed in

italics:

Additional diagnostic information is located on the Status status tab of the device
editor.

The device editor

Double-click the device object in the device tree to open the editor. The editor includes
regular labels and specific labels, and its title contains the device name. Click
ToolsOptions DeviceEditorin the toolbar to open the device editor option to set the
style or content of thedevice editor.

VE Controller Programming Manual

4.2.2 Device device

CommunicationSetting communication settings

In this tab of the Universal Device Editor, you define the connection between CODESYS
and the device in which the application should run.

Scan network: Scan the network
The scan network steps are as follows, click "Gateway-1"(gateway) and click "Scan

network" to scan the network

Click on the scanned device name, such as"PC . . .000A"and then click OK

When the device status light is green and the status is described as Active, the PC is
connected to the device

VE Controller Programming Manual

Gateway Gateway:

You can add, manage, or configure a local gateway

Device：

Filter network scans by target ID: Filter network scans via device ID (unchemed).
Store communation settings in project:Save communication settings to project (check).

Applications app

On this tab of the Universal Device Editor, you can see which applications exist on the
device. Depending on the system, you can remove the application from the device or
retrieve details about the application.

VE Controller Programming Manual

Backup and Restore backup restore

Read Backup Information fromDevice: Read backup information from the device The
command searches for application-specificfiles from the PLC's PlcLogicdirectory and lists
them in a table at the bottom of the tabbed page.

Create Backup File and Save to Disk: Read backup information commands from your
device to determine which files are relevant to the backup. This command compresses the
files and meta.info information files in the table set to Active into backup zip files. The file
extension is tbf ("target backup file").

Save Backup File to Device: Save backup files to disk. This command saves the backup
file to the TBF directory of the PLC.

Load Backup File from Disk: This command opens a dialog box to navigate through the
file system for saved backup files.

Load Backup File from Device: This command generates a list of all backup files found
on the PLC. Select one of these files to view its contents in a table on a tabbed page.

Restore backup to Device: If at least one component of the backup file currently
loaded on the tabbed page is set to active, this command is available and prompts to restore
the state of the application on the device.

Files file

In this tab of the Device device editor, files can be transferred between CODESYS(PC
host) and PLC. If the communication is set up correctly and the PLC is online, CODESYS
automatically establishes a connection to the PLC during file transfer.

VE Controller Programming Manual

Log log

View the PLC log. It lists the events logged on the target system. This involves:
 Events during system start-up and shutdown (loaded components with version

number)
 Download and load the launch application
 Custom entries
 Logs from I/O drivers
 Logs from the data source

PLC Settings PLC settings

Basic settings for PLC widding, such as the processing of inputs and outputs and bus
cycle tasks.

Update IO while in stop:When checked, CODESYS refreshes the values of the
input and output channels even if the PLC is stopped. If the gate keeper detects a fault, the
output is set to a predefined default. When not checked, CODESYS does not refresh the
values of the input and output channels when the PLC is stopped.

Behavior of the outputs at stop:The processing of the output channel when the
controller enters a stop state

 Retain values: Keep the value, keep the current value.
 All outputs to default value: All outputs are default, and the default values are

assigned based on I/O mapping.
 Execute program: Executes the program, controls the processing of output

valuesthrough the program contained in theproject, and CODESYS executes the
program at STOP. Enter the name of the program in the field on the right.

Always updatevariables: Define whether CODESYS updates the I/O variables in the bus
cycle task. This setting is valid for the I/O variables of the from the station and module only if
it is defined as Disabled in the update settings for the station and module.

 Deactivated (update only if used in a task): Deactivated (updated only when used in
tasks),CODESYS is updated only when the I/O variable is used in tasks.

 Activates 1 (use bus cycle task if not used in another task): Activate 1 (use bus
loop tasks if they are not used in other tasks) and codeSYS update the I/O variables
in bus loop tasks if they are not used in other tasks.

 Activate 2 (always in bus cycle task): Activate 2 (always in the bus loop task):
CODESYS updates all variables in each loop of the bus loop task, whether or not
they are used and mapped to the input or output channels.

Bus cycletask: The task of controlling bus cycles. By default, enter tasks defined by the
device description.

By default, the bus cycle settings for the parent bus device (the cycle usage settings for

VE Controller Programming Manual

the parent bus) are applied, i.e. the device tree is scanned up to find a valid bus cycle task
definition.

Users and Groups users and groups

On this tab of the Universal Device Editor, you can edit the controller's device user
management. Depending on how the device is supported, you can define user accounts and
groups of users. Combined with the configuration on the Access tab, you can control
access to control objects and files at runtime.

Sync:Turns synchronization between editor and user management on the device on
and off, and if the button is not pressed, the editor is blank. If you press this button,
CODESYS continuously synchronizes the display in the editor with the current user
management on the connected device.

Import fromdisk: Used to select and import user-managed configurations from the

hard disk.

Users

Add:Open the Add User dialog box to create a new user account

Import:Open the dialog box to import the user.

Groups

Add:Open the dialog box to add groups. Define a new group name, and select the

users that belong to that group from the list of defined users.

Import:Open the dialog box to import the user.

Access Rights access

On this tab of the device editor, define device user access to the device for objects on
the controller. As with project user management, users must be a member of at least one
user group and can only grant certain access rights to user groups.

Symbol Rights symbol permissions

In this tab of the Universal Device Editor, different user groups (clients) are defined for
access to the individual symbol sets available on the controller.

Requirements: User management must be set up on the PLC. An application has been

VE Controller Programming Manual

downloaded to a controller that defines a set of symbols for it in the CODESYS project. They
have access data to log on to the controller.

In the Symbol Set view, all symbol sets are listed under the Application node, the
definition of which is downloaded to the controller with the application. In the Permissions
view, the user groups defined in the controller's user management are listed in the list of
tables. When you select a symbol set, you'll see the user group's access to that symbol set。

：Grant access; ：No access rights have been granted. Access rights can be changed by
double-clicking on the symbol.

Click button to save the current access configuration to an XML file. The file type is

device symbol management file (* .dsm).Click button to read such a file from the hard
drive.

Task deployment task deployment

The device editor's sub-dialog box displays the input and output tables and their
assignments to defined tasks.

This information becomes visible only after the code is generated for the application. It
is used for troubleshooting because it shows where inputs or outputs are used in multiple
tasks with different priorities.

Status status

This tab for the Universal Device Editor displays status information, such as Running or
Stopped, as well as specific diagnostic messages from individual devices, as well as
information about the internal bus system.

Information

This tab for the Universal Device Editor displays general information from the device
description file: name, vendor, category, version, order number, description, and so on.

4.2.3 Library Manager Library Manager

The library manager lists all the libraries integrated in the project to create applications.
It provides information about library types, properties, and content, and can expand or
collapse a list of integration libraries.

VE Controller Programming Manual

A list of all libraries integrated in the project. If one library depends on another, the
referenced libraries are automatically integrated. The library manager contains three views:

Top view: Integrated library list
Bottom left view: Tree structure, all modules of the library are selected in the view above
Bottom right view: Documentation for the module selected in the tree

VE Controller Programming Manual

4.3 EtherCAT busses are commonly used

4.3.1 EtherCAT_Master main station

General(General).

Autoconfig Master/Slaves:Auto-configuration mode (Autoconfig Master/Slaves option)
is active by default and is available for standard applications. If this mode is not activated, all
configuration settings for the host and the machine must be done manually, which requires
expertise. When checked, most master-from configurations are automated, depending on
the device description file and implicit calculations. Check by default.

EtherCAT NIC setting(EtherCAT NIC settings).
Destinationaddress: TheMAC address of the device in the EtherCAT network to receive

the telegram.
Broadcast:Broadcast without specifying a destination address(MAC). Check by default.
Enable redundancy:Activate the feature if the bus is constructed as a ring topology and

redundancy is to be supported. With this feature, the EtherCAT network works even when
the cable is disconnected. If this feature is activated, parameters must be defined in the
Redundant EtherCAT NIC Settings area. The default does not tick.

Sourceaddress: The MAC address or network card name (i.e. PLC) of the source address
controller (target system). Click onB rowse to select.

Network name:The name of the network, depending on which of the following
options is activated, depending on the Source address.

Browse:Scans the network for the MAC-ID or name of the target device that is currently
available.

VE Controller Programming Manual

Distributed Clocks(Distributed Clock).
Cycle time: The interval at whichnew data messages are assigned on the bus. If the

distributed clock function is activated in the from the station, the master cycle time specified
here is transferred to the master clock. In this way, accurate synchronization of data
exchange can be achieved, which is especially important when the process of spatial
distribution requires simultaneous action. For example, simultaneous action is an application
in which multiple axes must perform coordinated motion at the same time. In this way, a very
precise full-network time base can be achieved, with jitters of less than 1 microsecond.
Note: Distributed clock time settings are consistent by default with EtherCAT_Task time
settings, such as modifying distributed clock time or EtherCAT_Task task time.

Syncoffset: Allows the time delay of the sync interrupt from the EtherCAT station to be
adjusted to the cycle time of the PLC. Typically, the PLC cycle starts 20% later than the
synchronization interruption from the station. This means that the PLC loop may delay the
cycle time by 80% without losing any messages.

Sync windowmonitoring: You can monitor synchronization from the slave.
Syncwindow: The time that the sync window monitors. If all synchronizations from the

VE Controller Programming Manual

station are within this time window, the variable xSyncInWindow (IoDrvEthercat) is set to
TRUE, otherwise it is set to FALSE.

Options(option).
Use LRW instead of LWR/LRD:Direct communication from the station to the source is

possible. Use a combination of read/write commands (LRW)instead ofseparate read(LRD)
and write commands (LWRs).

Send/Receive per task:Read and write commands, that is, the processing of input and
output messages, can be controlled by a variety of tasks.

Automatically restart slaves:If communication is interrupted, the primary station
immediately attempts to restart the slave.

Sync Unit Assignment

This tab displays all the stations inserted below a particular primary station and assigns a
synchronization unit.

With EtherCAT synchronization units, multiple stations can be configured as groups and
then subdivided into smaller units. For each group, you can monitor the work counters to
improve and more accurate error detection. Once one of the stations is missing from the
synchronization unit group, the other stations in the group also appear to be missing.
Because the work counter is continuously checked, it is detected immediately in the next bus
cycle. Device diagnostics allow you to correct missing groups as quickly as possible.

Unaffected groups continue to function without any interference.

VE Controller Programming Manual

Parameters

This tab contains the main parameters defined in the device description file.
If automatic configuration mode is activated in the Main dialog box, parameters are

automatically set here based on the device description file and the specifications in the
network topology. Nothing should be changed in the Universal Editor because invalid
configurations can be set here.

VE Controller Programming Manual

4.3.2 EtherCAT_ slaveslave from the station

Object: EtherCAT from the station
The basic settings for the EtherCAT from the station are configured in this option. The

device description file is preset to basic settings.

General(General).

Address(address).
Fields can only be edited if the automatic configuration mode of the EtherCAT master is

disabled.
AutoInc address:The self-added address (16 bits) is generated by the location of the

from the station in the network. Addresses are used during system startup only when the
primary station assigns the EtherCAT address to its base station. When the first message
passes through the station for this purpose, the AutoInc address for each station adds 1.

EtherCAT address:The final address assigned to the master in the startup, the address is
independent of the location from the stand in the network.

Additional
Enable Expert Settings:Expert settings. Additional settings are available when starting

checks and time monitoring (see below). When checked, the Expert Process Data tab is
available in the device editor, however, expert settings are not required for standard
applications.

Optional:Optional. The from the station is defined as optional and does not generate
an error message when a device is missing from the bus system. Note: If the from the
station is defined as Optional, the from the station must have a unique identity. You can
change this by changing three possible settings in the Identification section. This feature is

VE Controller Programming Manual

only available if the master/master automatic configuration option is activated in the
EtherCAT master and the EtherCAT from the master supports the feature.

Distributed Clocks(Distributed Clock).
Select distributed clocks:A down-to-back list of all settings for distributed clocks in the

device description file.
Activate: Displayed in the synchronization unit cycle (s), the cycle time used for data

exchange is determined by the cycle time of the primary station, so that the master time can
synchronize the data exchange in the network.

The Sync0 and Sync1 settings described below are dependent:
Sync0

Activate
Sync0

: Use the synchronisation unit Sync0. The synchronisation unit describes a
string of synchronously exchanged process data.

Synchronise
d unit cycles

: The master cycle time (multiplied by the factor selected from the
drop-down list) is used as the slave's synchronous cycle time and the cycle
time (µs) shows the currently set cycle time.

User defined
: User defined cycle times (in milliseconds) can be specified in the cycle time

(µs) field.

Sync1

Activate
Sync1

: Use the synchronisation unit Sync1. The synchronisation unit describes a
string of synchronously exchanged process data.

Synchronised
unit cycles

: The master cycle time (multiplied by the factor selected from the
drop-down list) is used as the slave's synchronous cycle time and the cycle
time (µs) shows the currently set cycle time.

User defined
: User defined cycle times (in milliseconds) can be specified in the cycle time

(µs) field.

Process Data（过程数据）

This EtherCAT configurator option displays the process data for the slave inputs and
outputs, which are derived from the device description

VE Controller Programming Manual

file.

Selectoutputs: The table shows the output name, type, and index address from the
station. If the device output here (for writing) is activated, these outputs can be assigned to
the list of items in the EtherCAT I/O mapping dialog box.

Selectinputs: The table shows the inbound name, type,and index address from the
station. If the device inputs here (for reading) are activated, these inputs can be assigned to
the list of items in the EtherCAT I/O mapping dialog box.

Expert Process Data（专家过程数据）

To set this option, you need to check the box set by the expert from the station

first ，When checked, a new tab appears, as shown below, which

provides a different and more detailed view of the process data.

VE Controller Programming Manual

SyncManager: A list of sync managers with data size and PDO type
PDO Assignment: A list of PDOs assigned to the Selected Sync Manager, and if

check box isselected, activate the PDO and create an I/O channel.
PDO List: The list of PDOs assigned to the Selected Sync Manager can add

newPDOs or edit and delete existing PDOs by executing different commands in the
command bar or shortcut menu (add, delete, edit).

PDOContent: Displays the selected PDOs content in the PDO list. You can add new
entries or edit and delete existing ones by executing different commands in the command
bar or shortcut menu (Insert Add, Delete, Edit Edit Edit). You can change the PDO order by
clicking Move Up and Move Down To move.
Attention:

When the project requires a custom PDO, the Wykoda Bus Servo offers two sets of
PDOs that can be customized by the user: 16 s 1600 and s16 s1A00. How to add: Select
16-1600 or 16-1A00 on PDO List, then click Insert To add, pop up the selection dialog box,
which contains all the objects of the servo, the user can choose according to the needs of the
project, and then click OK to insert, customize the addition of PDO.

VE Controller Programming Manual

Download：

PDO
Assignment

: Generate specific CoE commands for initialising the 0x1cxx object
and write them to the slave.

PDO
Configuration

: Generate a CoE command for 0x16xx or 0x1axx to load the PDO
mapping to the slave. As a rule, the default value is taken from the ESI
file and the device must support this function.

Loading PDO
information from
a device

Read the current PDO configuration from the slave and enter the
configuration. Then delete the list in the top and bottom right corner and
fill it with the read data. This is particularly effective when the ESI file is
incomplete and the configuration is only available on the slave.

Startup Parameters（启动参数）

Define in this option for the current slave the transfer of the specified parameters to the
SDO (Service Data Object) of the device at system start-up or as described in the EDS file
referenced in the XML file.

Requirements: Device supports CAN over EtherCAT or Servodrive over
EtherCAT

VE Controller Programming Manual

Note: Some of the modules inserted under the slave have their own start-up
parameters. These parameters are then displayed in this list, but cannot be modified. These
parameters can be changed in the editor of the relevant module.

The order in the SDO table (from top to bottom) specifies the order in which the SDOs are
transferred to the module.

line Line number

Index：Subindex Index number and sub-index number of SDO

Bit Length Bit length of SDO

Abort on error : In the event of an error condition, the transmission is interrupted.

Jump to Line on
Error

: To prevent errors, restore the SDO pass on the specified line.

Next Line : Resume the transfer using SDO in the next line.

Comment Input fields for comments

Move Up Move the selected row up one line

Move Down Move the selected row down one line

Add

Opens a dialog box to select an entry from the object catalogue where
the SDO parameters can be changed before the SDO is added to the
configuration. By specifying a new index/sub-index entry, new objects
can be added to the SDO that are not already described in the EDS file.

Delete Removes the selected entry.

Change
Opens a dialog box to select an entry from the object catalogue for the
selected SDOs parameter in the table.

VE Controller Programming Manual

EtherCAT Parameters（EtherCAT参数）

This option contains the frombound parameters defined in the device description file.
If the automatic configuration mode of the primary station is activated, these

parameters are automatically set here according to the specifications of the device
description file and the network topology. Standard applications generally do not need to
be modified.

EtherCAT I/O Mapping(EtherCAT Input and Output Map).

The inputs and outputs from the station selected in the Process Data option are listed
here, which shows the available channels and allows the controller's input, output, and
memory addresses to be mapped to the variables of the application or the entire function
block. In this way, you can create so-called "I/O mappings."

VE Controller Programming Manual

（1）Find The mapping table searches for strings in the input fields.

（2）Finter

Drop-down list for filtering I / O mappings listed in the mapping table.
Show all
Show outputs only
Show inputs only
Show only unmapped variables
Show only mapped variables
Show only mapped to existing variables
Show only mapped to new variables

（11）Add
FB for I/O
Mapping

Depending on the device, a channel entry is available if it is selected in the
mapping table. Open the "Select Function Block" dialog to select the function
block that should be linked directly to the channel.

（12）go to
Instance

Available if the entry is selected in the mapping table. Jump to the
corresponding entry in the <Device Name> IEC Objects tab.

Variable

Depending on the device, the inputs and outputs of the device are displayed as
nodes with indented associated channels below the nodes or, depending on the
device, only implicitly created instances of the device are displayed. The
symbols indicate the type of channel.

：input

：output

Double-clicking on a cell will open an input field.
Option 1: The variable already exists; specify the full path: <application name>.

<module name>. <variable name>; e.g.: app1.plc_prg.ivar; by typing help 。

Option 2: The variable does not yet exist; enter a simple name; it is
automatically created internally as a global variable.
Depending on the device, the input or output can be linked directly to a

function block. In this case, the activation of the “ Add FB" button for the I /

O channel.

（3）
Mapping

Map type:

: The variable already exists

: The new variable

: Map to a feature block instance

（4）
channel

The symbolic name of the channel.

（5） The channel address, e.g. %IW0.

VE Controller Programming Manual

Address Address strikethrough: indicates that you should not assign any other variables
to this address. Reason: Although the variables specified here (as already
existing variables) are managed in different storage locations, ambiguity may

arise during the writing of values, especially for output. ：Indicates that this

address has been edited and repaired. CODESYS does not automatically adjust
this address if the arrangement of device objects in the device tree is changed.

（6）Type

The data type of the channel, e.g. BOOL.
Structures or bit fields defined in the device description are only displayed if
they belong to the IEC standard and are identified in the device description as
an IEC data type. Otherwise, the table cells remain empty.
When mapping structure variables, the editor prevents the simultaneous entry
of structure variables (e.g.) %QB0 and individual structure elements (e.g. %QB0.1
and QB0.2). Therefore, if a master entry with a subtree of bit channel entries
exists in the mapping table, the following condition applies: a variable can be
entered in the row of the master entry or in the row of the child element (bit
channel) , but not both.

Default
Value

Default values for the parameters applicable to the channels: only displayed if
the option "Set all output to defalt" is activated in "PLC Setting" for the output
behaviour at stop.

（7）Unit The unit of the parameter value, e.g. ms milliseconds.

（8）
Description

A brief description of the parameters.

Current
Value

The actual value of the parameter applied to the channel; displayed in online
mode only.

（9）Reset
Mapping

CODESYS resets the mapping settings to the default values defined in the
device description file.

（10）
Update
Variables

Definition of the device object regarding the update of the I / O variable. The
default value is defined in the device description.
Use parent device setting Use parent device setting: Updates according to the
settings of the parent device.
Enable 1 (use it if not in any task): CODESYS updates the I / O variables in the
bus cycle tasks if they are not used in any other task.
Enable 2 (always in the bus cycle task): CODESYS updates all variables in each
cycle of the bus cycle task, regardless of whether they are used and whether
they are mapped to an input or output channel.

There are two ways to associate I/O mappings to a program.
(1) Selecting variables in the
mapping

VE Controller Programming Manual

(2) Address assignment in the program

Online（在线）

Once you have logged in to the device online, the Online tab appears. With EtherCAT,
you can use the slave status information and the functions for transferring files to the
slave.

VE Controller Programming Manual

State Machine：状态机制

Init Initialisation for debugging purposes

Boot Strap
The slave switches to Bootstrap mode.
Required if firmware files are to be transferred with the slave device

Pre-Op Pre-operation mode for commissioning purposes

Safe-Op Safe boot mode for debugging purposes

Op for debugging purposes

Current status The current state

Requested status Request Status

File access over EtherCAT：File access via EtherCAT

Download

Downloading the firmware file
A dialog box appears for storing the firmware file. In this dialog box,
a string and a password must be entered in order to perform the file
transfer. This information will be taken from the data sheet of the
slave station.

Upload

Uploading a firmware file
A dialog box appears for opening the firmware file. In this dialog
box, a string and a password must be entered in order to perform
the file transfer. This information will be taken from the data sheet of
the slave station.

E²PROM

Write E²PROM Write the slave's configuration to the E²PROM.

Read E²PROM
Reads the configuration of the slave from the E²PROM. Uploading
the firmware file

Write E²PROM XML

Writes the slave configuration directly from the XML file to the
device.
Only executed if configuration data (<ConfigData> section) is
present in the XML file.

CoE Online（CoE 在线）

To set this option, you need the slave to support CoE Online mode, first check the

checkbox for expert settings in the slave ，And after logging into

the device online, a new tab CoE Online will appear, as shown below, this option displays the
object index of the ESI or slave.

VE Controller Programming Manual

Read Objects The object index is read once

Auto Update Objects are read periodically and updated automatically

Offline from ESI File
This dialog box displays the contents of the object index in the
device description

Online from Device
SDOInfo, which displays the object index in the device, must be
enabled in the ESI file

Flags
RO:value is write-protected
RW:value can be changed

Type Data type of the parameter

Value Values can be edited by double clicking into the text area

VE Controller Programming Manual

4.3.3 SM_Drive_GenericDSP402 Shaft configurations

General（通用）

Axis type and limits(axis type and limit).
Virtualmode: Virtual mode. The drive is replaced by a simulation similar to a virtual

drive unit. If there are coupled drives, there is no effect on the field bus devices, which
operate as usual without sending messages to or receiving messages from the physical
device.
Note: You can also SMC3_ReinitDrive the virtual mode of the drive with IEC code by using
the function block.

Modulo:Module. The drive rotates indefinitely without limiting the range of operation,
such as a belt drive.

The value of the module: the value of a period (mold period). The value is saved in the
fPositionPeriod AXIS_REF_SM3 the function block and the function block.

Note: If you select the Modelo drive type, the product must be an integer.
fPositionPeriod * dwRatioTechUnitsDenom

Finite: Limited. The drive has a fixed working area, such as a linear drive.
ActivatedThe software limit switch is activated ：Position values are limited by

lower negative values and upper-limit positive values.
Negative Reverse: The input field for the negative limit value
Positive Positive: The input field for the positive limit value

Software error reaction(software error response).
Deceleration (u/s2): Thedeceleration value when the limit switch is reached.
Max Distance:Optional,the drive must reach a stop state within this distance after an

error hasoccurred.

Dynamic limits(dynamic limits).
Velocity (u/s):The limit of speed
Acceleration (u/s2):The limit of acceleration

VE Controller Programming Manual

Deceleration (u/s2) : The limitof thedeceleration
Jerk (u/s3):The limit value of the acceleration change rate

Velocity ramp type(speed ramp type).
Trapezoid: Keystone velocity curve (with constant acceleration in each segment).
Sin2: A velocity curve defined by the sin2 function (with a constant acceleration curve).
Quadratic: A trapezoidal acceleration curve with acceleration limits
Quadratic (smooth):Similar to Quadratic, but the resulting beating curve does not jump

Identification(ID card).
ID: Integer identifier. Each drive should be unique. For example, this identifier is used in

the PLC log to identify the drive in the event of an error.

Lag supervision(lagging regulation).
Deactivated:Deactivated: Deactivated. No response or traction error monitoring is
disabled.
DisableDrive: Disable the drive. The bRegulatorOn bit is forced to be set to FALSE

(MC_Power input), which first forces the drive to slow down and then deactivation the drive
(depending on the drive implementation).

Do quickstop:Stop quickly. The bDriveStart bit is forced to be set to FALSE (compared
to MC_Power input), which forces the drive to perform a quick stop.

Stayenabled: Remain enabled. The drive remains open, but all running actions suddenly
stop.
Laglimit: Lag limit. Drag the error monitoring in the controller.

Scaling/Mapping（缩放/映射）

Motor Type
Rotary: Rotating. The settings in the scale apply to rotating motors.
Linear:Linear. The settings in the scale are suitable for linear motors. (simplified

configuration without gears and motor turns).

Scaling
Invertdirection: Reverse the direction of the motor. The motor obtains a specified value

with the opposite symbol.
increments and motor turns: pulseincrements and number of motor turns.
Motor turns and gear output turns: number ofmotor turns and number of given gear

output laps.
gear outputs and lt; units in application: numberof gear output turns and applied

units.

VE Controller Programming Manual

Cases:

As shown in the figure, the pulse increment corresponding to the motor turn 1 turn is
10000, the decelerationratio is 2:1,and the gear output is 1 revolution correspondingto the
terminal traveling 60 units.

Mapping
Automatic Mapping: Automatic mapping. Checked by default, the IEC parameters that

affect the drive are automatically mapped to the appropriate inputs and outputs of the
device. After you deactivate this option, you can edit the map manually.

Commissioning（调试）

This tab is used for testing purposes when commissioning physical drives. It is only

available when the "online configuration mode " is activated. In this mode, the

development system is connected to the device. However, the application does not have to
be downloaded.

VE Controller Programming Manual

Online

Requirement: PLC in online mode

Variable table List of drive variables with variable name, set value and current value

Status Shows the current status of the SoftMotion drive

Communication Display of the current communication status

Error

Axis error:
FB error:
uiDriveInterfaceError:
strDriveInterfaceError:

Operating elements
Power：Driver enable (compare MC_Power)
Error reset：Reset the drive after an error (compare MC_Reset)
Starthoming: Use the settings parameters in the drive to perform origin regression

(MC_Home).
Joggingmode: The driver can move forward and back according to the specified values

of Distance, Velocity, Speed, Deceleration, and Jerk (Compare MC_Inch).
ReadWrite:For the specified drive parameters, the current value is read and displayed

from the PLC. In Prepare Values, you can specify a new value and write parameters to the
drive MC_ReadParameteraMC_WriteParameter button (to the ratio ofMC_WriteParameter,
the ratio).

VE Controller Programming Manual

Parameters（参数）

I/O Mapping（I/O 映射）

Bus Cycle Task:The definition of the device object that updates the bus. The default
value is defined in the device description:

Use Parent bus cycle setting (using parent device settings): Update based on the
settings of the parent device.

EtherCAT Task: Update the device object of the bus using EtherCAT Task.
Main Task: Update the device object of the bus with Main Task.

IEC Objects（IEC 对象）

In this tab of the Universal Device Editor, Objects are listed that allow access to devices
from IEC applications. In online mode, it is used as a monitoring view.

VE Controller Programming Manual

Status（状态）

In online mode, the axis status is displayed.

Information（信息）

Displays axis information.

4.3.4 EtherCAT bus cycle behavior

Typically, for each IEC task, the input data used is read at the beginning of each task (1)
and the output data is transferred to the I/O drive (3) at the end of the task. The
implementation in the I/O driver is decisive for the further transfer of I/O data.

The PLC's bus cycle task can be defined for all field busses in the PLC settings. However,
for some field busses, you can change this setting independently of the global settings. A
task with the shortest cycle time is used as a bus loop task (not specified in the PLC settings).
In this task, messages are usually transmitted on the bus.

Other tasks replicate only I/O data in the internal buffer, which is exchanged only with
the physical hardware in the bus loop task.

(1) Read input (2) IEC tasks from the input cache
(3) Write output to the output cache (4) bus cycle
(5) Enter the cache (6) output cache
(7) Copy data to/from bus (9) bus cycle tasks, priority 1, 1 ms
(10) Bus cycle task, priority 5
(11) Bus cycle task, priority 10, interrupted by task 5

VE Controller Programming Manual

4.3.5 Ether CAT specific variables

If the primary device is plugged into the device tree, EtherCAT_Master task is inserted
into the task configuration that is currently applied. As usual, POUcalls can be added to
the task configuration. EtherCAT specific Boolean variables can be set in the POU to affect
the EtherCAT configuration behavior in the context of the application:

1) Optional devices are supported
The loss of the EtherCAT device in the application causes an error in starting the bus to

prevent the stack from loading, and the variable is set at the beginning of the first PLC cycle
<instance name of EtherCAT master>. StartConfigWithLessDevice := TRUE;

the lost device is treated as an optional device that does not affect the normal stack startup
process.

2) Suppress additional message scheduling
To refresh the output as quickly aspossible, the EtherCAT master sends its own

messages to each individual task. However, if the satellite driver is synchronized with the
real-time output data, the bus loop task should be the only one that allows the output to be
set. Additional messages disrupt synchronization. To suppress additional task messages

<instance name of EtherCAT master>. EnableTaskOutputMessage := FALSE;

Must be set once in the first PLC cycle.

4.3.6 EtherCAT Library

The primary instance

Create an instance of type IoDrvEtherCAT for each EtherCAT master plugged into the
device tree. The name of the instance corresponds to the name of the primary server in
the device tree. The availability of the instance appears in the IEC Objects tab of the
device editor.
Input:

Name Data type Description

xRestart BOOL
Restart the main server along the rise and reload all configuration
parameters.

VE Controller Programming Manual

Output

Name Data type Description

xConfigFinished BOOL
TRUE: Transfer of all configuration parameters is completed
without errors, communication is running on the bus.

xDistributed
ClockInSync

BOOL

If a distributed clock is used, the PLC is synchronised with the
first EtherCAT slave that activates the DC option.
As soon as the synchronisation has been successfully
completed, the output changes to TRUE. this signal can then
be used, for example, to activate the SoftMotion function
block only when the PLC is in synchronisation mode,
otherwise a position jump may occur.
When starting the PLC the output is FALSE and changes to
TRUE after a few seconds. if the synchronisation is lost due to
some error the output is reset to FALSE.

xError BOOL

The output becomes TRUE if
 An error occurred during the start of the EtherCAT

stack.
 Communication with the from the station is

interrupted because no other messages can be
received (for example, due to a brokencable).

xSyncInWindow BOOL

If the Sync Window Monitoring option is activated and all
synchronization from the station is within Sync Window, the
output becomes TRUE. If the Sync Window Monitoring
option is activated and all synchronization from the station is
within Sync Window, the output becomes TRUE.

For example.
 Start the restart of the primary server with the xRestart variable:

EtherCAT_Master();
EtherCAT_Master.xRestart := xRestart;

 Stop communication on the bus via the xStop variable:
EtherCAT_Master.xStopBus := xStop;

 Call the main station for information about the success of downloading
configuration parameters:

EtherCAT_Master();
xFinish := EtherCAT_Master.xConfigFinished;

Properties of the main site:

AutoSetOperational
TRUE: If communication is interrupted, the master will try to
restart the slave immediately

xStopBus BOOL
TRUE: Communication is stopped. No further EtherCAT telegrams
will be sent. Afterwards, most devices need to be restarted as they
have switched to the error state.

VE Controller Programming Manual

Default: FALSE

ConfigRead
TRUE: The reading configuration is complete and the user can
edit the settings, for example in order to add a custom SDO.

DCInSyncWindow

The time window for XDistributedClockInSync. The jitter must be
within the window in order for the XDistributedClockInSync
output signal to remain TRUE at all times.
Default:50 ms (200 microseconds when using CODESYS
SoftMotion)

DCClockReferenceTime
Use the "distributed clock" to return the current time of the first
slave. This time is the reference time for all other slaves and the
PLC itself.

DCIntegralDivider
Integration Factor for Distributed Clock Control Loops
Default:20

DCPropFactor
Scale factor for distributed clock control loops
Default:25

DCSyncToMaster

Distributed clock synchronisation on the master. If set to TRUE, all
slaves are synchronised to the master rather than to the first slave
of the PLC.
Default:FALSE

DCSyncToMasterWith
SysTime

The distributed clock on the master is synchronised.
TRUE:All slaves are synchronized with the system time of the
master and the time read from SysTimeRtcHighResGet is used to
distribute the system time of the PLC to all EtherCAT slaves.
Default:FALSE

EnableTaskOutput
Message

EtherCAT signals are normally scheduled by the bus cycle task
and additionally from each task that uses the slave outputs. In the
bus cycle tasks, all outputs are written and all inputs are read. In
other tasks, the outputs are transferred again so that they can be
written to the corresponding slave immediately. In this way an
attempt is made to keep the stagnation time until the shortest
possible write. This together with distributed clocks can cause
problems in some devices, for example if the servo controller is
not synchronised with the Sync interrupt but uses the write time
for internal synchronisation. In this case, multiple write accesses
may occur in one cycle. If EnableTaskOutputMessage is set to
FALSE, only bus cycle tasks are used. Further tasks will not result
in further messages.
Default: TRUE

FirstSlave Pointer to the first slave below the master

FrameAtTaskStart
TRUE: The frame of the slave is transmitted at the beginning of
the task (before the IEC task), which ensures the minimum jitter.
This command is used to realize the non-impact movement of

VE Controller Programming Manual

the servo drive. If this flag is set to TRUE, the frame of the output
buffer will be written in the next cycle (see the chart below).
Default: FALSE (TRUE when using CODESYS SoftMotion)

LastInstance
Pointer to the list of connected master stations -> previous
master station.

LastMessage

This property returns a string that contains the last message from
the EtherCAT stack. If the startup completes successfully, return
to All slavesdone. Use the same string as the diagnostic
message displayed in the EtherCAT main device editor window in
online mode.

NextInstance
Pointer to the list of connected master stations -> next master
station.

NumberActiveSlaves
This attribute returns the number of slaves actually connected.
StartConfigWithLessDevice :=TRUE: The number of the physical
device detected.

OpenTimeout
Turning on the network adapter timed out. The default value is 4
seconds.

SplitFrame

Used to divide the frame into two parts. The first part contains
process data, and the second part contains asynchronous
mailbox communication and status flags. Due to the separation,
the process data is received earlier, so the jitter of the PLC has
less impact on the slave device.

StartConfigWithLess
Device

Used to affect the startup behavior of the stack. For example, if
five servo controllers are configured in the project but only three
are connected, the EtherCAT stack will usually stop. However, if in
the first cycle, StartConfigWithLessDevice := TRUE, then the stack
will still try to start. In this way, for example, a general
configuration of 10 servo controllers can be implemented, but
the number of actual connections can be kept variable. Please
note that the vendor ID and product ID of each slave must be
checked anyway. If a difference is found, the stack stops.

VE Controller Programming Manual

The from the station instance

An instance of the ETCSlave data type is generated for each EtherCAT slave inserted into
the device tree. The name of the instance corresponds to the name of the subordinate in the
device tree, and the availability of the instance is displayed on the IEC object tab in the
device editor.

The slave instance is used in the application to query or change the state of the slave at
runtime.
Input

Name Data type Description

xSetOperational BOOL
Rising edge: Try to switch to ETC_SLAVE_ OPERATIONAL
mode.

Output

Name Data type Description

wState ETC_SLAVE_STATE
The current status of the slave:

 0:ETC_SLAVE_BOOT
 1:ETC_SLAVE_Init

VE Controller Programming Manual

Properties of the slave:

VendorID
After the EtherCAT stack is started, this attribute will return the vendor ID
read from the device

ConfigVendorID Read the vendor ID from the configuration

ProductID
After the EtherCAT stack is started, this attribute will return the product ID
read from the device

ConfigProductID Read product ID from configuration

SerialID
After the EtherCAT stack is started, this attribute contains the serial
number of the device.

LastEmergency
If a message is received, this information is stored in the slave server and
can be queried from the application using this property, and a log
message is also added.

Note: If you activate the vendor or product ID check in the expert settings, as long as
there is a difference between VendorID and ConfigVendorID or ProductID and
ConfigProductID, stop the stack startup.

Check the chained list of all slaves

In order to monitor each slave station in the program, the instance will be called and the
state wState will be determined through. For the sake of simplicity, all masters and slaves can
be determined through the linked list, and all slaves can be checked through a simple WHILE
loop. The properties NextInstance and LastInstance exist for both the master and the slave.
These attributes point to the next or previous subordinate. For the master server, there is an
additional attribute FirstSlave, which provides a pointer to the first slave server. According to
the following example, all slaves can be checked.
Example：

statement:

pSlave:POINTER TO ETCSlave;

program：

pSlave := EtherCAT_Master.FirstSlave;

WHILE pSlave <> 0 DO

pSlave^();

IF pSlave^.wState = ETC_SLAVE_STATE.ETC_SLAVE_OPERATIONAL THEN

;

END_IF

 2:ETC_SLAVE_PREOPERATIONAL
 4:ETC_SLAVE_SAVEOPERATIONAL
 8:ETC_SLAVE_OPERATIONAL

The configuration has been successfully completed.
If an error occurs during configuration, the slave can fall
back to an earlier state.

VE Controller Programming Manual

pSlave := pSlave^.NextInstance;

END_WHILE

At the beginning, the first slave is extracted to the master through
EtherCAT_Master.FirstSlave. In the WHILE cycle, each master station is called individually, and
wState is also specified, and then the status can be checked. The pointer to the next slave
station is extracted by pSlave^.NextInstance. If the list is complete, the pointer is zero and
the loop ends.

4.3.7 IODrvEtherCAT

If EtherCAT configuration is supported and executed, the library is automatically
integrated into the project. It contains function blocks for reading and writing device
parameters. It is therefore possible to check and even change individual parameters at
runtime. Several functional blocks can be active at the same time. Each request in the loop is
managed internally and processed continuously.

ETC_CO_SdoRead

Library: IODrvEtherCAT
This function block is used to read EtherCAT slave parameters. Unlike

ETC_CO_SdoRead4, it also supports parameters longer than 4 bytes. The parameters to be
read are specified by Index and Subindex, as used in the object catalog.
Input

Name Data type Description

xExecute BOOL
Rising edge: Start to read the slave parameters.
In order to release the internal channel again later, the instance
must be called at least once by xExecute: = FALSE.

xAbort BOOL TRUE: The current reading process is aborted.

usiCom USINT
EtherCAT master station number: If only one EtherCAT master
station is used, usiCom is always 1. If multiple master stations are
used, 1 specifies the first one, 2 specifies the second, and so on.

uiDevice UInt

The physical address of the slave.
If the automatic configuration mode is deactivated in the master
station, the slave station can be provided with its own address.
This address must be specified here.
If the automatic configuration mode is activated, the address of
the first slave is 1001. The current slave address can be checked
in the Slave dialog box in the EtherCAT address area device
editor.

usiChannel USINT Reserved for future expansion

wIndex WORD The index of the parameter in the object directory.

bySubindex BYTE The sub index of the parameter in the object catalog.

VE Controller Programming Manual

Input

Name Data type Description

udiTimeOut UDINT
The definition of monitoring watchdog time, in milliseconds.
If the reading of the parameters has not been completed when
this time expires, an error message is output.

pBuffer CAA_PVOID
Pointer to the data buffer, the data buffer stores data after
successful transmission of parameters

szSize CAA_SIZE The size of the data buffer (pBuffer) in bytes.

输出

Name Data type Description

xDone BOOL TRUE: Complete parameter reading without error.

xBusy BOOL TRUE: The reading has not been completed yet.

xError BOOL TRUE: An error occurred during reading.

eError ETC_CO_ERROR
Information about the cause of the error displayed by
xError, such as ETC_CO_TIMEOUT when timed out

udiSdoAbort UDINT
If an error occurs in the device, this output will provide
more information about it.

szDataRead CAA_SIZE Number of bytes read; maximum szSize (input).

ENUM ETC_CO_ERROR

ETC_CO_NO_ERROR 0 No error

ETC_CO_FIRST_ERROR 5750
The cause of the error is stored in the
output udiSdoAbort

ETC_CO_OTHER_ERROR 5751 Can't find the main station

ETC_CO_DATA_OVERFLOW 5752 ETC_CO_Expedited and size> 4

ETC_CO_TIME_OUT 5753 Beyond time limit

ETC_CO_FIRST_MF 5770 Unused

ETC_CO_LAST_ERROR 5799 Unused

ETC_CO_SdoRead4

Library: IODrvEtherCAT
This function block is used to read EtherCAT slave parameters. Unlike ETC_CO_SdoRead,

it only supports parameters no longer than 4 bytes. The parameters to be read are specified
using Index and Subindex, as used in the object catalog.
输入

Name Data type Description

xExecute BOOL
Rising edge: Start to read the slave parameters.
In order to release the internal channel again later, the instance
must be called at least once by xExecute: = FALSE.

VE Controller Programming Manual

输入

Name Data type Description

xAbort BOOL TRUE: The current reading process is aborted

usiCom USINT
EtherCAT master station number: If an EtherCAT master station is
used, usiCom is always 1. If multiple master stations are used, 1
specifies the first one, 2 specifies the second, and so on.

uiDevice UInt

The physical address of the slave.
If the automatic configuration mode is deactivated in the master
station, the slave station can be provided with its own address.
This address must be specified here.
If the automatic configuration mode is activated, the address of
the first slave is 1001. The current slave address can be checked in
the slave dialog box in the EtherCAT address area device editor.

usiChannel USINT Reserved for future expansion

wIndex WORD The index of the parameter in the object directory.

bySubindex BYTE The sub index of the parameter in the object catalog.

udiTimeOut UDINT
The definition of monitoring time, in milliseconds.
If the reading of the parameters has not been completed when
this time expires, an error message is output.

输出

Name Data type Description

xDone BOOL TRUE: Complete parameter reading without error.

xBusy BOOL TRUE: The reading has not been completed yet.

xError BOOL TRUE: An error occurred during reading.

eError ETC_CO_ERROR
Information about the cause of the error displayed
by xError, such as ETC_CO_TIMEOUT when timed out

udiSdoAbort UDINT
If the device has an error, this output will provide
more information about it

abyData ARRAY [1..4] OFBYTE
Read the 4-byte array to which the parameter data is
copied

usiDataLength USINT The number of bytes read (1, 2, 4).

ENUM ETC_CO_ERROR

ETC_CO_NO_ERROR 0 No error

ETC_CO_FIRST_ERROR 5750
The cause of the error is stored in the output
udiSdoAbort

ETC_CO_OTHER_ERROR 5751 Master station not found

ETC_CO_DATA_OVERFLOW 5752 ETC_CO_Expedited and size> 4

ETC_CO_TIME_OUT 5753 Beyond time limit

ETC_CO_FIRST_MF 5770 Unused

VE Controller Programming Manual

ETC_CO_LAST_ERROR 5799 Unused

ETC_CO_SdoRreadDWord

Library: IODrvEtherCAT
Similar ETC_CO_SdoRead4, this function block is used to read TheerCAT from the

station parameters. However, the data to be read is transmitted in DWWORD (dwData)
instead of an array. If byte switching is required, it is performed automatically, so the read
data can be reused directly.

ETC_CO_SdoWrite

Library: IODrvEtherCAT
This function block is used to write EtherCAT dependent parameters. Unlike

ETC_CO_SdoWrite4, parameters that are not longer than 4 bytes can be supported. The
parameters to write are specified by the index and sub-index, as used in the object directory.

Input

Name Data type Description

xExecute BOOL
Rising edge: start reading from the parameter.
In order to release the internal channel again later, the
instance must be called at least once by xExecute: = FALSE.

xAbort BOOL TRUE: End of the current write process.

USICOM USINT

EtherCAT Master Number: If only one EtherCAT master
station is used, usiCom is always 1. If you use more than one
primary station, 1 specifies the first, 2 specifies the second,
and so on.

UIDevice UINT

The physical address from the station.
If you deactivate automatic configuration mode in the
primary station, you can provide your own address for the
from the station. This address must be specified here.
If the automatic configuration mode is activated, the address
of the first from the station is 1001. The address of the
current from the station is always located in the EtherCAT
address area and the tab of the from the station.

usiChannel USINT Reserved for future expansion

wIndex WORD The index of the parameter in the object directory.

bySubindex BYTE The sub index of the parameter in the object catalog.

udiTimeOut UDINT The definition of monitoring time, in milliseconds.

VE Controller Programming Manual

Input

Name Data type Description

If the parameter writing has not been completed when this
time expires, an error message is output.

pBuffer CAA_PVOID Pointer to the data buffer containing the data to be written.

szSize CAA_SIZE The size of the data buffer (pBuffer) in bytes

eMode ETC_CO_MODE

The number of bytes to be written. Possible inputs:
 ETC_CO_AUTO
 ETC_CO_EXPEDITED
 ETC_CO_SEGMENTED

AUTO mode is usually set, so the mode suitable for the
length is automatically used.

Output

Name Data type Description

xDone BOOL TRUE: The parameter writing is completed without error.

xBusy BOOL TRUE: Writing has not been completed yet.

xError BOOL TRUE: An error occurred during writing.

eError ETC_CO_ERROR
Information about the cause of the error displayed by
xError, e.g. ETC_CO_TIMEOUT on timeout

udiSdoAbort UDINT
If an error occurs in the device, this output will provide
more information about it

szDataWritten CAA_SIZE Number of bytes written; max szSize (input).

ENUM ETC_CO_MODE

AUTO 0 Automatic mode selection by the client

EXPEDITED 1 Client uses acceleration protocol

SEGMENTED 2 Client uses segmentation protocol

ETC_CO_SdoWrite4

Library:IODrvEtherCAT
This function block is used to write EtherCAT slave parameters. Unlike

ETC_CO_SdoWrite, only parameters not longer than 4 bytes can be supported. The
parameters to be written are specified by Index and Subindex and are used in the object
directory.
Input

Name Data type Description

xExecute BOOL Rising edge:Start reading slave parameters.

xAbort BOOL TRUE:The current writing process is aborted.

VE Controller Programming Manual

Input

Name Data type Description

usiCom USINT

Number of the EtherCAT master: usiCom is always 1
if only one EtherCAT master is used. If several
masters are used, “1” designates the first, “2” the
second and so on.

uiDevice UInt

Physical address of the slave.If the
auto-configuration mode is deactivated in the
master, the slave can be given its own address. This
address must be specified hereIf the
auto-configuration mode is activated, the first slave
is given the address 1001. The current address of a
slave is always located on the Slave tab of the slave
in the EtherCAT address field.

usiChannel USINT Reserved for future extensions

wIndex WORD Index of the parameter in the object directory.

bySubindex BYTE Subindex of the parameter in the object directory.

udiTimeOut UDINT
Definition of the watchdog time in milliseconds.If the
writing of the parameters is not yet complete on
expiry of this time, an error message is output.

abyData ARRAY [1..4] BYBYTE
Contains the data to be written.The data must be
saved in the Intel byte order.

usiDataLength USINT Number of bytes (1,2,4) to be written.

Output

Name Data type Description

xDone BOOL
TRUE: Writing of the parameter was completed without
error.

xBusy BOOL TRUE: Writing is not yet completed.

xError BOOL TRUE: An error occurred during writing.

eError ETC_CO_ERROR
Information about the cause of the error that was displayed
by xError, e.g. ETC_CO_TIMEOUT in case of a timeout

udiSdoAbort UDINT
If an error has occurred in the device, this output provides
further information about it

ENUM ETC_CO_MODE

AUTO 0 The client automatically selects the mode

EXPEDITED 1 The client uses the expedited protocol

SEGMENTED 2 The client uses the segmented protocol

VE Controller Programming Manual

ETC_CO_SdoWriteDWord

Library:IODrvEtherCAT
Just like ETC_CO_SdoWrite4, this function block is used to write EtherCAT slave

parameters. However, the data to be written is not transferred as an array but is passed to
DWORD(dwData). If byte swapping is required, this is performed automatically. The value to
be written can therefore be specified directly.

ReadMemory

Library: IODrvEtherCAT
This function block is for reading the memory of EtherCAT Slaves.

Input

Name Data type Description

xExecute BOOL

Rising edge: Starts the reading.Falling edge: Resets
outputs.If a falling edge occurs before the function
block has completed the command, the outputs
continue working normally. They are reset only if the
command has either been fully executed or aborted
(xAbort) or if an error occurs. In this case the
corresponding output values (xDone, xError, iError) are
present at the output for precisely one cycle.

xAbort BOOL
TRUE: Command is immediately aborted and all
outputs are set to their initial values.

USICOM USINT
Index number of the EtherCAT master (1 for the first
master…)

wSlaveAddress WORD
Automatically increased address or physical address of
the device.

xAutoIncAdr BOOL Flag for interpretation of the address

xBroadcast BOOL
Flag indicating whether broadcast reading is to be
used.TRUE: wSlaveAddress and bAutoIncAdr are not
used

uiMemOffset UINT
Offset of the memory in the EtherCAT slave memory
image

iSize INT Number of bytes to be read.

pDest POINTER OF BYTE Buffer for the storage of the data

udiTimeOut IDINT Watchdog time for the command in ms

VE Controller Programming Manual

Output

Name Data type Description

xDone BOOL TRUE: Reading was completed without error.

xBusy BOOL TRUE: Reading is not yet completed.

xError BOOL
An error occurred during reading; the function block aborts
the command.

xAborted BOOL Command was aborted by the user.

Example: reading the register 0x130 (current status)

PROGRAM PLC_PRG

VAR

etcreadmemory :ReadMemory;

wStatus :WORD;

xRead :BOOL;

END_VAR

etcreadmemory(xExecute := xRead, usiCom:=1, wSlaveAddress := 1002,

xAutoIncAdr := FALSE, xBroadcast := FALSE, uiMemOffset := 16#130,

iSize := 2, pDest := ADR(wStatus), udiTimeout := 500);

WriteMemory

Library: IODrvEtherCAT
This function block is for writing the memory of EtherCAT slaves.

Input

Name Data type Description

xExecute BOOL

Rising edge: Starts the writingFalling edge: Resets
outputs.If a falling edge occurs before the function
block has completed the command, the outputs
continue working normally. They are reset only if the
command has either been fully executed or aborted
(xAbort) or if an error occurs. In this case the
corresponding output values (xDone, xError, iError) are
present at the output for precisely one cycle.

VE Controller Programming Manual

Input

Name Data type Description

xAbort BOOL
TRUE: Command is immediately aborted and all
outputs are set to their initial values.

usiCom USINT
Index number of the EtherCAT master (1 for the first
master…)

wSlaveAddress WORD
Automatically increased address or physical address of
the device.

xAutoIncAdr BOOL Flag for interpretation of the address

xBroadcast BOOL
Flag indicating whether broadcast reading is to be
used.TRUE: wSlaveAddress and bAutoIncAdr are not
used

uiMemOffset UINT
Offset of the memory in the EtherCAT slave memory
image

iSize INT Number of bytes to be written

pDest POINTER OF BYTE Buffer for the storage of the data

udiTimeOut IDINT Watchdog time for the command in ms

Output

Name Data type Description

xDone BOOL TRUE: Writing was completed without error.

xBusy BOOL TRUE: Reading is not yet completed.

xError BOOL
TRUE: An error occurred during reading; the function block
aborts the command.

xAborted BOOL TRUE: Command was aborted by the user.

VE Controller Programming Manual

4.3.8 SoftMotion General Axis Pool

If a SoftMotion PLC is used (e.g. CODESYS SoftMotion Win V3), the base libraries are
automatically linked in the Library Manager. A SoftMotion General Axis Pool is available for
these types of controllers. SoftMotion free drive units can be inserted here.
The SoftMotion Drive Interface is a standard interface for linking, configuring and addressing
drive hardware in the IEC program. By mapping different hardware to one interface, drives
can be easily exchanged and IEC programs can be reused. The interface couples the drive to
the I / O mapping and is responsible for updating the required motion data and transferring
it to the drive control.

The method for adding a SoftMotion free drive is shown in the following diagram.

Position control drives

Position control of the CODESYS axes can be run using the SM_Drive_PosControl drive
control. The requirement is for a device that is controlled by the set speed and returns its
current position. It can be, for example, a speed control device (frequency converter) with
position feedback.

VE Controller Programming Manual

Free encoder

Use SMC_FreeEncoder to integrate encoders that are not permanently coupled to I/O or
hardware.

Assign the input value of the encoder to the variable
<FREE_ENCODER_AXIS>.diEncoderPosition. this can be done as IEC code or by mapping the
memory of the input data.

VE Controller Programming Manual

Virtual drives

The virtual drive SM_Drive_Virtual is a simulated drive in software. It is possible to test
programs or implement extended functions without connecting hardware. These types of
functions include, for example, the control of axis movements.

VE Controller Programming Manual

5 VE controller program execution mechanism

5.1 User engineering tasks and configuration

As shown in the diagram, each task group can have its own execution trigger conditions,
execution period, execution priority, etc.

The types of tasks supported by the VE controller are as follows：

Type of task execution Type description Example

Cycle Execute the corresponding POU
once at each set time interval

EtherCAT Bus Tasks
General Task Loop

Event In the set Bool type variable state
01 Trigger execution once

Soft interrupt handling POU

Freewheeling Once execution has started, the
cycle is repeated without
interruption

General task cycle

Status If the state of the set Bool variable
is 1, the loop is repeated

Conditional execution task
POU

VE Controller Programming Manual

5.1.1 Key points of task configuration

When set to the "Cycle" type, the "task cycle" refers to the time interval to perform the task.
For general logic control, where the state of common IO port variables changes slowly, the
task cycle can be set to a larger period, e.g. 20ms; for tasks that need to be processed in time,
the task cycle can be set to a smaller period.
The task configuration for EtherCAT bus communication is a special "cyclic" task with the
highest priority. The set value for the task cycle is also the EtherCAT bus communication
cycle, usually set to 1ms-4ms; the smaller the set value, the higher the accuracy of the
motion control; the larger the number of axes to be controlled, the larger the set cycle,
otherwise the CPU will be overloaded with calculations.
A task configuration can only be set to one execution type, time interval and priority, and to
obtain different execution characteristics, multiple task configurations can be added. A task
configuration can contain multiple POUs, all of which will be executed at the same time
interval and in the order in which the POUs are added to the task.

5.1.2 Prioritisation of tasks

For tasks with different object types, it is recommended that different priorities are
assigned to ensure that important tasks such as motion control are prioritised, allowing the
controller's performance to be used wisely in some applications where high performance
motion control (MC) is required. The order of task priority is as follows.

Priority Type of task Description

0 EtherCAT Bus tasks Highest priority, only one EtherCAT task allowed

1 ModbusTCP

2 ModbusRTU

3 MainPOU Lowest priority

When the controller performs a task, there is a time alignment point unobserved by the
user at which it starts, at the highest priority Second highest priority…Execution starts in
the order of the lowest priority; a lower priority task may be interrupted by a higher priority
task while it is being executed, and when the execution of the higher priority task is complete,
the interrupted task is returned and execution of that lower priority task continues.

The EtherCAT task is the highest priority task and is entered in the EtherCAT cycle and
all POUs within the task are executed before returning to the lower priority task.

5.1.3 Execution cycle setting in task configuration

The CODESYS software uses a multitasking approach to execute the user program's
"tasks", each of which is assigned a different execution period. Some global variables may
have to be accessed and modified between different POUs, so global variables need to be

VE Controller Programming Manual

synchronised interactively, also at the "time alignment point" of the task, in integer multiples
when setting the period of a cyclic type task. Do not set the EtherCAT period to 3ms, 6ms,
7ms, 9ms etc. as this may result in a non-integer multiple relationship.

5.2 Data flow analysis in EtherCAT bus networks

5.2.1 Network overview of the EtherCAT bus

The EtherCAT bus is commonly connected using RJ45 plugs, multi-core Ethernet cables
and recommended Super 5 cables for improved interference immunity. Similar to a common
Ethernet network, the network communicates at a rate of 100 Mbps, with link cable lengths
of up to 100 m per adjacent slave, etc.

The EtherCAT network differs significantly from a normal Ethernet network in that there
is only one EtherCAT master in the network and the network-specific ESC (EtherCAT Slave
Controller) inside the master can receive the communication data sent to this station and
insert the reply data from this station into the frame in real time. The communication data
frames in the EtherCAT bus follow the Ethernet data UDP/IP frame structure, type 0x88A4,
except that the intermediate data fields have to be prepared and analysed according to the
EtherCAT communication protocol.

The EtherCAT segments can be further defined and parsed by some protocol, and data
communication can be achieved as long as both the primary and the host stations comply
with this protocol. Protocols typically used include CANopen Over EtherCAT (CoE) and
Sercos Over EtherCAT (SoE), just as Modbus Protocol Frame Data (ModbusTCP) is
transmitted on TCP/IP networks.

The VE controller uses the CoE protocol, the DS402 regulation (also known as CiA402)
for the CANopen protocol, which is a dedicated protocol for servo motion control classes,
the most important features of which are:
(1) In order to improve communication efficiency, the master-from station is not accessed by
means of a question-and-answer approach, but during the initialization phase of the
bus network, the master gives the host station a list of data items to be sent in advance to
the master, such as a "process data PDO", informing it that the host station will send the data
items and sequence (TPDO), requiring thedata items and sequence (RPDO) sent from the
station, so that the receiving from the station To the main station data frame know how to
parse, you can also prepare the required answer data in advance, when the main station
dataframe arrived, each from the network control chip (ESC) can take the data segment sent
to the station, for the station's processor according to the configuration table for analysis,
and in the appropriate stage of The EtherCAT communication frame timely insert the
answering data block of the station, returned to the main station;

② The data to be communicated by the user is divided into "process data PDO" and
"service data SDO" according to the real-time requirements, with the former PDO arranged
for high-frequency cyclic sending and receiving, and the latter SDO communicating only

VE Controller Programming Manual

when needed.

③ The control command parameters, operation status parameters and function code
setting parameters of the servo drive, the most number of which reaches hundreds, are
named differently for each brand of servo parameters, and in order to ensure that the master
and slave stations of different brands are interchangeable, an "object dictionary OD" has
been developed in the CiA402 protocol to list all the functions used in the servo drive. All the
function codes, operation commands and their set value meanings, operation status
parameters and the scale to be used in the drive are defined specifically, forming a
professional technical specification, and equipment suppliers of different brands can operate
with the VE controller as long as the products developed in accordance with this CiA402
protocol specification can ensure universality and interchangeability.

④ The configuration of communication objects between master and slave stations is a
condition to ensure the successful execution of the functions of the operation and control
function block. When executing the MC function block in the user program, the controller
needs to use specific "communication data objects" to send commands to the servo slave
and read the slave's axis status.

⑤ The slave device may not support all the items defined in the "Object Dictionary OD", but
the device manufacturer has defined the "Device Description File EDS" for the device, so the
programming user needs to import the device description file EDS of the slave device in
CODESYS before configuring the device, and can see the contents of the supported objects.

(6) When writing the user project, the user selects and configures the TPDO and RPDO data
object tables according to the control needs, which will be automatically forwarded by the
master to the corresponding slave during operation by means of communication; try to
select only the required configuration items and reduce the configuration items of irrelevant
data objects, which will reduce the load of EtherCAT communication and help to improve the
communication efficiency.

(7) The SDO configuration item is generally used to initialise the function code of the slave
device at the beginning of the system, and can also be used to access the parameters via
function blocks such as MC_SDOread during operation, which has a lower communication
timeliness and takes up additional EtherCAT communication overhead, and can cause
synchronisation timeout failures in applications with a high bus load rate.

5.2.2 Synchronous clocking of the EtherCAT bus

As a multi-axis motion control network, it is often necessary to have multiple slave
stations start or stop motion at the same time. The EtherCAT network has a Distributed Clock
(DC) mechanism, which allows each intelligent slave station (e.g. servo drive, intelligent

VE Controller Programming Manual

high-speed expansion module) to have a consistent clock, and each slave station outputs
the data written by the master station to the execution unit according to a set
synchronisation trigger period to achieve simultaneous
operation.

During the initialisation phase of the EtherCAT bus, the master reads the current time of
each slave and uses the local time of the first slave as the "reference clock" for the network,
so that the "clock offset Toffset" of each slave relative to the reference clock can be
calculated, and the clock offset of each slave is written to the corresponding slave so that it
can correct its clock and eliminate static errors.

In addition, during the transmission of the communication data frames, there will be a
transmission delay time due to the hardware network, the master will send a specific
broadcast frame, let each slave station record the data arrival time, the master will then read
the time value recorded by each slave station, while measuring the total delay of the data
return data frame, can accurately calculate the "transmission delay Tdelay" of each slave
station "The master then writes the transmission delay time of each slave into the memory of
each slave. With these clock corrections, the slave gets the same clock as the reference clock
t1 by calculating TLocal-Toffset-Tdelay.

In EtherCAT networks, IO slaves that are not sensitive to the DC clock can be set up
without DC handling and the EtherCAT master ignores their clock calibration during the DC
calibration. Once the synchronisation unit has been activated, a SYNC synchronisation signal
is generated at regular intervals to validate the currently received data and, in the case of
servo drives, to start execution with the received position command as the target point.

The initialisation and calibration of the DC clocks of the EtherCAT slaves as described
above is done automatically by the EtherCAT master without user intervention and is
completed when the EtherCAT bus is ready. It is important to note that slaves with internal
clock functions are placed at the front of the network as far as possible.

VE Controller Programming Manual

5.3 Communication flow between VE controller and servo

slaves

In EtherCAT communication, the CoE is used at the application level. When the
controller executes the Motion Control (MC) user program, the communication data
between the controller system software and the servo is processed through a multi-level
functional unit.

5.3.1 Step-by-step description of the control information process

Step 1: Execute the MC function block of the user program and process

the command data to be sent

When the controller executes the user program, it executes an MC motion control
function block instance, e.g. MC_MoveRelative (Axis_1), and the controller, based on the
slave (Axis_1) state machine and data structure in memory.

checking the current state of the slave axis, reporting an MC execution error if the slave
axis is not enabled, or is running in torque mode, or is running in synchronous mode, or is
Homing running, or is alarming, etc.; if the slave axis is stopped, or is running in
non-synchronous mode in position mode, sending the make slave axis run command
ControlWord.

analyses the current running speed fActPosition of the slave axis, the running speed
fActVelocity, and constraints such as target position, maximum allowed speed, acceleration,
deceleration, etc. to calculate the required motion position command TargetPosition for the
next running cycle.

The controller also needs to wait for the data returned from the slave station in the next
communication cycle to analyse and judge the execution of this MC function block
instruction, so that the user can know whether the execution is Busy, Done, Error, or Aborted
by other MC instructions, etc.

Step 2: Place the control command data to be sent into the EtherCAT Send

Buffer Unit

The command data ControlWord and TargetPosition that need to be sent to the slave
Axis_1 are stored in the PDO send buffer unit, a prerequisite for this operation is that these
two parameters (called "objects" in the CiA402) are already present in the PDO configuration
table.) option; the "PDO configuration table" holds the "index number" (main index number:
sub-index number) of the control parameters (objects) that need to be sent and read by the

VE Controller Programming Manual

master, divided into TPDO and RPDO.

Description of use

TPDO layout
table

A list table of objects and attributes that need to be configured by the
user when programming, based on what needs to be sent cyclically for
the control of the slave.
This table is automatically sent by the controller to the slave ESC during
the network initialisation phase.
(b) The controller master will arrange the size of the transmit buffer
according to this table and at runtime will store the command data to be
sent into the transmit buffer.
the slave stations at runtime parse the received data frames according to
this table.
each slave can have a different TPDO configuration table.

RPDO layout
table

A list table of objects and attributes that need to be configured by the
user when programming, based on the content of the objects that need
to be automatically answered by the slave.
This table is automatically sent to the slave ESC during the network
initialisation phase.
The runtime slave prepares the data according to this table and returns it
to the master in time for insertion into the time slot of the EtherCAT data
frame when the master accesses this slave.
At runtime the master parses the returned data frames according to this
table and returns the slave answer data.
Each slave can have a different RPDO configuration table.

The following diagram shows the PDO configuration table, in which the index number
and data type of each control parameter are specified by the CiA402 protocol, and the
"index number" can be used to find out what the parameter is and the width type of the
parameter in the "Object Dictionary
OD".

VE Controller Programming Manual

During the initialisation phase of the network, the master sends the "PDO Configuration
Table", which contains the TPDO, RPDO, data type and width of each object, to the slave as
the basis for parsing the data frames.

The order of the objects in the table will be the basis for the system to place the data to
be sent by the MC command into the transmit buffer unit. As shown above, the ControlWord
is placed in the first transmit unit, the TargetPosition is placed in the second unit, and so on.

The slave station, according to the RPDO configuration table (9 "objects" in the above
diagram), will put the index number and order of each object, in turn, the servo's operation
status data into the answer cache unit, when the master station communication frame
accesses this slave station, the ESC will automatically insert the data of this cache unit into
the appropriate time slot of the data frame and return it to the master station.

The RPDO table will also be the basis for the master to parse the slave's answer data.

Step 3: The master control chip sends the data from the transmit cache unit

to the slave ESC at regular intervals and the slave sends the reply data at the

same time

The controller, as master, generates EtherCAT interrupts at regular intervals according
to the EtherCAT clock cycle set by the user. After entering an EtherCAT interrupt, it initiates
EtherCAT communication and sends the data of the PDO transmit cache unit to several
slaves in one or several frames, and incidentally retrieves the answer data of each slave in the
same communication frame.

In chronological order, the data in the controller's transmit cache is the command data
from the previous EtherCAT interrupt POU execution; the reply data from the slaves is not
the answer to the master's query, but the current value of the cyclic reply "object" as
required by the RPDO configuration.

VE Controller Programming Manual

Step 4: The slave receives and parses the data sent to this site from the

master

After entering the normal operation state of the network, the ESC from the station will
receive the communication data frame sent by the main station on a timely date and
automatically store the data sent to the station in the communication frame to the local
cache.

After receiving a string of PDO data, the processor of the station intercepts the received
data string according to the specified object data type (width) according to the TPDO table,
and stores the parameter properties represented by the "object index" number to the
corresponding control command unit for the operation control of the servo

The processor of the station will, according to the object properties and order required
by the configuration table of the RPDO, brush the current running state and parameters of
this servo axis, cycle through the answering cache unit in the new local ESC, and insert the
cached data into the EtherCAT communication frame with high-speed hardware operation
to the main station in the appropriate communication frame time slot.

Step 5: The main station receives and parses the data from the station

answer, updates the axis state parameters, and determines whether the

execution is complete

The controller, as the etherCAT network master station, sends data frames at the same
time, it receives the communication frames sent back by the closed loop of the network from
the station at the same time, and can extract the data strings that the receiving station
answers from from , and can also judge the communication status of the network and
analyze the success of the communication operation.

Based on the data answered from the station, such as Error Code, Status Word, Position
Actual Value... The controller system can determine whether it has reached the operating
position required by the MC function block instance and refresh the output variable state of
the MC function block instance

The above is the VE controller's EtherCAT packet sending, receiving and parsing
principle process description, easy for users to understand its internal mechanism, many of
the links are automatic system completion, do not need user intervention, users only need to
understand the CiA402 object concept, master the servo axis commonly used "like" type,
TPDO, RPDO configuration table object selection on it.

VE Controller Programming Manual

5.3.2 CiA402 Data Object Dictionary and Servo Common Objects

The EtherCAT bus communication layer of the VE Motion Controller uses the CANopen
DS402 protocol, also known as CiA402, which is part of the CANopen protocol "Servo and
Motion Control" protocol family. EtherCAT bus networks. Controllers and servo drives (slave
devices) developed by different device manufacturers according to this protocol can be used
in conjunction with or instead of each other, giving the user more choice and meeting the
aims of the PLCopen specification.

CiA402 object types are grouped into index number segments by attribute, as follows:

Master index
number range

Meaning Description

0x0000~0x1FFF

Protocol type descriptions,
manufacturer information, line
type descriptions, configuration
table description information,
etc.

There is information initialisation by
the device manufacturer and the
configuration information is done
automatically by the system
software without the intervention of
the controller user.

0x2000~0x5FFF

Manufacturer-defined objects,
functional properties of the
objects defined by the
equipment vendor

The device vendor can design the
master index number as a function
code for the servo drive and use it
to set the function code parameters
for the static parameters

0x6000~0x9FFF
Line definition data objects for
the control and monitoring of
equipment

Data for communication interaction
between the controller and the
servo for control

0xA000~0xFFFF Reserved

As can be seen from the table above, the objects required for motion control are mainly
in the(0x6000-0x9FFF) index segment section, if you want SDO configuration to modify the
servo function code, you need to pay attention to the(0x2000-0x5FFF) index segment
section. Detailed index number instructions may be referred to in the EtherCAT bus-type
servo instructions of the Wykoda servo instruction manual, which will not be repeated here.

The VE controller controls the operation of the servo and generally has several
command types:

1) control the operating state of the servo, such as enabler, origin regression,
start-stop operation, alarm reset, etc.

2) set the operating mode of the servo, such as position mode, speed mode,
torque mode;

3) Set the target position, running speed and output torque of servo operation;
4) Read the operating status of the servo system, such as operating state, operating
mode, position, current speed, output torque, etc.
5) Set or modify the function code parameters of the servo system, run the

constraint parameters, etc.
To complete these control operations, there are several commonly used data objects,

VE Controller Programming Manual

which must be programmed in the PDO or SDO configuration table, and some data objects,
which are added as appropriate based on the functionality used in the user program.

This section describes the value of the data object, used to explain the functional
definition of the object, the actual runtime, the controller will automatically send the
corresponding value according to the required control operation: for the PDO configuration
table, the user only needs to add the controller to use the data object, do not need to fill in
the specific parameter value or variable name,

When codeSYS software is compiled, the variables in the MC function block are
automatically associated with the object of the PDO, and for the SDO configuration table,
the operation (write) that is typically used for the controller to initialize the servo function
code is a definite constant, since the constant to be filled in must conform to the DS402
specification definition, and some are defined as a constant by the functional code unique to
the servo drive.

VE Controller Programming Manual

5.3.3 Configuration of servo shaft motor parameters

Motion control of the action, the most through the operation of the servo motor to
achieve, to servo motor in accordance with our hope, the controller needs to know the servo
motor parameters, the application system mechanical transmission mechanism
characteristics parameters, as well as the user's desired operating characteristics, in order to
send the appropriate operating position instructions, which need to be programmed to set
these characteristic parameters on the controller.

The method of setting servo motor parameters is shown in the following diagram,
double-click SM_Drive_GenericDSP402,and themotor-related parameters can be set in the
window on the right.

(1) Under the basic parameter label, the main axis position counter module value is set.
If the servo motor is the characteristics of round-trip operation, such as the re-operation of
the wire rod, you can choose "limited", (also known as multi-turn mode, limited long mode),
convenient in the case of servo motor rotation multi-turn, can carry out absolute position
mode positioning;

(2) If the servo motor is running in one direction indefinitely, e.g. the operation of the
fly shear roll, you can select "module", its position counter in each operating cycle,
counting from 0, will not produce a position counter overflow;

(3) If you are running without an actual access servo, you can check Virtual Mode, which
can be used for simulation operations

Attention:
The above setting rules, both applicable to the incremental encoder servo motor, but

also suitable for absolute encoder servo motor, the above settings are not given to the
servo driver, and the current position of the motor, by the VE controller according to the
position signal of the motor feedback, as well as the above-mentioned setting parameters,
automatically carry out the cumulative and quantum calculation of the position, therefore, if
the servo position has the power-off hold characteristics, the user program needs to back up
the current position of the shaft to the power-down hold variable, and then restore the
relevant parameters.

VE Controller Programming Manual

The "software restriction" in the figure above refers to the software of CODESYS, which
protects the travel limit of the servo motor so that the VE controller does not issue the
over-limit positioning instructions, which is very useful in the application system of the MC
instructions of the absolute position encoder and the absolute positioning instructions. There
is also a selection of additional deceleration-special curves, which can be selected during
commissioning to make the mechanical system run more smoothly.

Because the controller always takes the number of pulses that make the servo run as the
operating position command, the controller must know the pulse value of the encoder of the
servo motor per turn, and also know the mechanical parameters such as the deceleration
ratio of the operating mechanism, the wire rod guide, the wheel doughnut peritution, which
can be entered under the "zoom/map" label of the motor parameters, as shown below:

Item 1 in the figure above, which is used to set the number of pulses per lap;
Item 2 in the figure above, which is used to set the deceleration ratio of the gearbox, shows
that the servo motor shaft rotates 1 turn for every 5 turns, and if the gearbox is not used,
the deceleration ratio is 1:1;
Item 3 in the figure above sets the physical distance of the work piece for each 1 turn of the
output axis. For example,
◆If the use of flying shear roll, we only pay attention to its rotation angle, can be filled in this
way:

The MC_MoveRelative of the instruction is that the mechanism rotates by 1 degree;
The MC_MoveRelative of the instruction is that the mechanism rotates by 360 degrees;
◆ If you are using a wire rod with a guide of 5mm, i.e. the slider on the wire rod moves
5mm at 1 turn, fill in this:

The MC_MoveRelative of the instruction is that the slider mechanism travels 1mm;
◆If you are using a synchronous gear with a diameter of 63.7mm, the moving distance of
the synchronous belt is 63.7mm×3.14 x 200mm for each turn, which can be filled in as this:

The MC_MoveRelative of the instruction is that the belt mechanism travels 100mm;
It can be learned that through the accurate setting of 1/2/3 items, the application

system physical units and MC operating instruction units can be achieved consistent, so that
the instructions of the user program intuitive, convenient variable settings, not easy to errors.

VE Controller Programming Manual

Note: Setting the motor parameters is used for the VE controller to perform the conversion
of the electronic gear ratio when sending the final (number of pulses) position command,
and is not downloaded to the servo driver, while the electronic gear ratio set by the function
code in the servo also attenuated the operating instruction, so in the following figure, the
actual impact on the servo motor is Rc*Rd:

Therefore, to ensure that the user program performs the same in each application device, it
is necessary to initialize the electronic gear ratio function code of the servo to the specified
parameter value through SDO operation, otherwise, because of the different servo function
code settings, it will result in a difference in the operating response.

VE Controller Programming Manual

5.3.4 EtherCAT network state initialization and management

(1) Initialization and status of the EtherCAT network
After the controller is powered on, it will start itself and complete the loading of the

operating system and user programs.
If the user program does not use the EtherCAT bus, the controller will start the user

program execution after the user program initializes the operation of the other bus, and if
the user program uses the EtherCATcommunication network, the VE controller as
theEtherCAT main station will initialize the EtherCAT network bus, including:

(1) According to the user's EtherCAT configuration, it takes about 3 seconds to
configure the main station;

(2) Send the initial command of the network, let all from the station ESC control chip to
start the initial operation, read the EtherCAT network information in turn, and compare
with the EtherCAT network configuration in the user program, if there is a difference in the
number and order of the station, it will report errors;

(3) If the network configuration is normal, SDO, PDO will be sent to each station ESC
chip in turn;

(4) Let the network first enter Pro-OP, Safe-OP, and then OP operation;
The above operation process, is the controller automatically completed, does not need

user intervention, from the number of stations, the network initialization time increased
accordingly, the user program to determine whether the application system's network
state started normally, the simplest and most reliable way is to detect each servo axis of the
MC_Power.status state is true, because the state can indicate that the network is normal,
servo normal, with the conditions to start running.

(2) Communication drop-off and communication recovery
EtherCAT from the station can communicate with the main station normal premise, from

the station ESC after the main station configuration, has entered the network Pro-OP,
Safe-OP, and then op operating state, ESC internal typical configuration content contains
PDO configuration table, this information is only when the main station to the network
configuration, from Station ESC can be obtained, and once the main station network into the
OP operation state, can no longer occur configuration information, therefore, when the
EtherCAT network main station into the operating state, from the station to power up, or
from the station after the power down, will not be able to enter the network operation state.

EtherCAT currently resumes network operation after powering down from the station,
only for the primary station to restart and start running, such as powering up again, and for
the primary station to start running again, but this affects the operation of other stations.

(3) Address and setting of the address from the station
In writing the user program is, by default, the VE controller is in accordance with the

EtherCAT from the network cable link order, automatically addressing and addressing, the
advantage of this addressing method is that the user does not need to worry about the
naming and renaming of the device, just according to the user program bus network

VE Controller Programming Manual

configuration, easy for the main controller to check the network configuration, find hardware
connection errors. The automatic naming rules that the controller adds to the user program
are as follows:

Where the station serial number starts from 1001, according to the order of addition, in
turn, the runtime, according to which the servo network cable link order, will be directly
connected with the VE controller servo named 1001, in turn to the servo name, the user
program, the control function of an axis, give the corresponding serial number of the servo.
The point of this search is that the order inwhich EtherCAT network cables are linked must be
in the order in which the network configuration isconfigured in the user program.

However, in some applications, some of the functions of the axes have been clearly
defined, and there is a fixed name, requiring the VE controller's user program can be
addressed according to this fixed name, which requires the user to program, the network
from the station addressing method is set to "from the station alias" addressing, and in
addition to the servo set the corresponding "from the station alias."

The method from which the station will be set to address by "from the station alias" is as
follows:

Set the alias from the station in the servo station.
For example, for the Wykoda bus servo, we can put its "from station number" function

VE Controller Programming Manual

code P08 41 The function code is set to 6.
After the user program is configured in this way, regardless of the order of access

locationof the alias "6" servo, the servo can be found and given the operating function
characteristics of the servo axis in the user program.

Attention:
If some servo axes in the application system are automatically named, the system will

first determine the "alias" of the station, the rest of the stations are still automatically named.

5.3.5 Detect the EherCAT communication status

EtherCAT main station status flag bit

1, EtherCAT main station communication status flag bit:
The main station can use the following parameters to determine whether the network is

healthy.

1) xConfigFinished: If this parameter is TRUE, the transfer of all configuration parameters
has been completed correctly. The communication is running.

2) xDistributedClockInSync: If a distribution clock is used, the PLC will synchronize with
the first EtherCAT from the station that activates the distribution clock setting. As long as
synchronization completes successfully, the output is TRUE. xDistributedClockInSync for ON
does not guarantee that communication must be completely normal and needs to be
judged by xError and from the station state together.

This signal can be used in synchronous mode to activate the SoftMotion function block
before the PLC starts, as positional jumps may occur otherwise. When the PLC starts, the
output is FALSE, and after a few seconds it becomes TRUE. If synchronization is lost due to
any failure, the output is reset to FALSE.

3) xError: Useful for all drop-off stations or communication errors (xError-TRUE). If an
error is detected at the start of the EtherCAT stack, or if communication with the from the
station is interrupted during operation, the output is TRUE because no messages (e.g. due to
a wire outage) can be received. The cause of the error can be understood through a list of
errors or error messages.

Example: VE Controller and VECServo

A) Standard bit status when communication is normal:
xConfigFinished= TRUE；

VE Controller Programming Manual

xDistributedClockInSync = TRUE；
xError= False。

B) There are no from or from the network:
xConfigFinished= False；
xDistributedClockInSync = False；
xError=TRUE。

xError does not output True

C) Disconnect the network cable between the primary station and the first from the
station when communication is normal, i.e. interrupt all the from the station data

xConfigFinished = TRUE；
xDistributedClockInSync= False；
xError=False。

D) Disconnect the network cable between the first and second from the station when
communication is normal, i.e. disconnect all dc-enabled access stations

xConfigFinished = TRUE；
xDistributedClockInSync= False；
xError=False。

E) Disconnect the network cable between the second and last from the station when
communication is normal.

xConfigFinished = TRUE；
xDistributedClockInSync= TRUE；
xError=False。

EtherCAT from the station detection

The current state returned from the station, the program should detect the state of the
station in real time, motion control is generally considered to be ETC_SLAVE_OPERATIONAL
before the commonly used PLCopen instructions can be used to control the axis. The current
state of the station is divided into:

0: ETC_SLAVE_BOOT
1: ETC_SLAVE_INIT
2:ETC_SLAVE_PREOPERATIONAL
4: ETC_SLAVE_SAVEOPERATIONAL

VE Controller Programming Manual

8: ETC_SLAVE_OPERATIONAL

Normal communication automatically switches to the operating state, and the VE
controller is initialized after it is stopped. When you convert from an initialization state to a
running state, you must convert in the order of Initialization, Pre-Run, Run Safe, and you
must not go over the level. You can go through the conversion when you return from the
running state. The conversion operation and initialization process of the state

As with the EtherCAT master, each from the station can be considered a function block,
and the name of the from the station is an instance of the ETCslave function block, which
only needs to be used in the program.

The basic direct judgment is whether the stand is ETC_SLAVE_OPERATIONAL state

Detect whether the from the station is OP mode
IF _VECServo.wState<>8 THEN

bnoOP:=TRUE;
END_IF

VE Controller Programming Manual

The above method, if there are dozens from the station, each from the station is judged
to need dozens of IF statements, more troublesome. The EtherCAT master provides pointers
and lists to the first station, all of which can be found on the chain, so programming can be
simplified with the while loop.

Defined:
Was

pSlave: POINTER TO ETCSlave;
i：INT；
iErrorSlave: INT;

END_VAR
Programming:

pSlave := EtherCAT_Master_SoftMotion.FirstSlave; // First find the EtherCAT_Master
from the main station by using the 19th station.FirstSlave.

WHILE pSlave 0 DO // Call each instance in the 'WHILE' loop to determine the wState
and then check the status.

pSlave^();
IF pSlave^.wState = ETC_SLAVE_STATE. ETC_SLAVE_OPERATIONAL THEN

i:=i+1;
else

exit;
END_IF // by pSlave. NextInstance finds a pointer to the next from the station. At the

end of the list the pointer is empty and the loop ends.
pSlave := pSlave^. NextInstance;

END_WHILE
iErrorSlave:=i+1; // Get the first few station number faults
i:=0;

VE Controller Programming Manual

5.4 The MC motion controls the timing of the transmission

of the data

The VE controller periodically enters the EtherCAT interrupt according to the user-set
EtherCAT cycle, performs a full EtherCAT task, first performs the communication operation
between the master and each EtherCAT from the station, and then performs all the POU
configured by the user under the task, in the order of the POU in the task configuration
table.
The contents of the master's communication operation with each EtherCAT from the station:

(1) Start the EtherCAT bus send operation, send buffer data to the TPDO prepared by
the last EtherCAT cycle system, send the data sent to each station in turn, and the
communication frame, according to the RPDO configuration, reserves a number of byte
gaps that the answer data needs to occupy from the station, in order to get the data back
from each station;

The TPDO sends the data in the buffer in the order in which it follows from the station,
and the data sent contains normal I/O data and control data of the MC motion control axis

When the number of stations is relatively large, more than the allowed data length of a
communication frame, a number of communication frames are used to carry out, if the user
program performs SDO read and write operations, the SDO send request is finally sent;

(2) The master resolves the communication return frame, takes out the answer data of
each station, analyzes the answer data of the MC from the station axis, updates the data
structure such as axis state and position, speed, torque, etc., and determines and updates the
execution status indication of the MC function block for the user program to read.

Each time entering EtherCAT interrupts, the axis parameters read by the user program
are the data that the system has automatically processed and updated in this link.

VE Controller Programming Manual

5.5 The processing mechanism of the MC function block

5.5.1 Cycle synchronization position mode

Wykoda servo default to the cycle synchronization position mode for control, the
so-called "cycle synchronization position mode", that is, the VE controller according to the
user wants to arrive from the station axis, allowed operating speed, acceleration, EtherCAT
bus cycle and other conditions, in each EtherCAT task execution, by the relevant MC function
block to calculate the next cycle point required to reach the location (TargetPosition), sent to
the servo drive, and the servo will be based on this distance / time command, the movement
to reach the next target point. In this mode of operation, the controller is responsible for
planning the location and speed of each point in time for the servo, which only knows the
target point and speed to be reached at the next EtherCAT time.

5.5.2 The data structure of the servo axis

In the VE controller, the servo station is managed as a special "axis" and the axis is an
important object.

In CODESYS, for each servo axis configured by the user, the system automatically
declares a data structure corresponding to the axis at the same time, and automatically
updates maintenance in real time when each EtherCAT interrupts the operation;

The following illustration is an example of a monitoring window for Axis, an axis in a user
program, whose information is the data structure from that axis.

VE Controller Programming Manual

With regard to axis data structure, users need to understand and pay attention to the
following characteristics:
◆When the user applies the servo axis configuration of the application network, the system
automatically declares the data structure at the same time, the name of the data structure is
the same as the name of the axis, and the variable name and data type in the data structure
are defined by the system.
◆When there are multiple servo axes in the user project, each axis has its corresponding
data structure.
◆If a virtual axis is used in the user program, including the encoder axis, the system will also
declare and maintain a corresponding axis data structure for it, but whether some of the
structural variables change.
◆Axis data structure variables are global variable types, i.e. they can be accessed directly in
all OUes of the user project.
◆As long as the controller computing power meets the requirements of the application
system, the number of axes allowed by the system has no clear limit, there is a
corresponding number of axis data structure.
◆Once the controller starts to run, during each EtherCAT task run phase, the controller
automatically updates the servo's backfly value to the data structure after it picks up the
answer data from the station, and the variables of the data structure can be accessed when
the user POU is executed.

◆ Axis data variables are specified by: "Data structure name. Structure variable name", as
shown in the data structure, we often use the following parameters:

Axis.nAxisState: the current operating state of the axis, servo feedback to the status
parameters of the controller;

Axis.fSetPostion: axis setting position, parameters sent by the controller to the servo

VE Controller Programming Manual

axis;
Axis.fActPostion: the current actual position of the axis, servo feedback to the status

parameters of the controller, the outline and the user program set the same command unit;
Axis.fActVelocity: the current actual speed of the axis, servo feedback to the controller of

the status parameters of the same as the user program set the command unit;
In the user program, these variables can be used as the basis for motion control

calculation and judgment, some variables in the axis structure are command data sent by the
controller to the servo axis, and in the user program, the servo axis can also be controlled by
assigning these variables directly. For example, the following ST statement:

Axis.fSetPostion:=500; The units of this parameter are the same as the instruction units

5.5.3 Servo axis status machine and transfer conditions

In motion control systems, the operational state of the axis is divided into several logical
states, and the direct transfer of each logical state requires specific conditions, or specified
MC operation commands. The advantage of this division processing is that it is easy for the
axis to be controlled by motion mode classification, the axis can only be in a logical state at
a time, and the transfer of the logical state needs to be carried out according to rules, not
due to the wrong trigger of different MC caused by the chaos of operation.

The axis data structure variable (Axis.nAxisState), which indicates the current running
state of the axis, axis.nAxisState, is an enumeration variable, common as
The next 8 possible states:

0:Power_off: The shaft is not powered up or enabled, and the command is MC_Power
executed

1：Errorstop; ------------------- execute the MC_Reset/MC_Power directive first
2：Stopping; -------------------- waits for the shutdown operation to complete
3：Standstill; ------------------- axis has stopped running and is out of sync
4：Discrete_Motion; --------- axis is discretely running
5：Continuous_Motion; ----- axis is running continuously
6：Synchronized_Motion; --- axis is running in sync
7：Homing; ---------------------- axis is running back to zero, waiting for the

zeroing operation to complete
The axis state transfer diagram is as follows, moving from one state to another requires

running the corresponding conditions, such as running mc instructions, or an external failure,
the user cannot enforce its state, programming must follow the logical requirements, run the
relevant instructions:

VE Controller Programming Manual

Note 1: From any state, an error occurred with the axis. .
Note 2: From any state, MC_Power.Enable s FALSE,the axis did not have an error.
Note 3: MC_Reset and MC_Power.Status = FALSE
Note 4: MC_Reset and MC_Power.Status = TRUE and MC_Power.Enable = TRUE
Note 5: MC_Power.Enable = TRUE and MC_Power.Status = TRUE
Note 6: MC_Stop.Done = TRUE and MC_Stop.Execute = FALSE

The MC function block in the figure transfers the axis state to the specified state, as can
be seen in the figure:
In the axis stop state (Standstill, i.e. Axis.nAxisState 3) can be transferred to various operating
states;
Can be transferred from a variety of states to a stop state (Standstill, i.e. Axis.nAxisState, 3),
If an alarm appears on the servo axis (Errorstop, i.e. Axis.nAxisState-1), it is necessary to run
the MC_Reset command, the MC_Power command to enter the Standstill state before the
shaft can run again;
If you do not use the MC command axis motion according to the above transfer diagram,
the shaft will not respond, but get the error warning information of the MC function block;

In user programs, it is sometimes necessary to initiate subsequent control logic based
on the state of the axis, which is more accurate and reliable than the one signal judgment of
the MC function block, based on Axis.nAxisState.
Be familiar with the transfer conditions of the axonal state diagram above, and pay attention
to the logic and order of mc instructions when programming, in order to write a stable and

VE Controller Programming Manual

reliable application program.

5.5.4 The execution logic of the MC function block:

Axis control commands related to servo stations appear in the form of MC function
blocks (also known as instructions), because MC function blocks require short intervals of
sustained execution, need to monitor the servo's operational response in a timely manner, so
the MC function blocks related to axis motion can only be called to execute in the EtherCAT
task.

The system is handled as follows:
(1) When performing an MC function block, the MC block is effectively triggered before

execution, and for multiple instances of the same MC function block (for the same axis
object), the principle of priority is given to the trigger;

(2) For the MC control command of the servo axis, check the legality of the operation
according to the axis state transfer specification, and then process it, including the axis state
transfer, the target parameter update of the axis, and finally prepare the control command
data of the shaft;

(3) The system software of the EtherCAT bus control part will send cache data into PDO
according to the TPDO configuration table and object dictionary of each user-set station
axis

(4) The system software of the EtherCAT bus control section will, according to the
user-set RPDO configuration table and object dictionary of each server-obeying station
axis, reserve the axis state parameters that the main station needs to read, reserve a number
of byte gaps that need to be occupied by the receiving segment of the EtherCAT frame,
and finally "group" to the EtherCAT frame to send the cache area, waiting for the next
EtherCAT cycle to start, sending to the station;

(5) With regard to the operation results of EtherCAT Remote IO, stored in the cache area
in the order of connection from the station rack and sent with the servo station. However,
the state of the data for the send cache is updated only after the normal task cycle (task
priority is 15 or lower, such as 20ms);

(7) In the user operation control program, if the servo system is in operation, it is
necessary to have an MC function block that is triggered to execute in supervising the servo
axis, to avoid a running servo axis due to the logic jump of the program, showing a state
without MC monitoring, with MC_Stop to stop it, is also a kind of monitoring.

Thus, theoperational commands involved in axis control in the EtherCAT task are not
sent out during the current POU execution cycle, but have a delay of one EtherCAT cycle,

VE Controller Programming Manual

which in some applications that require precise position and length control, such as the
trigger of the MC_CamIn of multi-axis synchronous control, etc., the error caused by this
delay needs to be considered.

For the delay error caused by the above reasons, the programming should be handled
as follows:

a, 1 EtherCAT cycle in advance to trigger the operation control instructions;
b. The operation control start-up required by the control process is not necessarily

exactly at the beginning of the EtherCAT cycle, but at a certain moment in the middle of
the cycle, the elimination of this discrete deviation should be taken into account in
programming, using the Offset parameters provided by the MC motion control function
block to compensate;

(8) Eliminate discrete deviation and estimate the error caused by this communication
mechanism based on parameters such as the current object's operating position, speed,
acceleration, etc. Reducing the setting of the EtherCAT bus cycle is beneficial to reduce
uncontrollable errors.

5.5.5 Data interactions between different priority tasks POU

To have variable access interactions between multiple PVUs, you need to use global
variables, which are declared in the GVL global variable list, but if the POU is in a different
priority task, the data does not interact in real time, and the update results of the data are
related to the task priority and the setting of the task cycle, variable access type, and so on.
We need to pay attention to the following mechanisms:

When the user program executes, for tasks of different priorities and cycles, the system
adopts the rule of starting time alignment, that is, there is a common start time calculation
point of the task cycle, and if the periods of the two tasks are multiplied by integers, then
they will have a point in time (alignment point), which is often used as the GVL data
interaction point;
Only after the task is completed will the POU modification of the variable be written to the
GVL cache, and the modification of the GVL parameters by the low priority task will only take
effect at the end of its task cycle
High-priority POU, the rewriting operation of GVL, will take effect immediately;
The GVL value is copied from the GVL cache once before the first task starts at the
alignment point, as the basis used during the execution of the POU of this task, and the GVL
cache variable is no longer read during the execution of this task;

The servo axis data structure is a global variable automatically defined by the system, and
each time the ECT task is performed, the system automatically refreshes the data structure,
and if the main task POU reads the variable of the data structure, its reading is also the first
ECT task after each "task cycle alignment point" The updated data, the same principle, if the

VE Controller Programming Manual

main task POU to modify the data structure of the variable, is the next "task cycle
alignment point" after the first ECT task sent to the servo axis, there will be about one Main
task cycle lag;

Attention:
Thus, in setting the user program's EtherCAT task and the normal main loop task cycle,

should maintain the relationship between the two integers, (e.g. EtherCAT task is 2ms or 4ms,
the main loop task is 20ms), so as to avoid the GVL parameter interaction abnormal
situation;

In different priority tasks, if there are modifications to the same GVL variable, there
may be cases of overlaying each other, programming, it is recommended that a global
variable only have one POU override or position operation, and the other POU simply read
and reference or reset the operation to avoid unexpected errors.

VE Controller Programming Manual

6 Programming Languages and References

6.1 Data types

CODESYS supports all IEC 61131-3 data types, types that extend IEC 61131-3 and
user-defined data types.

IEC 61131-3 data types Type of extension to IEC
61131-3

User-defined data types

‘BOOL’
Integer
‘REAL’ / ‘LREAL’
‘STRING’
‘WSTRING’
Time
‘LTIME’

‘UNION’
‘BIT’
‘__UXINT’ and ‘__XWORD’
Reference
Pointers

‘ARRAY’
Structure
Enumerations
Reference
Pointers
Subrange Types
Identifiers

6.1.1 BOOL Boolean types

Data Type Values Memory

BOOL TRUE (1), FALSE (0) 8 bit

6.1.2 Integer

CODESYS offers the following integer data types.

Data Type Lower Limit Upper Limit Memory

BYTE 0 255 8 bit

WORD 0 65535 16 bit

DWORD 0 4294967295 32 bit

LWORD 0 264-1 64 bit

SINT -128 127 8 bit

USINT 0 255 8 bit

INT -32768 32767 16 bit

UINT 0 65535 16 bit

DINT -2147483648 2147483647 32 bit

UDINT 0 4294967295 32 bit

LINT -263 263-1 64 bit

VE Controller Programming Manual

Data Type Lower Limit Upper Limit Memory

ULINT 0 264-1 64 bit

6.1.3 REAL/LREAL Floating point type

Data Type Lower Limit Upper Limit Memory

REAL -3.402823e+38 3.402823E+38 32 bit

LREAL -1.7976931348623157E+308 1.7976931348623157E+308 64 bit

6.1.4 STRING String type

Variables of the STRING data type can contain any string. The amount of memory
allocated during the declaration relates to characters and is shown in brackets or square
brackets. If the size is not defined, CODESYS allocates 80 characters by default. Normally,
CODESYS does not limit the length of strings. However, string functions can only handle
lengths between 1 and 255. If a variable is initialised with a string that is too long for the data
type, CODESYS truncates the string accordingly from the right hand side. the memory
required for a STRING variable is always one byte per character plus one additional byte (e.g.
81 bytes for a STRING [80] declaration).

Example of a 35-character string declaration.：
str : STRING(35):= 'This is a String';

6.1.5 WSTRING

In contrast to string (ASCII) data types, WSTRING data types are interpreted in Unicode
format. As a result of this encoding, the number of WSTRING display characters depends on
the characters. A length of 10 means that the length of WSTRING can contain up to 10 words.
However, for some characters in Unicode, encoding a character requires more than one
WORD, so that the number of characters does not have to correspond to the length of
WSTRING (in this case 10). Data types require 1 WORD memory per character, plus 1 WORD
extra memory. Only 1 byte per STRING is required. Data type WSTRING to terminate 0.

Cases:
wstr : WSTRING := "This is a WString";

VE Controller Programming Manual

6.1.6 TIME time type

The time data type is internally considered DWORD. TIME and TIME_OF_DAY are
resolved in milliseconds, DATE_AND_TIME in milliseconds, and in seconds.

Data type Lower limit Upper limit Storage space Resolution

TIME T#0d0h0m0s0ms T#49d17h2m47s295ms 32 bit ms

TIME_OF_DAY

TOD

TOD#0:0:0.000

00:00:00.000

TOD#23:59:59.999

23:59:59.999
32 bit ms

DATE
D#1970-1-1

01/01/70

DATE#2106-2-7

February 07, 2106
32 bit Day

DATE_AND_TIME

DT

DT#1979-1-1-00:00:00

01/01/1970 00:00:00

DT#2106-2-7-6:28:15

February 07, 2106 6:28:15
32 bit Seconds

6.1.7 LTIME

LTIME is used as the time base for the High Resolution Timer. The resolution of the
high-resolution timer is measured in nanoseconds.

Data type Lower limit Upper limit Storage space

LTIME 0 213503d23h34m33s709ms551us615ns 64 bit

LTIME#<time declaration>

The time declaration may include units of time applicable to TIME constants, and
 “us”: microseconds
 “ns”: nanoseconds
example:

LTIME1 := LTIME#1000d15h23m12s34ms2us44ns

6.1.8 UNION Joint Statement

UNION is a data structure that usually contains different data types.
In a union, all components have the same offset and therefore the same amount of

memory. In the joint statement example below, the assignment of name.a also affects the .b.

VE Controller Programming Manual

6.1.9 BIT bit

Only BIT data types can be used for individual variables in a structure or function block.
Possible values are TRUE(1) and FALSE(0). A BIT element requires 1 bit of memory. Therefore,
you can refer to a single bit of the structure by name. BIT continuously declared elements
are bundled together in bytes. In this way, you can optimize how memory is used instead of
using the BOOL type, which retains 8 bits per type. Bit access, on the other hand, is
significantly more time-consuming. Therefore,BIT should only use data types if data needs to
be defined in a predefined format.

6.1.10 __UXIN and __XWORD are pseudo-data types

CODESYS supports systems with 32-bit and 64-bit-wide address registers. To make the
IEC code as independent as possible from the target system, use pseudo-__UXINT and
__XWORD. The compiler checks which target system types are up-to-date, and then
converts these data types to the appropriate standard data types.

__UXINT converted to ULINT on a 64-bit platform and UDINT on a 32-bit platform.
__XWORD converted to LWORD on a 64-bit platform and DWORD on a 32-bit

platform.

6.1.11 POINTERS pointer

The syntax declaration of the pointer

Pointers store the addresses of variables, programs, function blocks, methods, and
functions while the application is running. The pointer points to one of the objects
mentioned or a variable of any data type. The syntax of the pointer declaration:

<identifier>: POINTER TO <data type | function block | program | method | function>;
When you de-reference a pointer, the value of the address to which the pointer points

is determined. In order to de-reference the pointer, attach the content operator to the
pointer identifier (see the example below pt.

Using the address operator ADR, youcan assign the address of a variable to a pointer.

Was

pt：POINT TO INT; (Declaration of pointer pt)

var_int1：INT：= 5; (Declarations of var_int1 and var_int2 variables)

var_int2：INT;

END_VAR

VE Controller Programming Manual

pt：= ADR（var_int1）; (The address that the pointer ptisassigned tovar s int1).

var_int2：= pt ^; (The value 5 of the value of the var_int1 is assigned to the variable by canceling the

reference var_int2 pt)

Attention:
If a pointer to the device input is used, the access (e.g.,"pTest: invalid assignment

target") is considered a write access. This causes the compiler to warn when the code is
generated. If this construct is required, the input value (input) must first be copied to a
variable with write access. In online mode, you can jump from the pointer to the declared
position of the reference variable by clicking the Go to Reference command.

A function pointer to an external function

CODESYS supports function pointers that replace the INDEXOF operator and can be
passed to an external library. However, CODESYS does not provide any way to call function
pointers from within the application in the development system. The runtime system
function used to register callback functions (system library functions) requires a function
pointer. Depending on which callback is registered, the runtime system implicitly calls related
functions (for example, in the case of STOP). In order for such a system call (runtime system)
to be possible, the appropriate object properties must be set in the Build tab.

You can use the ADR operator for functions, programs, function blocks, and methods.
CODESYS outputs the address of the pointer to the function, not the address of the function,
because the value of the function can be changed after it is changed online. This address is
valid as long as the feature exists on the target system.

The index access pointer

At CODESYS, index access to the " input POINTER,STRING, and WSTRING variables is
allowed.
Pint s i returns the basic data type
 Index access to pointers is done arithmetically: if index access is used for pointER

TO variables, CODESYS calculates the offset pint s (pint s i s sizeOF (base type)). Index
access also causes the pointer to be implicitly de-referenced. The resulting data
type is the basic data type of the pointer. Note that pint s7 s

 When index access is used for variables of type type, STRING gets characters at the
offset of the index expression. The result is a BYTE type. The first character of the
string is returnedbystr (i) in SINT (ASCII).

 When index access is used for variables of type type, WSTRING gets characters at the
offset of the index expression. The result is a WORD type. wstr (i) returns the

firstcharacter of the string inINT (Unicode).
Attention:

1. DWORD When a pointer is a 64-bit pointer, even on a 64-bit platform, the difference
between the two pointers results in a type.

2. You can use a reference to a value that is directly controlled compared to a pointer.

VE Controller Programming Manual

3. Memory access to pointers can be monitored at runtime through the implicit
monitoring feature CheckPointer.

6.1.12 REFERENCE Reference

REFERENCE is also a pointer, but it has some advantages over POINTER:
 Easy to use: You don't have to explicitly de-reference a reference (using s) to access the
contents of the reference object.
 Better syntax for passing values: If the input is REFERENCE TO, a (refInput: s value) does
not have to write ADR explicitly.

 Type safety: Unlike pointers, for references, the compiler checks that the base type is the
same when assigning two references

References can be declared in the following syntax:
<identifier> : REFERENCE TO <data type>

A : REFERENCE TO DUT;

B : DUT;

C: DUT;

A REF= B; // 对应于 A := ADR(B);

A: C; 对应于 A-

To check for a valid reference, you can use the operator __ISVALIDREF to check that the
reference points to a valid value, that is, a value that is not equal to 0. Language:

<Boolean variable> := __ISVALIDREF(<with REFERENCE TO <data type> declared identifier);

When the reference points to a valid value, the .lt; Boolean variable is TRUE; otherwise
ITSE. Example:

ivar : INT;

ref_int : REFERENCE TO INT;

ref_int0 : REFERENCE TO INT;

testref : BOOL := FALSE;
How to do it:

ivar：= ivar + 1;

ref_int REF = ivar;

ref_int0 REF = 0;

testref：= __ISVALIDREF（ref_int）; (s true becauseref_int point to ivars that are not zero).

testref：= __ISVALIDREF（ref_int0）; (. . . falsebecausethe ref_int0 set to 0 ..

6.1.13 ARRAY array

An array is a collection of data elements of the same data type. CODESYS supports

VE Controller Programming Manual

one-dimensional and multi-dimensional arrays of fixed or variable lengths. Array types are:
fixed-length arrays, array arrays, and variable-length arrays, which can be defined in the
declaration section of the POU or in the list of global variables.

An array of fixed lengths

The syntax of a one-dimensional array declaration:

<variable name> : ARRAY[<dimension>] OF <data type> (:= <initialization>)? ;

<dimension> : <lower index bound>..<upper index bound>

<data type> : elementary data types | user defined data types | function block types

// (...)? : Optional

The syntax of the two-dimensional array declaration:

<variable name> : ARRAY[<1st dimension> (, <next dimension>)+] OF <data type> (:=

<initialization>)? ;

<1st dimension> : <1st lower index bound>..<1st upper index bound>

<next dimension> : <next lower index bound>..<next upper index bound>

<data type> : elementary data types | user defined data types | function block types

// (...)+ : One or more further dimensions

// (...)? : Optional

The index limit is an integer;

Data access syntax:

<variable name>[<index of 1st dimension> (, <index of next dimension>)*]

// (...)* : 0, one or more further dimensions

Example One:
One-dimensional array of 10 integer elements defined:

Was

aiCounter:ARRAY[0..9] OF INT; //Index Lower Limit:0 , Index Upper Limit:9

END_VAR
Program:

aiCounter：ARRAY[0..9]：= [0，10，20，30，40，50，60，70，80，90]; //初始化：

iLocalVariable：= aiCounter [2]; // Data access

The value 20 in the array is assigned to the local variable iLocalVariable.

Example 2:
Two-dimensional array Definition:

Was

aiCardGame：ARRAY [1..2，3..4] OF INT; //1D: 1 to 2, 2D: 3 to 4

END_VAR
Initialization program:

aiCardGame：ARRAY [1..2，3..4] OF INT：= [2（10），2（20）]; //A short history of [10,10,20, 20]

VE Controller Programming Manual

1 2

3 10 10

4 20 20

Data Access Program:
iLocal_1：= aiCardGame [1，3]; // Assign 10

iLocal_2：= aiCardGame [2，4]; // Allocate 20

Example three:
3D array definition:

Was

aiCardGame：ARRAY [1..2，3..4，5..6] OF INT;

END_VAR

1st dimensional: 1 to 2
2nd dimensional: 3 to 4
3D: 5 to 6
A totalof: 2 x 2 x 2 x 8 array elements

Initialize 1:
aiCardGame：ARRAY [1..2，3..4，5..6] OF INT：= [10，20，30，40，50，60，70，80];

Data Access 1:
iLocal_1：= aiCardGame [1，3，5]; // Assign 10

iLocal_2：= aiCardGame [2，3，5]; // Allocate 20

iLocal_3：= aiCardGame [1，4，5]; // Allocate 30

iLocal_4：= aiCardGame [2，4，5]; // Allocate 40

iLocal_5：= aiCardGame [1，3，6]; // Allocate 50

iLocal_6：= aiCardGame [2，3，6]; // Assign 60

iLocal_7：= aiCardGame [1，4，6]; // Assign 70

iLocal_8：= aiCardGame [2，4，6]; // Allocate 80

Initialize 2:
aiCardGame：ARRAY [1..2，3..4，5..6] OF INT：= [2（10），2（20），2（30），2（40）];

//Short for [10, 10,20,20,30,30,40]

Data Access 2:
iLocal_1：= aiCardGame [1，3，5]; // Assign 10

iLocal_2：= aiCardGame [2，3，5]; // Assign 10

iLocal_3：= aiCardGame [1，4，5]; // Allocate 20

iLocal_4：= aiCardGame [2，4，5]; // Allocate 20

iLocal_5：= aiCardGame [1，3，6]; // Allocate 30

iLocal_6：= aiCardGame [2，3，6]; // Allocate 30

iLocal_7：= aiCardGame [1，4，6]; // Allocate 40

iLocal_8：= aiCardGame [2，4，6]; // Allocate 40

Example Four：
3-dimensional arrays of user-defined structures：

TYPE DATA_A

VE Controller Programming Manual

STRUCT

iA_1 : INT;

iA_2 : INT;

dwA_3 : DWORD;

END_STRUCT

END_TYPE

PROGRAM PLC_PRG

VAR

aData_A : ARRAY[1..3, 1..3, 1..10] OF DATA_A;

END_VAR

The array aData_A consists of a total of 3 * 3 * 10 = 90 array elements of the data type
DATA_A.
Partial initialisation：

aData_A : ARRAY[1..3, 1..3, 1..10] OF DATA_A := [(iA_1 := 1, iA_2 := 10, dwA_3 := 16#00FF),(iA_1 := 2,

iA_2 := 20, dwA_3 := 16#FF00),(iA_1 := 3, iA_2 := 30, dwA_3 := 16#FFFF)];

In this example, only the first three elements are explicitly initialised. Elements that are not
explicitly assigned an initialisation value are initialised internally using the default value of the
base data type. This will begin with the element aData_A[2, 1, 1] as the initialised 0 structure
component.
Data access

iLocal_1：= aData_A [1,1,1] .iA_1; // Allocation 1

dwLocal_2：= aData_A [3,1,1] .dwA_3; // Allocation 16＃FFFF

An array of arrays

Declaring"array of arrays" is another syntax for multi-dimensional arrays. The collection
of nested elements rather than the dimensions of the dimensions of the dimensions of the
dimensions. The depth of nesting is infinite.

Array array declaration syntax:

<variable name> : ARRAY[<first>] (OF ARRAY[<next>])+ OF <data type> (:= <initialization>)? ;

<first> : <first lower index bound>..<first upper index bound>

<next> : <lower index bound>..<upper index bound> // one or more arrays

<data type> : elementary data types | user defined data types | function block types

// (...)+ : One or more further arrays

// (...)? : Optional
Data access syntax：

<variable name>[<index of first array>] ([<index of next array>])+ ;

// (...)* : 0, one or more further arrays
Example One：

PROGRAM PLC_PRG

VE Controller Programming Manual

VAR

aiPoints : ARRAY[1..2,1..3] OF INT := [1,2,3,4,5,6];

ai2Boxes : ARRAY[1..2] OF ARRAY[1..3] OF INT := [[1, 2, 3], [4, 5, 6]];

ai3Boxes : ARRAY[1..2] OF ARRAY[1..3] OF ARRAY[1..4] OF INT := [[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10,

11, 12]], [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]];

ai4Boxes : ARRAY[1..2] OF ARRAY[1..3] OF ARRAY[1..4] OF ARRAY[1..5] OF INT;

END_VAR

aiPoints[1, 2] := 1200;

ai2Boxes[1][2] := 1200;

The variables aiPoints and ai2Boxes collect the same data elements, but the syntax of the
declaration differs from that of the data

access.

An array of variable lengths

In a function block, function, or method, you can declare an array VAR_IN_OUT variable
length in the declaration section of the file. the LOWER_BOUND and UPPER_BOUND
operators provide an index range to determine which arrays are actually used at runtime.

Variable length The syntax declared by a one-dimensional array:

<variable name> : ARRAY[*] OF <data type> (:= <initialization>)? ;

<data type> : elementary data types | user defined data types | function block types

// (...)? : Optional
A variable-length multi-dimensional array declares the syntax of

<variable name> : ARRAY[* (, *)+] OF <data type> (:= <initialization>)? ;

<data type> : elementary data types | user defined data types | function block types

// (...)+ : One or more further dimensions

https://help.codesys.com/webapp/_cds_datatype_array;product=codesys;version=3.5.15.0

VE Controller Programming Manual

// (...)? : Optional

Syntax of operators for calculating limit indices
LOWER_BOUND(<variable name> , <dimension number>)

UPPER_BOUND(<variable name> , <dimension number>)

Example One：
This SUM function adds up the integer values of the array elements and returns the

calculated sum as the result. The sum is calculated over all the array elements available at
runtime. As the actual number of array elements is only known at runtime, the local variables
are declared as variable length one-dimensional arrays.

FUNCTION SUM: INT;

VAR_IN_OUT

aiData : ARRAY[*] OF INT;

END_VAR

VAR

diCounter, diResult : DINT;

END_VAR

diResult := 0;

FOR diCounter := LOWER_BOUND(aiData, 1) TO UPPER_BOUND(aiData, 1) DO // Calculates the

length of the current array

diResult := diResult + A[i];

END_FOR;

SUM := diResult;

6.1.14 Structure structure

Create a structure in a project that has aDUTobject by clicking Add Objects.

VE Controller Programming Manual

The structure declares the keywords TYPE and STRUCT at the beginning, and is
associated with both END_STRUCT and END_TYPE.

The syntax of the structure declaration:

TYPE <structure name>:

STRUCT

<variable declaration 1>

...

<variable declaration n>

END_STRUCT

END_TYPE

<structure name> is a type that CODESYS can recognise as a whole item and can be
used as a standard data type. Nested structures can also be used. The only restriction is that
you are not allowed to assign addresses to variables (as AT declarations are not allowed).
Example One：

TYPE polygonline:

STRUCT

start:ARRAY [1..2] OF INT;

point1:ARRAY [1..2] OF INT;

point2:ARRAY [1..2] OF INT;

point3:ARRAY [1..2] OF INT;

point4:ARRAY [1..2] OF INT;

end:ARRAY [1..2] OF INT;

END_STRUCT

END_TYPE

Initializing the structure

Example：

pPoly_1 : polygonline := (start:=[3,3], point1:=[5,2], point2 := [7,3], point3 := [8,5], point4 := [5,7], end :=

[3,5]);

Initialisation with variables is not allowed.

Accessing structure members

Structure members can be accessed using the following syntax：
<structure name>.<component name>

Thus, the start component polygonline of the structure can be accessed using
poly_1.start in the above example.

VE Controller Programming Manual

Bit access in structures

Bit is a special data type defined only in structures. It reserves one memory

bit and allows the use of names to address individual bits of the structure.

TYPE <structure name>:

STRUCT

<bit name bit1> : BIT;

<bit name bit2> : BIT;

<bit name bit3> : BIT;

...

<bit name bitn> : BIT;

END_STRUCT

END_TYPE

BIT structure members can be accessed using the following syntax：
<structure name>.<bit name>

6.1.15 Enumerations

Enumeration is a user-defined data type consisting of a series of comma-separated
components (enumeration values) that declare user-defined variables. In addition, you can
use enumered components, such as constants, whose identifiers are globally recognized in
the project.

<enumeration name>.<component name>

You can declare an enumerated in a DUT object and create itinyour project by clicking
AddObject.

Declaration syntax:

({attribute 'strict'})? // Pragma optional but recommended

TYPE <enumeration name> :

VE Controller Programming Manual

(

<first component declaration>,

(<component declaration> ,)+

<last component declaration>

)(<basic data type>)? (:= <default variable initialization>)? ;

END_TYPE

(...)? : Optional

<component declaration> : <component name> (:= <component initialization>)?

<basic data type> : INT | UINT | SINT | USINT | DINT | UDINT | LINT | ULINT | BYTE | WORD | DWORD |

LWORD

<variable initialization> : <one of the component names>

In enumerumered declarations, at least two components are typically declared.
However, you can declare as many as you want. Each component can be assigned its own
initialization. Enumeration automatically has a base data type INT,but you can specify
additional base data types. In addition, you can specify a component in a declaration and
then use that component to initialize enumerated variables.

The use of the term 'attribute 'strict') causes the rigorous type test described below.
Example 1:
{attribute 'qualified_only'}

{attribute 'strict'}

TYPE COLOR_BASIC :

(

yellow,

green,

blue,

black

)

; // The base data type is INT,and COLOR_BASIC the default initialization of all variables is yellow

END_TYPE

6.1.16 Subrange Types

A sub-range type is a data type whose value range is a subset of the base type.

The syntax of the declaration:
<name> : <int type> (<lower limit>..<upper limit>);

<name> Valid IEC identifiers

<int type>
Sub-range data types
（SINT，USINT，INT，UINT，DINT，UDINT，BYTE，WORD，DWORD，
LINT，ULINT，LWORD）。

VE Controller Programming Manual

<lower limit>
Lower limit of the range: constants that must be compatible with the base
data type. The lower limit is also included in the scope.

<upper limit>
Upper limit of the range: constants that must be compatible with the base
data type. The upper limit is also included in the range.

Example One：
VAR

i：INT（-4095..4095）;

ui：UINT（0..10000）;

END_VAR

CODESYS issues an error message if the value assigned to a subrange type in the
declaration or implementation section is not in the range (e.g. i: = 5000). In runtime mode,
the implicit monitoring function CheckRangeSigned and the range restriction
CheckRangeUnsigned, which monitors subrange types, can be used.

VE Controller Programming Manual

6.2 Variable

6.2.1 Local variable -VAR

Local variables are declared in the declaration section END_VAR between the VARs and
the programming object. You can use instance paths for read-only access to local variables,
or you can extend local variables using the attribute keyword.
Example:

Was

iVar1：INT；

END_VAR

6.2.2 Enter the variable - VAR_INPUT

The input variable is used for the input of the function block.
VAR_INPUT variable is declared in VAR_INPUT declaration END_VAR the programming

object between the keyword and the target. You can use the attribute keyword extension to
enter variables.
Example:

VAR_INPUT

iIn1：INT; (*the first input variable*)

END_VAR

6.2.3 Output variable - VAR_OUTPUT

The output variable is used for the output of the function block.
VAR_OUTPUT variable is declared in VAR_OUTPUT declaration END_VAR the programming

object between the keyword and the target. CODESYS returns the value of this variable to
the calling POU. You can retrieve values there and continue to use them, or you can extend
the output variables using the attribute keyword.
Example：

VAR_OUPUT

iOut1：INT; （* First output variable *）

END_VAR

Output variables in functions and methods.
Functions and methods have additional outputs according to the IEC 61131-3 standard.

These additional outputs must be assigned when the function is called, as shown below.
Example：

VE Controller Programming Manual

fun（iIn1：= 1，iIn2：= 2，iOut1 => iLoc1，iOut2 => iLoc2）;

6.2.4 Input and output variables -VAR_IN_OUT

VAR_IN_OUT variable is an input/output variable that is part of the POU interface and
passes the parameter as a formal reference. Input and output variables FUNCTION_BLOCK
declared in the VAR_IN_OUT of PRG, method, METHOD, or FUNCTION.

Declaration syntax:

<keyword> <POU name>

VAR_IN_OUT

<variable name> : <data type> (:= <initialization value>)? ;

END_VAR

<keyword> : FUNCTION | FUNCTION_BLOCK | METHOD | PRG

6.2.5 Global variable - VAR_GLOBAL

Global variables are ordinary, constant, external, or remaining variables that can be
identified throughout the project.

Global variables can be declared in the list of global VAR_GLOBAL or in the declaration

END_VAR of a programming object between the keywords and and .

When you add a point before a variable name, such as .iGlobVar1,a global variable is
recognized.

Attention:
If the local variable declared in the block has the same name as the global variable, it

has priority in the block. CODESYS always initializes global variables before local POU

VE Controller Programming Manual

variables

Example One：
VAR_GLOBAL

iVarGlob1：INT；

END_VAR

6.2.6 Temporary variable - VAR_TEMP

The Temporary Variables feature is an extension of the IEC 61131-3 standard.
You can declare VAR_TEMP locally END_VAR between the keywords and the relevant

keywords. VAR_TEMP declaration is only available in program blocks and function blocks.
CodeSYS initializes the temporary variable each time the block is called. Applications can
only access temporary variables in the implementation part of a block or function block.

VAR_TEMP

iVarTmp1:INT;(the first temporary variable

END_VAR

6.2.7 Static variable - VAR_STAT

This feature is an extension of the IEC 61131-3 standard.
You can declare VAR_STAT locally END_VAR between the keywords and and the key.

CodeSYS initializes static variables the first time each block is called. Static variables can only
be accessed from the namespace where the variable is declared. However, when the
application leaves the block, the static variable retains its value. For example, you can use
static variables as counters for function calls. Static variables can be extended using the
attribute keyword.
Example 1:
VAR_STAT

iVarStat1：INT；

END_VAR

6.2.8 External variable - VAR_EXTERNAL

An external variable is a global variable that is imported into a block.
You can declare VAR_EXTERNAL variables between the keywords and END_VAR. If the global
variable does not exist, an error message is displayed.

VE Controller Programming Manual

Attention:
CODESYS does not require you to declare a global variable as an external variable to

use it in the POU. This keyword is used only to maintain compliance with IEC 61131-3.
Language:

<POU keyword> <POU name>

VAR_EXTERNAL

<variable name> : <data type>;

END_VAR

This variable does not allow initialization.

Example:

FUNCTION_BLOCK FB_DoSomething

VAR_EXTERNAL

iVarExt1：INT；（*First variable*）

END_VAR

6.2.9 Instance variable - VAR_INST

CODESYS does VAR_INST method variables in the method stack, but in the stack of
feature block instances. This means VAR_INST functions like other variables in the function
block instance and is not reinitialized each time the method is called.

VAR_INST only allow variables in methods, and they can only be accessed within the
method. Monitor the variable values of instance variables in the declaration section of the
method.

You can extend instance variables using the attribute keyword.
Example One：

Method meth_last：INT
VAR_INPUT

iVar：INT;
END_VAR

VAR_INST

iLast：INT：= 0；

END_VAR

meth_last：= iLast;

iLast：= iVar;

VE Controller Programming Manual

6.2.10 Configuration variable - VAR_CONFIG

Use configuration variables to assign full addresses to variables with incomplete
addresses declared in the function block, which are mapped to device I/O. Declare
VAR_CONFIG in END_VAR list of global variables between and . The list of global variables is
called a "variable configuration" in which you can type configuration variables with the full
instance path and the correct address.

Example 1:
Declare the variable %I,which is not complete in the function block, is :

FUNCTION_BLOCK locio

Was

xLocIn AT％I *：BOOL：= TRUE;

END_VAR

The locio function block is used PLC_PRG program:

PROGRAM PLC_PRG

Was

locioVar1：locio;

END_VAR

The correct variable configuration in the list of global variables is as follows:

VAR_CONFIG

PLC_PRG.locioVar1.xLocIn AT％IX1.0：BOOL;

END_VAR

6.2.11 Constant variable - VAR CONSTANT

Constant variables are declared in the list of global variables or in the declaration
section of a programming object. In an implementation, constant variables can be accessed
as read-only through the instance path.
Language:

<scope> CONSTANT

<identifier> : <data type> := <initialization> ;

END_VAR

<scope> : VAR | VAR_INPUT | VAR_STAT | VAR_GLOBAL

When you declare a constant variable, you always assign an initialization value. So you
can't write constants anymore.
Example 1:
Statement

VAR CONSTANT

c_rTAXFACTOR : REAL := 1.19;

VE Controller Programming Manual

END_VAR

Call

rPrice := rValue * c_rTAXFACTOR;

In an implementation, you can access constant variables only in a read-only manner. The
constant variable is to the right of the assignment operator.

6.2.12 Persistence variable -PERSISTENT

Persistent variables are declared in the VAR_GLOBAL RETAIN PERSISTENT declaration

section of the persistent global VAR_GLOBAL list. For variables marked with keywords outside
the persistence editor, the instance path is added to it.

A variable declares PERSISTENT RETAIN withthe same effect as RETAIN PERSISTENT or
PERSISTENT.

The syntax persistentVars declared in the list of global persistent variables:

VAR_GLOBAL PERSISTENT RETAIN

<identifier>: <data type> (:= <initialization>)?;

<instance path to POU variable>

END_VAR

VE Controller Programming Manual

The syntax declared in the POU:

<scope> PERSISTENT RETAIN

<identifier>: <data type> (:= <initialization>)?; // (...)? : Optional

END_VAR

<scope> : VAR | VAR_INPUT | VAR_OUTPUT | VAR_IN_OUT | VAR_STAT | VAR_GLOBAL

Attention:
1. Never use pointer TO data types in a persistent variable list. If you download the

application again, its address may change.
2. The AT keyword is not allowed to be used to assign input, output, or memory

addresses.
3. If you frequently change the name or data type of the remaining variables, it is best

for RETAIN to declare them as reserved variables only using keywords.
4. There are two ways to declare: a, declare variables directly in the list of persistent

variables, and avoid inserting instance paths. b, declare locally in the program or function
block, and add the instance path in the list of persistent variables (here's how). Both
methods, which use twice as much memory, also increase cycle time.

Declare directly in the list of permanent
global variables

This variable is persistent and is located in a
protected memory area.

Local declarations in programs with
instance paths in the list of persistent
variables
Local declarations in function blocks
with instance paths in the list of
persistent variables

The variable is persistent and is located in a
protected memory area and in memory (double
allocation).

Local to the program only
Local in function blocks only

This variable is not persistent. A warning is
displayed in the message window.

Tip: "Click on Declaration ‣ Add all instance paths"
to import the variable into the list of persistent
variables.

Local functions
This declaration has no effect. This variable is not
persistent.

Method a：
Declaration of PersistentVars in the list of persistent variables：
{attribute'qualified_only'}

VAR_GLOBAL

PERSISTENT RETAIN g_iCounter：INT;

// Generated persistent variables

PLC_PRG.fb_A.iPersistentCounter_A：INT;
END_VAR

Method b：
Declare locally or in a function block:

VE Controller Programming Manual

Add an instance path to the list of persistent variables

Avoid, as far as possible, the variable PERSISTENT declared in the function blockby atag.
This is because the function block instance is stored entirely in the remaining memory, not
just the tagged variable.

6.2.13 Reserved variable - RETAIN

The declaration of a reserved variable is in the keyword PRESERVE,declaring
thescope:VAR,VAR_INPUT,VAR_OUTPUT,VAR_IN_OUT,VAR_STAT, or VAR_GLOBAL.

Declaration syntax:

<scope> RETAIN

<identifier>: <data type> (:= <initialization>)? // (...)? : Optional

END_VAR

<scope> : VAR | VAR_INPUT | VAR_OUTPUT | VAR_IN_OUT | VAR_STAT | VAR_GLOBAL
Attention:

The use of AT key words to assign input, output, or memory addresses is not allowed.

The declared area：

In program local Only the variables are located in the reserved storage area.

Global in the list of
global variables

Only the variables are located in the reserved storage area.

Local in function
block

The entire instance of a function block and all its data are located in the
reserved memory. Only the declared reserved variables are protected.

Local functions Even the variable is not located in the reserved storage area. This

VE Controller Programming Manual

statement has no effect.

Local and persistent
operation

Even if the variable is not located in a reserved storage area. The
statement has no effect.

Avoid using variables from the RETAIN marker function block where possible.

6.2.14 Special variables -SUPER

SUPER is a special variable for use in object-oriented programming.

SUPER is a pointer to a function block, which points to the basic function block

instance from which the function block is generated. The pointer therefore also allows

access to the implementation of the methods of the basic function block (basic

class).The SUPER pointer is automatically available for each function block.SUPER

can only be used within the methods and the associated function block implementation.

Dereferencing of pointers: SUPER^

Use of the SUPER pointer: With the keyword SUPER it is possible to call methods that

are valid in the base class or in an instance of the parent class.

Example1：
ST：
SUPER^.METH_DoIt();

FBD / CFC / LD：

6.3 Operators

CODESYS supports all IEC-61131-3 operators. These operators are implicitly recognised
throughout the project. In addition to these IEC operators, CODESYS also supports certain
non-IEC 61131-3 standard operators.

Operators are used in blocks such as function blocks. They include arithmetic operators,
bit string operators, bit shift operators, selection operators, comparison operators, address
operators, call operators, type conversion operators, numerical operators, namespace
operators, multicore operators, other operators, etc.

Arithmetic Operators

“ ADD”
“ SUB”
“ MUL”

VE Controller Programming Manual

“ DIV”
'MOD'
“ MOVE”
“ INDEXOF”
“ SIZEOF”

Bit String Operators

“ AND”
“ OR”
“ XOR”
“ NOT”
“ AND_THEN”
“ OR_ELSE”

Shift Operators

“ SHL”
“ SHR”
“ ROL”
“ ROR”

Selection Operators

“ SEL”
“ MAX”
“ MIN”
“ LIMIT”
“ MUX”

Comparison Operators

'GT'
“ LT”
“ LE”
'GE'
“ EQ”
'NE'

Address Operators

“ ADR”

Content Operators

“ BITADR”

Call Operators

“ CAL”

Type conversion operators

javascript:navigateTo('_cds_operator_mod',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_or',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_and_then',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_or_else',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_shl',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_shr',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_rol',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_ror',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_sel',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_max',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_min',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_limit',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_mux',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_gt',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_lt',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_le',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_ge',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_eq',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_ne',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_adr',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_content_operator',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_bitadr',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_cal',%20'codesys',%20'3.5.15.0');

VE Controller Programming Manual

Implicit conversion from a larger type to a smaller type is not possible (for example,
from INT to BYTE or from DINT to WORD). A special type conversion must be used to
convert a larger type to a smaller type. Normally, you can convert any basic type to any other
basic type.
Type conversion： <elementary type1>_TO_<elementary type2>

Overflow conversion： TO_<elementary type2>

Overflow conversion of numeric arithmetic symbols

“ ABS”
“ SQRT”
“ LN”
“ LOG”
“ EXP”
“ EXPT”
“ SIN”
“ ASIN”
'COS'
“ TAN”
'ACOS'
“ ATAN”

javascript:navigateTo('_cds_operator_expt',%20'codesys',%20'3.5.15.0');
javascript:navigateTo('_cds_operator_sin',%20'codesys',%20'3.5.15.0');

VE Controller Programming Manual

6.3.1 Arithmetic operator

Add "ADD" to the operation

The IEC operator is used to add variables.
Allowed data types：BYTE，WORD，DWORD，LWORD，SINT，USINT，INT，UINT，DINT，

UDINT，LINT，ULINT，REAL，LREAL，TIME，TIME_OF_DAY (TOD)DATEDATE_AND_TIME(DT)

Possible combinations of TIME data types:TIME-TIME-TIME, TOD-TIME-TOD,

DT-TIME,DT-TIME, DT

Features in the FBD/LD editor: ADD can be extended to function block inputs. The
number of additional function block inputs is limited.

Example:
ST：
var1：= 7 + 2 + 4 + 7;
FBD：

“MUL” Multiplication operations

This IEC operator is used to multiply variables together.
Allowed data types：BYTE，WORD，DWORD，LWORD，SINT，USINT，INT，UINT，DINT，

UDINT，LINT，ULINT，REAL，LREAL，TIME

Function in the FBD / LD editor: MUL operators can be extended to additional function
block inputs. The number of additional function block inputs is limited.
Example：
ST：

var1：= 7 * 2 * 4 * 7;
FBD：

VE Controller Programming Manual

“SUB” Subtraction operations

This IEC operator is used to subtract the variable.
Allowed data types：BYTE，WORD，DWORD，LWORD，SINT，USINT，INT，UINT，DINT，

UDINT，LINT，ULINT，REAL，LREAL，TIME，，，TIME_OF_DAY (TOD)DATEDATE_AND_TIME (DT)

Possible combinations of TIME data types： TIME-TIME= TIME， DATE-DATE= TIME，
TOD-TIME= TOD，TOD-TOD= TIME，DT-TIME= DT，DT-DT=TIME
Note
Negative TIME values are not defined.
Example：

ST：
var1：= 7-2;

FBD：

“DIV” Division operations

This IEC operator is used to divide variables.

Allowed data types：BYTE，WORD，DWORD，LWORD，SINT，USINT，INT，UINT，DINT，
UDINT，LINT，ULINT，REAL，LREAL，TIME，The result of dividing by zero may vary depending

on the target system.

Example：
ST：

var1：= 8/2;

VE Controller Programming Manual

FBD：

"MOD"take-out operation

This IEC operator is used for die-out.
The result of the function is an integer remaining part of the divide.
Allowed data types:BYTE,WORD,DWORD,LWORD,SINT,USINT,INT,UINT,DINT,UDINT,LINT,ULINT.

Results divided by zero may vary depending on the target system.
Example
ST：
var1：= 9 MOD 2; //result：1

FBD：

“MOVE” Assignment operations

This IEC operator is used to assign a variable to another variable of the corresponding
type.

As this MOVE block is available in the CFC, FBD and LD editors, it is also possible to use
the EN / ENO function for variable assignment.
CFC with EN / ENO function：

CODESYS assigns the value of var1 to var2 only if "en_i" is TRUE.

ST：
ivar2 := MOVE(ivar1);

Equivalent to：
ivar2 := ivar1;

VE Controller Programming Manual

“SIZEOF“Byte operations

This operator is an extension of the IEC 61131-3 standard. This operator is used to
define the number of bytes x required for a variable.

The SIZEOF operator always produces an unsigned value. The type of the returned
variable is adapted to the detected variable size x.

Return value of SIZEOF(x)
Constant data types (CODESYS uses implicit size
detection)

0 <= size of x < 256 USINT

256 <= size of x < 65536 UINT

65536 <= size of x < 4294967296 UDINT

4294967296 <= size of x ULINT

Example：
ST:
arr1 : ARRAY[0..4] OF INT;

Var1 : INT;

var1 := SIZEOF(arr1); (* var1 := USINT#10; *)

6.3.2 Bit-Serial Operators

“AND”

This IEC operator is used to operate on numbers by AND bits.
When the input bits are all 1, the output bit is 1; otherwise, the output is 0. Allowed data

types:BOOL，BYTE，WORD，DWORD，LWORD

Example:
ST：

var1：= 2＃1001_0011 AND 2＃1000_1010; // The result var1 is 2#1000_0010

FBD：

“OR”

This IEC operator is used to operate on numbers by OR bits.

VE Controller Programming Manual

When at least one of the input bits produces a 1, the output bit also produces a 1;
otherwise, the output bit is 0. Allowed data types:BOOL，BYTE，WORD，DWORD，LWORD

Example:
ST：
Var1：= 2＃1001_0011 OR 2＃1000_1010; //The result var1 is 2#1001_1011

FBD：

“NOT”

This IEC operator is used for the by bit of the NOT bit operand.
The output bit produces a 1 when the corresponding input bit produces a 0, and vice versa.
Allowed data types：BOOL，BYTE，WORD，DWORD，LWORD

Example：
ST：
var1：= NOT 2＃1001_0011; //The result var1：2#0110_1100

FBD：

“XOR”

When and only when one of the two input bits is 1, the output bit also produces a 1.
When both inputs are 1 or both are 0, the output produces a 0. Allowed data types：BOOL，
BYTE，WORD，DWORD，LWORD

Example：
ST：
var1：= 2＃1001_0011 XOR 2＃1000_1010; //The result var1：2#0001_1001
FBD：

“AND_THEN”

TRUE when all operands are produced and the result of the operand is produced TRUE;
otherwise FALSE.

VE Controller Programming Manual

“OR_ELSE”

When at least one operand is produced TRUE, the result of the operation also produces
TRUE; otherwise FALSE.

6.3.3 Shift operators

“SHL” Left shif

This IEC operator is used to shift the operand to the left.
erg := SHL (in, n)

in: the operand shifted to the left, n: the number of bits of in shifted to the

left. The number of bits n for this operation is defined by the data type of the

input variable in.

Example：
ST：
PROGRAM shl_st

VAR

in_byte : BYTE := 16#45; (* 2#01000101)

in_word : WORD := 16#0045; (* 2#0000000001000101)

erg_byte : BYTE;

erg_word : WORD;

n: BYTE := 2;

END_VAR

erg_byte := SHL(in_byte,n); (* Result is 16#14, 2#00010100 *)

erg_word := SHL(in_word,n); (* Result is 16#0114, 2#0000000100010100 *)

FBD:

“SHR” Right shift

This IEC operator is used to move the operand to the right.
erg := SHR (in, n)
in: the operand shifted to the right, n: the number of bits of in shifted to the right.
Example.：
ST：

VE Controller Programming Manual

PROGRAM shr_st

VAR

in_byte : BYTE:=16#45; (* 2#01000101)

in_word : WORD:=16#0045; (* 2#0000000001000101)

erg_byte : BYTE;

erg_word : WORD;

n: BYTE :=2;

END_VAR

erg_byte := SHR(in_byte,n); (* Result is 16#11, 2#00010001 *)

erg_word := SHR(in_word,n); (* Result is 16#0011, 2#0000000000010001 *)

FBD:

“ROL” Cyclic left shift

This IEC operator is used to loop the operand to the left. Allowed data types: BYTE,
WORD, DWORD, LWORD

erg := ROL (in, n)
Moves in n bits to the left and then adds that bit from the right to the leftmost position.

Define in by the data type of the input variable. if this is a constant, the smallest data type is
used. The data type of the output variable still does not affect this operation.
Example：
ST:

PROGRAM rol_st

VAR

in_byte : BYTE := 16#45;

in_word : WORD := 16#45;

erg_byte : BYTE;

erg_word : WORD;

n: BYTE := 2;

END_VAR

erg_byte := ROL(in_byte,n); (* Result: 16#15 *)

erg_word := ROL(in_word,n); (* Result: 16#0114 *)

FBD:

VE Controller Programming Manual

“ROR” Cyclic right shift

This IEC operator is used to loop the operand to the right. Allowed data types: BYTE,
WORD, DWORD, LWORD

erg := ROR(in,n)
Moves in n bits to the right and then adds that bit from the left to the rightmost position.

Define in by the data type of the input variable. if this is a constant, the smallest data type is
used. The data type of the output variable still does not affect this operation.
Example：
ST:

PROGRAM ror_st

VAR

in_byte : BYTE := 16#45;

in_word : WORD := 16#45;

erg_byte : BYTE;

erg_word : WORD;

n: BYTE := 2;

END_VAR

erg_byte := ROR(in_byte,n); (* Result: 16#51 *)

erg_word := ROR(in_word,n); (* Result: 16#4011 *)
FBD:

6.3.4 Selection operators

“SEL” Select

The IEC operator is used to select by bit.
OUT := SEL(G, IN0, IN1)
Equivalent to :
OUT := IN0; if G = FALSE

VE Controller Programming Manual

OUT := IN1; if G = TRUE
IN0, ... Data types for INn and OUT: any of the same data types，G: BOOL。

Example:
ST：

Var1：= SEL（TRUE，3,4）; （*Result：4 *）
FBD：

“MAX” Maximum value

This IEC operator is used for the maximum function. It produces the maximum of two
values.

OUT := MAX(IN0, IN1)
Allowed data types: all

Example
ST：
Var1：= MAX（40，MAX（90,30））; Result：90
FBD：

“MIN” Minimum value

This IEC operator is used for the minimum function. It yields the smallest value of two
values.
OUT := MIN(IN0,IN1)
Permitted data types: all
Example:
ST：

Var1：= MIN（MIN（90,30）,40）; “ Result，30”
FBD：

VE Controller Programming Manual

“LIMIT” Limit values

This IEC selection operator is used to restrict the.
OUT := LIMIT(Min, IN, Max)

Equivalent to: OUT := MIN (MAX (IN, Min), Max), Max is the upper limit of the result, Min
is the lower limit of the result. If the value IN is higher than the upper limit of Max, the LIMIT
result is Max. If the value IN is lower than the minimum Min lower limit, the result is Min.

Allowed data types IN and OUT: All
Example
ST：
Var1：= LIMIT（30,90,80）; //The result Var1 is 80

“MUX” Multiplexing

This IEC operator is used as a multiplexer.
OUT := MUX(K, IN0,...,INn)，Equivalent to： OUT = IN_K

MUX selects the Kth value from a set of values. The first value is K = 0. If

K is greater than the number of other inputs (n), the last value is passed (INn)

Allowed data types K： BYTE，WORD，DWORD，LWORD，SINT，USINT，INT，UINT，DINT，
LINT，ULINT，UDINT。
例：
ST：
Var1：= MUX（0,30,40,50,60,70,80）; // The result Var1 is 30.

6.3.5 Comparison operators

“GT” greater than

This IEC operator is used for the "greater than" function. If the first operand is greater
than the second operand, the operator produces a TRUE result; otherwise FALSE.

Allowed data types: any basic data type.
Example：
ST：
VAR1：= 20> 30；Result：FALSE

FBD：

VE Controller Programming Manual

“LT” Less than

This IEC operator is used for the "less than" function. If the first operand is less than the
second, the operator produces a TRUE result; otherwise FALSE.

Allowed data types: any basic data type.
Example:
ST：
Var1：= 20 <30； //Result： TRUE

FBD:

“LE” Less than or equal to

This IEC operator is used in the "less than or equal to" function. If the first operand is less
than or equal to the second operand, the operator produces a TRUE result; otherwise FALSE.

Allowed data types: any basic data type.
Example：
ST：

Var1：= 20 <= 30；Result:Var1：TRUE

FBD：

“GE” Greater than or equal to

This IEC operator is used in the "greater than or equal to" function. If the first operand is
greater than or equal to the second operand, the operator produces a TRUE result; otherwise
FALSE.

Allowed data types for operands: any basic data type.
Example：
ST：
VAR1：= 60> = 40； result： TRUE
FBD：

VE Controller Programming Manual

“EQ” equals

The IEC operator is used for the "equal" function. If the input numbers are equal, the
operator produces a TRUE result, otherwise FALSE.

Allowed data types: any basic data type.
Example：
result：TRUE
ST：
VAR1：= 40 = 40；

FBD：

“NE”Not equals

This IEC operator is used in the "not equal" function. If the operands are not equal, the
operator produces a TRUE result; otherwise FALSE.

Allowed data types: any basic data type.
Example：
ST：
Var1：= 40 <> 40; result Var1 is FALSE
FBD：

6.3.6 Address operators

“ADR”

This operator is an extension of the IEC 61131-3 standard. the ADR generates the
address DWORD of its parameter in. this address can be passed to the manufacturer
function or they can be assigned to a pointer in the project.

Caution.
The ADR operator can be used together with function names, program names, function

block names and method names. Thus, ADR replaces the INDEXOF operator.
ST：

VE Controller Programming Manual

VAR

<address name> : DWORD | LWORD | POINTER TO < basis data type>

END_VAR

<address name> := ADR(<variable name>);

Example：

FUNCTION_BLOCK FB_Address

VAR

piAddress1: POINTER TO INT;

iNumber1: INT := 5;

lwAddress2

iNumber2: INT := 10;

END_VAR

piAddress1 := ADR(iNumber1); // piNumber is assigned to address of iNumber1

lwAddress2 := ADR(iNumber2); // 64 bit runtime system

“Content Operator”

This operator is an extension of the IEC 61131-3 standard. This operator can be used to
dereference a pointer by appending ^ to the pointer identifier. When using a pointer to an
address, please note that applying online changes may shift the address content.
Example:
ST：

pt：POINT TO INT；

var_int1：INT;

var_int2：INT;

pt：= ADR（var_int1）;

var_int2：= pt ^;

“BITADR”

This operator is an extension of the IEC 61131-3 standard. bit offset DWORD in the
segment generated by BITADR. the offset depends on whether the byte addressing
checkbox is selected in the target system settings. The highest half-byte (4 bits) DWORD
defines the storage range：

Flag: 16x40000000
Input: 16x80000000
Output: 16xC0000000
When using a pointer to an address, please note that applying online changes may shift

the contents of the address
Example：
ST：

VE Controller Programming Manual

WHERE

Var1 AT％IX2.3：BOOL;

bitoffset：DWORD；

END_VAR

bitoffset：= BITADR（var1）;

（* Byte addressing = TRUE 时：16x80000013，Byte addressing = FALSE 时：16x80000023 *）

6.3.7 Calling operators

“CAL” Call

This IEC operator is used to call function blocks. Example of a CAL call to a function
block in IL

CAL <function block> (<input variable1> := <value>, <input variableN> := <value>)
Example：

Inst calls the instance of the function block with the input variables Par1,

Par2 and the assigned 0 or TRUE

CAL Inst(Par1 := 0, Par2 := TRUE);

6.3.8 Numerical operators

“ABS” Absolute values

This IEC operator yields the absolute value of a number.
Allowed data types: any numeric basic data type
Example：
ST：
i：= ABS（-2）; //result I is 2
FBD：

“SQRT”

This IEC of course yields the square root of a number.

VE Controller Programming Manual

Permitted data types for input variables: any numeric basic data type
Permitted data types for output variables: REAL or LREAL
Example：
ST：
q：= SQRT（16）; // Result q：4
FBD：

“LN” Natural logarithm

This IEC operator yields the natural logarithm of a number.
Allowed data types for input variables: any numeric basic data type.
Permissible data types for output variables: REAL and LREAL.

Example：
ST：
Q = LN（45）; //result： 3.80666
FBD：

“LOG” Constant logarithm

This IEC operator yields a logarithm with a base of 10.
Allowed data types for input variables: any numeric basic data type.
Permissible data types for output variables: REAL and LREAL.

Example:
ST：
q：= LOG（314.5）;//result q：2.49762
FBD：

“EXP” Exponent of the natural number e

This IEC operator produces an exponential function.

VE Controller Programming Manual

Allowed data types for input variables: any numeric basic data type
Permissible data types for output variables: REAL and LREAL

Example：
ST：
q：= EXP（2）; //result q：7.389056099
FBD：

“EXPT”（ Yth power of X）

This IEC operator is used to calculate the power function，power = base exponent.

Grammar：

EXPT(<base>,<exponent>)

Input value data type：SINT，USINT，INT，UINT，DINT，UDINT，LINT，ULINT，REAL，
LREAL，BYTE，WORD，DWORD，LWORD

Data type of return value: floating point type（REAL and LREAL）
Example 1：
Power functions with text

Var1 := EXPT(7,2);

FBD:

result: Var1 = 49

Example 2：
Power functions with variables

PROGRAM PLC_PRG

VAR

lrPow : LREAL;

iBase : INT := 2;

iExponent : INT := 7;

END_VAR

lrPow := EXPT(iBase, iExponent); // result: lrPow = 128

VE Controller Programming Manual

“SIN” Sine function

This IEC operator yields the sine of a number.
Input variables for measuring angles in radians, allowed data types: any numeric basic

data type
Allowed data types for output variables：REAL和 LREAL

Example：
ST：
q：= SIN（0.5）； //result q：0.479426
FBD：

“COS” The cosine function

This IEC operator yields the cosine value of a number.
Input variables for measuring angles in radians, allowed data types: any numeric basic

data type
Allowed data types for output variables：REAL和 LREAL

Example：
ST：
q：= COS（0.5）; //result q：0.877583
FBD：

“TAN” tangent function

This IEC operator yields the tangent value of a number.
Input variables for measuring angles in radians, allowed data types: any numeric basic

data type
Allowed data types for output variables：REAL和 LREAL

Example：
ST：
q：＝ TAN（0.5）； //result q：0.546302
FBD：

VE Controller Programming Manual

“ASIN” Sine function anyway

This IEC operator yields the inverse sine value of the number.
Permissible data types for input variables: any numeric basic data type
Permissible data types for output variables：REAL和 LREAL

Example：
ST：
q：= ASIN（0,5）; //result q： 0.523599
FBD：

“ACOS” The inverse cosine function

This IEC operator yields the inverse cosine of the number. The value is calculated in
radians.

Permissible data types for input variables: any numeric basic data type
Permissible data types for output variables：REAL和 LREAL

Example：
ST：

q：= ACOS（0.5）; //result : q=1.0472

FBD：

“ATAN” Anyway tangent function

This IEC operator yields the arctangent value of the number. The value is calculated in
radians.

Input variables for measuring angles in radians, permitted data types: any numeric basic
data type

Allowed data types for output variables：REAL和 LREAL

Example：
ST：

VE Controller Programming Manual

q：＝与（0.5）； //result q：0.463648

FBD：

6.3.9 Type conversion operators

“BOOL_TO”

The IEC operator is used to convert a BOOL data type to another data type. Syntax：
BOOL_TO_<data type>

When the data type is NUMBER, the result is 1 when the Boolean value is TRUE and 0
when it is FALSE.

When STRING data type, the result is TRUE or FALSE。

Example：

ST code Result

i := BOOL_TO_INT(TRUE); 1

str := BOOL_TO_STRING(TRUE); TRUE

t := BOOL_TO_TIME(TRUE); T#1ms

tof := BOOL_TO_TOD(TRUE); TOD#00:00:00.001

dat := BOOL_TO_DATE(FALSE); D#1970

dandt := BOOL_TO_DT(TRUE); DT#1970-01-01-00:00:01

FBD code Result

1

TRUE

T#1ms

TOD#00:00:00.001

VE Controller Programming Manual

FBD code Result

D#1970-01-01

DT#1970-01-01-00:00:01

“TO_BOOL”

The IEC operator is used to convert other variable types to BOOL variables. Syntax：
<data type>_TO_BOOL

The result is TRUE when the operand is not equal to 0. The result is FALSE when the
operand is equal to 0.

For the STRING type, the result is TRUE if the operand is "TRUE"; otherwise it is FALSE.
Example：

ST code Result

b := BYTE_TO_BOOL(2#11010101); TRUE

b := INT_TO_BOOL(0); FALSE

b := TIME_TO_BOOL(T#5ms); TRUE

b := STRING_TO_BOOL('TRUE'); TRUE

FBD code Result

TRUE

FALSE

TRUE

TRUE

“TO_ <xxx>”

The IEC operator is used to convert a variable of one data type to another data type.
TO_<data type>

Information may be lost when converting from a larger data type to a smaller data type.

VE Controller Programming Manual

If the value to be converted is outside the range limit, CODESYS will ignore the first few bytes
of the value. This is the case, for example, when converting from LREAL to a negative DINT
input value.
Example:

ST:
VAR

iVar : INT;

bVar : BOOL;

sVar : STRING;

rVar : REAL;

END_VAR

iVar := TO_INT(4.22); (* Result: 4 *)

bVar := TO_BOOL(1); (* Result: TRUE *)

sVar := TO_STRING(342); (* Result: '342' *)

rVar := TO_WORD('123'); (* Result: 123 *)

“<INT Type>_TO_<INT Type>”

Converts one integer data type to another integer data type.
<INT data type>_TO_<INT data type>

Note that information may be lost when converting from a larger data type to a smaller
data type. If the value to be converted is outside the range limit, CODESYS will ignore the
first few bytes of the value.
Example：
ST:

si := INT_TO_SINT(4223); //Result：Result in si: 127

If the integer 4223 (represented in hexadecimal as 16 #107f) is saved as a separate SINT
variable, the value 127 (represented in hexadecimal as 16 #7f) will be assigned to this
variable.
FBD:

“REAL_TO- / LREAL_TO”

The IEC operator is used to convert REAL and LREAL data types to another data type.
REAL_TO_<data type>

LREAL_TO_<data type>

Rounds the real value of an operand up or down to an integer value and then converts

VE Controller Programming Manual

it to the appropriate type. (Exceptions are STRING, BOOL, REAL, and LREAL data types).

Examples

ST code Result

i := REAL_TO_INT(1.5); 2

j := REAL_TO_INT(1.4); 1

i := REAL_TO_INT(-1.5); -2

j := REAL_TO_INT(-1.4); -1

FBD code Result

2

“TIME_TO / TIME_OF_DAY_TO”

This IEC operator is used for converting the TIME and TIME_OF_DAY data types into another
data type.

<TIME data type>_TO_<data type>

Internally, CODESYS saves the time (in milliseconds) to a DWORD (for TIME_OF_DAY since
00:00). CODESYS converts this value.

For the STRING data type, the result is the time constant.

Example：

ST code Result

str := TIME_TO_STRING(T#12ms); T#12ms

dw := TIME_TO_DWORD(T#5m); 300000

si := TOD_TO_SINT(TOD#00:00:00.012); 12

FBD code Result

T#12ms

30000

12

VE Controller Programming Manual

“DATE_TO / DT_TO”

This IEC operator is used for converting the DATE and DATE_AND_TIME data types into
another data type.

<DATE data type>_TO_<data type>

Internally, CODESYS saves the date to a DWORD (in seconds since 01 January 1970).
CODESYS converts this value.

For the STRING data type, the result is the date constant.

Example：

ST code Result

b := DATE_TO_BOOL(D#1970-01-01); FALSE

i := DATE_TO_INT(D#1970-01-15); 29952

i := DT_TO_BYTE(DT#1970-01-15-05:05:05); 129

str := DT_TO_STRING(DT#1998-02-13-14:20); DT#1998-02-13-14:20

FBD code Result

FALSE

29952

129

DT#1998-02-13-14:20

“STRING_TO”

This IEC operator is used for converting the STRING data type into another data type.

STRING_TO_<data type>

You must define the STRING operand according to the IEC 61131-3 standard. The value
has to be a valid constant (literal) of the target type. This affects any given exponential
values, infinite values, prefixes, grouping characters (_), and commas. Additional
characters after the digits of a number are permitted (for example, 23xy). Additional
characters before a number are not permitted.

The operand must be a valid value of the target data type.

VE Controller Programming Manual

Example：

ST code Result

b := STRING_TO_BOOL('TRUE'); TRUE

w := STRING_TO_WORD('abc34'); 0

w := STRING_TO_WORD('34abc'); 34

t := STRING_TO_TIME('T#127ms'); T#127ms

r := STRING_TO_REAL('1.234'); 1.234

bv := STRING_TO_BYTE('500'); 244

FBD code Result

TRUE

“TRUNC”

This IEC operator is used for converting the REAL data type into the DINT data type.
CODESYS takes only the integer part of the number.
Example：
ST：

diVar := TRUNC(1.9); (* Result: 1 *)

diVar := TRUNC(-1.4); (* Result: -1 *)

VE Controller Programming Manual

6.4 Structured text(ST).

6.4.1 ST Editor

The ST Editor is a text editor for implementing code in structured text (ST) and extended
structured text (ExST).

The line number appears on the left side of the editor. The List components feature
(activated in the SmartCoding category of the CODESYS option) and input assistant F2 are
also helpful when entering programming elements. When the cursor is placed on a variable,
CODESYS displays a tool tip that contains information to declare the variable.

The behavior of the editor (for example, parentheses, mouse actions, tabs) and
appearances are configured in the Text Editor category of codeSYS options.

VE Controller Programming Manual

6.4.2 The ST expression

An expression is a construct that returns a value after its evaluation.
Expressions consist of operators and operans. In Extended Structured Text (ExST), you

can also use assignments as expressions. Operans can be constants, variables, function calls,
or other expressions.
Cases：

2014 (* Constant *)

ivar (* Variable *)

fct(a,b) (* Function call *)

(x*y)/z (* Expression *)

real_var2 := int.var; (* in ExST: Assignment *) *)

You can prioritize expressions by handling operators based on certain connection rules.
CODESYS first handles operators with the strongest connections. Operators with the same
connection strength are processed from left to right.

Operators Symbols Connection strength

Parenthesize (Expression) Strongest binding

Function Call
Function name (parameter list)
all operators with syntax: <operator> ()

Exponentiate EXPT

Negate
Complementation

-

NOT

Multiplication
Division

*

/

VE Controller Programming Manual

Operators Symbols Connection strength

Modulo MOD

Addition
Subtraction

+

-

Comparison <,>,<=,>=

Equality
Inequality

=

<>

Bool AND
AND

AND_THEN

Bool XOR XOR

Bool OR
OR

OR_ELSE
Weakest binding

6.4.3 ST assignment method

The assignment expression

语法：<operand> := <expression>
The assignment operator performs the same functions as the MOVE operator.

The ST assignment operator for the output

The assignment operator assigns the output of a function, function block, or method to
a variable.

Grammar:
<output> => <variable>

Example:

FBcomp_Output1 => bVar1;

FBcomp_Output2 =>;

FBcom_Output1 and FB_Output2 are the values of the output of the function
block,FBcom_Output1 assigned to the variable bVar1.

Extended ST assignments "S", "R""

"S" is equivalent to "SET" in the PLC,withthe syntax:
<variable name> S= <operand name> ;

The data type of the variable and operand is BOOL, and true is assigned to the variable
Variable when operand switches FROM TO TRUE. However, the variable remains in true state

VE Controller Programming Manual

even if Operaand continues to change its state.
Cases：

PROGRAM PLC_PRG

VAR

xOperand: BOOL := FALSE;

xSetVariable: BOOL := FALSE;

END_VAR

xSetVariable S= xOperand;

"R" is equivalent to "RST" in the PLC, syntax:
<variable name> R= <operand name> ;

The data type of the variable and operand is BOOL, and false is assigned to the
variable Variable when operand switches from FALSE to TRUE. However, even if the operans
continue to change their state, the variable remains in state FALSE.

6.4.4 ST syntax

IF statement

If statements are used to examine a condition and execute subsequent statements
based on that condition. Grammar:

IF <condition> THEN

<statements>

ELSIF <condition> THEN

<statements>

…

ELSE

<statements>

END_IF;

The ELSIF branch and the ELSE branch are optional.

Cases:

PROGRAM PLC_PRG

VAR

iTemp: INT;

xHeatingOn: BOOL;

xOpenWindow: BOOL;

END_VAR

IF iTemp < 17 THEN

xHeatingOn := TRUE;

VE Controller Programming Manual

ELSIF iTemp > 25 THEN

xOpenWindow := TRUE;

ELSE xHeatingOn := FALSE;

END_IF;

The FOR statement

The FOR loop is used to execute instructions that have a certain number of repetitions.
Grammar:

FOR <counter> := <start value> TO <end value> {BY <increment> } DO

<instructions>

END_FOR;
The parts in parentheses are optional. As long as the value of slt;counter is not greater

than that of slt;end value; and not less than slt;start value, then the counter slt;instructions
are executed and the counter is automatically increased every time the instructions are
executed. Increments can be any integer value. If no increment is specified, the standard
increment is 1.
Cases:

FOR iCounter := 1 TO 5 BY 1 DO

iVar1 := iVar1*2;

END_FOR;

Very := iVar1;
When the initial valueof iVar 1 is 1, the value of iVar is 32at the end of the FORloop.

CASE statement

Use this dialog box to combine multiple conditional instructions that contain the same
condition variable into a construct. Grammar:

CASE <Var1> OF

<value1>:<instruction1>

<value2>:<instruction2>

<value3, value4, value5>:<instruction3>

<value6 ... value10>:<instruction4>

...

<value n>:<instruction n>

{ELSE <ELSE-instruction>}

END_CASE;

The section within the curly brackets {} is optional.

VE Controller Programming Manual

Processing scheme of a CASE instruction.

 If the value of the variable <Var1> is <value i>, then the
instruction <instruction i> is executed.

 If the variable <Var1> has non of the given values, then the <ELSE-instruction> is
executed.

 If the same instruction is executed for several values of the variable, then you can
write the values in sequence, seperated by commas.

Example：

CASE iVar OF

1, 5: bVar1 := TRUE;

bVar3 := FALSE;

2: bVar2 := FALSE;

bVar3 := TRUE;

10..20: bVar1 := TRUE;

bVar3= TRUE;

ELSE

bVar1 := NOT bVar1;

bVar2 := bVar1 OR bVar2;

END_CASE;

WHILE statement

The WHILE loop is used like the FOR loop in order to execute instructions several times until
the abort condition occurs. The abort condition of a WHILE loop is a boolean expression.
Syntax:

WHILE <boolean expression> DO

<instructions>

END_WHILE;

CODESYS repeatedly executes the <instructions> for as long as
the <boolean expression> returns TRUE. If the boolean expression is already FALSE at the
first evaluation, then CODESYS never executes the instructions. If the boolean expression
never adopts the value FALSE, then the instructions are repeated endlessly, as a result of
which a runtime error results.
example：

WHILE iCounter <> 0 DO

Var1 := Var1*2

iCounter := iCounter-1;

END_WHILE;

In a certain sense the WHILE and REPEAT loops are more powerful than the FOR loop, since

VE Controller Programming Manual

you don’t need to already know the number of executions of the loop before its execution. In
some cases it is thus only possible to work with these two kinds of loop. If the number of
executions of the loop is clear, however, then a FOR loop is preferable in order to avoid
endless loops.
As an extension to the IEC 61131-3 standard you can use the CONTINUE instruction within
the WHILE loop.

REPEAT statement

The REPEAT loop is used like the WHILE loop, but with the difference that CODESYS
only checks the abort condition after the execution of the loop. The consequence of this
behavior is that the REPEAT loop is executed at least once, regardless of the abort condition：

REPAEAT

<instructions>

UNTIL <boolean expression>

END_REPEAT;
executes the <instructions> until the <boolean expression> returns TRUE.

If the boolean expression already returns TRUE at the first evaluation, CODESYS executes the
instructions precisely once. If the boolean expression never adopts the value TRUE, then the
instructions are repeated endlessly, as a result of which a runtime error results.
Example：

REPEAT

Var1 := Var1*2;

iCounter := iCounter-1;

UNTIL

iCounter = 0

END_REPEAT;

RETURN

Use the RETURN instruction in order to exit from a function block. You can make this
dependent on a condition, for example.
Example：

IF xIsDone = TRUE THEN

RETURN;

END_IF;

iCounter := iCounter + 1;

If the value of b is TRUE, the function block is exited immediately and CODESYS does
not execute the instruction a:=a+1;.

VE Controller Programming Manual

JMP

The JMP instruction is used to execute an unconditional jump to a program line that is
marked by a jump label.

Syntax：

<label>: <instructions>

JMP <label>;

The jump label <label> is any unique identifier that you place at the beginning of a
program line. On reaching the JMP instruction, a return to the program line with
the <label> takes place.
iVar1 := 0;

_label1: iVar1 := iVar1+1;

(*instructions*)

IF (iVar1 < 10) THEN

JMP _label1;

END_IF;

EXIT

The EXIT instruction is used in a FOR, WHILE or REPEAT loop to immediately end the
loop regardless of its stop condition.

CONTINUE

CONTINUE is an instruction of the Extended Structured Text (ExST).

The instruction is used inside FOR, WHILE and REPEAT loops in order to jump to the
beginning of the next execution of the loop.

Example：

FOR Counter:=1 TO 5 BY 1 DO

INT1:=INT1 / 2;

IF INT1=0 THEN

CONTINUE; (* to provide a division by zero *)

END_IF

Var1:=Var1/INT1; (* executed, if INT1 is not 0 *)

END_FOR;

VE Controller Programming Manual

Erg:=Var1;

ST Function Block Call

Syntax of ST function block calls：

<FB-instance>(<FB input variable>:=<value or address>|, <other FB input variables>);

Example：

TMR:TON;

TMR (IN:=%OX5, PT:=T#300ms);

varA:=TMR.Q;
The timer function block TON has been instantiated in TMR:TON and is called using the

allocated parameters IN and PT. The output is addressed with Q to TMR.Q and assigned to
the variable varA.

ST COMMENTS

Note Description example

Single
line

// starts and ends at the end of the
line

// This is a comment

Multi-
line

(* opening, *) ending
(* This is a multi-line comment *)

Neste
d

(* opening, *) closing, possibly with
comments inside the comment (*.... *)

(* a:=inst.out; (* 1st comment *) b:

=b+1; (* 2nd comment *) *)

VE Controller Programming Manual

6.5 Continuous function diagrams（CFC）

The Continuous Function Chart (CFC) language is a graphical programming language
that is an extension of the standard language of IEC 61131-3. Systems can be programmed
graphically using the POU in CFC. Elements can be inserted and placed freely, connections
inserted and elements connected to a network in order to create well-structured functional
block diagrams.

The order of execution of the function block diagram is based on the data flow.
Furthermore, the POU can handle multiple data streams. This way the data streams do not
have any common data. In the editor, there are no connections between multiple networks.

6.5.1 CFC Editor

Cursor symbols：
Requirement: Pointer selected in the toolbox view 。
The symbols indicate that you can edit in the editor. Select
elements or links to move them or to execute commands.

Cursor symbols：

Requirement: Any of the elements is selected in the toolbox
view.
Clicking in the editor will insert the selected element. You can
also drag the element into the editor.

Example of dragging a
function block from an
editor's declaration

Requirement: A line is selected in the declaration of the CFC.
Instances will be inserted as POUs with name, type and all pins.

VE Controller Programming Manual

Dragging variables from a
declaration to a POU pin in
the editor

The variable is inserted as an input or output and is connected
to the POU pin where the focus is located.
Hint: The cursor indicates when your focus position is valid for
the variable

Ctrl + Click on the
programming area

Requirement: An element is selected in the toolbox view.
Each click in the programming area will create a selected
element each time as long as the Ctrl key is held down.

Ctrl+Right Arrow

Requirement: In the CFC program, exactly one output pin is
selected for an element.
Move the selection so that the input pin at the end of the
connection line is selected. If there are multiple pins, select
them all.

Ctrl+Left Arrow

Requirement: In the CFC program, exactly one element selects
an input pin.
Move the selection so that the output pin at the beginning of
the connection line is selected. If there are multiple pins, select
them all.

VE Controller Programming Manual

6.5.2 The order in which the CFC data flow is executed

In the CFC editor, elements are freely placed, so the execution order is not unique at
first. Therefore, the software determines the order of execution through the data flow and, in
the case of multiple networks, the order of execution is determined by the topological
position of the element: the element is sorted from top to bottom, from left to right.

After adding the CFC language object POU, the menu bar appears in the POU interface
with CFC options, as follows

Open TooloptionsCFC Editor,openCFC editor settings, and customize the editor
content.

By default, the order in which CFC objects are executed is automatically determined. To
do this, check the Display Execution Order property. You can check in the CFC Editor to
temporarily display the automatically determined order of execution.
Example: The addition program is as follows

Click"CFC, Execution Order, Display Execution Order" to showthe order in

VE Controller Programming Manual

whichobjects are executed. The boxes and inputs are numbered accordingly and reflect the
chronological order. When you click again in the CFC editor, the number is hidden.

Right click on the function block, or click on the “CFC ‣ Execution Order”，The order of
execution can be changed.

6.5.3 CFC elements

Page page

Symbol:

Element inserts a new page into the editor. Available only in page-oriented CFC editors.
Page numbers are automatically assigned based on their location. You can enter the name
and description of the page in the orange title. Use the Edit Page Size command to resize
the page.

Control Point control point

Symbol:

Before adjusting the route, you can use the Control Point control point to secure the
connection point. This way, the element is dragged to the desired location on the
connector, and the connector with the control point is no longer automatically clothed.

VE Controller Programming Manual

Input

Symbol:

CODESYS inserts an input element by default with the text “???”. You can directly edit
this field by clicking on it and entering a constant value or a variable name. Alternatively
you can open the input assistant in order to select a variable by clicking on .

Output

Symbol:

CODESYS inserts an output element by default with the text “???”. You can directly edit
this field by clicking on it and entering a constant value or a variable name. Alternatively
you can open the input assistant in order to select a variable by clicking on .

Box 运算块

符号：

Symbol:

You use the element in order to insert an operator, a function, a function block or a
program. By default CODESYS inserts the element with the name“???”. You can directly
edit this field by clicking on it and entering a function block name. Alternatively you can
open the input assistant and select a function block by clicking on .

In the case of a function block, CODESYS additionally displays an input field (???)
above the function block symbol. You must replace this name by the name of the function
block instance. If you instance a function block with constant input parameters, the
function block element displays the ‘Parameter...’ field in the bottom left corner. You edit
the parameters by clicking on this field：

VE Controller Programming Manual

Jump

Symbol:

You use the element in order to define a position at which program execution is to
continue. You must define this target position by a label. To do this, enter the name of the
mark in the input field ???. If you have already inserted the corresponding label, you can
also select it via the input assistant ().

Label

Symbol:

A label defines a position to which program execution jumps with the help of a jump
element.

Example: Jump and Label usage

Return

Symbol：

Use the elements to exit the function block POU.

VE Controller Programming Manual

Composer

Symbol:

The composer element is for handling structural components. The individual components
of a structure are made available to you as an input. For this purpose you must name the
composer element like the structure concerned (replace the ???).

The composer element is the counterpart to the selector element.

Selector

Symbol:

The selector element is for handling structural components. The individual components of
a structure are made available to you as an output. For this purpose you must name the
selector element like the structure concerned (replace the “???”)

The selector element is the counterpart to the composer element.

Comment

Symbol：

With this element you input a comment in the CFC editor. Replace the placeholder text in
the element by the comment text. A line break can be inserted with the aid of the
shortcut Ctrl + Enter.

Connection Mark - Source/Sink

Symbol: ,

You can use connection marks instead of a connecting line between elements. That helps
you to display complex diagrams more clearly.

For a valid connection you must connect an element Connection Mark - Source with the
output of an element and an element Connection Mark - Sink with the input of another
element. Both marks must bear the same name. The names are not case-sensitive.

VE Controller Programming Manual

Input Pin

Symbol:

Depending on the type of function block you can add further inputs to an inserted function
block element. To do this you must select the function block element and drag the function
block input element onto the body of the function block.

Please note: You can drag an input or output connection to another position on the
function block with the Ctrl key pressed.

Output Pin

Symbol:

Depending on the type of function block you can add further outputs to an inserted
function block element. To do this you must select the function block element and drag the
function block output element onto the body of the function block.

Please note: You can drag an input or output connection to another position on the
function block with the Ctrl key pressed.

VE Controller Programming Manual

6.6 Sequential functionmap (SFC).

6.6.1 SFC Editor

The SFC editor is the graphics editor. The new SFC POU contains an Init step and
subsequent transitions.

In the SFC editor, a single element can be inserted into the diagram via the SFC menu
(which automatically appearswhen the POU in the SFC language isopened).

You can also drag SFC elementsfrom theToolBox Toolbox view to the figure. As you
drag elements on the editor, the software marks all possible insertion points with a gray box.
If you move the mouse over the gray box, the color of the box turns green. When you
release the mouse button, the object is inserted into that location.

VE Controller Programming Manual

In online mode, CODESYS displays the activity steps in blue.

6.6.2 Theorder in which S FCs are processed

1, reset the IEC action
CODESYS resets the internal motion control flags of action qualifiers (N, R, S, L, D, P, SD,

DS, SL), which control IEC actions.

2, perform an exit action
The software verifies that all steps meet the criteria for each step to perform an exit

action. The validation order follows the layout in the SFC diagram, from top to bottom, left to
right. When the step is disabled, the software performs an exit action (after any input and
step actions were performed in the previous loop, and the conditions for the subsequent
steps are true).

3, perform input actions
The software verifies that all steps meet the criteria for each step to perform an input

action. The validation order follows the layout in the SFC diagram, from top to bottom, left to
right. If the condition is met, the software performs an input operation. Once the conversion
of the next step is complete and produces TRUE,the software immediately performs an input
action indicating that the step has been activated.

VE Controller Programming Manual

4, time check /step action
The software performs the following checks on each step in the order of the SFC layout:

●The software copies the passing time of the active step to the corresponding
implicit step variable. <step name>.t

●If a timeout occurs, CODESYS sets its own error flags.
●For non-IEC steps: CODESYS performs step actions.

5, the implementation of IEC action
CODESYS performs IEC actions in alphabetical order, twice through the action list. In the

first cycle, the software performs IEC actions on each step that was disabled in the last loop.
In the second time, perform the IEC action for each active step.

6, transition check/activate the next step
The transition passes as follows: If a step is active in the current loop and subsequent

transitionsare generated, TRUE and the minimum time defined by the step has passed, the
next steps are activated.

6.6.3 SFC Action conditions

Qualifiers can be assigned to IEC steps. The qualifier describes how the step action is
handled.

The qualifiers are handled by the function block "IecSfc.library" in the
"SFCActionControl" library. This library is automatically integrated into the project via the SFC
plug-in.

N Non-storage The action is active as long as the step is active.

R0 Override reset The action is disabled.

S0
Settings (stored) When this step is activated, the software will perform this operation

immediately. Even if the step is de-activated, the operation will
continue until a reset is received.

L
Time limit The software will perform this operation immediately after the step is

activated. The operation will be performed until the step is disabled or
the given time interval has elapsed.

D
Time delay The software will only start executing the operation after a given delay

time has elapsed since the step was activated and the step is still
active. The operation is performed until the step is disabled.

P
Pulse The software performs the action exactly twice: once to activate the

step and once to activate the step.

SD
Store and time
delay

The software will only start executing the action after a given delay
time has elapsed since the step was activated. The action will be

VE Controller Programming Manual

executed until a reset is received.

DS
Delay and
storage

The software will only start executing an action after a given delay
time has elapsed since the step was activated and the step is still
active. The action will be executed until a reset is received.

SL
Limited storage
time

The software will perform this operation immediately after this step
has been activated. The operation will be performed until the given
time has elapsed or until a reset is received.

6.6.4 SFC Implicit variables and flags

SFC Implicit variables

Each SFC object provides implicit variables that monitor the state of the step and IEC
action at runtime, and CODESYS declares these implicit variables automatically for each step
and each IEC action.

Implicit variables are structural instances of the step type SFCStepType and the action
type SFCActionType. Variables have the same name as their elements, e.g. "step1" step name
is "step1" variable name. The structure member describes the state of the step or action or
the current time elapsed in the active step.

Syntax for implicit variable declarations：
<step name>:SFCStepType;

_<action name>:SFCActionType;

The following implicit variables are available for step or IEC action states：

Step

<step name>.x
Shows the active status of the current cycle.
When <step name>.x = TRUE , it indicates that the software is
processing the steps of the current cycle.

<step name>._x
Displays the activation status of the next cycle.
When <step name>. _x = TRUE and <step name>.x = FALSE, the
software is processing the step in the next cycle

<step name>.t
The current elapsed time since the step was activated. This only
applies to steps, regardless of whether a minimum time is defined in
the step properties.

<step name>._t Internal use only

IEC Action

_<action name>.x TRUE : The action is being executed.

_<action name>._x TRUE : The action is active.

The above variables can be used to force a specific status value to a step (activation step).

VE Controller Programming Manual

Accessing implicit variables Syntax.
a. Assigning implicit variables directly in the POU：

<variable name>:=<step name>.<implicit variable>or

<variable name>:=_<action name>.<implicit variable>

Example：
status:=step1._x;

b. From another POU with the following name：
<variable name>:=<POU name>.<step name>.<implicit variable> or
<variable name>:=<POU name>._<action name>.<implicit variable>

Example：
status:=SFC_prog.step1._x;

SFC flags

SFC flags are implicitly generated variables with predefined names that are used to
control the processing of SFC diagrams. For example, these flags can be used to display
timeouts or reset step chains. In addition, the hint mode can be activated specifically to
activate transitions. These variables must be declared and activated in order to access them.

Name Date type Description

SFCInit BOOL

TRUE: The software resets the sequence to the initial

step. The other SFC flags are also reset (initialised).

When the variable is TRUE, the initial step remains set

(active), but does not perform its operation. Only when

SFCInit is re-given FALSE does its block processing

continue down the line.

SFCReset BOOL
This function is similar to SFCInit. however, the software
continues processing after the initialization of the initial steps.

SFCError BOOL

TRUE: If a timeout occurs in the SFC diagram.

If a second timeout occurs in the program, it will not be

set to FALSE unless you have previously reset the variable

SFCError. other functions used to control the use of

chronological flag variables (SFCErrorStep, SFCErrorPOU,

SFCQuitError) require SFCError to be declared first.

SFCEnableLimit BOOL
Used to activate (TRUE) and de-activate (FALSE) the timeout
control SFCError. must be set TRUE to SFCError for it to work. If
this is not done, the timeout is ignored.

SFCErrorStep String
Stores the name of the step that caused the timeout. The
prerequisite is that SFCError is declared.

SFCErrorPOU String
Stores the name of the block in which the timeout occurred.
The prerequisite is that SFCError is declared.

https://help.codesys.com/webapp/_cds_sfc_sfc_flags;product=codesys;version=3.5.15.0

VE Controller Programming Manual

Name Date type Description

SFCQuitError BOOL

TRUE: The software will pause the processing of the SFC

graph and any timeout SFCError in this variable will be

reset. If the variable is reset to FALSE, all previous

times in the active step will be reset. The prerequisite

is that SFCError is declared.

SFCPause BOOL TRUE: The software suspends the processing of the SFC.

SFCTrans BOOL TRUE if the TransitionTransidition is active.

SFCCurrentStep String

Displays the name of the active step, independent of time
monitoring.
In parallel branches, the name of the step in the rightmost
branch line is always stored.

SFCTip，
SFCTipMode

BOOL

Controls the Tip mode of the SFC block.
If this flag is enabled SFCTipMode=TRUE, the next step can be
activated by setting SFCTip to TRUE. When SFCTipMode is set
to when FALSE, the transition is used to continue activation.

6.6.5 SFC Element

Step and Transition

Step symbol ; Transition symbol

As a rule, CODESYS inserts steps and transitions as combinations. Inserting a step
without a transition or a transition without a step causes an error when compiling. You can
modify this by double-clicking the name.

All steps are defined by the step properties, which you can display and edit in
the Properties view, depending on the set options.

You have to add those actions to the step which are to be executed when the step is
active. A distinction is made between IEC actions and step actions. Details for this are
found in the chapter about the SFC element “Action”.

A transition must include the condition for the subsequent step to be active as soon as the
value of the condition yields TRUE. Therefore, a transition condition must
yield TRUE or FALSE. It can be defined in one of two ways:

VE Controller Programming Manual

1. Inline condition (direct): You replace the default transition name with either
the name of a Boolean variable, a Boolean address, a Boolean constant,
or a statement with a Boolean result, for example (i<100) AND b. You
cannot specify programs, function blocks, or assignments here.

2. Multi-use condition (separate transition or property object): You replace
the default transition name with the name of a transition or property object

(,). You create these objects by clicking Project ‣ Add Object . This

allows multiple use of transitions, for example “condition_xy” in the figures
below. Like an inline condition, the object can contain a Boolean variable,
Boolean address, Boolean constant, or an statement with a Boolean result.
In addition, it can also contain multiple statements with any code.

Transitions that reference a transition or property object are marked with a small
triangle in the upper right corner of the transition box.

As opposed to CoDeSys V2.3, now CODESYS treats a transition condition like a
method call. The entry has the following syntax：

<transition name>:=<transition condition>

Example：

VE Controller Programming Manual

trans1:= a=100

or only
<transition condition> //（for example :a=100）

Action

Symbol:

An action includes a series of statements in one of the valid implementation languages.
You can assign an action to a step.

You must create all actions as POUs in the project when they are used in SFC steps.

1. IEC actions
These actions comply with the IEC1131-3 standard. They are executed according to

their qualifiers. Each action is executed two times: first when the step is activated and
second when the step is deactivated. If you assign several actions to one step, the action
list is processed from top to bottom.

Each action box includes the qualifier in the first column and the action name in the
second column, both of which can be edited directly.

As opposed to step actions, you can use different qualifiers for IEC actions. In addition,
each IEC action is provided with a control flag. This directs CODESYS to execute an
action only one time at any moment, even if the action is called by another step at the
same time. This cannot be guaranteed for step actions.

You assign IEC actions to steps by clicking SFC ‣ Insert action association .

2. Step actions:
You can use these step actions to extend the IEC standard.

 Entry action:

VE Controller Programming Manual

CODESYS executes this action after the step is activated and before the main
action is executed.

These reference a new action, or action created in below the SFC object, from a
step by means of the Entry action step property. (2). You can also add a new
action to the step by means of the Add entry action command. The entry action is
marked with an E in the lower left corner of the step box.

 Main action:

CODESYS executes this action when the step is active and any entry actions
have already been processed. However, as opposed to IEC actions (see above),
these step actions a are not executed a second time when the step is deactivated.
In addition, you cannot use qualifiers here.

You add an existing action to a step by means of the Main action element property
(1). You can create and add a new action by clicking the step element. A main
action is marked with a filled triangle in the upper right corner of the step box.

 Exit action:

CODESYS executes this action one time when the step is deactivated. Please
note, however, that an exit action is not executed in the same cycle, but at the
beginning of the next cycle.

These reference a new action, or action created in below the SFC object, from a
step by means of the Exit action step property. (3). You can also add a new action
to the step by means of the EAdd exit action command. The exit action is marked
with an X in the lower right corner of the step box.

3、Difference between IEC actions and step actions：
The basic difference between step actions and IEC actions with a qualifier N is that an

IEC action is executed two times: when the step is activated and when the step is deactivated.
See the following example.

VE Controller Programming Manual

Branch

Symbol

Use branches to program parallel or alternative sequences in the sequential function
chart.

For alternative branches, CODESYS processes just one of the branch lines at a time,
depending on the preceding transition condition. Parallel branches are processed at the
same time.

1、Parallel branch

For parallel branches, the branch lines must begin and end with steps. Parallel

branch lines can contain additional branches.

The horizontal lines before and after the branch are double lines.

Processing in online mode: If the preceding transition (t2 in the example) yields TRUE, then
the first steps in all parallel branch lines are active (Step11 and Step21). CODESYS
processes the individual branch lines at the same time and the subsequent transition is
passed afterwards (t3).

The “Branch<n>” jump marker is added automatically to the horizontal line that indicates
the beginning of a branch. You can define this marker as the jump destination.

Please note that you can convert a parallel branch into an alternative branch by
clicking Alternative.

2、Alternative branch

The horizontal line before and after the branch is a single line.
In an alternative branch, the branch lines must begin and end with transitions. The branch
lines can contain additional branches.

VE Controller Programming Manual

If the step before the branch is active, then CODESYS passes the first transition of
each alternative branch line from left to right. For the first transition that yields TRUE, the
associated branch line opens, thus activating the step following the transition.

Jump

Symbol

Use a jump to define which actions in a step should be executed next as soon as the
transition preceding the jump is TRUE. Jumps may become necessary, as execution paths
cannot cross or lead upwards.

Excluding the required jump at the end of a diagram, you can generally insert jumps only
at the end of a branch.

The destination of a jump is defined by the added text string, which you can edit directly.
The jump destination can be a step name or the marker for a parallel branch.

Macro

Symbol

A macro includes part of the SFC diagram, but it is not displayed in detail in the main view
of the editor.

VE Controller Programming Manual

Using macros does not influence the processing flow. Macros are used for hiding specific
parts of the diagram, for example to increase overall clarity.

You open the macro editor by double-clicking the macro box or by clicking SFC ‣ Zoom
into macro . You can program here just like in the main view of the SFC editor. To close
the macro editor, click SFC ‣ Zoom out of macro .

① Main view in the SFC editor

② Macro editor view for Macro1

Macros can also include other macros. The caption of the macro editor always

shows the path of the open macro within the diagram, for example:

VE Controller Programming Manual

6.7 CFC/LD/IL

6.7.1 FBD / LD / IL Editor

The FBD/LD/IL editor is a combination editor for FBD, LD and IL programming
languages.

If necessary, you can activate IL by selecting "Enable IL" in the software option
"ToolsOptionsFBD, LD, IL Editor".

The three programming languages are automatically converted internally to each other.
With the help of the network, the code in the implementation section is constructed in all
three languages. The FBD / LD / IL menu provides commands to work in the editor. In
offline and online mode, you can switch editors at any time by using menu commands in
View.

VE Controller Programming Manual

6.7.2 FBD/LD/IL Element

Network

Symbol

A network is the base unit of an FBD or LD program. In the FBD/LD/IL editor, the networks
are arranged in a list. Each network is provided with a sequential network number on the
left side and can include: logical and arithmetic expressions, program/function/function
block calls, jumps, or return statements.

An IL program consists of at least one network. This network can include all IL statements
of the program.

You can provide each network with a title, comment, or label. In the CODESYS options
(category FBD, LD, and IL, you can define whether network title, comment, and separator
between individual networks are displayed in the editor.

Click the first line of the network to enter a network title. Click the second line of the
network to enter a network comment.

Box

Symbol:

VE Controller Programming Manual

A box and its call can represent additional functions, for example IEC function blocks, IEC
functions, library function blocks, operators.

A box can have any number of inputs and outputs.

If the box also provides an image file, the box icon is displayed inside the box. The
requirement is that the option Show box symbol is activated in the CODESYS options,
category FBD, LD and IL.

If you have changed the box interfaces, you can update the box parameters with the
command FBD/LD/IL ‣ Update parameters without having to re-insert the box.

FBD/LD/IL Element ‘Box with EN/ENO’

Symbol:

The element is available only in the FBD and LD editors.

The box generally corresponds to the FBD/LD/IL element Box; however, this box
additionally contains an EN input and an ENO output. EN and ENO have the data
type BOOL.

Function of the EN input and ENO output: if the input EN has the value FALSE at the time of
the calling the box, the operations defined in the box are not executed. Otherwise, i.e.
if EN has the value TRUE, these operations are executed. The ENO output has the same
value as the EN input.

Assignment

Symbol:

The FBD editor shows a newly inserted assignment as a line with 3 question marks after it.
The LD editor shows a newly inserted assignment as a coil with 3 question marks located
above it.

After insertion you can replace the placeholder ??? by the name of the variable to which
the signal coming from the left is to be assigned. The input assistant is available to you for
this.

Input

Symbol:

VE Controller Programming Manual

The maximum number of inputs depends on the type of box.

A newly added input is first marked with ???. You can replace the string ??? by a variable
or a constant.

Label

Symbol：

The label is an optional identifier for a network in FBD and LD, which you can specify as a
destination for a jump.

If you insert a jump label in a network, it will be added as an editable field Label: in the
network.

Jump

Symbol

In FBD or LD a jump is inserted either directly before an input, directly after an output or at
the end of the network, depending on the current cursor position.

You enter a jump label as the jump destination directly behind the jump element.

Return

Symbol：

This element immediately interrupts the execution of the box if the input of
the RETURN element goes TRUE.

In an FBD or LD network you can place the Return instruction parallel to or after the
preceding elements.

In IL the RET instruction is available to you for this purpose.

VE Controller Programming Manual

Branch

Symbol:

The element is available in the LD and FBD editor and represents an open line branch. A
line branch splits the processing line from the current cursor position onwards into 2
subnetworks, which are executed in succession from top to bottom. You can branch each
subnetwork further, as a result of which multiple branches are created within a network.

Each subnetwork is given a marker symbol (rectangle) at the branch point, which you can
select in order to execute further commands.

In order to delete a subnetwork, you must first delete all elements of the network and
then the marker symbol of the subnetwork.

Excute

Symbol:

The element is a box that enables you to directly enter ST code in the FBD and LD
editors.

You can drag the Execute element with the mouse from the Tools view into the
implementation part of your POU. If you click on Enter ST code here..., an input field
opens where you can input multiple-line ST code.

Contact

Symbol: , in the editor

The element is available only in the LD editor.

A contact passes on the signal TRUE (ON) or FALSE (OFF) from left to right until the signal
finally reaches a coil in the right-hand part of the network. For this purpose a boolean

VE Controller Programming Manual

variable containing the signal is assigned to the contact. To do this, replace the
placeholder ??? above the contact with the name of a boolean variable.

You can arrange several contacts both in series and in parallel. In the case of two parallel
contacts, only one needs to obtain the value TRUE in order for ON to be passed on to the
right. If contacts are connected in series, all of them must obtain the value TRUE in order
for ON to be passed on to the right by the last contact in the series. Hence, you can
program electrical parallel and series connections with LD.

A negated contact forwards the signal TRUE if the variable value is FALSE. You can

negate an inserted contact with the help of the command FBD/LD/IL ‣ Negation or insert
a negated contact from the Tools view.

If you place the mouse pointer on a contact with the left mouse button pressed and with a
network selected, the button Convert to coil appears in the network. If you now move the
mouse pointer onto this button, still with the mouse button pressed, and then release the
mouse button over this button, CODESYS converts the contact into a coil.

Coil

Symbol: , in the editor

The element is available only in the LD editor.

A coil adopts the value supplied from the left and saves it in the boolean variable assigned
to the coil. Its input can have the value TRUE (ON) or FALSE (OFF).

Several coils in a network can only be arranged in parallel.

In a negated coil the negated value of the incoming signal is stored in the boolean

variable that is assigned to the coil.

Set coil, Reset coil

Symbol: , , in the editor: ,

Set coil: If the value TRUE arrives at a set coil, the coil retains the value TRUE. As long as
the application is running, the value can no longer be overwritten here.

Reset coil: If the value TRUE arrives at a reset coil, the coil retains the value FALSE. As long
as the application is running, the value can no longer be overwritten here.

VE Controller Programming Manual

You can define an inserted coil as a set or reset coil with the help of the
command FBD/LD/IL ‣ Set/Reset or insert it as an element Set coil and Reset coil from
the Tools view.

Branch Start/End 分支开始/结束

Symbol:

The element serves the closed line branch.

VE Controller Programming Manual

7 Motion control instructions

7.1 Motion control programming for single-axis MC

instructions

7.1.1 MC instruction programming points

The motion control of the VE controller in conjunction with the servo axis (e.g.
VECServo)is based onthe EtherCAT bus network and, unlike the pulse mode of the
previous hardware output, is achieved entirely by software, specifically by calculating and
releasing a control command in each very short EtherCAT bus cycle to achieve control of the
servo. Therefore, the following points need to be noted:
◆ The user MC control program, which is executed in the EtherCAT task cycle, should be
configured to execute under the EtherCAT task; most MC function blocks will not function
properly if they are placed in the POU of the lower priority Main task;
◆ The execution of MC function blocks requires communication data objects in the
communication to be passed on, therefore the necessary configuration items should be
present in the PDO configuration table; if a configuration-related data object is omitted, the
servo may not function properly and there will be no error alarms；
◆ The controller can initialize the function code of the servo through the configuration of
SDO, making the operation mode of the servo (usually CSP mode), servo motor encoder
mode, electronic gear ratio, etc., to ensure the correspondence between the control
command and the physical operation position; the initialization of the servo can also
improve the commissioning efficiency of the equipment, and no error after the replacement
of parts；
◆ For the control of servo axes, the rules and logic of axis state transfer are followed, using
the appropriate MC function block according to the current state of the axis and the desired
motion；
◆ One MC instance can only be used for one servo axis, if it is used for several servo axes at
the same time, it will lead to confusion.；
◆ A running servo axis must have an MC function block to monitor its operation, even
MC_Stop is a kind of monitoring, to avoid that the system will stop and report an error due
to a jump in the program logic without MC function block monitoring, which is not easy to
check.；
◆ Pay attention to the safe handling of commissioning. If the servo system uses incremental
encoders, a zeroing operation is required before normal operation, the DI signal input port
of the servo drive can be connected to the home position signal, and for movements within
a limited range (e.g. screw), there should be a limit and safety protection signal before
commissioning。

VE Controller Programming Manual

7.1.2 MC function blocks commonly used for single-axis control

Mc Function Block (FB)isalsoknown as the MC instruction, and to be precise, the user
program uses an object instance of the MC function block, which is controlled by the servo
axis through the MC object instance. Single-axis control, generally used for positioning
control, that is, the servo motor drags the external mechanism movement to a specified
position, and sometimes also requires the servo to operate at a specified speed or torque,
etc., in single-axis control, commonly used to the following MC function blocks：

Control
operations

MC commands to be
used

Description

Servo enable MC_Power Run this command to enable the servo axis
before subsequent operation control can take
place

Servo pointing
operation

MC_Jog Pointing operation of the servo motor, often
used for low speed test runs, to check
equipment or to adjust the position of the
servo motor

Relative
positioning

MC_MoveRelative Runs a specified distance with the current
position as a reference

Relative
superimposed
positioning

MC_MoveAdditive The servo is run for a specified distance relative
to the current servo run command

Absolute
positioning

MC_MoveAbsolute Command the servo to run to a specified
coordinate point

Speed control MC_MoveVelocity Command the servo to run at the specified
speed

Torque control MC_MoveTorque Command the servo to run at a specified
torque

Servo pause MC_Halt Command the servo to pause, if MC_Movexxx
is triggered again, the servo can run again.

Emergency stop MC_Stop Command the servo to emergency stop, only
after the stop command is reset and
MC_Movexxx is triggered, the servo can run
again

Alarm reset MC_Reset When the servo has an alarm stop, run this
command to reset the servo.

Change of
operating mode

MC_ControlMode This command allows the servo to select
"position", "speed" or "torque" mode.

Servo home
return

MC_Home The servo is commanded to start a home
return operation, with the application system's
home signal, both limit signals, etc. connected
to the servo's DI port

Controller home MC_Homing The control system starts the home return

VE Controller Programming Manual

return operation. The home signal of the application
system and the limit signals on both sides are
connected to the DI port of the controller.

7.1.3 MC commands and PDO/SDO configuration

When the VE controller executes the servo axis MC control commands from the user
program, the information items required to interact with the servo during the execution of
the MC commands need to be added to the communication PDO/SDO configuration table
in order to perform the required control functions.

MC Directive Required TPDO objects Required RPDO objects

MC_Power

MC_Halt

MC_Stop

MC_Reset

MC_Home

MC_Homing

ControlWord
StatusWord

Errorcode

MC_Jog

TargetPosition
Position actual value

Following error actual value

MC_MoveRelative

MC_MoveAdditive

MC_MoveAbsolute

MC_MoveVelocity
Target velocity

Max profile velocity

SMC_SetTorque Target torque Torque actual value

SMC_SetControllerMode Modes of operation

1: Cycle Synchronous Torque

Mode CST

2: Cycle Synchronous Velocity

Mode CSV

3: Cycle synchronous position

CSP

The above mentioned TPDO and RPDO are the basic configuration items required for
single axis control. In MC control, the servo is in position mode in most cases, especially in
EtherCAT bus based applications, and is in "cyclic synchronous position mode", so the servo
is normally initialised to this mode of operation in the SDO configuration during
programming.

VE Controller Programming Manual

VE Controller Programming Manual

7.2 Motion control programming for multi-axis CAM cam

synchronization

Cam motion is borrowed from the concept of the relative motion characteristics of
mechanical cam and lift bar, refers to the controller according to a specific relative position
nonlinear relationship, so that the servo follows the spindle, continuous synchronization
motion to meet the motion characteristics required by the equipment, in the fixed length
cutting, shear control, fly shear control, multi-color overprinting and other synchronous
applications, is widely used. The main-axis position of the electronic cam curve is shown
below, with the horizontal axis as the primary axis position and the vertical axis as the axle
position:

VE controller is a software way, the realization of cam motion control characteristics,
that is, the use of software digital "cam meter" instead of mechanical cam, so also known as
electronic cam control. Compared to mechanical cams, there are the following features:
 Easy production of cam shapes: cams are described using cam tables, cam curves or
arrays；
 Easy and versatile cam shapes: multiple cam table selection, dynamic switching during
operation；
 Easy cam shape modification: allows dynamic modification of cam table key points
during operation；
 Multiple cam followers: multiple cam followers allowed；
 Cam tappets: multiple cam tappets, multiple setting intervals allowed；
 Cam clutch: in cam operation, user programmable to enter and exit cam operation；
 Electronic cam specific features: virtual spindle support, phase shift, output
superimposition;

The VE controller's cam operation is software-only, and if the CAM is running, the next
target point from the shaft is calculated once each time the EtherCAT task is entered, so it
has better functional flexibility than hardware cam operation.
The control of the electronic cam has three elements:
(1) Spindle: a reference axis used for synchronous control;
(2) From the axis: the servo axis that follows the movement according to the desired

VE Controller Programming Manual

nonlinear characteristics according to the position of the spindle;
(3) Cam table: Describes the spindle - a data sheet or cam curve from the relative position
and range of the axis, periodicity, etc.

The user writes the program needs to design the cam table, specify the spindle and the
axle, trigger the cam run at the right time during operation, so that the cam from the shaft
into the cam run.

Basic command function blocks for electronic cam control：

Control
operation

MC commands to be
used

Description

Cam table
selection

MC_CamTableSelect
Run this command to relate the spindle,
slave cam table and all three

Entering cam
run

MC_CamIn
Putting the slave shaft into cam operation

Exit cam run MC_CamOut Getting the slave axis out of the cam run

Correction of
cam phase

MC_Phasing
Spindle phase modification

VE Controller Programming Manual

7.2.1 Characteristics of the cam table

The new cam table can be created as follows：

When writing a user program for cam operation, the cam table is one of the items
written which determines the characteristics of the cam operation and can be entered in
both graphical and tabular form.

The diagram below shows the CAM cam table in graphical form, with the horizontal axis
being the spindle position axis and the length of the axis being the travel of the cam run.
There are four coordinate curves and the vertical axes are the slave axis position, slave axis
speed, slave axis acceleration and slave axis acceleration curves. When programming and
commissioning, more attention is often paid to the position curve, the velocity curve and,
when commissioning for smoothness, the acceleration curve.

VE Controller Programming Manual

The cam curve has the following characteristics：
◆ In the coordinates of the master-slave position curve, the vertical axis is the range of
possible motion of the slave axis; the vertical axes of the other three curves are the ratio of
the velocity of the slave to the main axis and the ratio of the acceleration of the slave to the
master；
◆ The cam curve is a monotonic curve in the vertical direction, i.e. each coordinate of the
main axis can only correspond to a unique coordinate value of the slave axis; when the cam
is executed, the main axis coordinates move in a small to large direction；
◆ The cam curve can have a number of key points and the line between two key points can
be set as a straight line or a 5-times curve, with the system optimising each 5-times curve to
minimise sudden changes in speed and acceleration；
◆ The start and end coordinates of the horizontal axis (spindle) start at 0 and end at 360 by
default and can be modified by the user according to the actual physical travel.

7.2.2 Cam table input

① When a new cam table is created, the system automatically sets up the simplest cam
curve, on the basis of which the user can modify it to form the CAM curve table he needs.
2 The user can increase or decrease the number of key points of the cam curve and

modify the coordinates of the key points.
3 The user can modify the line type between any two adjacent key points, or a 5th curve,

or a straight line；
4 The system defaults to a 5-fold curve between key points in the cam curve, which

ensures continuity of speed during operation and reduces mechanical shocks.；

Key points in the cam curve, often related to the mechanical movement requirements of the
control object, for example

VE Controller Programming Manual

① For chasing shear applications, the coordinate range of the spindle is recommended to
correspond to the physical travel of the running interval for easy analysis.
② The starting and ending points of the round trip from the spindle, the starting position
point of the synchronous running interval and the point at which it leaves the synchronous
position are important key points.
③ The line segments of the cam curve should be straight lines for proportional
synchronisation intervals and 5 times curves for other intervals

7.2.3 The internal data structure and array of the CAM cam table

In CODESYS, for each CAM table, there is a data structure that describes the CAM table,
describing the characteristic data of the CAM table. The following image describes the data
structure of the CAM0 cam table, note the variable names of its structures:

Inside there is a data structure to describe the characteristics of the CAM cam table: if
we write a CAM table manually, it is also available, as follows:

Although we don't need to write CAM tables manually, we can modify the required
CAM feature data through access to the data structure.

Note: When we declare the CAM0 cam table, the system automatically declares the
CAM0 data structure of the global variable type by default, and also declares CAM0_A an
array of

For example, in a user program, modify the number of key points or coordinates of the
CAM0 cam table：

CAM0. nElements:=20; // Change the number of key points to 20
CAM0. xEnd:=500; // Change the end point of the spindle to 500.
// For example, in the user program, modify the coordinates of 2 of the key
points：
CAM0_A[3].dx:=30;
CAM0_A[3].dy:=45;
CAM0_A[3].dv:=1;
CAM0_A[3].da:=0;

VE Controller Programming Manual

CAM0_A[4].dx:=60;
CAM0_A[4].dy:=75;
CAM0_A[4].dv:=1;
CAM0_A[4].da:=0;

Online modification of CAM camsheets
On-line modification of CAM curves" refers to the modification of the coordinates of the key
points of the CAM curve during the execution of the user written program, according to the
control characteristics. The modifications are usually made to the coordinates of the key
points, but can also be made to the number of key points, to the distance range of the
spindle, etc.

Reminder: Modify the cam table before entering the cam run, not during the run to avoid
unanticipated movement results that require modification of the CAM cam table
Applications.
① In general, OEM customers use cam tables that have been successfully verified by
commissioning.
② If there are several machining objects or modes, multiple cam tables can be considered
to be preset and switched automatically according to the needs of the user.
③ Some machines require a wider range of adaptability, e.g. packaging machines, which
require a packaging length in the range of 10cm to 25cm and automatic adaptation to
changes in operating speed, may require online modification of the CAM cam table.

7.2.4 Reference and dynamic switching of CAM table

C The CAM cam table is stored internally in the controller as an array that can be
pointed to by a specific MC_CAM_REF variable type, e.g. by declaring

Cam table p: MC_CAM_REF
This variable can be assigned a value and can also be thought of as pointing to a

specific cam table as follows
Cam table p:= Cam0; // point to the desired cam table

cam table p: MC_CAM_REF; // cam table pointer.
TableID: uint; // cam table selection command, settable by HMI.
Case TableID of
0: cam table p := cam table A;
1: Cam table p := Cam table B;
2: Cam table p := Cam table C;
End_case
MC_CamTableSelect_0(// Cam relationship
Master:= cam master ,
Slave:= cam slave ,
CamTable:= Cam table p,
Execute:= ReSelect, // Rising edge triggers cam table selection
Periodic:= TRUE,

VE Controller Programming Manual

MasterAbsolute:= FALSE,
SlaveAbsolute:= FALSE);

In the above example, the assignment of the MC_CAM_REF variable is used to switch
between multiple cam tables.

VE Controller Programming Manual

7.3 Single axis commands

7.3.1 MC_Power

1） Command Format

Instructions Name Graphical representation ST Performance

MC_Power
Axis enable

command

2） Related variables
◆ Input variables

Input
variables

Name
Data
Type

Effective
range

Initial
value

Description

Axis
Axis

AXIS_REF — —
Mapped to an axis, i.e. an
instance of AXIS_REF_SM3

Enable
Input
active

BOOL TRUE,FALSE FALSE
Set to TRUE to start
function block processing

bRegulatorOn
Enabled
state

BOOL TRUE,FALSE FALSE
Set to TRUE to set the axis
to the enable state

bDriveStart

Drive
allowed

BOOL TRUE,FALSE FALSE

Set to TRUE to disable
emergency stop
processing of the function
block

◆ Output Variables

Output Variables Name
Data
Type

Effective
range

Initial
value

Description

Status
Operable
state

BOOL TRUE,FALSE FALSE
Set to TRUE if the axis
is ready to move

bRegulatorRealState
Axis enable
signal
status

BOOL TRUE,FALSE FALSE
TRUE when axis
enable is active

bDriveStartRealState
Permissible
drive status BOOL TRUE,FALSE FALSE

TRUE if the axis is not
interrupted by the
fast stop mechanism

Busy
Execution
in progress

BOOL TRUE,FALSE FALSE
TRUE if the
processing of the

VE Controller Programming Manual

function block has
not been completed

Error
Error

BOOL TRUE,FALSE FALSE
TRUE if an exception
occurs

ErrorID
Error
Codes

SMC_
ERROR

Refer to
SMC_
ERROR

0
Error code output
when an exception
occurs

3) Function description
The other inputs are only processed by the function block if the input Enable is TRUE.
If the function block MC_Power has already been called and bRegulatorOn=FALSE, the

function block sets the axis state (nAxisState) of the relevant axis to the power_off state,
indicating that the drive is not yet ready for motion.

If the function block MC_Power has been called and bRegulatorOn=TRUE, the function
block will set the axis state (nAxisState) of the relevant axis to the standstill state if no errors
have occurred; if errors have occurred, the corresponding error state will be output.

If Enable, bRegulatorOn and bDriveStart are TRUE, but the output Status remains FALSE
after a certain time, the output Error will be set. This can happen when a hardware problem
is generated in the enable state.

If the enable signal is lost (usually in operating mode), the nAxisState of the relevant axis
will be set to the ErrorStop state.

When using this, note the order of operation of Enable and bRegulatorOn. Enable can
be held high to control servo enable and disable by controlling bRegulatorOn. Do not turn
Enable and bRegulatorOn on and off at the same time. If Enable is disabled, the function
block will no longer be executed and changing bRegulatorOn will not take effect, resulting in
the "servo is still enabled even though bRegulatorOn has been reset" phenomenon. This will
lead to the phenomenon that "the servo is still enabled even though bRegulatorOn has been
reset".

◆ Time-series diagram
Set Enable to TRUE, bRegulatorOn to TRUE and bDriveStart to TRUE, indicating that the

busy command is being processed becomes TRUE, then the axis enters the Enable ON state
and the Status state becomes TRUE.

VE Controller Programming Manual

4) Error description
Do not write a program to start another instance of the MC_Power instruction in the axis

where the MC_Power instruction is being executed. In principle, only 1 MC_Power instruction
can be set for each axis. If the MC_Power instruction of another instance is started in the axis
in which the MC_Power instruction is being executed, the MC_Power instruction that is
executed later will be executed first.
Note]: Please read "Appendix C Error Code Descriptions" for the descriptions of the relevant
error codes.

VE Controller Programming Manual

7.3.2 MC_Stop

MC_Stop puts the axis in the stop state. The currently running motion of the function block
instance is aborted.

1） Command Format

Instructions Name Graphical representation ST Performance

MC_Stop
Axis stop

command

2） Related variables
◆ Input and output variables

Input and
output
variables

Name
Data
Type

Effective
range

Initial
value

Description

Axis Axis AXIS_REF — —
Mapped to an axis, i.e. an

instance of AXIS_REF_SM3

◆ Input variables

Input
variables

Name
Data
Type

Effective
range

Initial
value

Description

Execute

Execution
conditions BOOL TRUE,FALSE FALSE

A rising edge of the input
will initiate the processing
of the function block

Deceleration

Deceleration
rate LREAL

“Positive

numbers” 、”

0”

0

Deceleration of the
function block (u/S^2)

Jerk

Rate of
change of
speed

LREAL

“Positive

numbers” 、”

0”

0

Rate of change of velocity
(u /S^3)

◆ Output Variables

Output
Variables

Name
Data
Type

Effective
range

Initial
value

Description

Done

Instruction
execution
completed

BOOL TRUE,FALSE FALSE

Axis instruction execution
complete, set to TRUE

Busy
Command
execution in

BOOL TRUE,FALSE FALSE
TRUE if the current
instruction is in progress

VE Controller Programming Manual

progress

Error
Error

BOOL TRUE,FALSE FALSE
Set to TRUE when an
exception occurs

ErrorID
Error code SMC_

ERROR

参阅 SMC_

ERROR
0

Error code is output when
an exception occurs

3) Function description
This function block is designed to stop the motion of an axis in normal operation, any

command to this axis is not valid when the axis is in the stopping state.
This function block can only be run when the axis is in Motion, but not in any other state.

The start command is initiated on the rising edge of Execute. If Busy is active while MC_Stop
is active, starting MC_Stop again will cause the command system to change to Errorstop.
◆Timing diagram
the axis must be in the running state (Motion) for the MC_Stop instruction to run.

Execute of the function block must have a rising edge condition.
Done of the function block indicates that the instruction has been executed normally.
A Busy function block indicates that the function block is currently being executed.
CommandAborted of the function block indicates that the instruction is interrupted by
another motion control instruction, and the flag bit is TRUE.
Example: The change of the flag bit during the execution of MC_MoveVelocity instruction
and MC_Stop instruction in different timing operations;
The processing of CommandAborted is described in the following timing diagram .

VE Controller Programming Manual

4) Error Description
When MC_Stop has a repetitive instruction running, the error flag Error is True,ErrorID is
SMC_MS_AXI error ;
Note]: Please read "Appendix C Error Code Descriptions" for the description of the relevant
error codes.

VE Controller Programming Manual

7.3.3 MC_Halt

1） Command Format

Instructions Name Graphical representation ST Performance

MC_Halt

Axis

normal

pause

command

2） Related variables
◆ Input and output variables

Input and
output variables

Name
Data
Type

Effective
range

Initial
value

Description

Axis AXIS AXIS_REF — —
Mapped to an axis, i.e. an instance

of AXIS_REF_SM3

◆ Input variables

Input
variables

Name
Data
Type

Effective
range

Initial
value

Description

Execute

Execution
conditions BOOL TRUE,FALSE FALSE

A rising edge of the input
will initiate the processing
of the function block

Deceleration

Deceleration
LREAL

“Positive

numbers” +”

0”

0

Deceleration of the function
block (u/S^2)

Jerk

Leap
LREAL

“Positive

numbers” +”

0”

0

Specify the degree of jump
[command unit /S^3

◆ Output Variables

Output
Variables

Name
Data
Type

Effective
range

Initial
value

Description

Done

Instruction
execution
completed

BOOL TRUE,FALSE FALSE

Axis instruction execution
complete, set to TRUE

Busy

Instruction
execution in
progress

BOOL TRUE,FALSE FALSE

The current instruction is in
progress, set to TRUE

Command

Aborted

Instruction
interrupted

BOOL TRUE,FALSE FALSE
If the current instruction is
interrupted, set to TRUE

Error
Error

BOOL TRUE,FALSE FALSE
Set to TRUE if an exception
occurs

VE Controller Programming Manual

ErrorID
Error code SMC_

ERROR

Refer to SMC_

ERROR
0

Error code is output when
an exception occurs

3) Function description
This function block stops the reference axis in a controlled manner. If the actions of

other function blocks are running at this time, these actions are aborted. The axis enters a
discrete motion state until the speed reaches 0. If the "Finish" output of MC_Halt is set, the
state of the axis will change to stationary. The execution of MC_Halt can be interrupted by
issuing a new motion command as long as MC_Halt is active, unlike MC_Stop, which can be
interrupted.

This function block can only be run in the running state (Motion), but not in any other
state.

The start command is initiated on the rising edge of Execute; the state of the command
is Discrete Motion while it is running and Standstill when it is finished.

4) Timing diagram
the axis must be in the running state (Motion) for the instruction to run.
Execute of a function block must have a rising edge condition.
Done for a function block indicates that the instruction is executing normally.
Busy of a function block indicates that the block is currently being executed.
CommandAborted of the function block indicates that the instruction is interrupted by
another motion control instruction, and the flag is TRUE.
Example: The change of the flag bit during the execution of MC_MoveVelocity
instruction and MC_Halt instruction in different timing operations;
The processing of CommandAborted is described in the following timing diagram。

VE Controller Programming Manual

5) Error description
An error occurs when the axis state is not a parameter error in the start-up instruction or
instruction system in Standstill, and the axis error can only be cleared before operation starts.
[Note]: Please read "Appendix C Error Code Descriptions" for a description of the relevant
error codes.

VE Controller Programming Manual

7.3.4 MC_Home

Its execution will cause the axis to perform the “search home” sequence. The details of this
sequence are manufacturer dependent and can be set by the axis parameters.
The Position input is used to set the absolute position when a reference signal is detected.
The function block terminates with standstill.
1） Command Format

Instructions Name Graphical representation ST Performance

MC_Home

Axis

return to

zero

command

2） Related variables
◆ Input and output variables
Input and
output
variables

Name
Data
Type

Effective
range

Initial
value

Description

Axis AXIS AXIS_REF — —
Mapped to an axis, i.e. an instance of

AXIS_REF_SM3

◆ Input variables

Input
variables

Name
Data
Type

Effective
range

Initial
value

Description

Execute

Execution

conditions BOOL TRUE,FALSE FALSE

A rising edge of the input will

initiate the processing of the

function block

Position
Axis reaches

position
LREAL Data range 0

Represents the zero return

position of the axis position

◆ Output Variables

Output
Variables

Name
Data
Type

Effective
range

Initial
value

Description

Done

Instruction

execution

completed

BOOL TRUE,FALSE FALSE

Axis instruction execution

complete, set to TRUE

Busy

Instruction

execution in

progress

BOOL TRUE,FALSE FALSE

Execution of current instruction

is in progress, set to TRUE

Command

Abort

Instruction

interrupted
BOOL TRUE,FALSE FALSE

If the current instruction is

interrupted, set to TRUE

Error Error BOOL TRUE,FALSE FALSE Set to TRUE if an exception

VE Controller Programming Manual

occurs

ErrorID
Error code SMC_

ERROR

Refer to SMC_

ERROR
0

Error code is output when an

exception occurs

3) Function description
This function block is a zero return operation, where the Position data is the zero position of
the axis.
The running state of this function block is in Standstill, the state of the instruction is homing
when it is running, and no other state can be run.
The start command is the rising edge start command of Execute.
Viktor servo setting instructions :
◆ When using each servo axis to return to the home position, the return mode of the servo
parameter must be set; the setting mode can be set manually by setting the function code of
the servo;
◆ The corresponding function code can also be configured via the start parameters of the
VE slave; the following index and subindex data must be set for the communication method;

Project index Sub-indexes Description

Zero return method
0x6098

The specific parameters to be set can be

selected according to the servo manual

Home velocity
0x6099 0x01

Generally defined speeds are relatively

high, with reduced zeroing times in rpm

Find zero velocity
0x6099 0x02

Generally defined speeds are relatively low,

in rpm

Home return

acceleration/deceleration
0x609A

change in acceleration and deceleration at

home return, in u/s^2

Home return timeout
0x200A 0x08

The return time exceeds the set time and

the system reports an Er.603 error.

CODESYS screen settings reference :

4) Timing
diagram

VE Controller Programming Manual

VE Controller Programming Manual

7.3.5 MC_MoveVelocity

Simulated velocity control using the drive position control mode, where the Velocity
assignment controls the speed of the drive if the axis is enabled and the command is valid.
1） Command Format

Instructions Name Graphical representation ST Performance

MC_MoveVelocity

Speed

control

commands

2） Related variables
◆ Input and output variables

Input and
output
variables

Name
Data
Type

Effective
range

Initial
value

Description

Axis AXIS AXIS_REF — —
Mapped to an axis, i.e. an

instance of AXIS_REF_SM3

◆ Input variables

Input
variables

Name
Data
Type

Effective range
Initial
value

Description

Execute

Execution

conditions
BOOL TRUE,FALSE FALSE

A rising edge of the

input will initiate the

processing of the

function block

Velocity

Speed

LREAL

Data range

0

This data is the speed

run value for this

instruction

Acceleration

Acceleratio

n LREAL

Data range

0

Acceleration value as

the speed becomes

greater

Deceleration
Deceleratio

n
LREAL

Data range
0

Deceleration value as

speed becomes smaller

Jerk

Leap

LREAL

Data range

0

The value of the slope

change of the

acceleration and

deceleration curve

Direction Direction MC_Direction 1：positive current Command operation

VE Controller Programming Manual

of travel -1：negative

2：current

for the direction of
travel

◆ Output Variables

Output
Variables

Name
Data
Type

Effective
range

Initial
value

Description

InVelocity
Set speed flag

reached
BOOL TRUE,FALSE FALSE

The set running speed has

been reached, set to TRUE

Busy

Instruction

being

executed

BOOL TRUE,FALSE FALSE

The current instruction is

being executed, set to

TRUE

CommandAbort
Instruction

interrupted
BOOL TRUE,FALSE FALSE

If the current instruction is

interrupted, set to TRUE

Error
Error

BOOL TRUE,FALSE FALSE
Set to TRUE if an

exception occurs

ErrorID
Error code SMC_

ERROR

Refer to SMC_

ERROR
0

Error code is output when

an exception occurs

3) Function Description
Changes the Velocity parameter for the analog speed control of the drive.
◆ Timing diagram
Execute of the function block must have a rising edge condition
InVelocity of the function block indicates that the running speed of the instruction has
reached the set value.
Busy of a function block indicates that the function block is currently being executed.
◆ Examples

◆ Timing instructions :

VE Controller Programming Manual

VE Controller Programming Manual

7.3.6 MC_MoveAbsolute

This function block causes the axis to be moved to an absolute position and uses the
values for Velocity, Deceleration, Acceleration and Jerk. If no further actions are pending, the
execution ends with velocity 0.

1） Command Format

Instructions Name Graphical representation ST Performance

MC_MoveAbsolute

Axis

absolute

position

control

commands

2） Related variables
◆ Input and output variables

Input and
output
variables

Name
Data
Type

Effective
range

Initial
value

Description

Axis AXIS AXIS_REF — —
Mapped to an axis, i.e. an

instance of AXIS_REF_SM3

◆ Input variables

Input
variables

Name
Data
Type

Effective
range

Initial
value

Description

Execute
Execution

conditions
BOOL TRUE,FALSE FALSE

A rising edge of the input will start

the function block

Position
Axis arrival

position
LREAL

Data range
0

This position is the absolute

position data of the axis

Velocity
Operating

speed
LREAL

Data range
0

Maximum speed at which the axis

runs to the target position

Acceleration
Acceleratio

n
LREAL

Data range
0

Acceleration value as speed

increases

Deceleration
Deceleratio

n
LREAL

Data range
0

Value of deceleration as speed

becomes smaller

Jerk

Leap

LREAL

Data range

0

Value of the change in slope of

the acceleration/deceleration

curve

Direction

Direction of

command
MC_

DIRECTION

Negative,

shortest

Positive,

shortest

Negative: Reverse movement ;

Shortest: Choose the direction

based on the shortest path ;

VE Controller Programming Manual

current,

fastest

Positive: move in the positive

direction ;

Current: Move in the current

direction;

Fastest: automatically selects the

fastest direction of travel

(This function is available in

rotation mode)

◆ Output Variables

Output
Variables

Name
Data
Type

Effective
range

Initial
value

Description

Done

Instruction

execution

completed

BOOL TRUE,FALSE FALSE

Axis instruction execution

complete, set to TRUE

Busy

Instruction

execution in

progress

BOOL TRUE,FALSE FALSE

Execution of current

instruction is in progress, set

to TRUE

Command

Abort

Instruction

interrupted
BOOL TRUE,FALSE FALSE

If the current instruction is

interrupted, set to TRUE

Error
Error

BOOL TRUE,FALSE FALSE
Set to TRUE if an exception

occurs

ErrorID
Error code SMC_

ERROR

Refer to

SMC_ERROR
0

Error code is output when

an exception occurs

3) Function Description
◆ This function block is an absolute axis positioning instruction, and the Position data

is the absolute position of the axis.
This function block is in Standstill, and the state of the command is Discrete Motion.
A complete running process must control the different motion states of the axes.
This instruction is valid for repeated rising edges in Discrete Motion, each time

refreshing the latest position.
This command is valid on the rising edge of Discrete Motion.
If Acceleration or Deceleration is zero, the command will run in an abnormal state, but

the state of the axis is Discrete Motion.
◆ Trapezoidal acceleration and deceleration actions
Velocity, Acceleration and Deceleration have data; and Jerk is 0；

VE Controller Programming Manual

◆ S-curve acceleration and deceleration manoeuvres
Velocity, Acceleration, Deceleration and Jerk all with data；

◆ Absolute positioning of the axes in cyclic mode

1 The axis rotation period is set to 360 and the Direction is set to Positive.

When the modulus of Position to 360 (Position/360 is rounded off, e.g. Position

380 is modulus 20 to 360, Position 350 is modulus 350 to 360) > Start absolute position,

then the axis runs in the forward direction (modulus of Position to 360 - Start

absolute position) by a distance.

VE Controller Programming Manual

When the modulus of Position to 360 (Position/360 is remainder, e.g. Position is 380
then modulus to 360 is 20) < Start absolute position, then the axis runs in the forward
direction (360 - Start absolute position + modulus of Position to 360) by a distance.

② The axis rotation period is set to 360 and the Direction is set to shortest or fastest.
The modulus of Position to 360 is XPosition

When 0 < XPosition - Start absolute position < 180, the distance of the axis in the
forward direction (XPosition - Start absolute position).

When 180 < XPosition - starting absolute position, the axis runs in the opposite
direction 360 - XPosition + distance from the starting absolute position.

VE Controller Programming Manual

When XPosition< Start Absolute Position, the axis runs in the opposite direction Distance
from Start Absolute Position – Xposition.

③ The axis rotation period is set to 360 and the Direction is set to shortest or

Negative. The modulus of Position to 360 is XPosition

Axis runs in reverse direction Distance from absolute position + 360-XPosition.

◆ Absolute positioning of axes in linear mode

VE Controller Programming Manual

When the absolute position of the target > the starting position, move the target
forward (absolute position - distance from the starting position)

When the target position < Start position, move the target in the opposite direction
(Start position - Distance from target position)

The running direction set in linear mode does not determine the axis running direction,
i.e. Direction is invalid.

4) Timing diagram
Axis must be in the Standstill state for the instruction to run.
Execute of a function block must have a rising edge condition.
Done of a function block indicates that the instruction has completed normal execution.
Busy of a function block indicates that the function block is currently being executed；

VE Controller Programming Manual

7.3.7 MC_MoveAdditive

This function block causes a controlled motion that adds the specified distance to the
last specified target position. The axis is thereby in the discrete_motion mode. The current
target position can result from a preceding motion of MC_MoveAdditive that was aborted. If
the function block runs in the continuous_motion mode, the specified distance is added to
the current position during the processing time.

1） Command Format

Instructions Name Graphical representation ST Performance

MC_Move

Additive

Superimposed

absolute

motion

commands

2） Related variables
◆ Input and output variables

Input and
output
variables

Name
Data
Type

Effective
range

Initial
value

Description

Axis AXIS AXIS_REF — —
Mapped to an axis, i.e. an instance

of AXIS_REF_SM3

◆ Input variables

Input
variables

Name
Data
Type

Effective
range

Initial
value

Description

Execute

Execution

conditions BOOL TRUE,FALSE FALSE

A rising edge of the input will

initiate the processing of the

function block

Distance
Axis arrival

position
LREAL

Data range
0

This data is the superimposed

position data

Velocity
Operating

speed
LREAL

Data range
0

Maximum velocity of the axis

running to the target position

Acceleration
Acceleration

LREAL
Data range

0
Acceleration value as speed

increases

Deceleration
Deceleration

LREAL
Data range

0
Deceleration value as speed

becomes smaller

Jerk
Leap

LREAL
Data range

0
Slope change of the

acceleration/deceleration curve

◆ Output Variables

VE Controller Programming Manual

Output
Variables

Name
Data
Type

Effective
range

Initial
value

Description

Done

Instruction

execution

completed

BOOL TRUE,FALSE FALSE

Axis instruction execution

complete, set to TRUE

Busy

Instruction

execution in

progress

BOOL TRUE,FALSE FALSE

Execution of current

instruction is in progress, set

to TRUE

Command

Abort

Instruction

interrupted
BOOL TRUE,FALSE FALSE

If the current instruction is

interrupted, set to TRUE

Error
Error

BOOL TRUE,FALSE FALSE
Set to TRUE if an exception

occurs

ErrorID
Error code SMC_

ERROR

Refer to

SMC_ERROR
0

Error code is output when

an exception occurs

3) Function description
◆ This function block is a superimposed position command, and the Distance data is the
superimposed data of the axis.
◆ If this function block runs in Discrete Motion state, the CommandAbort of other
commands will be set in position when it is used.
◆ In standstill state, this command can be run independently to achieve relative positioning
requirements.
◆ If Acceleration or Deceleration is zero, the instruction runs in an abnormal state, but the
state of the axis is Discrete Motion.
◆ The start instruction is the rising edge of Execute.

◆ Trapezoidal acceleration and deceleration actions
Velocity, Acceleration and Deceleration have data; and Jerk is 0；

◆S-curve acceleration and deceleration
Velocity, Acceleration, Deceleration and Jerk all have data

VE Controller Programming Manual

4) Timing diagram
Axis must be in the Standstill state for the instruction to run.
Execute of a function block must have a rising edge condition.
Done of a function block indicates that the instruction has completed normal execution.
Busy of the function block indicates that the function block is currently being executed.
◆ Example

◆ Timing instructions :

VE Controller Programming Manual

VE Controller Programming Manual

7.3.8 MC_MoveRelative

The axes run in relative position. The relative position is specified by Distance (units are
set by axis). Set the relevant parameters before running this command, Acceleration 、
Deceleration、Velocity 、Jerk and BufferMode.

1) Command format

Instructions Name Graphical representation ST Performance

MC_

MoveRelative

Axis

relative

positioning

commands

2） Related variables
◆ Input and output variables

Input and
output
variables

Name
Data
Type

Effective
range

Initial
value

Description

Axis AXIS AXIS_REF — —
Mapped to an axis, i.e. an

instance of AXIS_REF_SM3

◆ Input variables

Input
variables

Name
Data
Type

Effective range
Initial
value

Description

Execute

Execution

conditions
BOOL TRUE,FALSE FALSE

A rising edge of the input

will initiate the

processing of the

function block

Distance

Relative

position of

movement

LREAL

Data range

0

This data is the relative

position of the

movement

Velocity

Running

speed LREAL

Data range

0

Maximum velocity of the

axis running to the target

position

Acceleration
Acceleratio

n
LREAL

Data range
0

Acceleration value as the

velocity becomes greater

Deceleration
Deceleratio

n
LREAL

Data range
0

Value of deceleration as

speed becomes smaller

Jerk Leap LREAL Data range 0 The value of the change

VE Controller Programming Manual

degree in slope of the

acceleration and

deceleration curve

BufferMode

Buffer

mode

MC_BUFFER_

MODE

Aborting；

Buffered;

BlendingLow;

BlendingPrevious;

BlendingNext;

BlendingHigh;

Aborting

Defines the time

sequence of this FB

relative to the previous

function block. If the

function block is Busy,

then only

BufferMode=Aborting is

allowed.

BufferMode

(available only with CODESYS

SoftMotion version 4.8.0.0)

Introduction

Aborting

Without buffering, the previous motion function block is
immediately aborted and this function block is started
immediately (default mode)

Buffered
This function block is started again after the previous motion
command has completed its movement

BlendingLow

When switching, after the previous motion command has
completed its movement, pass the end position of the first
motion command at the lower speed of the two preceding and
following motion commands

BlendingPrevious

When switching, after the previous motion command has
completed its movement, the end position of the previous
motion command is passed at the speed of the previous
motion command

BlendingNext

When switching, after the previous motion command has
completed its movement, pass the end position of the previous
motion command at the speed of the latter motion command

BlendingHigh

When switching, after the previous motion command has
completed its movement, pass the end of the first motion
command at the higher speed of the two preceding and
following motion commands

◆ Output Variables

Output
Variables

Name
Data
Type

Effective
range

Initial
value

Description

Done

Instruction

execution

completed

BOOL TRUE,FALSE FALSE

Axis instruction execution

complete, set to TRUE

Busy
Instruction

execution in
BOOL TRUE,FALSE FALSE

Execution of current

instruction is in progress,

VE Controller Programming Manual

progress set to TRUE

CommandAbort
Instruction

interrupted
BOOL TRUE,FALSE FALSE

If the current instruction is

interrupted, set to TRUE

Error
Error

BOOL TRUE,FALSE FALSE
Set to TRUE if an

exception occurs

ErrorID
Error code SMC_

ERROR

Refer to SMC_

ERROR
0

Error code is output when

an exception occurs

3) Function description
This function block runs in Standstill and the state of the instruction is Discrete Motion, so
that the execution of the instruction can be focused on the running state of the axis to avoid
interrupting other instructions of the axis or being interrupted by other instructions.
The start instruction is the rising edge of Execute, this instruction can be repeated on the
rising edge of Discrete Motion to refresh the latest Position position each time.
Acceleration or Deceleration is zero, the instruction runs in an abnormal state, but the state
of the axis is Discrete Motion.

◆ Trapezoidal acceleration and deceleration movements

Velocity, Acceleration and Deceleration have data; and Jerk is 0；

◆S-shaped acceleration and deceleration movements

Velocity, Acceleration and Deceleration and Jerk all have data；

4) Timing diagram
Execute of a function block must have a rising edge condition.

VE Controller Programming Manual

Done for a function block indicates that the instruction has been executed normally.
Busy of a function block indicates that the function block is currently being executed；

7.3.9 MC_MoveSuperImposed

Axis in the original instruction speed and position on the basis of the superimposed
acceleration and position data in the running instruction, the entire original instruction
execution time model no change; through this instruction can solve our actual operation of
some similar by the belt and gear clearance error compensation, can ensure the consistency
of the movement;

The command runs with the parameters Distance, VelocityDiff, Acceleration,
Deceleration and Velocity; a value of 0 for Acceleration or Deceleration is an error. MC_
MoveSuperImposed is equivalent to the MC_MoveRelative instruction in the standstill state.
1) Command format

Instructions Name Graphical representation ST Performance

MC_

MoveSuperImposed

叠加相对

运动指令

2） Related variables
◆ Input and output variables

Input and
output
variables

Name
Data
Type

Effective
range

Initial
value

Description

Axis AXIS AXIS_REF — —
Mapped to an axis, i.e. an

instance of AXIS_REF_SM3

◆ Input variables

Input
variables

Name
Data
Type

Effective
range

Initial
value

Description

VE Controller Programming Manual

Execute

Execution
conditions

BOOL TRUE,FALSE FALSE

A rising edge of the
input will initiate the
processing of the
function block

Distance

Axis arrival
position LREAL

Data range
0

This data is the
superimposed position
data

VelocityDiff

Stack
acceleration LREAL

Data range
0

Axis running
superimposed
acceleration

Acceleration
Acceleration

LREAL
Data range

0
Acceleration value as
speed increases

Deceleration
Deceleration

LREAL
Data range

0
Deceleration value as
speed increases

Jerk
Leap

LREAL
Data range

0
Slope change of curve
acceleration/deceleration

◆ Output Variables

Output
Variables

Name
Data
Type

Effective
range

Initial
value

Description

Done

Instruction
execution
completed

BOOL TRUE,FALSE FALSE

Axis instruction
execution complete,
set to TRUE

Busy

Instruction
execution in
progress

BOOL TRUE,FALSE FALSE

Execution of current
instruction is in
progress, set to TRUE

CommandAbort

Instruction
interrupted

BOOL TRUE,FALSE FALSE

If the current
instruction is
interrupted, set to
TRUE

Error
Error

BOOL TRUE,FALSE FALSE
Set to TRUE if an
exception occurs

ErrorID

Error code
SMC_

ERROR

Refer to SMC_

ERROR
0

Error code is output
when an exception
occurs

3) Function Description
This function block is for superimposing position and velocity commands, VelocityDiff and

Distance for superimposing velocity and position on other commands, respectively.
MC_MoveSuperImposed can be superimposed on any other command in motion mode.
MC_MoveSuperImposed can also be interrupted by MC_MoveSuperImposed.
in the state StandStill, the function block MC_MoveSuperimposed acts similarly to

MC_MoveRelative.
The start instruction is the rising edge of Execute.
4) Timing diagram

VE Controller Programming Manual

the function block Execute must have a rising edge condition.
Done of the function block indicates that the instruction has been executed normally.
Busy of the function block indicates that the function block is currently being executed.
◆ Example

◆Timing operating instructions :

VE Controller Programming Manual

7.3.10 MC_PositionProfile

This function block is designed to command time-position locked motion profiles.

1) Command format

Instructions Name Graphical representation ST Performance

MC_

PositionProfile

Position

profile

command

2） Related variables
◆ Input and output variables

Input and
output
variables

Name
Data
Type

Effective
range

Initial
value

Description

Axis

Axes
AXIS_REF — —

Mapping to an axis, i.e.
an instance of
AXIS_REF_SM3

TimePosition

Axis
position
running
time and
position
description

MC_TP_REF

Description of the axis
position runtime and
position data , data
consisting of multiple
data sets

◆ Input variables

Input
variables

Name
Data
Type

Effective
range

Initial
value

Description

Execute

Execution
conditions BOOL TRUE,FALSE FALSE

A rising edge of the input
will initiate the processing
of the function block

ArraySize
Dynamic
arrays

INT
Data range

0
Number of arrays used in
the run profile

PositionScale

Synthesis
factors LREAL

" Positive
numbers "
+ "0"

1

Scale factor of the
position in MC_TP_REF

Offset
Offset

LREAL 0
Overall offset value of the
position

◆ Output Variables

Output
Variables

Name
Data
Type

Effective
range

Initial
value

Description

Done Instruction BOOL TRUE,FALSE FALSE Axis instruction

VE Controller Programming Manual

execution
completed

execution complete,
set to TRUE

Busy

Instruction
execution in
progress

BOOL TRUE,FALSE FALSE

Execution of current
instruction is in
progress, set to
TRUE

CommandAbor

t

Instruction
interrupted

BOOL TRUE,FALSE FALSE

If the current
instruction is
interrupted, set to
TRUE

Error
Error

BOOL TRUE,FALSE FALSE
Set to TRUE if an
exception occurs

ErrorID

Error code
SMC_ER

ROR

Rerfer to

SMC_ERROR
0

Error code is output
when an exception
occurs

3) Function description
This function block is a contouring motion model for time periods and positions, with a

running mode of Discrete Motion, based on the data set by the user in the TimePosition
variable. The running state of this function block is in Standstill, the state of the instruction is
Discrete Motion, and no other state can be run. The start instruction is the rising edge of
Execute, and the instruction is repeated in Discrete Motion.

TimePosition is the MC_TP_REF data type;
MC_TP_REF is described as follows :

Members Type Initial value Description

Number_of_pairs INT 0
Number of segments of the
profile path

IsAbsolute BOOL TRUE
Absolute motion (TRUE) and
relative motion selection

MC_TP_Array ARRAY[1..N] OF SMC_TP Arrays of times and positions

SMC_TP The specific description is as follows:

Members Type Initial value Description

delta_time TIME TIME#0ms
Time of position
segment

position LREAL 0
Current position
value

Note: Any change in speed according to the set position data will be adjusted according to
the S curve.
◆ Timing diagram
Conditions MC_TP_Array can only be run if the position profile command has been set by

other means.
The axis must be in the Standstill state for the instruction to run.
Execute of the function block must have a rising edge condition.
Done of the function block indicates that the instruction has been executed normally.

VE Controller Programming Manual

Busy of a function block indicates that the function block is currently being executed；

4) Error description
An error occurs when the axis state is not a parameter error in the start-up instruction or
instruction system in Standstill, and the axis error can only be cleared before operation starts.
Note]: Please read "Appendix C Error Code Descriptions" for a description of the relevant
error codes.

VE Controller Programming Manual

7.3.11 MC_Reset

By resetting all errors associated with the internal axes, the function block is designed to stop
from status error to stop. This does not affect the output of the function block instance.

1) Command format

Instructions Name Graphical representation ST Performance

MC_Reset

Axis error

status reset

command

2） Related variables
◆ Input and output variables
Input and
output
variables

Name
Data
Type

Effective
range

Initial
value

Description

Axis AXIS AXIS_REF — —
Mapped to an axis, i.e. an instance of

AXIS_REF_SM3

◆ Input variables

Input
variables

Name
Data
Type

Effective
range

Initial
value

Description

Execute
Implementation

conditions
BOOL TRUE,FALSE FALSE

A rising edge of the input will initiate the

processing of the function block

◆The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Done

The execution of

the instruction is

complete

BOOL TRUE,FALSE FALSE
The axis instruction execution is

complete and is set to TRUE

Busy
The instruction is

being executed
BOOL TRUE,FALSE FALSE

The current instruction is in

execution and is set to TRUE

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is set

to TRUE

ErrorID The error code
SMC_

ERROR

See SMC_

ERROR
0

When an exception occurs, the error

code is output

3) Description of the function
This function block changes the axis state to Standstill in the case of normal axis

communication, and the abnormal state of the axis to a normal and operational state;

VE Controller Programming Manual

Axis.bCommunication is FLASE state when the axis errorstop cannot be reset, and the
communication between the main station and the from the station axis must be
re-established;

The Busy flag bit in the instruction has a very short time to connect, please note when
using;
Time series chart

VE Controller Programming Manual

7.3.12 MC_ReadActualPosition

The instruction reads the actual location where the drive is running and is saved in a variable
cell that it defines.

1) Instruction format

Instructions Name Graphical performance ST performance

MC_

ReadActualPosition

The actual

location

reads the

instruction

2) Related variables
input and output variables

Enter the output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF — —
Maps to the axis, AXIS_REF_SM3

instance of the property

Enter variables

Enter the
variable

Name
The data

type
Effective range

The
initial
value

Describe

Enable

The

execution

condition

BOOL TRUE,FALSE FALSE

Read the current position

of the servo for the TRUE

state

The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Valid
Location data is

available for flags
BOOL TRUE,FALSE FALSE

The correct location of the

drive is set to TRUE

Busy
The instruction is

being executed
BOOL TRUE,FALSE FALSE

The current instruction is in

execution and is set to TRUE

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it

is set to TRUE

ErrorID The error code
SMC_

ERROR

See SMC_

ERROR
0

When an exception occurs,

the error code is output

Position
Gets to the axis

position
LREAL

Axis

position
0

The axis position data read

out of the instruction

VE Controller Programming Manual

3) Function description
The actual position command in the drive is read by means of this instruction, which is an
Enable level enable effect. The instruction can be used repeatedly without affecting each
other.
◆ Timing diagram
The condition that Enable of the function block must be TRUE.
Valid of the function block indicates that the Position read is a valid data value.
Busy of the function block indicates that the function block is currently being executed.
Timing operation description :

VE Controller Programming Manual

7.3.13 MC_ReadAxisError

The error case in which the instruction reads the axis and is saved in a variable cell that it
defines.

1) Instruction format

Instructions Name Graphical performance ST performance

MC_ReadAxisError

The wrong

state of the

reading

axis

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF — —
Maps to the axis, AXIS_REF_SM3 instance of

the property

Enter variables

Enter
the

variable
Name

The data
type

Effective
range

The
initial
value

Describe

Enable

The

execution

condition

BOOL TRUE,FALSE FALSE
Read the current position of the servo

for the TRUE state

The output variable

The
output
variable

Name
The
data
type

Effective
range

The initial
value

Describe

Valid
The error data

gets the flag
BOOL TRUE,FALSE FALSE

The error data of the axis can

be obtained and placed as

TRUE

Busy

The

instruction is

being

executed

BOOL TRUE,FALSE FALSE
The current instruction is in

execution and is set to TRUE

Error Error BOOL TRUE,FALSE FALSE When an exception occurs, it is

VE Controller Programming Manual

set to TRUE

ErrorID
The error

code

SMC_

ERROR

See SMC_

ERROR
0

When an exception occurs, the

error code is output

AxisError

The axis is

incorrectly

marked

BOOL TRUE,FALSE FALSE

The read-out axis is an error,

corresponding to the indicated

position

AxisErrorID
Axis error

code
DWORD 0

The read-out

axis is an error

code

SWEnd

SwitchActive

The soft limit

switch is valid
BOOL TRUE,FALSE FALSE

In instruction read, check the

status of the soft limit switch

3) Function description
Reads the error code in the drive via MC_ReadAxisError, the instruction is the Enable level
enable effect. The instruction can be used repeatedly without affecting each other.
◆ Timing diagram
The condition that Enable of the function block must be TRUE.
Valid of the function block indicates that the AxisError and AxisErrorID read is a valid data
value.
Busy of the function block indicates that the function block is currently being executed；

VE Controller Programming Manual

7.3.14 MC_ReadBoolParameter

The instruction reads the bit parameters of the drive shaft and saves them in a variable unit
that it defines.

1) Instruction format

Instructions Name Graphical performance ST performance

MC_

ReadBoolParameter

Read the

bit

parameters

of the axis

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF — —
Maps to the axis, AXIS_REF_SM3

instance of the property

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Enable

The

execution

condition

BOOL TRUE,FALSE FALSE
Read the current position of the

servo for the TRUE state

ParameterNumber

The serial

number

of the

axis

argument

DINT 0

Access the indexes and sub-indexes

and serial numbers of axis

parameters

Note:P arameterNumber (DINT)=
-DWORD_TO_DINT (SHL (USINT_TO_DWORD (usiDataLength), 24) (data length in
object dictionary)
+SHL (UINT_TO_DWORD (uiIndex), 8) (index -16BIT inobject dictionary)
+usisubIndex(sub-index -8BIT in object dictionary).

usiDataLength: Filled in by bytes; 1 byte is 16'01; 2 bytes is 16'02; 4 bytes is 16'04, etc.
The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

VE Controller Programming Manual

Valid
Location data is

available for flags
BOOL TRUE,FALSE FALSE

The correct location of the drive

is set to TRUE

Busy
The instruction is being

executed
BOOL TRUE,FALSE FALSE

The current instruction is in

execution and is set to TRUE

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is

set to TRUE

ErrorID The error code
SMC_

ERROR

See SMC_

ERROR
0

When an exception occurs, the

error code is output

Value Gets to the axis status BOOL TRUE,FALSE FALSE
The axis status of the instruction

read out

3) Function description
The bit data status in the drive is read via MC_ReadBoolParam, the instruction is an Enable
level enable effect. The instruction can be used repeatedly without affecting each other.
◆ Timing diagram
The condition that Enable of the function block must be TRUE.

Valid of the function block indicates that the read Valid is a valid bit status data.
Busy of the function block indicates that the current function block is being executed.
◆ Timing operation description :

VE Controller Programming Manual

7.3.15 MC_ReadStatus

The instruction reads the state data of the axis and saves it in its own defined variable cell.

1) Instruction format

Instructions Name Graphical performance ST performance

MC_ReadStatus
The status of the

reading axis

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF — —
Maps to the axis, AXIS_REF_SM3

instance of the property

Enter variables

Enter
the

variable
Name

The data
type

Effective
range

The
initial
value

Describe

Enable

The

execution

condition

BOOL TRUE,FALSE FALSE
Read the current position of the servo for

the TRUE state

The output variable

The output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Valid
Axis status Gets

the flag
BOOL TRUE,FALSE FALSE

When true, the representative axis

state is available

Busy
The instruction is

being executed
BOOL TRUE,FALSE FALSE

The current instruction is in

execution and is set to TRUE

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is

set to TRUE

ErrorID The error code SMC_ See SMC_ 0 When an exception occurs, the

VE Controller Programming Manual

ERROR ERROR error code is output

Disabled
The axis is not in

an enabled state
BOOL TRUE,FALSE FALSE

The axis is true in the no-enabled

state;

Errorstop Axis error status BOOL TRUE,FALSE FALSE
The axis is true in the error

operating state;

Stoping
The axis stops the

process state
BOOL TRUE,FALSE FALSE

The axis is TRUE during the stop

process

StandStill
Axis standard

status
BOOL TRUE,FALSE FALSE

The axis is TRUE in the standard

(operational) state

Discrete

Motion

The discrete

motion state of the

axis

BOOL TRUE,FALSE FALSE
The axis is TRUE in a discrete

motion state

Continuous

Motion

The continuous

motion of the axis
BOOL TRUE,FALSE FALSE

The axis is TRUE in a continuous

motion state

Synchronized

Motion

The axis runs in

sync
BOOL TRUE,FALSE FALSE

The axis is TRUE in the

synchronized motion state

Homing
The axis returns to

the origin state
BOOL TRUE,FALSE FALSE

The axis is TRUE in the

back-to-origin state

Constant

Velocity

The shaft runs at a

speed of arrival
BOOL TRUE,FALSE FALSE

True when the shaft reaches run

speed

Accelerating

The axis

accelerates the

process state

BOOL TRUE,FALSE FALSE
The axis acceleration process

status is TRUE

Dccelerating
Axis deceleration

process status
BOOL TRUE,FALSE FALSE

The axis deceleration process

status is TRUE

FBError

Occured

A flag appears for

an error in the axis

function block

BOOL TRUE,FALSE FALSE
The axis function block error flag

is TRUE

3) Function description
The various states of the corresponding axes are indicated by MC_ReadStatus, the

command is the Enable level enable effect. The command can be used several times without
affecting each other.

The Enable condition of the function block must be TRUE.
Valid of the function block indicates that the various data of the next status flag are

read out.
The Busy of a function block indicates that the function block is currently being

executed.

VE Controller Programming Manual

7.3.16 MC_ReadParameter

The instruction reads the parameters of the drive shaft and saves them in a variable unit that
you define yourself.

1) Instruction format

Instructions Name Graphical performance ST performance

MC_

ReadParameter

Read the

parameters

of the axis

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF — —
Maps to the axis, AXIS_REF_SM3 instance of

the property

Enter variables

Enter
the

variable
Name

The
data
type

Effective
range

The
initial
value

Describe

Enable
The execution

condition
BOOL TRUE,FALSE FALSE

Read the current position of the

servo for the TRUE state

Parameter

Number

The serial

number of the

axis argument

DINT 0

Access the indexes and sub-indexes

and serial numbers of axis

parameters

Note:P arameterNumber (DINT)=
-DWORD_TO_DINT (SHL (USINT_TO_DWORD (usiDataLength), 24) (data length in
object dictionary)
+SHL (UINT_TO_DWORD (uiIndex), 8) (index -16BIT inobject dictionary)
+usisubIndex(sub-index -8BIT in object dictionary).

usiDataLength: Filled in by bytes; 1 byte is 16'01; 2 bytes is 16'02; 4 bytes is 16'04, etc.

The output variable

The
output
variable

Name
The
data
type

Effective
range

The initial
value

Describe

VE Controller Programming Manual

Valid
Location data is

available for flags
BOOL TRUE,FALSE FALSE

The correct location of the

drive is set to TRUE

Busy
The instruction is

being executed
BOOL TRUE,FALSE FALSE

The current instruction is in

execution and is set to TRUE

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is

set to TRUE

ErrorID The error code
SMC_

ERROR

See SMC_

ERROR
0

When an exception occurs, the

error code is output

Value
Gets the axis

parameters
LREAL 0

The axis parameters read out

of the instruction

3) Description of the function
The MC_ReadParam the bit data state in the drive by using the computer, instructing
the Enable level enable effect. Instructions can be reused multiple times without
affecting each other.

◆Timing diagram
the condition that Enable of the function block must be TRUE.
Valid of a function block indicates that the read Valid is a valid bit status data.
Busy of a function block indicates that the current function block is being executed.
Timing operation description :

VE Controller Programming Manual

7.3.17 MC_AccelerationProfile

1) Instruction format

Instructions Name Graphical performance ST performance

MC_

AccelerationProfile

Acceleration

profile

instruction

2) Related variables
Input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF — —
Maps to the axis, AXIS_REF_SM3

instance of the property

TimeAcceleration

Axis acceleration

time and

acceleration

description

MC_TA_

REF

Axis acceleration time and

acceleration data description,

acceleration data consists of

multiple sets of data

Enter variables

Enter the
variable

Name
The
data
type

Effective
range

The initial
value

Describe

Execute

The

execution

condition

BOOL TRUE,FALSE FALSE

An up-edge of the input will

initiate the processing of the

function block

ArraySize
Dynamic

array
INT

The range of

data
0

The number of arrays used

in the run profile

AccelerationScale
Synthesis

factor
LREAL

"Positive" and

"0"
1

MC_TA_REF factor of

acceleration or destoation in

the system

Offset Offset LREAL 0

The overall offset value of

the acceleration and

decrease speed

The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Done The execution of BOOL TRUE,FALSE FALSE The axis instruction execution is

VE Controller Programming Manual

the instruction is

complete

complete and is set to TRUE

Busy
The instruction is

being executed
BOOL TRUE,FALSE FALSE

The current instruction is in execution

and is set to TRUE

Command

Abort

The instruction is

interrupted
BOOL TRUE,FALSE FALSE

The current instruction is interrupted

and is set to TRUE

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is set to

TRUE

ErrorID The error code
SMC_

ERROR

See SMC_

ERROR
0

When an exception occurs, the error

code is output

3) Description of the function
This function block is a profile motion model for time periods and deceleration, running

in Discrete Motion, based on the data set by the user in the TimeAcceleration variable. This
function block runs in Standstill, the instruction runs in Discrete Motion, and other states
cannot run. The startup instruction is the up-edge start of Execute, and this instruction
repeats the speed at Discrete Motion on the last overlay, which is prone to system failure.

TimeAcceleration is MC_TA_REF data type;
MC_TA_REF description is as follows:

Members Type The initial value Describe

Number_of_pairs INT 0
The number of segments of

the profile path

IsAbsolute BOOL TRUE
Absolute motion (TRUE) and

relative motion selection

MC_TA_Array ARRAY[1..N] OF SMC_TA
An array of time and

acceleration values

SMC_TA description is as follows:

Members Type The initial value Describe

delta_time TIME TIME#0ms
The time of the acceleration

period

acceleration LREAL 0 The current acceleration value

Note : The set acceleration is reflected in the change in velocity, all acceleration changes
in the way the S curve changes, from the final result to the acceleration data of the starting
acceleration isA, the termination acceleration is B(A-B)/2 is reflected in the final velocity;

4) Time series chart
Condition MC_TA_Array has been set by other means; the axis must
be in the Standstill state instruction to run; the Execute of the function block must have
conditions on the rising
edge; the Done of the function block indicates that the instruction is executed
normally; and the Busy of the function block indicates that the current function block is
in the process of
executing;

VE Controller Programming Manual

5) Error description
An error occurs when the axis state is not a parameter error in the start-up instruction

or instruction system in Standstill, and the axis error can only be cleared before operation
starts.
[Note]: Please read "Appendix C Error Code Descriptions" for a description of the relevant
error codes.

VE Controller Programming Manual

7.3.18 MC_VelocityProfile

1) Instruction format

Instructions Name Graphical performance ST performance

MC_

VelocityProfile

Speed

profile

instructions

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF — —
Maps to the axis, AXIS_REF_SM3

instance of the property

TimeVelocity

Axis speed run

time and speed

description

MC_TV_

REF

Axis speed run time and speed

data description, consisting of

multiple sets of data

Enter variables

Enter the
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

Execute

The

execution

condition

BOOL TRUE,FALSE FALSE

An up-edge of the input will

initiate the processing of the

function block

ArraySize
Dynamic

array
INT

The range of

data
0

The number of arrays used in the

run profile

VelocityScale
The speed

factor
LREAL "Positive", "0" 1 The scale factor of the speed

Offset Offset LREAL 0
The overall offset value of the

velocity value

The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Done

The execution of

the instruction is

complete

BOOL TRUE,FALSE FALSE
The execution of the instruction is

complete and is set to TRUE

VE Controller Programming Manual

Busy
The instruction is

being executed
BOOL TRUE,FALSE FALSE

The current instruction is in

execution and is set to TRUE

Command

Abort

The instruction is

interrupted
BOOL TRUE,FALSE FALSE

The current instruction is

interrupted and is set to TRUE

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is set

to TRUE

ErrorID The error code
SMC_ER

ROR

See SMC_

ERROR
0

When an exception occurs, the error

code is output

3) Description of the function
This function block is an outline motion model for time periods and speeds, running in
Continuous Motion, based on data set by the user in the TimeVelocity variable.
This function block runs in Standstill, the instruction runs in Discrete Motion, and other states
cannot run.
The startup instruction starts on the rising edge of Execute, and this instruction runs
repeatedly in Discrete Motion.
TimeVelocity is MC_TV_REF data type;
MC_TV_REF description is as follows:

Members Type
The initial
value

Describe

Number_of_pairs INT 0
The number of segments of the profile

path

IsAbsolute BOOL TRUE
Absolute motion (TRUE) and relative

motion selection

MC_TV_Array ARRAY[1..N] OF SMC_TV An array of time and speed

SMC_TV description is as follows:

Members Type The initial value Describe

delta_time TIME TIME#0ms
The time of the speed value

segment

Velocity LREAL 0
The speed value of the

current record

Note: The entire velocity process is the way the S curve is deceleration, and each profile is
calculated as an overlay; Speed is also superimposed when instructions are repeated,
avoiding speed oversleed when instructions are used, and repeated runs must return the
state of this
axis to the Standstill state.
◆Timing diagram

condition MC_TV_Array has been set by other means in order to run the position profile
instruction.
the axis must be in the Standstill state for the instruction to run.
Execute of the function block must have a rising edge condition.
Done of the function block indicates that the instruction has been executed normally.
Busy of a function block indicates that the function block is currently being executed.；

VE Controller Programming Manual

4) Error description
An error occurs when the axis state is not a parameter error in the start-up instruction

or instruction system in Standstill, and the axis error can only be cleared before operation
starts.

[Note]: Please read "Appendix C Error Code Descriptions" for a description of the
relevant error codes.

VE Controller Programming Manual

7.3.19 MC_WriteBoolParameter

The instruction sets the bit parameters of the drive shaft.

1) Instruction format

Instructions Name Graphical performance ST performance

MC_

WriteBoolParameter

Set the bit

parameters

for the axis

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF — —
Maps to the axis, AXIS_REF_SM3 instance

of the property

Enter variables

Enter the
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

Execute
The execution

condition
BOOL TRUE,FALSE FALSE

Set the operation once for the

rising edge operation

Parameter

Number

The serial

number of the

axis argument

DINT 0

Access the indexes and

sub-indexes and serial numbers of

axis parameters

Value Set the value BOOL TRUE,FALSE FALSE Set the bit parameter value

Note:P arameterNumber (DINT)=
-DWORD_TO_DINT (SHL (USINT_TO_DWORD (usiDataLength), 24) (data length in
object dictionary)
+SHL (UINT_TO_DWORD (uiIndex), 8) (index -16BIT inobject dictionary)
+usisubIndex(sub-index -8BIT in object dictionary).

usiDataLength: Filled in by bytes; 1 byte is 16'01; 2 bytes is 16'02; 4 bytes is 16'04, etc.

The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Done The setup BOOL TRUE,FALSE FALSE The setup operation was

VE Controller Programming Manual

operation was

successful

successfully set to TRUE

Busy
The instruction is

being executed
BOOL TRUE,FALSE FALSE

The current instruction is in

execution and is set to TRUE

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is set

to TRUE

ErrorID The error code
SMC_

ERROR

See SMC_

ERROR
0

When an exception occurs, the error

code is output

3) Function description
The bit parameter of the axis is set via MC_ WriteBoolParameter and the instruction is

Execute rising edge triggered. The instruction can be used several times without affecting
each other.

◆ Timing diagram
Execute of the function block must be a rising edge triggering condition.
Done of the function block means that the setting operation is successful.
Busy of the function block indicates that the current function block is being executed.
◆ Description of the timing operation :

VE Controller Programming Manual

7.3.20 MC_WriteParameter

Instructions write parameters to the drive axis and are stored in their own defined variable
units.

1) Instruction format

Instructions Name Graphical performance ST performance

MC_

WriteParameter

Set the axis

parameters

2) Related variables
input and output variables

Enter the
output variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF — —
Maps to the axis, AXIS_REF_SM3

instance of the property

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Execute
The execution

condition
BOOL TRUE,FALSE FALSE

Set the operation once for the

rising edge operation

Parameter

Number

The serial

number of the

axis argument

DINT 0

Access the indexes and

sub-indexes and serial numbers of

axis parameters

Value Set the value LREAL Set the bit parameter value

Note:P arameterNumber (DINT)=
-DWORD_TO_DINT (SHL (USINT_TO_DWORD (usiDataLength), 24) (data length in
object dictionary)
+SHL (UINT_TO_DWORD (uiIndex), 8) (index -16BIT inobject dictionary)
+usisubIndex(sub-index -8BIT in object dictionary).

usiDataLength: Filled in by bytes; 1 byte is 16'01; 2 bytes is 16'02; 4 bytes is 16'04, etc.

The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

VE Controller Programming Manual

Done

The setup

operation was

successful

BOOL TRUE,FALSE FALSE
The setup operation was

successfully set to TRUE

Busy
The instruction is

being executed
BOOL TRUE,FALSE FALSE

The current instruction is in

execution and is set to TRUE

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is set

to TRUE

ErrorID The error code
SMC_

ERROR

See SMC_

ERROR
0

When an exception occurs, the error

code is output

3) Function description
The bit parameter for the axis is set via MC_ WriteParameter and the instruction is

Execute rising edge triggered. The instruction can be used several times without affecting
each other.

◆ Timing diagram
Execute of the function block must be a rising edge trigger condition.
Done of the function block means that the setting operation is successful.
Busy of the function block means that the function block is currently being executed；

VE Controller Programming Manual

7.3.21 MC_AbortTrigger

The function block terminates the associated characteristics of the input latch-related events
and is used MC_Touchprobe with the user.

1) Instruction format

Instructions Name Graphical performance ST performance

MC_AbortTrigger

The function

block

terminates

the event

association

2) Related variables
input and output variables

Enter the
output
variable

Name The data type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF — —
Maps to the axis, AXIS_REF_SM3

instance of the property

TruggerInput
Trigger

signal
TRIIGGER_REF — —

Description of trigger signals,

trigger properties, etc

The TRIIGGER_REF description:

Structure Elements
The
data
type

The
initial
value

Describe

TRIIGGER_

REF

iTrigger

Number
INT -1

Which one of the lock functions is locked in drive

mode.

0: Probe 1 Rising Edge Latch
1: Probe 1 Falling Edge
Latching 2: Probe 2 Rising Edge
Latching 3: Probe 2 Falling Edge Latching

bFastLatching BOOL TRUE

Specifies the type of latch trigger:

TRUE: Drive mode

FALSE: Controller mode

bInput BOOL
bFastLatching is triggered by the controller Input

signal when flasE

bActive BOOL A valid signal that is triggered

Enter variables

Enter
the

Name
The data

type
Effective
range

The
initial

Describe

VE Controller Programming Manual

variable value

Execute

The

execution

condition

BOOL TRUE,FALSE FALSE
Set the operation once for the rising

edge operation

The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Done

The setup

operation was

successful

BOOL TRUE,FALSE FALSE
The setup operation was

successfully set to TRUE

Busy
The instruction is

being executed
BOOL TRUE,FALSE FALSE

The current instruction is in

execution and is set to TRUE

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is

set to TRUE

ErrorID The error code SMC_ERROR See SMC_ERROR 0
When an exception occurs, the

error code is output

3) Function description
The MC_AbortTrigger function block terminates a trigger signal or property and its

associated trigger instruction. Execute of the function block must be a rising edge trigger
condition; Done of the function block indicates a successful setup operation; Busy of the
function block indicates that the function block is currently being executed;

VE Controller Programming Manual

7.3.22 MC_ReadActualTorque

The instruction reads the current torque value that the drive runs, and the current torque
value that is read is saved in a variable unit that you define yourself.

1) Instruction format

Instructions Name Graphical performance ST performance

MC_ReadActualTorque

The

current

torque

value reads

the

instruction

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The initial
value

Describe

Axis Axis AXIS_REF — —
Maps to the axis, AXIS_REF_SM3 instance

of the property

Enter variables

Enter
the

variable
Name

The data
type

Effective
range

The
initial
value

Describe

Enable

The

execution

condition

BOOL TRUE,FALSE FALSE
Read the current position of the servo for

the TRUE state

The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Valid
The current torque

value gets the flag
BOOL TRUE,FALSE FALSE

The torque value of the drive is

correctly obtained and placed as

TRUE

Busy
The instruction is

being executed
BOOL TRUE,FALSE FALSE

The current instruction is in

execution and is set to TRUE

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is

set to TRUE

ErrorID The error code
SMC_

ERROR

See SMC_

ERROR
0

When an exception occurs, the

error code is output

Torque The current torque LREAL The torque 0 The current torque data read out

VE Controller Programming Manual

value obtained value (s) by the instruction

3) Function description
The command to read the current torque value in the drive via MC_ReadActualTorque is
the Enable level enable effect. The instruction can be used several times without affecting
each other.
◆Timing diagram
The condition that Enable of the function block must be TRUE.
Valid of the function block indicates that the Torque read out is a valid data value.
Busy of the function block indicates that the current function block is being executed.；

VE Controller Programming Manual

7.3.23 MC_ReadActualVelocity

The instruction reads the current speed value at which the drive runs, and the current speed
value of the read is saved in a variable cell that it defines.

1) Instruction format

Instructions Name Graphical performance ST performance

MC_

ReadActualVelocity

Current

speed

Read

instructions

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF — —
Maps to the axis, AXIS_REF_SM3

instance of the property

Enter variables

Enter
the

variable
Name

The data
type

Effective
range

The initial
value

Describe

Enable

The

execution

condition

BOOL TRUE,FALSE FALSE
Read the current axis speed for the

TRUE state

The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Valid
The current speed

value gets the flag
BOOL TRUE,FALSE FALSE

The speed value of the drive is

correctly obtained and set to TRUE

Busy
The instruction is

being executed
BOOL TRUE,FALSE FALSE

The current instruction is in

execution and is set to TRUE

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is set

to TRUE

ErrorID The error code
SMC_

ERROR

See SMC_

ERROR
0

When an exception occurs, the error

code is output

Velocity
The current speed

value obtained
LREAL

The speed

value
0

The current speed data read out by

the instruction

VE Controller Programming Manual

3) Function description
The command to read the current velocity value in the drive via MC_ReadActualVelocity is
an Enable level enable effect. The instruction can be used several times without affecting
each other.
◆Timing diagram
The condition that Enable of the function block must be TRUE.
Valid of the function block indicates that the Velocity read out is a valid data value.
Busy of the function block indicates that the current function block is being executed；

VE Controller Programming Manual

7.3.24 MC_SetPosition

Setting the position data in the instruction to the position data of the current axis does not
cause any displacement movement to the set position data operation, which is used to
produce displacement of the coordinate system.

1) Instruction format

Instructions Name Graphical performance ST performance

MC_

SetPosition

Read the

parameters

of the axis

2) Related variables
input and output variables

Enter the
output variable

Name
The data

type
Effective
range

The initial
value

Describe

Axis Axis AXIS_REF — —

Maps to the axis,

AXIS_REF_SM3 instance of the

property

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Execute

The

execution

condition

BOOL TRUE,FALSE FALSE
Set the operation once for the

rising edge operation

Position

Axis

position

data

LREAL 0 Location data

Mode
Set the

value
BOOL TRUE,FALSE FALSE

Position mode;

TRUE: Relative Position

(RELATIVE);

FALSE: Absolute Position

(ABSOLUTE);

The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Done The setup BOOL TRUE,FALSE FALSE The setup operation was

VE Controller Programming Manual

operation was

successful

successfully set to TRUE

Busy

The instruction

is being

executed

BOOL TRUE,FALSE FALSE

The current instruction is

executing in and is set to

TRUE

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it

is set to TRUE

ErrorID The error code SMC_ERROR
See

SMC_ERROR
0

When an exception occurs,

the error code is output

3) Function description
a. The axis position parameter is set by MC_ SetPosition, which does not produce any

displacement but creates a coordinate offset; the command is triggered by the rising edge of
Execute; the command can be used repeatedly without affecting each other.

b. Relationship with the reference position. When Mode=TRUE, Position is relative to the
reference position, and the value of Position=Reference Position+Position; when
Mode=FALSE, Position is absolute to the reference position, and the value of
Position=Position. When the input parameter Relative is a different value, the corresponding
execution effects are shown in the lower left and lower right figures respectively.

◆ Timing diagram
Execute of the function block must be a rising edge trigger condition.
Done of the function block indicates that the setting operation was successful.
Busy of a function block indicates that the current function block is being executed；

VE Controller Programming Manual

7.3.25 MC_TouchProbe

The instruction is triggered by an external signal to save the position data of the current axis.

1) Instruction format

Instructions Name Graphical performance ST performance

MC_TouchProbe

Enable

external

locking

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF — —
Maps to the axis, AXIS_REF_SM3

instance of the property

TruggerInput
Trigger

signal

TRIIGGER_

REF
— —

Associated properties such as trigger

signals or trigger properties

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Execute
The execution

condition
BOOL TRUE,FALSE FALSE

Set the operation once for

the rising edge operation

WindowOnly
Trigger the

window
BOOL TRUE,FALSE FALSE

FirstPosition
The start position

of the trigger
LREAL — 0

Specify where to start the

receive trigger

LastPosition
The end position

of the trigger
LREAL — 0

Specify the end position

where the receive trigger is

received

The output variable

The output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Done
The setup

operation was
BOOL TRUE,FALSE FALSE

The setup operation was

successfully set to TRUE

VE Controller Programming Manual

successful

Busy

The instruction

is being

executed

BOOL TRUE,FALSE FALSE
The current instruction is in

execution and is set to TRUE

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it

is set to TRUE

ErrorID The error code
SMC_

ERROR

See SMC_

ERROR
0

When an exception occurs,

the error code is output

RecordedPosition

The location

where the

record was

triggered

LREAL — 0
The current position at which

the trigger occurred

CommandAborted
The instruction

is interrupted
BOOL TRUE,FALSE FALSE

The current instruction is

interrupted and is set to

TRUE

3) Function descriptions
Description of probe functions
 The probe function is designed to enable position control based on the occurrence of a
trigger signal, such as a sensor input, and to record (lock) the axis position when a trigger
signal occurs. Normally 2 trigger points can be set for each axis at the same time.
 The MC_TouchProbe (enable external locking) command can be used to specify "trigger
input conditions" and "enable window" for the axis to be locked. The trigger signal can
specify a variable that can be used by the user program in addition to the signal to which the
servo drive is connected. To terminate the locking function, use the MC_AbortTrigger
command.
 Locking function available for VC servo drives and other servos, encoders, etc. that
support the probe function.
 When WindowOnly is used, the trigger signal is only detected within the range of the
start and end points. The ranges for the different counting modes are shown below.

Linear mode
 Detectable only if FirstPosition ≤ LastPosition.
 If FirstPosition > LastPosition is specified, an exception will be thrown.
 An exception is thrown when a position range is specified beyond the linear mode

Rotation mode

VE Controller Programming Manual

Both FirstPosition ≤ LastPosition and FirstPosition > LastPosition can be specified.
When the latter is specified, it is set to cross the lower limit setting of the ring counter.

If you specify beyond the upper or lower limit of the ring counter, the command will
cause an exception.

There are two methods of obtaining the latch position, each of which is described below：

 MC_TuochProbe command get
The current position of the running axis is recorded when triggered by a signal from the

MC_TouchProbe function block TruggerInput. execute Execute on rising edge, drive latch:
the drive picks up the latch signal at the recorded position and then transmits it to the
controller.

VE Controller Programming Manual

Structure data type TRIIGGER_REF describes the shaft driver used by the probe
input and determines which probe number corresponds to which hardware probe.

The name of
the member

The data
type

The
initial
value

Describe

iTriggerNumber INT -1
Trigger channel; defined by the driver (only used
when bFastLatching'.'

bFastLatching BOOL TRUE

TRUE: The lock is present in the drive and is
completed using the probe function defined by
the servo shaft 60B8 (precise).
FALSE: In the motion task cycle,bInput is latched
(inaccurate).

bInput BOOL
The internal latch signal, which is valid when
bFastLatching is false.

bActive BOOL FALSE
The probe status, true, states that the probe is
active

When bFastLatching: s TRUE, take the Wykoda BusServo VECServo asan example, the
relationshipbetween the iTriggerNumber number and the servo probe is as follows:

iTriggerNumber The hardware DI and edges of the servo probe

0 Servo DI9 rising edge latch

VE Controller Programming Manual

1 Servo DI9 drops along the latch

2 Servo DI10 rising edge latch

3 Servo DI10 drops along the latch

Familiarisation with VC servo-probe function
Index 16#60B8

Bit Function

0 Probe 1 enabled.
0 - Probe 1 not
enabled
1 - Probe 1 enabled

Bit0~Bit5: Probe 1 related
settings
◆Note.
Once the probe 1 enable signal
(rising edge of bit0 of 60B8h) is
valid, the function settings of
probe 1 (trigger mode, trigger
signal, valid latching edge)
cannot be changed, and bit0 of
60B8h must remain valid during
the action of probe 1. DI9 can
enable both its rising and falling
edges when used as the probe 1
trigger signal.

1 Probe 1 trigger mode
0-Single trigger,
triggered only when
the trigger signal is
valid for the first time
1-Continuous
triggering

2 Probe 1 trigger signal
selection
0-DI9 input signal
1-Z signal

3 RES

4 Probe 1 rising edge
enable
0 - no latching on
rising edge
1 - rising edge latched

5 Probe 1 falling edge
enable
0 - no latching on
falling edge
1 - falling edge latch

6-7 RES

8 Probe 2 enabled.
0 - Probe 2 not
enabled
1 - Probe 2 enabled

Bit8~Bit15: Probe 2 related
settings

◆Note:Once the probe 2
enable signal (the rising edge of
bit 8 of 60B8h) is valid, the
function settings of probe 2
(trigger mode, trigger signal,
valid latch edge) cannot be
changed, and while the probe 2

9 Probe 2 trigger mode
0-Single trigger,
triggered only when
the trigger signal is
valid for the first time
1 - Continuous trigger

VE Controller Programming Manual

is working, bit 8 of 60B8h must
Keep it effective. When DI10 is
used as the trigger signal of
probe 2, its rising edge and
falling edge can be enabled at
the same time.

10 Probe 2 trigger signal
selection
0-DI10 input signal
1-Z signal

11 RES

12 Probe 2 rising edge
enable
0 - no latching on
rising edge
1 - rising edge latched

13 Probe 2 falling edge
enable
0 - no latching on
falling edge
1 - falling edge latch

14-15 RES

Configuring PDO
The following PDO must be configured to use the probe function.
Output
16#60B8 (probe function)

Inputs
16#60B9 (probe status)
16#60BA (Probe 1 rising edge position latch) // selected according to 60B8 value
16#60BB (Probe 1 falling edge position latch) //selected according to 60B8 value
16#60BC (Probe 2 rising edge position latch) //selected according to 60B8 value
16#60BD (Probe 2 falling edge position latching)//selected according to 60B8 value
Configure the appropriate probe function according to actual needs, as shown below.

Or configure the probe related PDO in the 16#1600 and 16#1A00 groups.

VE Controller Programming Manual

 Calling the MC_TouchProbe command

Note that a value needs to be assigned to TrInput.iTriggerNumber. Enable command,
trigger signal.

Note: When using the MC_TuochProbe command to capture a position, only a single
capture can be made, not a continuous capture, if you need to capture a position
continuously, use the method of directly modifying the PDO

 Direct modification of PDO
Object index 16 s 60B8
MC_TuochProbe instructions are only supported
0: Probe index 60B8 s 16 s 11;

VE Controller Programming Manual

1: Probe index 60B8 s 16 s 21;
2: Probe index 60B8 s 16 s 1100;
3: Probe index 60B8 s 16 s 2100 four modes. The VC supports more modes, using a

probe function other than the four above. You can set the index directly. The setting method
is as follows.

 Select the from which you want to control and check Enable Expert Mode:

(2) Convert to the "Expert Process Data" interface,click "Output" in the
synchronizationmanager, check "16 1600"in the P DO assignment, you can see that there is
already"16 s 60B8 probe function" in the1st RPDO at this time, without modification:

(3) Sync Manager selects "Input", PDO assignmentclicks 1 6 1A00, selects 1 st TPDOwith SM
on the right, and can see that there is only "probe status, probe one or two rising edge latch
position" in the group at this time, click "Insert" if you want to add the falling edgelatch
position

VE Controller Programming Manual

,

(4) Find 60BB and 60BD,select Click OK toadd:

(5) Click on the process data and you will now see the PDO required for the probe function
you have just added：

VE Controller Programming Manual

(6) Modify the axis parameter setting, do not select automatic mapping, and delete the
address corresponding to the output output parameter probe function.

(7) Set the probe function communication address in the program. Refer to VC manual
introduction 16#60B8 for specific setting values. here configured as 16#60B8 = 2# 0011
0011 0011 0011 = 13107 with the following functions.

Probe 1 enable, continuous latching, rising edge latching, falling edge latching, latching
via DI9

Probe 2 enable, continuous latch, rising edge latch, falling edge latch, latch via DI10

VE Controller Programming Manual

Trigger configuration DI9, DI10, the latch position is saved in the variable and the latch
result is as follows

VE Controller Programming Manual

7.3.26 SMC_MoveContinuousAbsolute

The axes run continuously in absolute position (units are set by axis), the absolute position is
specified by Position, and the last running speed, EndVelocity, is run; the relevant parameters,
Acceleration, Deceleration and Velocity, are set before this instruction is run. Velocity; an
assignment of 0 to Acceleration or Deceleration is an error; during operation, it is important
to pay attention to the complete operation of this instruction to avoid interruptions by other
instructions from the user program's design point of view.

1) Command format

Instructions Name Graphical performance ST performance

MC_Move

ContinousAbsolute

The

absolute

position of

the axis

continuously

controls the

instructions

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF — —
Maps to the axis, AXIS_REF_SM3 instance of the

property

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Execute
The execution

condition
BOOL TRUE,FALSE FALSE

An up-edge of the input will initiate

the processing of the function block

Position

The motion is

absolutely right

for the position

LREAL 0
This data is the absolute position of

the motion

Velocity
The speed at

which it is run
LREAL 0

The maximum speed at which the

axis runs to the target position

EndVelocity
The end speed of

the run
LREAL 0

The speed at which the instruction is

executed

EndVelocity

Direction

The direction of

the end speed
MC_Direction

positive,

negative,

current;

Current

Can be used: positive, negative,

current;

Not available: shortest, fastest

VE Controller Programming Manual

Acceleration Acceleration LREAL 0
Acceleration value as the velocity

increases

Deceleration
Reduce the

speed
LREAL 0

Speed changes by hours and

decreases the speed value

Jerk
Acceleration rate

of change
LREAL 0 Acceleration

Direction
The direction of

operation
shortest shortest

For linear / linear axes: positive,

negative;

For rotation / circumferon axis:

positive, negative, current, shortest,

fastest

The output variable

The output

variable
Name

The data

type
Effective range

The

initial

value

Describe

InEndVelocity

The command

position

arrives

BOOL TRUE,FALSE FALSE
The axis command execution

position arrives and is set to TRUE

Busy

The instruction

is being

executed

BOOL TRUE,FALSE FALSE
The current instruction is in execution

and is set to TRUE

CommandAbort
The instruction

is interrupted
BOOL TRUE,FALSE FALSE

The current instruction is interrupted

and is set to TRUE

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is set to

TRUE

ErrorID The error code
SMC_

ERROR

See SMC_

ERROR
0

When an exception occurs, the error

code is output

3) Function description
This function block is an absolute axis positioning command, where the Distance data is the
absolute position of the axis.
The running state of this function block is in Standstill, the state of the instruction is Discrete
Motion, a complete running process must control the different motion states of the axis.
The start command is the rising edge of Execute. This command can be repeated on the
rising edge of Discrete Motion, refreshing the latest Position position each time.
Acceleration or Deceleration is zero, the instruction runs in an abnormal state, but the state
of the axis is Discrete Motion；
◆ Timing diagram
the axis must be in the Standstill state for the instruction to run.
Execute of a function block must have a rising edge condition.
Done of a function block indicates that the instruction has completed normal execution.
Busy of a function block indicates that the function block is currently being executed；

VE Controller Programming Manual

VE Controller Programming Manual

7.3.27 SMC_MoveContinuousRelative

The axes run continuously in relative position (units are set by axis), the relative position is
specified by Distance, and the final running speed, EndVelocity, is run; the relevant
parameters, Acceleration, Deceleration and Velocity, are set before the instruction is run.
Velocity; a value of 0 for Acceleration or Deceleration is an error; during operation, it is
important to pay attention to the complete operation of this instruction to avoid
interruptions by other instructions from the user program's design point of view.

1) Instruction format

Instructions Name Graphical performance
ST

performance

MC_Move
ContinuousRelative

The axis is
relative to
the
positioning
instruction

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF — —
Maps to the axis, AXIS_REF_SM3 instance of

the property

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Execute
The execution

condition
BOOL TRUE,FALSE FALSE

An up-edge of the input will

start the processing

of the function block

Distance

The relative

position of the

motion

LREAL
The range of

data
0

This data is the relative

position of the motion

Velocity
The speed at

which it is run
LREAL

The range of

data
0

The maximum speed at which

the axis runs to the target

position

EndVelocity
The end speed of

the run
LREAL

The range of

data
0

The speed at which the

instruction is executed

EndVelocity

Direction

The direction of

the end speed
MC_Direction

positive,

negative,
Current

Can be used: positive,

negative,

VE Controller Programming Manual

current; current;

Not available: shortest, fastest

Acceleration Acceleration LREAL
The range of

data
0

Acceleration value as the

velocity increases

Deceleration
Reduce the

speed
LREAL

The range of

data
0

Speed changes by hours and

decreases the speed value

The output variable

The output
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

InEndVelocity
The command

position arrives
BOOL TRUE,FALSE FALSE

The axis command execution

position arrives and is set to

TRUE

Busy

The instruction

is being

executed

BOOL TRUE,FALSE FALSE
The current instruction is in

execution and is set to TRUE

CommandAbort
The instruction

is interrupted
BOOL TRUE,FALSE FALSE

The current instruction is

interrupted and is set to TRUE

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is

set to TRUE

ErrorID The error code
SMC_

ERROR

See SMC_

ERROR
0

When an exception occurs, the

error code is output

3) Function description
This function block runs in Standstill, and the state of the instruction is Discrete Motion, so as
to avoid interrupting the execution of other instructions in this axis or being interrupted by
other instructions.
The start instruction is the rising edge of Execute, which can be repeated on the rising edge
of Discrete Motion to refresh the latest Position each time.
Acceleration or Deceleration is zero, the instruction runs in an abnormal state, but the state
of the axis is Discrete Motion；
◆ Timing diagram
Execute of a function block must have a rising edge condition.
Done of a function block indicates that the instruction has been executed normally.
Busy of a function block indicates that the current function block is being executed.

VE Controller Programming Manual

7.3.28 MC_Jog

1) Instruction format

Instructions Name Graphical performance ST performance

MC_Jog
Pivot point

command

2) Related variables
input variables

Enter the
variable

Name
The data

type
Effective
range

The initial
value

Describe

JogForward
Positive is

valid
BOOL TRUE,FALSE FALSE

Set to TRUE to start moving forward,

and

set to FALSE to stop moving forward

JogBackward
Negative is

valid
BOOL TRUE,FALSE FALSE

Set to TRUE to start moving in reverse;

Set to FALSE to stop the reverse

movement

Velocity
Target

speed
LREAL Positive or "0" 0

Specify the target speed. Unit:

(Instruction unit /s)

Acceleration Acceleration LREAL Positive or "0" 0 Specifies acceleration. In:

Deceleration
Reduce the

speed
LREAL Positive or "0" 0 Specifies a reduction in speed. In:

Jerk Acceleration LREAL Positive or "0" 0
The rate of change in the command

acceleration. In:(instruction unit /s3. .

The output variable

The output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Busy In action BOOL TRUE,FALSE FALSE
When the instruction is received, it

is set to TRUE

CommandAborted

The

execution

is

interrupted

BOOL TRUE,FALSE FALSE
When the instruction is aborted, it

is set to TRUE

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is set

to TRUE

VE Controller Programming Manual

ErrorID
The error

code

SMC_

ERROR

See SMC_

ERROR
0

When an exception occurs, the

error code is output

Input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF — —
Maps to the axis, AXIS_REF_SM3 instance

of the property

3) Function description
Performs a jog according to the specified Velocity.
If a forward run is required, set JogForward to TRUE; if a reverse run is required, set
JogBackward to TRUE.
By setting both JogForward (valid for forward running) and JogBackward (valid for negative
running) to TRUE, no movement will occur. If the command speed setting of the MC_Jog
instruction exceeds the pointing maximum speed in the axis parameter, it will be executed at
the pointing maximum speed.

4) Error description
When an exception occurs during the execution of this instruction, Error becomes TRUE and
the axis stops moving.
You can check the output value of ErrorID (error code) to understand the cause of the
exception.
◆ Timing diagram when an exception occurs

VE Controller Programming Manual

Please read "Appendix C Error Code Descriptions" for a description of the error codes that
occur with the command.

VE Controller Programming Manual

7.3.29 SMC_Inch

Axis step-by-step motion control, through the program can achieve step-by-step step
control.

1) Instruction format

Instructions Name Graphical performance ST performance

SMC_Inch

The axis is

relative to the

positioning

instruction

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF — —
Maps to the axis, AXIS_REF_SM3 instance of

the property

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

InchForward

Is executing

in the right

way

BOOL
TRUE,

FALSE
FALSE

If InchForward is TRUE, the axis will move at a

given speed (Velocity, Speed, Deceleration) in

a positive direction until the distance is

reached. The input must be specified as

FALSE before the motion is started again for

TRUE.

If InchForward is set to FALSE before it

reaches its position, the axis will immediately

decelerate to 0 and Busy will be set to FALSE.

If the input InchBackward is set to TRUE in

simulation, no motion will be generated.

InchBackward
Reverse

execution
BOOL

TRUE,

FALSE
FALSE

If InchBackward is TRUE, the axis will move at

a

given speed value (Velocity, Speed,

Deceleration) in reverse motion to

VE Controller Programming Manual

the set position. The input must then be set

toFALSE, and then set to TRUE to start

another motion.

If the input signal InchForward is also set to

TRUE, there will be no axis motion.

Distance

The

distance

moved

LREAL
The range

of data
0 This data is the distance of motion

Velocity

The speed

at which it is

run

LREAL
The range

of data
0

The maximum speed at which the axis runs to

the target position

Acceleration Acceleration LREAL
The range

of data
0 Acceleration value as the velocity increases

Deceleration
Reduce the

speed
LREAL

The range

of data
0

Speed changes by hours and decreases the

speed value

The output variable

The output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Busy

The instruction

is being

executed

BOOL TRUE,FALSE FALSE
The current instruction is in

execution and is set to TRUE

CommandAbortand
The instruction

is interrupted
BOOL TRUE,FALSE FALSE

The current instruction is

interrupted and is set to TRUE

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it

is set to TRUE

ErrorID The error code
SMC_

ERROR

See SMC_

ERROR
0

When an exception occurs,

the error code is output

3) Function Description
This function block runs in Standstill, and the state of the instruction is Discrete Motion, so as
to avoid interrupting other instructions of the axis or being interrupted by other instructions
during the execution of the instruction. state, but the state of the axis is Discrete Motion.
◆ Timing diagram
InchForward/InchBackward of the function block must have the condition TRUE/FALSE.
Busy of a function block means that the block is currently being executed；

VE Controller Programming Manual

VE Controller Programming Manual

7.3.30 SMC3_PersistPosition

This instruction is used to maintain the position of the recorded solid-axis absolute value
encoder (the position record value before the power-off is restored after the controller is
restarted). If the servo motor is using an absolute value encoder, use this function block in
conjunction.

1) Instruction format

Instructions Name Graphical performance ST performance

SMC3_

PersistPosition

The axis

position is

maintained

2) Related variables
input and output variables

Enter the
output
variable

Name The data type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF - -

Maps to the axis,

AXIS_REF_SM3 instance of

the property

PersistentData
Keep the

data

SMC3_PersistPosition_

Data

The power-off-hold data

structure that stores

location information

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

bEnable Perform BOOL TRUE,FALSE FALSE

True function blocks are executed, false does not

execute function blocks, and to restore the
last stored location during
initialization, the value must be set to
true when the application starts

The output variable

The
output
variable

Name
The data

type
Effective
range

The initial
value

Describe

bPosition

Restored

Location

recovery
BOOL

TRUE,FALS

E
FALSE

TRUE, position recovery

completes after axis restart

bPosition Location BOOL TRUE,FALS FALSE TRUE, the save location is

VE Controller Programming Manual

Stored save E complete after calling the

function block

bBusy
FB in

action
BOOL

TRUE,FALS

E
FALSE

TRUE, the function block is not

executed

bError Error BOOL
TRUE,FALS

E
FALSE TRUE, an exception occurs

eErrorID
The error

code

SMC_

ERROR

SMC_NO_E

RROR

When an exception

occurs, the error

code is output

eRestoringDi

ag

Restore

diagnostics

SMC3_Persist

PositionDiag

SMC3_

PersistPositionDiag.

SMC3_PPD_

RESTORING_OK

Diagnostic information in

location recovery:

SMC3_PPD_RESTORING_OK:

Location Recovery
SMC3_PPD_AXIS_PROP_CHANG

ED: The axis parameters
have changed and
position cannot be
recovered
SMC3_PPD_DATA_STOR
ED_DURING_WRITING:
The function block
copies the data from the
axis parameter data
structure
instead of from the

PersistentData data. Possible

causes: non-synchronous

persistent variables, controller

crash crash

3) Function description
The PLC restart bEnable signal is TRUE, the bPositionRestroed output is TRUE.
Dummy axes and logical axes are not supported.
The actual position of the axes in the VE controller is: Offset + Coded feedback position
(command unit Plus) * Scale, the position recorded by the absolute encoder is the command
unit value. This function block is therefore required to restore the "actual position" before the
power failure after the PLC has been restarted and to record the "actual position" of the axis
before the power failure, the SMC3_PersistPosition_Data must be set to the continuous type
variable".
Usage (when the real axis encoder is a multi-turn absolute value)
④ Declare the SMC3_PersistPosition_Data type in PersistentVars

VE Controller Programming Manual

⑤ Called from the PLC main task (EthCat task)

◆ Affirmation section.

VAR

SMC3_PersistPosition_1:SMC3_PersistPosition;

END_VAR

Program section：

◆ Time-series diagram

4) Error description
An input axis that is a virtual axis or a logical axis will result in an error output; an error in
an axis will result in an error output.

[Note]: Please read "Appendix C Error Code Descriptions" for error code descriptions.。

VE Controller Programming Manual

7.3.31 SMC3_PersistPositionSingleturn

This instruction is used to maintain the position of the recorded solid-axis absolute value
encoder (single-turn absolute value) (after the power-off restarts the controller, the
pre-power-off position record value is restored).
If the servo motor is using a single-turn absolute value encoder, use this function block in
conjunction.

1) Instruction format

Instruction
s

Name Graphical performance ST performance

SMC3_

PersistPosition

Singleturn

The axis

position is

maintaine

d

2) Related variables
input and output variables

Enter the
output
variable

Name The data type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF - -

Maps to the axis,
AXIS_REF_SM3
instance of the
property

PersistentData
Keep
the
data

SMC3_
PersistPosition
Singletrun_Data

The power-off-hold
data structure that
stores location
information

Enter variables

Enter the
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

bEnable Perform BOOL TRUE,FALSE FALSE

True function block execution, false

does not execute function block To

restore the last stored location during

initialization, the value must be set
to true when the application
starts

usiNumberofAbso

luteBitesusiNumb

The

number
UINT 16

How many bits of absolute value

encoder (e.g. 20 bits, 24 bit encoder,

VE Controller Programming Manual

erofAbsoluteBites of digits etc.)

The output variable

The
output
variable

Name
The
data
type

Effective
range

The initial
value

Describe

bPositionRes

tored

Location

recovery
BOOL TRUE,FALSE FALSE

TRUE, position recovery

completes after axis restart

bPositionSto

red

Location

save
BOOL TRUE,FALSE FALSE

TRUE, the call function is done

quickly after saving the location

bBusy
FB in

action
BOOL TRUE,FALSE FALSE

TRUE, the function block is not

executed

bError Error BOOL TRUE,FALSE FALSE TRUE, an exception occurs

eErrorID
The error

code

SMC_ERRO

R

SMC_NO_ERRO

R

When an

exception

occurs, the error

code is output

eRestoringDi

ag

Restore

diagnostics

SMC3_

PersistPosi

tionDiag

SMC3_PersistPo

sitionDiag.

SMC3_PPD_RES

TORING_OK

Diagnostic message in position

recovery

SMC3_PPD_RESTORING_ OK:

Position successfully recovered

SMC3_PPD_AXIS_PROP_

CHANGED: Axis parameter

changed, position cannot be

recovered

SMC3_PPD_DATA_STORED_DURI

NG_WRITING: Function block

copied from axis parameter data

structure instead of copying from

PersistentData data. Possible

causes: Non-synchronous

persistent variable, controller

crash dead

3) Function description
The PLC restart bEnable signal is TRUE, the bPositionRestroed output is TRUE.
Dummy axes and logical axes are not supported.
This function block is required to restore the "actual position" before the power failure after
the PLC has been restarted and to record the "actual position" of the axis before the power
failure, the SMC3_
PersistPositionSingleTurn_Data as a continuous variable".
Usage (when the real axis encoder is a multi-turn absolute value)
1 Declare SMC3_PersistPositionSingleTurn_Data in PersistentVars

VE Controller Programming Manual

② Called from the PLC main task (EthCat task)

◆ Affirmation section.

VAR

SMC3_PersistPosition_2: SMC3_PersistPositionSingleTurn_Data;

END_VAR

◆ Program section：

4） Time-series diagram

5) Error description
An input axis that is a virtual axis or a logical axis will result in an error output; an error in
an axis will result in an error output.

[Note]: Please read "Appendix C Error Code Descriptions" for error code descriptions.。

VE Controller Programming Manual

7.3.32 SMC3_PersistPositionLogical

This command is used to keep track of the position of the logical axes (right click on the real
or imaginary axis to "add device" to select the logical axis to be added) (after a power failure
and restart of the controller, the value of the position recorded before the power failure is
restored).

1) Instruction format

Instructions Name Graphical performance ST performance

SMC3_
PersistPosition
Logical

Axis
position
holding

2) Related variables
input and output variables

Enter the
output
variable

Name The data type
Effective
range

The
initial
value

Describe

Axis

Axis
AXIS_REF_

LOGICAL_SM3
- -

Maps to the axis,
AXIS_REF_SM3
instance of the
property

PersistentData

Maintain
data

SMC3_PersistPositionLogical_

Data

The
power-off-hold
data structure
that stores
location
information

Enter variables

Enter
the

variable
Name

The data
type

Effective
range

The
initial
value

Describe

bEnable 执行 BOOL TRUE,FALSE FALSE

True function blocks are executed, false

function blocks are not executed

To restore the last stored location during

initialisation, this value must be set to true

from application start-up

The output variable

The Name The data Effective The initial Describe

VE Controller Programming Manual

output
variable

type range value

bPosition

Restored

Location

Recovery
BOOL

TRUE,

FALSE
FALSE

TRUE, position recovery

complete after axis restart

bPosition

Stored

Position

saving
BOOL

TRUE,

FALSE
FALSE

TRUE, position saved after

function call completed

bBusy

FB

Execution

in progress

BOOL
TRUE,

FALSE
FALSE

TRUE, function block not

completed

bError
Error

BOOL
TRUE,

FALSE
FALSE

TRUE, exception occurred

eErrorID

Error code

SMC_ERROR
SMC_NO_

ERROR

Output an error

code when an

exception occurs

eRestoring

Diag

Recovery

diagnosis

SMC3_

PersistPosition

Diag

SMC3_

PersistPositionDia

g.SMC3_PPD_

RESTORING_OK

Diagnostic messages in

position recovery

SMC3_PPD_RESTORING_OK:

Position successfully recovered

SMC3_PPD_AXIS_PROP_

CHANGED: Axis parameters

have been changed, position

cannot be recovered

SMC3_PPD_DATA_STORED_DU

RING_WRITING: The function

block copies data from the axis

parameter data structure

instead of from Persistent

Data data instead of copying

from Persistent Data.

Possible causes:

Non-synchronous persistent

variables, controller crash dead

3) Function description
The PLC restart bEnable signal is TRUE, the bPositionRestroed output is TRUE.
The dummy axis and the real axis are not supported.
This function block is required to restore the "position" before the power failure after the

PLC has been restarted and to record the "actual position" of the axis before the power
failure, the SMC3_

PersistPositionLogical_Data as a continuous variable".
Usage (when the real axis encoder is a multi-turn absolute value).
Declare SMC3_PersistPositionLogical_Data in PersistentVars

VE Controller Programming Manual

Invoked in the PLC main task (EthCat task)
◆ Affirmation section.

VAR
SMC3_PersistPosition_3:SMC3_PersistPositionLogical;

END_VAR
◆ Program section

◆ Time-series diagram

4) Error description
An input axis that is virtual or real will result in an error output; an error in an axis will result in

an error output.
[Note]: Please read "Appendix C Error Code Descriptions" for error code descriptions.

VE Controller Programming Manual

7.3.33 SMC_Homing

The axis return to zero command differs from MC_Homing, which sets the return to zero
method at the axis configuration, in that this command is a controller-controlled return to
zero method.

1) Command format

Instructions Name Graphical performance ST performance

SMC_Homing

Axis

back to

zero

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The initial
value

Describe

Axis Axis AXIS_REF — —
Maps to the axis, AXIS_REF_SM3

instance of the property

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

bExecute
Executio

n
BOOL

TRUE,

FALSE
FALSE

True function block execution, false

no function block execution

fHomePosition

Home

set

position

LREAL 0

Home set position after return to

zero, in user calibrated units

fVelocitySlow
Slow

LREAL 0
Slow setting speed after leaving the

reference switch

fVelocityFast Fast LREAL 0 Fast setting speed when leaving the

VE Controller Programming Manual

reference switch set

fAcceleration
Accelera

tion
LREAL 0

Acceleration setpoint

fDeceleration
Deceler

ation
LREAL 0

Deceleration setting value

fJerk

Accelera

tion

derivativ

e

LREAL 0

Jerk in [u/s3]

nDirection

Return

to zero

directio

n

MC_

DIRECTION
negative

Direction of start of return to zero,

reference MC_DIRECTION

bReference

Switch

Referen

ce

switch

BOOL
TRUE,

FALSE
FALSE

Reference switch connected, TRUE:

reference switch triggered, FALSE:

reference switch closed

fSignalDelay

Delay

LREAL 0

Transfer time of the reference switch

to compensate for the dead time.

The unit is seconds.

nHomingMod

Return

to zero

mode

SMC_HOMING_

MODE

Reference SMC_HOMING_MODE

bReturnTozero

Return

to zero

BOOL
TRUE,

FALSE
FALSE

TRUE: the axis runs to position zero

when the return to zero is complete

(note: if fHomePosition=10, the axis

position becomes 10 when the return

to zero is complete.

If fHomePosition=10, then the axis

position becomes 10 and

bReturnTozero is ture

then the axis goes backwards 10

units to position 0 after the return to

zero is complete)

bIndexOccured BOOL
TRUE,

FALSE
FALSE

Flag pulse recording, effective when

zero return mode is

FAST_BSLOW_I_S_STOP,

FAST_SLOW_I_S_STOP

fIndexPosition LREAL 0
Position recorded at the time of the

flag pulse

bIgnoreHWLimit

Ignore

hard

limits BOOL
TRUE,

FALSE
FALSE

TRUE, sets the hardware limit switch

enable to false, if the same physical

switch is used for the hardware limit

switch and the reference switch, then

the hardware control will be set to

VE Controller Programming Manual

false

The output variable

The output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

bDone BOOL TRUE,FALSE FALSE True, return to zero complete

bBusy BOOL TRUE,FALSE FALSE True, the function block is in effect

bCommand

Aborted
BOOL TRUE,FALSE FALSE

True, the block is interrupted by another

action instruction

Error BOOL TRUE,FALSE FALSE True, an error has occurred

ErrorID SMC_ERROR 0
Error code, enumerated variable, see help

smc_error for specific alarm code

bStartLatching

Index
BOOL TRUE,FALSE FALSE

Generated by "bIndexOccured" and

"fIndexPosition" together

Back to zero mode (SMC_HOMING_MODE）

Enumeration
name

Type
Initial
value

Description

FAST_BSLOW

_S_STOP

SMC_HOMING

_MODE
0

Walk towards the home switch at a fast speed in the set

direction, hit the home switch and leave the home switch at a

slow speed in the reverse direction, after leaving, first execute

MC_setPosition to set the current position to the

fHomePosition set value, then execute MC_stop

FAST_BSLOW

_STOP_S

SMC_HOMING

_MOD
1

Walk towards the home switch in the set direction with a fast

speed, hit the home switch and leave the home switch in the

reverse direction with a slow speed, after leaving, first execute

MC_stop to stop the axis and then execute MC_setPosition to

set the current position to the fHomePosition set value

FAST_BSLOW_I

_S_STOP

SMC_HOMING

_MOD
2

The axis moves rapidly in the set direction towards the home

switch and then leaves the home switch at a slow speed after

hitting the home switch. bIndexOccured signal is executed

when MC_setPosition is reached and then MC_stop is

executed.

FAST_SLOW

_S_STOP

SMC_HOMING_

MOD
4

The MC_setPosition is executed first when the set direction is

fast towards the home switch, and then when the home

switch is touched, it leaves the home switch at a slow speed.

FAST_SLOW

_STOP_S

SMC_HOMING_

MOD
5

Walk towards the home switch in the set direction and leave

the home switch at a slow speed after hitting the home

switch, then execute MC_stop and then MC_setPosition to set

the current position to the fHomePosition setting.

FAST_SLOW_I

_S_STOP

SMC_HOMING_

MOD
6

The current position is set to the value set by fHomePosition.

The home switch is approached in a fast direction, touched

and left at a slow speed, and the bIndexOccured signal is

VE Controller Programming Manual

followed by MC_setPosition and then MC_stop.

3) Function description
After SMC_HOMING has been started by the rising edge of bExecute, the axis will start

moving at speed fVelocityFast and in the direction defined by nDirection until
bReferenceSwitch = FALSE. The axis will then stop slowly and leave the reference switch in
the opposite direction at speed fVelocitySlow leaves the reference switch in the opposite
direction. After bReferenceSwitch = TRUE the return to zero is complete. After enabling the
return to zero command the state of bReferenceSwitch is ON->OFF->ON and the return to
zero is complete on the rising edge of OFF->ON, setting the reference position.

Reference position = fHomePosition + ((fSignalDelay*1000+1 DC clock cycle)
/1000) * fVelocitySlow actually compensates for the set bReferenceSwitch sampling delay
and one communication cycle shift delay.

If bReturnToZero=TRUE, the state of bReferenceSwitch sets the reference position
on the rising edge of OFF->ON to fHomePosition+((fSignalDelay*1000+1 DC clock
period)/1000) *fVelocitySlow, and then runs at the speed

fVelocityFast runs to position 0.
Note: After the Done signal, the axis position is set to: fHomePosition. the timing of

the setting is related to the nHomingMode (see SMC_HOMING_MODE for details). The
following diagrams show several modes of return to zero：

① When returning to zero mode "0"

2 When returning to zero mode "1"

3 When returning to zero mode "4"

VE Controller Programming Manual

4 When returning to zero mode "5"

◆ Timing diagram
① Instruction execution when bReferenceSwitch TRUE

② When the instruction is executed bReferenceSwitch FALSE

VE Controller Programming Manual

4) Error description
Error in input axis type.
Axis has error.
Axis is not enabled
The speed or acceleration is invalid.
[Note]: Please read "Appendix C Error Code Descriptions" for the descriptions of the relevant
error codes.

VE Controller Programming Manual

7.4 Axis group instructions (primary/from-axis

instructions).

7.4.1 SMC_CamRegister

Enable cam lift control (cam switch). Cam editing can not edit the main shaft curve, simply
configure the tap bar table can be through this function block to achieve the tap control.

1) Instruction format

Instructions Name Graphical performance ST performance

SMC_

CamRegister

Cam lift

bar

control

2) Related variables
input and output variables

Enter the
output
variable

Name The data type
Effective
range

The
initial
value

Describe

Master Spindle AXIS_REF - -
Maps to the axis, AXIS_REF_SM3

instance of the property

CamTable
Cam

table
MC_CAM_REF

Maps to an electronic cam, an

instance of an electronic cam

bTappet
Stick

output

ARRAY [1..MAX_

NUM_TAPPETS]

OF BOOL

The output of the lift point

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Enable Perform BOOL TRUE,FALSE FALSE

True function blocks are executed,

false does not perform function

blocks

Masteroffset Spindle offset LREAL 0 Spindle offset

VE Controller Programming Manual

MasterScaling Spindle ruler LREAL 1 The spindle linear scaling factor

TappetHysteresis Stick damping LREAL 0
The lift bar controls the damping

coefficient

DeadTime

Compensation

Dead zone

time

compensation

LREAL 0

The dead-zone compensation time

unit is S, which can be positive or

negative depending on the spindle's

current velocity linear compensation

stick output

The output variable

The
output
variable

Name
The data

type
Effective
range

The initial
value

Describe

Busy In action BOOL TRUE,FALSE FALSE TRUE, function block in action

Error Error BOOL TRUE,FALSE FALSE TRUE, an exception occurs

ErrorID
The error

code

SMC_

ERROR
SMC_NO_ERROR

When an exception occurs, the

error code is output

EndofProfile

Curve

Cycle

Completes

BOOL TRUE,FALSE FALSE

True, the spindle position is

greater than or equal to

the set period

3) Function description
◆ The Enable signal is TRUE, if there is no error output then the Busy output is TRUE and
tappet control is performed.
This control function block is not related to the slave axis in the electronic cam, only the
spindle cycle and tappet table need to be configured.
◆ "bTappet" is a one-dimensional boolean structure (MAX_NUM_TAPPETS=512) and
bTappet[i] corresponds to the output of the i-th tappet point.
tappet[i] corresponds to the output of the i-th tappet point.
The unit of DeadTimeCompensation is S/sec. If set to a positive value, the tappet signal is
overrun, if set to a negative value, the tappet signal is lagged. For example, if the setting is
0.02 seconds and the Ethcat task cycle is set to 4ms, then the tappet output position is P
according to the linear speed of the spindle v. The tappet will be output at the spindle set
position = P-V*0.02. Conversely, if the setting is -0.02 seconds, the tappet signal is output
with a lag of five cycles after the spindle set position is greater than or equal to P.
Example of the use of this function block.

Variable declaration：
VAR

TPP:ARRAY[1..MAX_NUM_TAPPETS] OF BOOL;
SMC_CamRegister0: SMC_CamRegister;

END_VAR

Procedure section：
SMC_CamRegister0(

Master:=Virtual_X ,

VE Controller Programming Manual

CamTable:=Cam,
bTappet:=TPP ,
Enable:=TRUE ,
MasterOffset:=0 ,
MasterScaling:= 1,
TappetHysteresis:= 0,
DeadTimeCompensation:=0 ,
Busy=> ,
Error=> ,
ErrorID=> ,
EndOfProfile=>);

Cam edited the following image：

Start Virtual_X-axis:
The monitoring curve is shown below：

VE Controller Programming Manual

When the deadband compensation time is set to -0.02 seconds
SMC_CamRegister0(

Master:=Virtual_X ,
CamTable:=Cam,
bTappet:=TPP ,
Enable:=TRUE ,
MasterOffset:=0 ,
MasterScaling:= 1,
TappetHysteresis:= 0,
DeadTimeCompensation:=-0.02 ,
Busy=> ,
Error=> ,
ErrorID=> ,
EndOfProfile=>);

The tappet output lags by five task cycles (4ms task cycle) as shown in the diagram
below：

VE Controller Programming Manual

4) Error description
There is an error in the axis, the axis is not enabled, or the offset or scale value is set outside
the spindle range.
[Note]: Please read "Appendix C Error Code Descriptions" for descriptions of the relevant
error codes.。

VE Controller Programming Manual

7.4.2 SMC_GetCamSlaveSetPosition

Reads cam gauge slave position, speed and acceleration information.

1) Command format

Instructions Name Graphical representation ST Performance

SMC_GetCam
SlaveSet
Position

Get cam
slave
position

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The initial
value

Describe

Master Spindle AXIS_REF - - Map to an axis

Slave From the axis AXIS_REF - - Map to an axis

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Enable Perform BOOL TRUE,FALSE FALSE

True function blocks are

executed, false does not

perform function blocks

Masteroffset
Spindle

offset
LREAL 0 Cam table spindle offset

Slaveoffset

Offset

from the

axis

LREAL 0
The cam table is offset from

the axis

MasterScaling
Spindle

zoom
LREAL 1

Cam table spindle scaling

factor

SlaveScaling

Zoom

from the

axis

LREAL 1
The cam table scales the factor

from the axis

CamTableID Cam ID MC_CAM_ID Cam meter ID

The output variable

VE Controller Programming Manual

The output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

fStartPosition
From the axis

position
LREAL 0

The position of the axle obtained

based on the cam table and the

current spindle information

fStartVelocity
Speed from

the axis
LREAL 0

The axle speed obtained based on

the cam meter and the current

spindle information

fStart

Acceleration

Acceleration

from the

shaft

LREAL 0

The axle acceleration obtained

from the cam meter and the

current spindle information

busy In action BOOL
TRUE,

FALSE
FALSE

TRUE, which indicates that the

function block is executing

Error Error BOOL
TRUE,

FALSE
FALSE TRUE, an exception occurs

ErrorID
The error

code
SMC_ERROR

SMC_NO_

ERROR

When an exception occurs, the

error code is output

3) Function description
The output value calculated by this instruction is: Y = (cam((cam start spindle table position
+ Masteroffset)* MasterScaling) + slaveoffset)* SlaveScaling, the
Cam is a cam table function. Example: cam start spindle position is 0, master and slave

scaling is 1, masteroffset is
100 and slaveoffset is 0, the output of the function block is the slave position corresponding
to the cam table at 100.
The function block reads the slave position only if the cam table is built successfully, there is
no requirement for the master and slave axes to be running, for example.
Statement：
SMC_GetCamSlaveSetPosition0: SMC_GetCamSlaveSetPosition;
ENABLE: BOOL;

MC_CamTableSelect0: MC_CamTableSelect;
Program：
MC_CamTableSelect0(

Master:=Virtual_X ,
Slave:=Virtual_Y ,
CamTable:=Cam ,
Execute:= ,
Periodic:=TRUE ,
MasterAbsolute:=0 ,
SlaveAbsolute:=0 ,
Done=> ,
Busy=> ,
Error=> ,

VE Controller Programming Manual

ErrorID=> ,
CamTableID=>);

SMC_GetCamSlaveSetPosition0(
Master:= Virtual_X,
Slave:= Virtual_Y,
Enable:=ENABLE ,
MasterOffset:= 100,
SlaveOffset:=0 ,
MasterScaling:=1 ,
SlaveScaling:= 1,
CamTableID:=MC_CamTableSelect0.CamTableID,
fStartPosition=> ,
fStartVelocity=> ,
fStartAcceleration=> ,
Busy=> ,
Error=> ,
ErrorID=>);

4) Error Description
Error output is True, the instruction error is output.
Refer to ErrorID,SMC_ERROR to determine the cause of the error.
[Note]: Please read "Appendix C Error Code Descriptions" for the error code
descriptions.。

VE Controller Programming Manual

7.4.3 SMC_GetTappetValue

Use MC_CamIn command to get the current stick output value.

1) Instruction format

Instructions Name Graphical performance ST performance

SMC_

GetTappetValue

Gets the

stick

output

value

2) Related variables
input and output variables

Enter the
output
variable

Name The data type
Effective
range

The initial
value

Describe

Tappets Stick SMC_TappetData - - Map to a stick

Enter variables

Enter the
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

iID

Stick

group

number

INT 0 The group ID of the stick

bInitValue
The initial

value
BOOL

The lift bar initializes the value on the first call

of the function block

bSetInitValue

AtReset
BOOL

TRUE, MC_CamIn the bar output value will be

initialized to the bInitValue set value FALSE

when the function block restarts, and the lift

bar output value will remain when the

MC_CamIn function block restarts.

The output variable

The output
variable

Name
The data

type
Effective range

The initial
value

Describe

bTappet Stick output BOOL FALSE Lifting bar value

3) Function Description
◆ This function block needs to be used in conjunction with the MC_CamIn command.
◆ This function block reads the tappet output as well as the SMC_CamRegister function,
but there is a conflict between the two, so that the tappet output is read in the same cam.
tappet table

VE Controller Programming Manual

The function block is used in conjunction with the MC_CamIn command.
Example of use：

MC_CamIn0(
Master:=Virtual_X ,
Slave:= Virtual_Y,
Execute:= ,
MasterOffset:= 0,
SlaveOffset:= 0,
MasterScaling:=1 ,
SlaveScaling:= 1,
StartMode:= 1,
CamTableID:= MC_CamTableSelect0.CamTableID,
VelocityDiff:= ,
Acceleration:= ,
Deceleration:= ,
Jerk:= ,
TappetHysteresis:= ,
InSync=> ,
Busy=> ,
CommandAborted=> ,
Error=> ,
ErrorID=> ,
EndOfProfile=> ,
Tappets=>);

SMC_GetTappetValue0(
Tappets:= MC_CamIn0.Tappets,
iID:=2,
bInitValue:= false,
bSetInitValueAtReset:=true ,
bTappet=>);

VE Controller Programming Manual

4) Error description
Axis has error ;
Axis not enabled ;
CamTable ID does not point.
[Note]: Please read "Appendix C Error Code Descriptions" for the error code descriptions.

VE Controller Programming Manual

7.4.4 MC_CamTableSelect

The MC_CamTableSelect function block, which specifies the cam table, is used in conjunction
with the MC_CamIn instruction. This function block is used to correlate the relationship
between the master, slave and cam table and to set the period of cam operation, the
position mode of the master and slave (absolute or relative position), etc. It is a managed
instruction, i.e. after triggering the instruction and executing it only once, the relevant master
and slave axes can continue to operate according to this characteristic; if the cam table
needs to be changed or the master and slave axes need to be changed, the execution of this
function block needs to be triggered again If the cam table needs to be changed or the
master and slave axis needs to be changed, the function block needs to be triggered again.

1) Command format

Instructions Name Graphical representation ST Performance

MC_
CamTableSelec
t

Cam table
designatio
n

2) Related variables
Input and output variables

Enter the
output
variable

Name The data type
Effective
range

The
initial
value

Describe

Master
Main shaft

AXIS_REF - -
Mapping to a master axis, i.e. an

instance of AXIS_REF_SM3

Slave
Slave shafts

AXIS_REF - -
Mapping to a slave axis, i.e. an

instance of AXIS_REF_SM3

CamTable

Selection

table MC_CAM_REF - -

Mapping to a CAM table

description, i.e. an instance of

MC_CAM_REF

Notes on use.
The master and slave axes must not be specified as the same axis, otherwise an error will be
output. The cam table corresponding to the CamTable must be edited correctly, otherwise it
will also cause an error to be reported in the command. The master and slave axes can be
real or imaginary axes.
Input variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

VE Controller Programming Manual

Execute
Execution

BOOL TRUE,FALSE FALSE
Rising edge signal, execute

command

Periodic

Repeat
mode

BOOL TRUE,FALSE FALSE

Specifies whether the specified

cam table is to be executed

repeatedly or only once

TRUE: Repeat

False: not repeated

MasterAbsolute

Spindle
absolute

BOOL TRUE,FALSE FALSE

Specify whether the spindle

tracking distance coordinate

system is based on absolute or

relative position

1: Absolute position, 0: Relative

position

SlaveAbsolute

Mode

BOOL TRUE,FALSE FALSE

In combination with the

StartMode in the MC_CamIn

instruction, this specifies whether

the current command position of

the slave axis is absolute (the

current spindle position

corresponds to the cam table

output) or relative (the cam table

output value is superimposed on

the slave axis position at the start

of the command).

The current command position is

either absolute (the cam table

output corresponding to the

current spindle position) or

relative (the cam table output

value superimposed on the slave

position at the start of the

command)

1: absolute position, 0: relative

position

Precautions for use:
Improper selection of MasterAbsolute and SlaveAbsolute may cause the electronic cam
output to jump, so please make sure to set the cam curve working method before setting.
Output variables

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Done
Complete

BOOL TRUE,FALSE FALSE
TRUE when completion is

selected,

Busy Execution in BOOL TRUE,FALSE FALSE TRUE if no completion in

VE Controller Programming Manual

progress selection

Error Error BOOL TRUE,FALSE FALSE TRUE when an exception occurs

ErrorID
Error code

SMC_ERROR
Refer to SMC_

ERROR
0

Output error code when an

exception occurs

CamTableID

Effective

MC_CAM_ID - -

Cam_ID of the selection, used in

conjunction with the CamTableID

in the MC_CamIn instruction

Notes on use:
When Error occurs, please check the SMC_ERROR in the help against the ErrorID.

3) Function Description
◆ This instruction specifies the cam table required for electronic cam operation, so the cam
table must be edited (by the cam editor or online) before using this instruction.
◆ Excute rising edge, execute the specified cam table, or refresh the specified cam table
after the cam table is updated.
If the output of Done signal is TRUE, the output variable "CamTableID" is generated and
takes effect.
When the Busy signal is TRUE, the Done signal is TRUE and the Busy signal is FALSE.

◆Periodic parameters
The following figure shows the effect of single-cycle cam operation. When the cam table is
selected in single cycle mode (Periodic:=0), the slave axis is released from cam operation
after one cam table cycle has been run.

When the cam table is selected in Periodic mode (Periodic:=1), after running one cam table
cycle, the slave axis starts the next cam cycle again until a user program commands it to exit
the cam running state, as follows：

VE Controller Programming Manual

◆Operating characteristics when both spindle and slave axes are in relative position
mode

When the master axis is in relative position mode, the cam module will operate with the
current position as the starting point X=0 of the master axis when entering CAM.

When the slave axis is in relative position mode, the cam module uses the current
position as the starting point Y0 for the slave axis when entering CAM, and the CAM output
is superimposed on this thereafter.

◆ Major axis is in absolute position mode, slave axis is in relative position
mode

When the spindle is in absolute position mode, when entering the CAM, the cam operation
module obtains the axle position at the current spindle position, so:

 High-speed rotation from shaft position when entering CAM operation, resulting in
shock or damage to the equipment;

 If the current position is outside the valid range of the CAM table, the axle does not
move and an alarm is issued;

 If the CAM table is in cycle mode, the continuous running of the next CAM cycle
begins when the current cycle is completed.

◆Main axis in relative to position mode, slave axis in absolute position mode

VE Controller Programming Manual

When the slave axis is in absolute position mode, it will be adjusted to the position required
by CAM when it enters CAM operation, and if the deviation is relatively large, automatic
adjustment of the high-speed movement will occur.
Countermeasures according to application characteristics.
For equipment where alignment operation is necessary, such as fixed length cutting rotary
knives as cam slave must be in absolute position, programming with attention to the zero
position operation of the rotary knives before the first rotary cutting action.
setting the spindle position range of the cam table reasonably to avoid position adjustment
of the cam in the opposite direction at the start of the next cycle.
Run SMC_GetCamSlaveSetPosition to set the slave position of the cam entry point to the
current coordinates of the slave axis.
For applications where relative position mode can be used, try to use relative position mode
as far as possible:.
MC_CamTableSelect.SlaveAbsolute:=False; or set MC_CamIn.StartMode:=1; (relative mode)
Caution.
When the slave axis is set to absolute mode with "limited length", the controller will select a
closer direction to return to zero when making zero adjustments, if either left or right
rotation is possible. When designing the range of the cam table, particular care should be
taken not to allow the range of the cam table to exceed the actual range of operation
required, otherwise instantaneous high speed rotation of the servo slave axis may occur,
resulting in mechanical shock.

4) Explanation of errors
◆ The master axis and slave axis cannot be specified as the same axis, otherwise there will
be an error output.
◆ The CamTable must be edited correctly, otherwise it will be outputted incorrectly.
Note]: Please read "Appendix C Error Code Descriptions" to understand the error code
descriptions.

VE Controller Programming Manual

7.4.5 MC_CamIn

It puts the cam slave axis into synchronous operation with the cam spindle and controls
the adjustment of the cam slave axis to the corresponding target point according to the
current position of the spindle and the position relationship of the cam table; the execution
of this command has no effect on the spindle. The master-slave axis offset value, scaling
ratio and operating mode can be specified according to the application requirements.

Once MC_CamIn has been triggered, the slave axis follows the position of the spindle
according to the position correspondence in the cam table, note that it is a position
correspondence and not a speed correspondence.

Once in cam operation, each EtherCAT interrupt parses the CAM cam table, calculates
the next target point for the slave axis based on the current position of the spindle and sends
the next target position to the slave axis to make it run.

1) Command format

Instructions Name Graphical representation ST Performance

MC_CamIn
Start of

cam action

2) Related variables
. . . input and output variables

Enter the

output variable
Name

The data

type

Effective

range

The initial

value
Describe

Master Spindle AXIS_REF - -
Maps to the axis, AXIS_REF_SM3 instance of

the property

Slave

From

the

axis

AXIS_REF - -
Maps to the axis, AXIS_REF_SM3 instance of

the property

VE Controller Programming Manual

Precautions for use:
The spindle and the from axis cannot be specified as the same axis, otherwise there will

be an error output.
Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Execute

Perform

cam work

to enter

the energy

block

BOOL
TRUE,

FALSE
FALSE

Up the edge, perform the electronic

cam

MasterOffset
Spindle

bias
LREAL

Negative,

positive, 0
0

Moves the phase of the spindle with

the specified offset value

SlaveOffset

Biased

from the

axis

LREAL
Negative,

positive, 0
0

Moves the phase from the axis with the

specified offset value

MasterScaling

Spindle

pre-edited

shift ratio

LREAL >0.0 1
Zoom in/out of the phase of the

spindle at a specified scale

SlaveScaling

Move the

scale from

axis

pre-editin

g

LREAL >0.0 1
Zoom in/out the phase from the axis at

a specified scale

StartMode

The output

mode from

the shaft

relative to

the cam

MC_

StartMode
absolute

0: absolute absolute position :

1: relative relative position:

2: ramp_in (slope cut).

3: ramp_in_pos (front ramp cut)

4: ramp_in_neg reverse ramp cut in

CamTableID
Table

number
MC_CAM_ID

Defines the use of cam tables,

MC_CamTableSelect with the output

point CamTableID of the computer

VelocityDiff LREAL
The ramp_in different from the

maximum speed

Acceleration LREAL ramp_in at the time of the change

Deceleration LREAL ramp_in at the time of the change

Jerk LREAL ramp_in acceleration of the car

Tapped

Hysteresis
LREAL The damping coefficient of the lift bar

◆ The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

VE Controller Programming Manual

InSync
The cam is

in effect
BOOL

TRUE,

FALSE
FALSE

After the spindle and the axle establish cam

relations, InSync is positioned and InSync is

reset when the execution condition of the

instruction is OFF.

Busy

Running

synchronou

sly

BOOL
TRUE,

FALSE
FALSE

When Execute enters the rising edge, position

TRUE, true indicates that the cam relationship

coupling requires a Cam_out command reset,

and the instruction execution condition reset

cannot reset the state.

Command

Aborted

The

instruction

is

interrupted

BOOL
TRUE,

FALSE
FALSE

The output from the axis is interrupted by

other control instructions as TRUE

Error Error BOOL
TRUE,

FALSE
FALSE

If an error is detected, the Error bit is set, and

when the execution condition of the

instruction OFF is OFF, the Error bit is reset.

ErrorID
The error

code

SMC_

ERROR

See SMC_

ERROR
0

When an exception occurs, the error code is

output

EndOf

Profile

The curve

is complete
BOOL FALSE

If the periodic parameter is 0 (non-periodic)

when the MC_CamTableSelect instruction is

executed, the EndOfProfile bit is positioned

once the cam curve is executed, and the

EndOfProfile bit is reset when the execution

condition of the instruction IS OFF.

Tappets
SMC_

TappetData

An associated cam lift bar can be read

MC_GetTappetValue command

3) Function description
Execute rising edge, no error is reported on the axis, this instruction is activated if the cam
table is selected correctly.
To call a cam curve in a cam system, first call the MC_CamTableSelect instruction to select
the corresponding cam table and then execute MC_CamIn; if the cam curve is to be changed,
call the MC_CamTableSelect instruction again to reselect the cam table.
The Camout instruction is used to break the cam coupling between the master and slave
axes. When this instruction is executed, the cam relationship between the slave axis and the
master axis will be released and the CommandAborted output will be TRUE when the slave
axis of this instruction executes another motion command.

4) Command details
The following is a detailed description of the command：

◆ Command start conditions
This command can be activated in any state during spindle stop, position control, speed
control or synchronous control

VE Controller Programming Manual

Note: The cam follower position setting must be within the software limit value, otherwise it
will result in an incorrect output command.

◆ Calculation of the point of contact in a cam curve

The calculation from the figure above is as follows:
Position_Slave = SlaveScaling*CAM(MasterScaling*MasterPosition + MasterOffset) +

SlaveOffset
The spindle position and the axle position in the formula do not represent the position of

the actual physical axis, but rather the spindle position associated with the cam function
curve. The relationship between the main-axis position and the main-from solid axis position
is described in detail.

◆The cam spindle MasterScaling calculation
By default, the system is on MasterScaling1,and if the user program modifies the variable:

The proportional SCALE value is set for the cam spindle, and the position of the spindle can
be scaled linearly so that its corresponding position relationship with the cam table meets
the requirements of the expectation.
If the offset setting for the spindle is taken into account, the calculated position of the
spindle(X)in the cam table will be:

X - MasterPosition-MasterScaling (n) - MasterOffset

VE Controller Programming Manual

This parameter can be used to fine-tune the dimensions of the equipment machining work
pieces.

◆The cam is calculated from the shaft SlaveScaling
By default, the system is on SlaveScaling1,and if the user program modifies the variable:

Set the proportional SlaveScaling value for the cam slave from the shaft to scale linearly from
the position of the slave shaft so that the output of the cam control meets the desired
position of motion from the shaft.
If the offset setting from the axis is taken into account, the output position of the cam from
the shaft(Y)is:

Y = CAM(X)*SlaveScaling(n) + SlaveOffset
This parameter can be used to fine-tune the dimensions of the equipment machining work
pieces.
Examples of usage:

When MasterScaling is 1.0, SlaveScaling is 1.0, MasterOffset is 0, slaveOffset is 0, the
cam curve is the planned cam curve as shown in the following illustration:

When MasterScaling=1.0, SlaveScaling=2.0, MasterOffset=0, SlaveOffset=0, the cam curve is
as shown below：

VE Controller Programming Manual

When MasterScaling is 2.0, SlaveScaling is 1.0, MasterOffset is 0, slaveOffset is 0, the cam
curve is shown in the following image:

When MasterScaling is 1.0, SlaveScaling is 0.5, MasterOffset is 0, SlaveOffset is 0, the cam
curve is shown in the following image:

When MasterScaling is 0.5, SlaveScaling is 1, MasterOffset is 0, slaveOffset is 0, the cam curve
is shown in the following image:

VE Controller Programming Manual

When MasterScaling is 1, SlaveScaling is 1, MasterOffset is 20, and Slave Is 30, the cam curve
is shown in the following image:

Offset, Scale usage featuresand considerations for cam operation:
(1) Spindle position mode, from the station position mode, in addition to the special
requirements of the application system, it is recommended to use relative mode as far as
possible, so that simple programming, the possibility of mechanical system impact is
relatively small;
(2) Cam meter spindle startand endrange, Offset,Scale and other settings, can make up for
the design deviation of the CAM table, it is recommended to refer to the default settings as
far as possible, so that easy to debug and maintenance, the chance of running errors can
also be reduced;
(3) When the CAM cam table cycle is completed /or exited/or switched, the
MC_CamIn re-entry is performed again, and the system clears the settings of Offset,Scale,
etc. in the memory and reverts to the default values, requiring attention.

VE Controller Programming Manual

◆ Periodic mode in relation to EndOfProfile
Periodic mode Non-periodic mode determines whether the electronic cam is to be

performed again after the spindle has reached the end position.
1 Non-periodic mode: MC_CamTableSelect instruction Periodic selects False
In non-periodic mode, the cam completes the EndofProfile signal with True, and the

EndofProfile output is FALSE if FALSE is entered.

Note: The spindle period refers to the range of the electronic cam spindle position from
the start position to the end position.

②Periodic mode: MC_CamTableSelect command Periodic select TRUE
In this case the cam completes one spindle cycle and the next cycle is executed, and the

EndofProfile signal TRUE is output for only one task cycle.
Caution:

When the cam spindle position is greater than or equal to the cam end position,
the EndofProfile signal output is TRUE and the cam spindle position is updated to: cam start
position + partly greater than end position.

For example, if the electronic cam spindle start position is 0, the end position is 360, the
master and slave axis scaling is set to 1, the master and slave axis offset value is set to 0, the
task cycle is 2 ms and the spindle speed is 100, when the cam spindle position is 359.99 in
one task cycle, then the EndofProfile output is TRUE in the next cycle and the spindle
position becomes The start and end positions of the cam profile in cycle mode should ideally
be smooth, otherwise there will be jumps. For example, if the start speed is 0 and the end
speed is not 0, this will cause the spindle to jump at the end of the cycle and at the start of a
new cycle.。

VE Controller Programming Manual

◆ Relationship between StartMode and the absolute relative mode of the master and slave
axes in MC_CamTableSlect

Absolute mode: At the start of a new e-cam cycle, the e-cam is calculated independently of
the current slave axis position. If the starting position of the slave axis with respect to the
master axis is different from the ending position of the slave axis with respect to the master
axis, this will cause a jump.

Relative mode: The new electronic cam changes according to the current slave axis position;
i.e. the position of the slave axis at the end of the previous electronic cam cycle is calculated
as a "slave axis offset" by the current electronic cam movement. However, if the slave
position corresponding to the starting position of the main axis is not 0 in the electronic cam
definition, this will cause a jump.

Ramp input: The potential jump at the start of the electronic cam is prevented by adding a
compensating motion (motion based on the limit value VelocityDiff, acceleration,
deceleration). Thus, as long as the slave axis is in a rotating mode, the forward ramp input
option compensates only in the forward direction, while the reverse ramp input
compensates only in the reverse direction. For slave axes with linear motion, the direction of
compensation can be achieved automatically, i.e. the forward ramp input and the reverse
ramp input can be interpreted in the same way as the ramp input.)

The relationship table is shown in the following table：
MC_CamTableSelect.MasterAbsolute Spindle mode
absolute Absolute mode
relative Relative mode

MC_CamIn.StartMode MC_CamTableSelect.SlaveAbsolute Slave mode
absolute TRUE Absolute mode
absolute FALSE Relative mode
relative TRUE Relative mode
relative FALSE Relative mode

VE Controller Programming Manual

ramp_in TRUE Slope-cut absolute mode
ramp_in FALSE Slope cut relative mode

ramp_in_pos TRUE
Forward slope cut
absolute

ramp_in_pos FALSE
Forward slope entry
relative mode

ramp_in_neg TRUE
Reverse slope entry
absolute

ramp_in_neg FALSE
Reverse slope entry
relative mode

The detailed relationships are described as follows.
Cam master range (0-360), cam slave range (0-180), cycle mode, master-slave offset

value 0, master-slave scaling ratio 1. The designed cam table is shown in the following figure：

■ StartMode is 0 (absolute mode)

① When the MC_CamTableSlect command MasterAbsolute is set to FALSE and
SlaveAbsolute is set to TRUE.

The master axis is in relative mode and the slave axis is in absolute mode. When the
cams are activated along the Excute rise, the camshaft starts at the cam table "start position"
(0) and the camshaft slave calculates the output according to the "Cam table tooth
combination formula" as described above, with the slave real axis command position being
equal to the tooth combination calculated output value. If, for example, the camshaft start
position is 0 and the camshaft real axis position is 20 at the start of the camshaft, then the
start of the camshaft real axis position command is 0, resulting in a jump.

Note: In this case the start position of the slave axis (real axis) is not in the cam slave
start position and a jump will occur.

VE Controller Programming Manual

② When the MC_CamTableSlect command MasterAbsolute is set to FALSE and
SlaveAbsolute is set to FALSE

The master axis is in relative mode and the slave axis is in relative mode. When the cam
is activated along the Excute rise, the camshaft starts at the cam table "start position" (0) and
the camslave calculates the output according to the "cam table gearing formula" as
described above, with the slave real axis command position equal to the gearing calculated
output (camslave position) + start. camshaft position) + camshaft real position at start-up.

If, for example, the cam starts with a solid slave shaft position of 20 and the cam table
starts with a slave shaft position of 0, then the cam starts with a solid slave shaft position
command of 20, which is followed by 20 + the cam table calculated value, with a peak value
of 20 + the maximum cam table calculated value (180 in this case) = 200.

VE Controller Programming Manual

③When the MC_CamTableSlect command MasterAbsolute is set to TRUE and SlaveAbsolute
is set to FALSE

The master axis is in absolute mode and the slave axis is in relative mode. When the cam is
activated along the Excute rise, the camshaft starts from the current "Master axis
real position" and the Slave axis real position command = the calculated value of
the cam table tooth fit (cam slave position) + the slave axis position at start-up.

Caution:
1 If the spindle (solid axis) start position is not at the camshaft start position in this case, a

jump will occur.
2 The master axis position should be within the camshaft position range.

VE Controller Programming Manual

④ When the MC_CamTableSlect command MasterAbsolute is set to TRUE and
SlaveAbsolute is set to TRUE
The master axis is in absolute mode and the slave axis is in absolute mode. When the Excute
rises, the camshaft starts from the current "MasterAbsolute position" and the SlaveAbsolute
command = the calculated value of the cam table tooth fit (cam slave position).
Caution.
1 If the starting position of the main shaft (solid axis) in this case is not at the starting
position of the cam main shaft and the slave axis position is not at the starting position of the
cam slave axis, a jump will occur.
2 The main shaft position should be within the range of the cam main shaft position.。

VE Controller Programming Manual

■ StartMode is 1 (relative mode)
① When the MC_CamTableSlect command MasterAbsolute is set to FALSE and

SlaveAbsolute is set to TRUE or False
The master axis is in relative mode and the slave axis is in relative mode. When Excute

rises, the camshaft starts from the "Cam table start position" and the slave real axis position
command = Cam table tooth fit calculated value + Cam table tooth fit calculated value (cam
slave position).

VE Controller Programming Manual

② When the MC_CamTableSlect command MasterAbsolute is set to TRUE and
SlaveAbsolute is set to TRUE or False

The master axis is in absolute mode and the slave axis is in relative mode. When the
Excute rises, the cam spindle starts from the "current position of the spindle" when the cam is
activated and the slave real axis position command = slave position at start + cam table
tooth fit calculation (cam slave position).

Caution.
1 If the spindle (solid axis) start position in this case is not at the cam spindle start

position then a jump will occur.
2 The master axis position should be within the camshaft position range

VE Controller Programming Manual

■ StartMode is 2 (rampin ramp-in mode)
① When the MC_CamTableSlect command MasterAbsolute is set to TRUE and

SlaveAbsolute is set to TRUE
The master axis is in absolute mode and the slave axis is in absolute mode. When the

cam is activated along the Excute rise, the cam spindle starts at the "current position of the
spindle" and the slave axis adds a compensating movement to avoid potential jumps during
cut-in by setting VelocityDiff, Acceleration, Deceleration.

Slave real axis position command = cam table tooth fit calculation (cam slave position)
+ f(VelocityDiff,Acceleration,Deceleration)

VE Controller Programming Manual

② When the MC_CamTableSlect command MasterAbsolute is set to FALSE and
SlaveAbsolute is set to TRUE

The master axis is in relative mode and the slave axis is in absolute mode. When the cam is
activated along the Excute rise, the cam spindle starts from the "cam spindle start position"
and the slave adds a compensating motion to avoid potential jumps during cut-in by setting
VelocityDiff, Acceleration, Deceleration. The slave axis adds a compensating motion to avoid
potential jumps during cut-in by setting VelocityDiff, Acceleration, Deceleration.

Slave real axis position command = calculated cam table tooth fit (cam slave position) +
f(VelocityDiff,Acceleration,Deceleration).

VE Controller Programming Manual

③When the MC_CamTableSlect command MasterAbsolute is set to TRUE and SlaveAbsolute
is set to FALSE, the spindle is in absolute mode and the slave is in relative mode. When the
Excute rises, the cam starts

The cam spindle starts at the "current position of the spindle" and the slave axis adds a
compensating motion to avoid potential jumps during cut-in by setting VelocityDiff,
Acceleration, Deceleration.

Slave real axis position command = Slave current position + Cam table tooth fit
calculation value (cam slave position) + f(VelocityDiff,Acceleration,Deceleration).

Note: The cam curve may vary significantly from the design curve during the first
spindle cycle in this method

VE Controller Programming Manual

④ When the MC_CamTableSlect command MasterAbsolute is set to FALSE and
SlaveAbsolute is set to FALSE, the master axis works in relative mode and the slave axis works
in relative mode. When the Excute rises, the cam spindle starts from the "cam spindle start
position" and the slave axis adds a compensating motion to avoid potential jump during
cut-in by setting VelocityDiff, Acceleration, Deceleration. The slave axis adds a compensating
motion to avoid potential jump during cut-in by means of the set VelocityDiff, Acceleration,
Deceleration.

Slave real axis position command = current position of the slave axis +
calculated value of the cam table tooth fit (cam slave position)

+f(VelocityDiff,Acceleration,Deceleration).
Note: The cam curve may vary significantly from the design curve during the first spindle
cycle in this method

VE Controller Programming Manual

■ StartMode is 3, 4 (forward ramp in ramp_in_pos, reverse ramp in ramp_in_neg)
When the axis is in "rotary mode" ramp_in_pos only compensates in the direction of
forward axis movement and ramp_in_neg only compensates in the direction of reverse axis
movement, when the axis is in linear mode ramp_in_pos, ramp_in_neg and ramp_in are
automatically adjusted for the direction of compensation, i.e. if the axis is set to work in
linear mode the ramp_in_pos, ramp_in_neg and ramp_in start modes work in the same
way.

◆ Electronic cam restart
Basically, the two e-cams can be switched at any time, but there are a number of cases to
consider: in the e-cam editor, the position of the slave is defined as the calculated output
of the e-cam function, which is calculated on the basis of a master position within the
range of the master axis, and can thus be illustrated by the following simple formula.
SlavePosition = CAM(MasterPosition)
Since the actual period of the spindle drive is generally different from the spindle range
defined by the electronic cam, the spindle position must be scaled to the function
definition in order to satisfy the correct input to the electronic cam function.
SlavePosition = CAM(MasterScale*MasterPosition + MasterOffset)
In a similar way, if an electronic cam is started in absolute mode and produces an upward
jump, the function output (i.e. the virtual slave position) will also be corrected
proportionally: the
SlavePosition = SlaveScale*CAM(MasterPosition) + SlaveOffset
In the worst case, both of these scaling corrections must be applied, so that in fact the

VE Controller Programming Manual

slave position (SlavePosition) is calculated by the more complex formula
Slaveposition = SlaveScale*CAM(MasterScale*Masterposition + MasterOffset) +
SlaveOffset
At the end of each e-cam cycle, the scale and offset can be changed to obtain more
suitable parameters. Unfortunately, the restart of the MC_CamIn module of the electronic
cam will delete its memory and include the scale and offset values. As a result, the defined
electronic cam function will be adapted to the different slave values in general. For this
reason, it is recommended to restart MC_CamIn-FB only if a different electronic cam
needs to be processed.

5) Timing diagram.
Periodic mode (MC_CamTableSelect.Periodic set to TRUE) is shown below.
Note: The MC_Camout instruction only cuts off the cam coupling between the master and
slave axes, if the slave axis speed is not 0 when it is cut off, the slave axis will not
automatically decelerate to 0.

The non-periodic mode (MC_CamTableSelect.Periodic set to FALSE) is as follows：

VE Controller Programming Manual

6) Error Description
The command setup information does not match the Camslect command setup
information.
The axis is not enabled.
When an exception is detected by starting this instruction, Error becomes TRUE.
See the output of ErrorID (error code) and read "Appendix C Error Code Descriptions" for
a description of the error code.

VE Controller Programming Manual

7.4.6 MC_CamOut

Disconnect the cam coupling relationship from the shaft. When the slave is running on the
cam, triggering the execution of the function block causes Slave to exit the cam run state
from the shaft and enter a continuous running state (Continuios_Motion, i.e. Axis.nAxisState
5), and the execution of the instruction has no effect on the spindle. Note: After executing
this instruction, the axis continues to run at the pre-separation speed, so it needs to be used
with instructions such as MC_Stop.

1) Instruction format

Instructions Name Graphical performance ST performance

MC_CamOut
Disconnect
cam
coupling

2) Related variables
input and output

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Slave
From

the axis
AXIS_REF - -

Map to the axis, which AXIS_REF_SM3

instance of the property

Input

Enter the
variable

Name
The data

type
Effective
range

The initial
value

Describe

Execute
Execute the

instruction
BOOL - -

The rising edge signal executes

the instruction

The output

The
output
variable

Name The data type Effective range
The initial

value
Describe

Done Complete BOOL TRUE,FALSE - - FALSE
Complete the cam coupling

disconnect from the spindle

Busy In action BOOL TRUE,FALSE FALSE The instruction is executed

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it

is set to TRUE

ErrorID
The error

code
SMC_ERROR See SMC_ERROR 0

When an exception occurs,

the error code is output

3) Function Description
Execute this instruction to disarm the cam coupling relationship from the shaft,excute the

VE Controller Programming Manual

cam coupling relationship from the shaft is broken whenexcute rises, and the cam
relationship does not necessarily stop after the cam relationship is disconnected;
If the speed of the from the shaft is not 0 before the instruction is executed, the cam
coupling relationship is broken after the instruction DONE signal is completed but runs at
the pre-cut speed from the shaft at will;
If the execution is performed from the axis without a cam coupling relationship, the ERROR
output.

4) Timing diagram

5) Example of use
This example applies cam-related commands to introduce the creation of cam relationships

and the relevant motion states of the axes when running and disengaging
The cam editor creates the following cam table (cam)：

VE Controller Programming Manual

Program：

Master and slave axes are automatically enabled after power-up, MasterRun is set to TRUE
to run the spindle at 100 speed
CamSelect is set to True to select the cam table, then CamIn is set to True to start the
electronic cam.
When the electronic cam needs to be disconnected set MC_CamOut0.Execute to True.

6) Error description
If an error occurs when starting this command, the Error output is True.

VE Controller Programming Manual

See ERRORID and refer to "Appendix C Error Code Descriptions" for SMC_ERROR error
codes.

VE Controller Programming Manual

7.4.7 MC_GearIn

Set the gear ratio between the shaft and the spindle for electronic gear action.

1) Instruction format

Instructions Name Graphical performance ST performance

MC_GearIn

Electronic

gear function

block

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Master Spindle AXIS_REF - -
Map to the axis, AXIS_REF_SM3 instance of

the map

Slave
From

the axis
AXIS_REF - -

Map to the axis, AXIS_REF_SM3 instance of

the map

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The initial
value

Describe

Execute Perform BOOL TRUE- Cutter FALSE
Rise the edge and start

executing the instructions

RatioNumerator
Gear ratio

molecules
DINT

Positive,

negative
1 Gear ratio molecules

RatioDenominator
Gear score

mother
UDINT Positive 1 Gear score mother

Acceleration Acceleration LREAL Positive or 0 Specifies acceleration

Deceleration
Reduce the

speed
LREAL Positive or 0

Specifies a reduction in

speed

Jerk the degree LREAL Positive or 0 Acceleration

The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

InGear
gear ratio

arrived
BOOL TRUE- Cutter - FALSE

True, the target speed is reached

from the axis

VE Controller Programming Manual

Busy In action BOOL - TRUE,FALSE FALSE
True, the instruction is being

executed

Command

Aborted
Interrupt BOOL TRUE,FALSE FALSE

True, interrupted by other control

instructions

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is

set to TRUE

ErrorID
The error

code
SMC_ERROR

See SMC_

ERROR
0

When an exception occurs, the

error code is output

3) Function description
Execute rising edge to start the electronic gear action.
To uncouple the electronic gear after execution, the GearOut command must be used.
This instruction is a speed e-gear function and the loss of synchronisation distance caused
during acceleration is not automatically compensated.
If the Busy signal is TRUE during the execution of the instruction, the new rising edge of
Execute will not affect the target speed of the slave axis if it is not reached.
If the Busy signal is TRUE during instruction execution, the new rising edge of Execute will
not affect it if the target speed of the slave axis is reached. When the target speed is reached,
InGear is TRUE and the slave axis travel = master axis travel *
RatioNumerator/RatioDenominator.
Please take care when using this command if the spindle speed is changing in real time.
Note: Do not use the MC_SetPosition instruction during the execution of the instruction to
avoid accidents caused by the motor running rapidly.
◆ Timing diagram.：

The timing diagram for the restart command after changing the gear ratio parameter is as

VE Controller Programming Manual

follows：

4) Error description
An error is output when the ERROR is TRUE for a start-up command.
Please read "Appendix C Error Code Descriptions" for a description of the relevant error
codes.

VE Controller Programming Manual

7.4.8 MC_GearOut

To terminate an MC_GearIn in MC_GearInPos order.

1) Instruction format

Instructions Name Graphical performance ST performance

MC_GearOut

The

electronic

gear

coupling is

broken

2) Related variables
input and output variables

Enter the
output
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

Slave
From

the axis
AXIS_REF - -

Maps to the axis, AXIS_REF_SM3 instance of

the property

Enter variables

Enter the
variable

Name
The data

type
Effective range

The
initial
value

Describe

Execute Perform BOOL TRUE- Cutter Fakse
Rise the edge and start executing the

instructions

The output variable

The
output
variable

Name The data type
Effective
range

The initial
value

Describe

Done Complete BOOL TRUE- Cutter FALSE

True, the coupling between the

shaft and the spindle electronic

gear is broken

Busy In action BOOL TRUE,FALSE FALSE
True, the instruction is in the

process of being executed

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is

set to TRUE

ErrorID
The error

code
SMC_ERROR

See SMC_

ERROR
0

When an exception occurs, the

error code is output

VE Controller Programming Manual

3) Function description
Execute rising edge, executes cut-out electronic gear action.
If Excute is TRUE and ERROR is FALSE, the Busy output is TRUE and the Done output is TRUE.
When the electronic gear is cut out, the speed of the slave axis is the speed before it is cut
out, so the slave axis must be stopped with the MC_Stop command.
Execute is FALSE, Done is FALSE
MC_Stop instruction executes the reset Busy signal

4) Error description
An error in the setting of the relevant parameter will result in a command alarm.
Axis not enabled will cause the command to alarm.
Note]: Please read "Appendix C Error Code Descriptions" for the description of the relevant
error codes.

VE Controller Programming Manual

7.4.9 MC_GearInPos

Set the ratio of electronic gears between the spindle and the axle to perform electronic gear
movements.
Specify the spindle position at which synchronization begins, the synchronization distance
from the axis position, and the spindle to complete the cut-in electronic gear movement.

1) Instruction format

Instructions Name Graphical performance ST performance

MC_GearInPos

The

specified

position is

cut into

the

electronic

gear

coupling

2) Related variables
input and output variables

Enter the
output
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

Master Spindle AXIS_REF - -
Maps to the axis, AXIS_REF_SM3 instance of

the property

Slave
From

the axis
AXIS_REF - -

Maps to the axis, AXIS_REF_SM3 instance of

the property

Enter variables

Enter the
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

Execute
The instruction

is executed
BOOL

TRUE

TICK
-FALSE

Rise the edge and start executing the

instructions

Ratio

Numerator

Gear ratio

molecules
DINT - 1- The molecule of the spindle velocity ratio

Ratio

Denominator

Gear score

mother
DINT 1

The denominator of the spindle velocity

ratio

Master

SyncPosition

The spindle

synchronization

position

LREAL
The spindle position when the spindle gear

ratio is coupled

VE Controller Programming Manual

Slave

SyncPosition

Synchronize

position from

axis

LREAL
The position from the shaft when the

spindle gear ratio is coupled

Master

StartDistance

Performs the

synchronization

spindle

position

LREAL

A smooth curve is calculated from the axis

according to the position value and the

MasterSyncPosition and SlaveSyncPosition

values so that the axle is synchronized with

the spindle gear at SlaveSync, with a curve

spindle range of "MasterStartDistance,

MasterSyncPosition"

AvoidReversal
Reversal is

prohibited
BOOL

TRUE

Fakse
FALSE

Set to FALSE if reversed from the physical

position of the axis ahead. Set to TRUE if the

reversal is not physically possible from the

axis or causes a hazard. Only under the

modal axis. If the reversal cannot be

avoided, the axis stops incorrectly.

The output variable

The
output
variable

Name
The data

type
Effective range

The
initial
value

Describe

StartSync
Start coupling

processing
BOOL TRUE- FALSE ALSE

True, start the electronic gear

coupling process

InSync coupling BOOL TRUE- FALSE FALSE

True, electronic gear coupling

is complete and the spindle

gear ratio is coupling

Busy
The instruction

is in process
BOOL TRUE,FALSE FALSE

True, the instruction is in

process

Command

Aborted

The instruction

is interrupted
BOOL TRUE,FALSE FALSE

Interrupted by other control

instructions

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it

is set to TRUE

ErrorID The error code SMC_ERROR See SMC_ERROR 0
When an exception occurs,

the error code is output

3) Function description
Execute The rising edge signal starts the execution of the command. After the start of the
action, the Slave takes the speed of the Master multiplied by the gear ratio as the target
speed and accelerates and decelerates.
The process from the start of synchronisation to the end of synchronisation is essentially an
electronic cam in which the slave follows the master axis during the synchronisation interval.
range (MasterSyncPosition - MasterStartDistance, MasterSyncPosition), the slave range
(current position, SlaveSyncPosition), and the slave range (current position).
The command will automatically design a cam curve based on the set gear ratio and the
three parameters mentioned above, so that the slave axis follows the master axis during

VE Controller Programming Manual

synchronisation.
Note that if the master and slave axes are in linear mode, it is recommended that the master
and slave axes are in cyclic mode, as the above parameters must be set correctly otherwise
the gear action will not be carried out correctly. Example.
The master and slave axes work in linear mode both in forward motion, if the command is
executed with
Master position > MasterSyncPositionMasterStartDistance, or Slave position >
SlaveSyncPosition, the electronic gear action cannot be cut in.
Sample timing diagrams for several different parameters are given below.
When the master axis is operating in cyclic mode (360 cycles) and the slave axis in cyclic
mode (360 cycles)：

① MasterSyncPosition=280, MasterStartDistance=50, SlaveSyncPosition=60, spindle

speed is 50, spindle speed is 50.

AvoidReversal=FALSE

2 MasterSyncPosition=300, MasterStartDistance=370, SlaveSyncPosition=60,

spindle speed is 50, AvoidReversal=FALSE

VE Controller Programming Manual

③MasterSyncPosition=300, MasterStartDistance=50, SlaveSyncPosition=60, spindle

speed 50, AvoidReversal=FALSE, slave start position greater than 60

The target speed is reached at the same time as the synchronisation is completed (InSync is
TRUE), after which
Slave axis travel = Master axis travel * RatioNumerator/RatioDenominator.
For AvoidReversal: MC_GearInPos tries to avoid the reversal of the slave axis if the slave axis

VE Controller Programming Manual

is a modal axis and the spindle speed (multiplicative relationship of gear ratios) is not relative
to the speed relationship of the slave axis. It tries to "stretch" the slave motion by adding 5
slave cycles. If this "stretch" is not effective, then an error occurs and the slave axis stops
incorrectly. If the slave axis speed is related to the main axis speed (a multiple of the gear
ratio), then an error will occur and the axis will stop incorrectly. If the slave axis is a linear axis
mode axis, then an error will occur when the rising edge of the Execute input is processed.

4) Timing diagram:

5) Error description
◆ An error in the setting of the relevant parameter will lead to a command alarm.
◆ The command alarm will be caused if the axis is not enabled.
[Note]: Please read "Appendix C Error Code Descriptions" for the description of the relevant
error codes.

VE Controller Programming Manual

7.4.10 MC_Phasing

Specifies the phase deviation between the spindles.

1) Instruction format

Instructions Name Graphical performance ST performance

MC_

Phasing

The primary is

offset from the

axis phase

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Master Spindle AXIS_REF - -
Maps to the axis, AXIS_REF_SM3 instance of

the property

Slave
From

the axis
AXIS_REF - -

Maps to the axis, AXIS_REF_SM3 instance of

the property

Enter the relevant variables

Enter the
variable

Name
The
data
type

Effective
range

The initial
value

Describe

Execute

The

instruction is

executed

BOOL TRUE- Cutter FALSE
Rise the edge and start executing the

instructions

PhaseShift

The value of

the main

phase

deviation

from the

axis

LREAL 0

The main phase deviation value of the

spindle, and the positive number

represents the lag from the axis.

Velocity Speed LREAL 0
The maximum velocity value when the

phase offset is performed

Acceleration Acceleration LREAL 0
The maximum acceleration value when the

phase offset is performed

Deceleration
Reduce the

speed
LREAL 0

The maximum deslevel value when the

phase offset is performed

VE Controller Programming Manual

Jerk

Velocity

secondary

conductor

LREAL 0
The maximum Jerk value when the phase

offset is performed

Output related variables

The
output
variable

Name
The data

type
Effective range

The
initial
value

Describe

Done Complete BOOL TRUE- FALSE FALSE
True, if the phase offset is

complete

Busy

The

instruction is

in process

BOOL TRUE,FALSE FALSE
True, the instruction is in

process

Command

Aborted

The

instruction is

interrupted

BOOL TRUE,FALSE FALSE
Interrupted by other control

instructions

Error Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is

set to TRUE

ErrorID
The error

code

SMC_

ERROR
See SMC_ERROR 0

When an exception occurs, the

error code is output

3) Function description
Execute the phase shift on the rising edge, the slave axis automatically calculates a smooth
curve and completes the phase shift of the slave axis to the main axis, the phase difference
between the master and slave axis is the PhaseShift value of the input signal, a positive value
means that the slave axis lags behind the main axis.
The Done signal is output as True after the offset is completed.
The master-slave phase difference is compensated according to the set PhaseShift, Velocity,
Acceleration and Deceleration.
When the phase difference between the master and slave axes reaches PhaseShift, the Done
signal is output.
The spindle command position and the feedback position remain unchanged during the
execution of the command, while the slave axis is adjusted.
The final result of this instruction is a phase shift between the given values of the axes, so the
actual feedback value of the real axis may not match the final shift.
This instruction can be used in conjunction with the MC_GearIn instruction as follows: the
spindle is Virtual_x, the slave is Virtual_y, the EX12 rising edge performs the spindle speed
control and the master and slave electronic gear action, then the phase shift is performed. It
can also be used with the electronic cam, where the slave axis acts as the "electronic cam
spindle" to achieve the electronic cam spindle phase shift effect.

VE Controller Programming Manual

VE Controller Programming Manual

4) Timing diagram
With the master and slave axes moving in 360 cycles, the rising edge of the Execute signal
performs the adjustment and the phase deviation between the slave axis and the main axis
after the adjustment is completed is
The value set by PhaseShift

5) Error Description

VE Controller Programming Manual

◆ If the error output is TRUE when starting the command, an error has occurred.
◆ Check the ErrorID, check SMC_ERROR in the help to determine the alarm information,

please read "Appendix C Error Code Description" for the related error code description.

VE Controller Programming Manual

7.4.11 SMC_CAMBounds

When the slave axis is coupled to the spindle cam this function block can be used to
calculate the maximum position, speed and acceleration of the slave axis.
The spindle moves under the input maximum speed, acceleration and deceleration limits.
This instruction is used to check the correctness of the curve when designing the cam table,
provided
maximum acceleration and deceleration of the spindle, speed, etc. are known

1) Instruction format

Instructions Name Graphical performance ST performance

SMC_CAMBounds

Cam upper

and lower

limits

2) Related variables
input and output variables

Enter the output

variable
Name The data type

Effective

range

The

initial

value

Describe

CAM Cam MC_CAM_REF - -
Maps to the cam, which is MC_CAM_REF of the

property

Enter variables

Enter the
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

bExecute

The

instruction is

executed

BOOL TRUE- Cutter FALSE
Rise the edge and start

executing the instructions

dMasterVelMax
Maximum

speed
LREAL - 1

Maximum spindle speed in

absolute mode.

dMasterAccMax
Maximum

acceleration
LREAL - 0

Maximum spindle acceleration

in absolute mode

dMasterScaling Ruler factor LREAL - 1
The spindle cam applies the

ruler factor

dSlaveScaling Ruler factor LREAL - 1 Apply the ruler factor from the

VE Controller Programming Manual

shaft cam

The output variable

The
output
variable

Name
The data

type
Effective range

The
initial
value

Describe

bDone Complete BOOL TRUE- FALSE FALSE
True, if the calculation is

complete

bBusy

The

instruction is

in process

BOOL TRUE,FALSE FALSE
True, the instruction is in

process

bError Error BOOL TRUE,FALSE FALSE
When an exception occurs, it

is set to TRUE

nErrorID
The error

code
SMC_ERROR See SMC_ERROR 0

When an exception occurs,

the error code is output

dMaxPos

The

maximum

position

LREAL 0

The maximum position from

the shaft is calculated from

the cam table

dMinPos

The

minimum

position

LREAL 0

The minimum position from

the shaft is calculated from

the cam table

dMaxVel
Maximum

speed
LREAL 0 Calculate the maximum speed

dMinVel
Minimum

speed
LREAL 0

The minimum speed is

calculated

dMaxAccDec
Maximum

acceleration
LREAL 0

The maximum acceleration is

calculated

dMinAccDec
Minimum

acceleration
LREAL 0

The minimum acceleration is

calculated

3) Function description
bExecute rising edge to combine the input variables "dMasterVelMax", "dMasterAccMax",
"dMasterScaling", "dSlaveScaling", etc. with the cam table data to calculate the minimum
position of the slave axis "max position".
The "dSlaveScaling" values and the cam table data are used to calculate the "maximum
position" and the minimum position of the slave axis. Example: spindle period 360, cam table
A straight line with a slope of 2 is calculated as shown in the figure below.
This command can be used when the spindle is running in absolute mode or when the
spindle is set to cycle mode and the modulus is set to the spindle cycle.
The cam table is XYVA (valid in polynomial mode), not valid for 1D arrays, 2D arrays etc.

VE Controller Programming Manual

4) Timing diagram

5) Error description
Cam table format is not polynomial mode.
The cam table MC_CAM_REF setting does not match the actual cam table.
[Note]: Please read "Appendix C Error Code Descriptions" for the relevant error code
descriptions.

VE Controller Programming Manual

7.4.12 SMC_CAMBounds_Pos

When the from the shaft is coupled with the spindle cam, the maximum position of the from
the shaft, with the minimum position, can be calculated by this function block. This function
block is SMC_
calculations such as maximum acceleration compared to camBounds, and the other
functions are consistent.

1) Instruction format

Instructions Name Graphical performance ST performance

SMC_
CAMBounds_Pos

The
upper
and
lower
limits of
the cam
position

2) Related variables
input and output variables

Enter the

output variable
Name The data type

Effective

range

The

initial

value

Describe

CAM Cam MC_CAM_REF - -
Maps to the cam, which is MC_CAM_REF of the

property

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

bExecute

The

instruction

is executed

BOOL TRUE- Cutter FALSE
Rise the edge and start executing

the instructions

dMasterVelMax
Maximum

speed
LREAL 1

Maximum spindle speed in

absolute mode.

dMasterAccMax
Maximum

acceleration
LREAL 0

Maximum spindle acceleration in

absolute mode

dMasterScaling Ruler factor LREAL 1
The spindle cam applies the ruler

factor

dSlaveScaling Ruler factor LREAL 1
Apply the ruler factor from the

shaft cam

VE Controller Programming Manual

The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

bDone Complete BOOL TRUE- FALSE FALSE True, if the calculation is complete

bBusy

The

instruction

is in

process

BOOL TRUE,FALSE FALSE True, the instruction is in process

bError Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is set

to TRUE

nErrorID
The error

code
SMC_ERROR See SMC_ERROR 0

When an exception occurs, the

error code is output

dMaxPos

The

maximum

position

LREAL 0

The maximum position from the

shaft is calculated from the cam

table

dMinPos

The

minimum

position

LREAL 0

The minimum position from the

shaft is calculated from the cam

table

3) Function description
bExecute rising edge to combine the input variables "dMasterVelMax", "dMasterAccMax",
"dMasterScaling", and
The "dSlaveScaling" values and the cam table data are used to calculate the "maximum
position" and the minimum position of the slave axis.
This command can be used when the spindle is running in absolute mode or when the
spindle is set to cycle mode and the module value is set to the spindle cycle.
The cam table is XYVA (valid in polynomial mode), not valid for 1D arrays, 2D arrays etc.

4) Error description
The cam table format is not polynomial mode; the set value of cam table MC_CAM_REF does
not match the actual cam table.
Note]: Please read "Appendix C Error Code Descriptions" for the relevant error code
descriptions.

VE Controller Programming Manual

7.4.13 SMC_WriteCAM

The program runs to store the edited cam table as a file. so that it can be MC_CamIn such as
instructions. The resulting file contains a content reference called Cam Format.
This instruction can be used SMC_ReadCAM with other users.
1) Instruction format

Instructions Name Graphical performance ST performance

SMC_WriteCAM

Cam

upper

and

lower

limits

2) Related variables

input and output variables

Enter the

output variable
Name The data type

Effective

range

The

initial

value

Describe

CAM Cam MC_CAM_REF - -
Maps to the cam, which is MC_CAM_REF of the

property

Enter variables

Enter
the

variable
Name

The
data
type

Effective
range

The
initial
value

Describe

bExecute

The

instruction

is

executed

BOOL TRUE,Tick FALSE
Rise the edge and start executing the

instructions

sFileName Filename STRING ‘’

File names in ASCII format that contain cam

descriptions can be viewed by helping to "Cam

Format" inside.

The output variable

The
output
variable

Name
The data

type
Effective range

The
initial
value

Describe

bDone Complete BOOL TRUE- FALSE FALSE
True, if the cam is written into

the file to complete

bBusy

The

instruction is

in process

BOOL TRUE,FALSE FALSE
True, the execution of the

instruction was not completed

bError Error BOOL TRUE,FALSE FALSE
When an exception occurs, it is

set to TRUE

nErrorID The error SMC_ERROR See SMC_ERROR 0 When an exception occurs, the

VE Controller Programming Manual

code output is erred

3) Function description

◆ bExecute rising edge, command execution - stores the cam information of the "CAM"

connection in a file connected by the file name "sFileName".

The bDone signal is output as true.

◆ The stored cam table information is limited by the hardware memory.

◆ Note: This function is performed while the program is running and the cam table information

can also be stored manually in the offline information.

4) Error description

◆ This command can only complete the cam table in XYVA polynomial mode, one-dimensional,

two-dimensional, etc. will cause an error output

◆ sFileName The connected file name does not exist or the information is wrong.

[Note]: Please read "Appendix C Error Code Descriptions" to understand the error code

descriptions.

VE Controller Programming Manual

7.4.14 SMC3_PersistPosition

This instruction is used to maintain the position of the record solid-axis absolute value
encoder (after the power-off restarts the controller, the position-recording value before the
power-off is restored). If the servo motor is using an absolute value encoder, use this
function block in conjunction.
1) Instruction format

Instructions Name Graphical performance ST performance

SMC3_

PersistPosition

The axis

position is

maintained

2) Related variables
. . . input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF - -
Map to the axis, AXIS_REF_SM3 instance

of the property

PersistentData
Keep the

data

SMC3_Persist

Position_Data

The power-off-hold data structure that

stores location information

Enter variables

Enter
the

variable
Name

The data
type

Effective
range

The
initial
value

Describe

bEnable Perform BOOL TRUE,FALSE FALSE

True function blocks are executed, false does

not execute function blocks, and to
restore the last stored location
during initialization, the value
must be set to true when the

application starts

The output variable

The output
variable

Name
The data

type
Effective range

The
initial
value

Describe

bPosition

Restored

Location

recovery
BOOL TRUE,FALSE FALSE

TRUE, position recovery completes

after axis restart

bPosition

Stored

Location

save
BOOL TRUE,FALSE FALSE

TRUE, the call function is done

quickly after saving the location

VE Controller Programming Manual

bBusy FB in action BOOL TRUE,FALSE FALSE
TRUE, the function block is not

executed

bError Error BOOL TRUE,FALSE FALSE TRUE, an exception occurs

eErrorID
The error

code

SMC_

ERROR
SMC_NO_ERROR

When an exception occurs,

The error code is output

eRestoringDiag
Restore

diagnostics

SMC3_Persi

stPositionD

iag

SMC3_

PersistPositionDiag.

SMC3_PPD_

RESTORING_OK

Diagnostic information in location

recovery

SMC3_PPD_RESTORING_OK:

Location recovery

SMC3_PPD_AXIS_PROP_CHANGED:

The axis parameters have changed

and bit

SMC3_PPD_DATA_STORED_DURIN

G_WRITING cannot be recovered:

the function block copies the data

from the axis parameter data

structure instead of from the

PersistentData data. Possible causes:

non-synchronous persistent

variable, controller crash crash

3) Function Description
◆ If the PLC restart bEnable signal is TRUE, the output of bPositionRestroed is TRUE.
◆ The dummy axis is not supported to follow the logic axis.
◆ Timing diagram

4) Error description
◆ An input axis that is a virtual axis or a logical axis will result in an error output.
◆ There is an error in the axis.
Note]: Please read "Appendix C Error Code Descriptions" for the error code descriptions.

VE Controller Programming Manual

7.4.15 SMC_FollowVelocity

Set the speed directly to the shaft without doing any checks. This instruction is different from
MC_MoveVelocity in that each task cycle gives the axis speed instruction (the
MC_MoveVelocity instruction speed changes andmust be refreshed to takeeffect).
1) Instruction format

Instructions Name Graphical performance ST performance

SMC_
FollowVelocity

The
axis
speed
is
given

2) Related variables
input and output variables

Enter the output
variable

Name
The data

type
Effective
range

The initial
value

Describe

Axis Axis AXIS_REF - -

Maps to the axis,

AXIS_REF_SM3 instance of

the property

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The initial
value

Describe

bExecute Perform BOOL TRUE,FALSE FALSE
The rising edge executes

the function block

fSetVelocity
Set the

speed
LREAL 0 The speed set by the axis

The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

bBusy In action BOOL TRUE,FALSE FALSE

True: In the execution of
instructions, where the axis is
synchronized, as in the cam
MC_CamIn instruction
runtime axis state, the bBusy state

can be cleared with MC_Camout

instructions

bCommand

Aborted

The

instruction is

interrupted

BOOL TRUE,FALSE FALSE

True: The axis is interrupted by other

control commands (when bExecute is

True).

bError Error BOOL TRUE,FALSE FALSE True, exceptions are generated

VE Controller Programming Manual

iErrorID
The error

code

SMC_

ERROR
Reference SMC_Error

3) Function description
After SMC_FollowVelocity has been started by the rising edge of bExecute, the axis sends a
velocity command to the axis every task cycle. bBusy is the same as the MC_CamIn
command when the axis is in synchronous operation, and can be cleared with the
MC_CamOut command.
When the bExecute signal is TRUE, bBusy changes from TRUE to FALSE when the command
is interrupted by another control command.
◆ Timing diagram

4) Error description
bExecute on rising edge.
Axis variable connected to a non-AXIS_REF_SM3 type structure variable, Error output.
Axis is not enabled, Error is output.
If the instruction is running and the axis is wrong, the error is output.
[Note]: Please read "Appendix C Error Code Descriptions" for related error code descriptions.

VE Controller Programming Manual

7.4.16 SMC_FollowSetValues

Like the other SMC_Follow functions, it is a direct axis command. However, this command
includes not only the other SMC_Follow commands but also acceleration, current, torque
and other control signals, so it can be considered a comprehensive version. The
DwValueMask value is used to select the desired command.
1) Instruction format

Instructions Name Graphical performance ST performance

SMC_
FollowSetValues

Axis-related
commands
given

2) Related variables
input and output variables

Enter the
output variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF - -
Maps to the axis, AXIS_REF_SM3

instance of the property

Enter variables

Enter the
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

bExecute
Implementati

on
BOOL TRUE,FALSE FALSE

Rising edge execution function block

DwValue

Mask

Control

Management
DWORD 0

Bite0:TRUE:fSetPosition active FALSE:

ignored

bAbort
Interrupt

BOOL TRUE,FALSE FALSE
Bite1:TRUE: fSetVelocity active FALSE:

ignored

fSetPosition
Set position

LREAL 0
Bite2:TRUE: fSetAcceleration active FALSE:

ignored

fSetVelocity Set speed LREAL 0 Bite3:TRUE: fSetJerk active FALSE: Ignored

fSetAccel

eration

Set

acceleration
LREAL 0

Bite4:TRUE: fSetTorque active FALSE:

Ignored

fSetJerk
Set jump

value
LREAL 0

Bite5:TRUE: fSetCurrent active FALSE:

ignored

fSetTorque Set torque LREAL 0 Rising edge interrupt function block

fSetCurrent Set current LREAL 0 Axis set position (calibrated units)

VE Controller Programming Manual

The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

bBusy
During

execution
BOOL TRUE,FALSE FALSE

True- During the execution of

the instruction, the

bCommand

Aborted

Instruction

interrupted

BOOL TRUE,FALSE FALSE

(the axis is in a synchronized

state, the same as when the cam

MC_CamIn instruction is

running), the bBusy state can be

cleared with the MC_Camout

instruction

bError
Error

BOOL TRUE,FALSE FALSE
True- The axis is interrupted by

another control command

iErrorID Error code SMC_ERROR True, exception generated

3) Function description
◆ After SMC_FollowSetValues has been started by the rising edge of bExecute, the axis
sends the selected parameter command to the axis every task cycle.
◆ When the bBusy signal comes, the state of the axis is synchronous and the state of the
slave axis is the same as when the MC_CamIn instruction is in effect, which can be cleared by
the MC_CamOut instruction.
When the bExecute signal is TRUE, bBusy changes from TRUE to FALSE when the command
is interrupted by another control command.
◆ The control parameter is selected by the DwValueMask value, for example, if
DwValueMask is 1, the position is sent for each task cycle, just like the SMC_FollowPosition
instruction. A DwValueMask of 2 is the output of a separate speed command. A
DwValueMask of 3 is the output of a position velocity command. A DwValueMask of 7 is the
output of a position, velocity, acceleration command, etc.
◆ Timing diagram

4) Error description
bExecute on rising edge.
Axis variable is connected to a non-AXIS_REF_SM3 type structure variable, Error output

VE Controller Programming Manual

Axis is not enabled, Error output.
The instruction is running, the axis is wrong, Error is output.
Note]: Please read "Appendix C Error Code Descriptions" for the error code descriptions.

VE Controller Programming Manual

7.4.17 SMC_SetControllerMode

Set the current operating mode of the servo, default to the synchronization cycle position
control, control mode related settings please refer to the servo control mode.

1) Instruction format

Instructions Name Graphical performance ST performance

SMC_

SetControllerMode

Set the

shaft

control

mode

2) Related variables
input and output variables

Enter the
output
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF - -
Maps to the axis, AXIS_REF_SM3 instance of

the property

Enter variables

Enter the
variable

Name The data type
Effective
range

The
initial
value

Describe

bExecute Perform BOOL TRUE,FALSE FALSE
The rising edge executes the function

block

nController

Mode

Control

mode

SMC_CONTR

OLLER_MODE

SMC_

Position

Shaft control mode

1: torque control mode： SMC_torque

2: speed control mode,：SMC_Velocity

3:position control mode ：

SMC_Position

4: current control mode, SMC_Current

The output variable

The
output
variable

Name
The data
type

Effective
range

The
initial
value

Describe

bDone

The mode

setting is

complete

BOOL TRUE,FALSE FALSE
True, the mode setting is

complete

bBusy In action BOOL TRUE,FALSE FALSE
True - In the execution of

instructions,

bError Error BOOL TRUE,FALSE FALSE True, exceptions are generated

VE Controller Programming Manual

iErrorID The error code SMC_ERROR Reference SMC_Error

3) Function description
◆ SMC_SetControllerMode, which gives the servo drive the control mode command after
the rising edge of bExecute is started, or the control mode can be set by the
Axis.out.byModesofOpreation value after axis configuration (object dictionary 6060h has to
be added to the process data).

◆ Conditions to be met for the use of the function block.
1: The axes must meet these control conditions, e.g. dummy axes cannot use the function
block.
2: The synchronisation period supported by each mode must be the same (refer to the
manual of "EtherCAT Servo" of WKD)
3: The axes must be in a state other than "errorstop", "stopping" or "homing" when the
command is executed, otherwise an error will occur.
◆If the axis does not change to the set control mode after 1000 cycles of the command, the
command will report an error and bError will change from false to true.
◆When the axis control mode changes from low level to high level (torque -> velocity,
torque->position, velocity->position), the function block will calculate the set value of the
high level mode. For example, when there is a change from torque mode to position mode,
the function block will superimpose an expected position distance (calculated by the current
actual velocity and the time offset in the task cycle) to compensate for the time lag between
the actual and set values.
◆When the bDone signal is triggered after the command has been executed, the axis will
still run during the time between the command trigger and the bDone signal trigger.
However, if the bDone signal is triggered and there is no other control command to continue
setting values for the axis, the axis will stop immediately and an error will be reported, so the
rising edge of the bDone signal should be used to trigger commands such as MC_Halt,
MC_MoveVelocity or MC_MoveAbsolute to smooth out the axis.

4) Timing diagram

VE Controller Programming Manual

5) Error description
bExecute On rising edge.
Axis invalid
Axis state is invalid.
The axis does not satisfy the control mode.
Axis error is reported and Error is output.
【Note】: Please read "Appendix C Error Code Descriptions" for descriptions of the relevant
error codes.

VE Controller Programming Manual

7.4.18 SMC_CheckLimits

The instruction function is to check whether the current drive setting value exceeds the
maximum value configured by the controller.
1) Instruction format

Instructions Name Graphical performance ST performance

SMC_

CheckLimits

Axis

Limits

Check

2) Related variables
input and output variables

Enter the
output
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF - -
Maps to the axis, AXIS_REF_SM3 instance of the

property

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The initial
value

Describe

bEnable Perform BOOL
TRUE,

FALSE
FALSE TRUE: In the execution of the check

bCheckVel Speed check BOOL
TRUE,

FALSE
FALSE

TRUE: Speed check, false: Do not

perform speed check

bCheckAccDec

Add a

deceleration

check

BOOL
TRUE,

FALSE
FALSE

TRUE: Perform a deceleration check,

false: Do not perform a deceleration

check

The output variable

The
output
variable

Name
The data

type
Effective range

The
initial
value

Describe

bBusy In action BOOL TRUE,FALSE FALSE
True - Perform axis check,

False: Do not perform axis check

bError Error BOOL TRUE,FALSE FALSE True, exceptions are generated

iErrorID
The error

code
SMC_ERROR Reference SMC_Error

bLimits

Exceeded

Check

Limit

Output

BOOL TRUE,FALSE FALSE

TRUE: Currently set speed, or add

or decelerate over

Axis.fSWMaxVelocity,

Axis.fSWMaxAcceleration

VE Controller Programming Manual

Axis.fSWMaxDeceleration

3) Function Description
bEnable is TRUE, bBusy outputs TRUE. bEnable checks the axis velocity and acceleration.
If the set speed or acceleration/deceleration of the current axis exceeds the set values of
Axis.fSWMaxVelocity, Axis.fSWMaxAcceleration, Axis.
fSWMaxDeceleration, the bLimitsExceeded signal is output as TRUE
Note: This function only checks that the current command speed or
acceleration/deceleration exceeds the set limit value, it does not stop the axis.

4) Timing diagram

5) Error description
bExecute on rising edge.
Axis error reported, Error output.
Invalid axis input, Error output.
[Note]: Please read "Appendix C Error Code Descriptions" for the relevant error code
descriptions.

VE Controller Programming Manual

7.4.19 SMC_GetMaxSetAccDec

The command reads the maximum acceleration and deceleration of the axis.

1) Instruction format

Instructions Name Graphical performance ST performance

SMC_

GetMaxSetAccDec

Maximum

axis

increase

and

deceleration

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF - -
Map to the axis, AXIS_REF_SM3 instance of

the map

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

bEnable Perform BOOL TRUE,FALSE FALSE TRUE: Perform a read

dwTimeStamp Dword Optional timestamp input;

The output variable

The
output
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

bValid Effective BOOL
TRUE,

FALSE
FALSE True, the instruction execution is valid

bBusy In action BOOL
TRUE,

FALSE
FALSE True, reading data

fMaxAcce

leration

Maximum

plus-deceleration

value

LREAL 0

Maximum plus-deceleration value

(positive acceleration, negative

deceleration, plus-deceleration absolute

maximum value is final)

dwTime

AtMax

The maximum

value

corresponds to

the timestamp

Dword 0

The dwTimeStamp value corresponding

to the maximum acceleration (e.g. when

the acceleration continues to increase, the

value is updated with dwTimeStamp, the

fMaxAcceleration value is also updated,

VE Controller Programming Manual

and once the acceleration reaches the

maximum, the fMaxAcceleration record

maximum, and the dwTimeStamp

corresponding to the maximum value is

also recorded)

3) Function description
bEnable is TRUE, no error, bValid outputs TRUE.
When the absolute value of acceleration/deceleration is greater than the previous value,
fMaxAcceleration and dwTimeAtMax will be refreshed.
The dwTimeAtMax value is the corresponding dwTimeStamp value for the maximum
acceleration and deceleration, so dwTimeStamp should be set to a variable value, e.g. with
the task period or a fixed time period. (see sample program)
◆ Sample program

VE Controller Programming Manual

7.4.20 SMC_GetMaxSetVelocity

The instruction function is: Read the maximum speed of the axis.

1) Instruction format

Instructions Name Graphical performance ST performance

SMC_GetMax

SetVelocity

Maximum

axis

increase

and

deceleration

2) Related variables
input and output variables

Enter the
output
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF - -
Maps to the axis, AXIS_REF_SM3 instance of the

property

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

bEnable Perform BOOL TRUE,FALSE FALSE TRUE: Perform a read

dwTimeStamp Dword Optional time stamp input;

The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

bValid Effective BOOL TRUE,FALSE FALSE True, the instruction execution is valid

bBusy In action BOOL TRUE,FALSE FALSE True, reading data

fMaxVelocity

The

maximum

speed value

LREAL 0
Maximum velocity value (positive, negative

reverse, absolute maximum final)

dwTime

AtMax

The

maximum

value

corresponds

to the

Dword 0

The dwTimeStamp value at maximum

speed (e.g., when the speed continues to

increase, the value is updated with

dwTimeStamp, the fMaxVelocity value is

also updated, and once the maximum

VE Controller Programming Manual

timestamp speed is reached, the fMaxVelocity record

maximum, and the dwTimeStamp

corresponding to the maximum value is

also recorded)

3) Function description
bEnable is TRUE, no error, bValid outputs TRUE.
fMaxVelocity and dwTimeAtMax are refreshed when the absolute value of the velocity is
greater than the previous value.
The dwTimeAtMax value corresponds to the dwTimeStamp value for maximum velocity, so
dwTimeStamp should be set to a variable value, e.g. with the task cycle or a fixed time period.
(see sample program)
◆ Sample program

VE Controller Programming Manual

7.4.21 SMC_InPosition

The instruction function is to monitor the deviation between the current axis set position
value and the actual value, and to determine whether the axis is within the required deviation
range through the set deviation window.
1) Instruction format

Instructions Name Graphical performance ST performance

SMC_InPosition
Axis
deviation
monitoring

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF - -
Maps to the axis, AXIS_REF_SM3 instance of

the property

Enter variables

Enter the
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

bEnable Perform BOOL
TRUE,

FALSE
FALSE TRUE: Perform a read

fPosWindow
Bias

window
LREAL 0

Set the window for deviation monitoring,

fPosWindow and Distance (the deviation between

the instruction position and the feedback

position), and the true position is based on the

fPosTime time output bPositionInPosition

fPosTime

The

trigger

time

LREAL 0

The deviation is within the window range time

and is used to trigger bInPosition units in S

(seconds)

fPosTiOut
Time-out

time
LREAL 0 Deviation timeout in S (seconds)

The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

bInPosition The BOOL TRUE,FALSE FALSE True, the deviation is within the set

VE Controller Programming Manual

deviation is

normal

window

bBusy In action BOOL TRUE,FALSE FALSE True, in action

bTimeOut Timeout LREAL TRUE,FALSE FALSE
Current deviation detection related

to byDeaTimeCycles values

3) Function Description
bEnable is TRUE, if the detected deviation is less than the set window fPosWindow and lasts
fPosTime seconds then bInPosition triggers TRUE. bInPosition outputs FALSE as soon as the
detected deviation is greater than the set window.
Note: The fPosTime must be set at a reasonable time otherwise bTimeOut will be triggered
(e.g. for a cam with a 2 second cam period and a continuous deviation not exceeding the set
window of 1.5 seconds, fPosTime set to greater than 1.5 seconds will cause bInPosition not
to be triggered).
bEnable is TRUE, bBusy output is true.
The deviation value monitors the data fCurrentDistance in the SMC_InPosition structure.
If bEnable is TRUE, bInPosition is not triggered TRUE after the time set by fPosTime, then
bTimeOut is triggered TRUE.
◆ Timing chart sample program

◆ Sample program

VE Controller Programming Manual

Larger than window setting bInPosition immediately changes from true to FALSE

bInPosition becomes TRUE after 4 task cycles (2.5ms) within the setting window, which
corresponds to the program setting of 0.01S

4) Timing diagram

VE Controller Programming Manual

VE Controller Programming Manual

7.4.22 SMC_ReadSetPosition

The instruction function is to read the instruction position of the axis (the converted user
unit).

1) Instruction format

Instructions Name Graphical performance ST performance

SMC_

ReadSetPosition

Read the

axis

command

position

2) Related variables
input and output variables

Enter the
output
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF - -
Maps to the axis, AXIS_REF_SM3 instance of

the property

Enter variables

Enter the
variable

Name
The data

type
Effective range

The
initial
value

Describe

Enable Perform BOOL TRUE,FALSE FALSE TRUE: Perform a read

The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Valid Effective BOOL TRUE,FALSE FALSE True, read valid

Busy In action BOOL TRUE,FALSE FALSE True, in action

Error Error BOOL TRUE,FALSE FALSE True, exceptions are generated

ErrorID
The error

code
SMC_ERROR Reference SMC_Error

Position

The position

of the

instruction

LREAL 0
The command position of the

current task cycle

3) Function description
Enable is TRUE, Valid if no error, Busy output is TURE.
Position is the value of Axis.fSetPosition.
If Enable is FALSE, , then Valid and Busy output is FALSE. Position stays at the value before

VE Controller Programming Manual

FALSE.
◆ Timing chart sample program

4) Error description
bExecute on rising edge: Axis error, Error output; Invalid axis input, Error output.
[Note]: Please read "Appendix C Error Code Descriptions" for the relevant error code
descriptions.

VE Controller Programming Manual

7.4.23 SMC_SetTorque

The instruction function is to set the shaft torque (valid when in torque control mode).

1) Instruction format

Instructions Name Graphical performance ST performance

SMC_SetTorque
Torque

setting

2) Related variables
Enter the output variables

Enter the
output
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF - -
Map to the axis, AXIS_REF_SM3 instance of the

map

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The initial
value

Describe

bEnable Perform BOOL TRUE,FALSE FALSE
Rise the edge and set

the shaft torque

fTorque Set the torque LREAL 0 The unit is 0.1

The output variable

The output
variable

Name The data type Effective range
The
initial
value

Describe

Busy In action BOOL TRUE,FALSE FALSE True, in action

Error Error BOOL TRUE,FALSE FALSE
True, exceptions are

generated

ErrorID
The error

code
SMC_ERROR Reference SMC_Error

3) Function description
bEnable Rising edge, no error then bBusy output is TURE.
This instruction only sets the torque value for the axis and is not a torque control function.
The axis control mode is valid in the torque control mode, i.e. you need to use the
SMC_SetControllerMode instruction to set the servo to torque mode first and then execute
this instruction.

VE Controller Programming Manual

◆ Timing diagram sample program

4) Error description
bExecute on rising edge.
Axis error reported, Error output; invalid axis input, Error output.
Axis control mode error, Error output, error code SMC_ST_WRONG_CONTROLLER_MODE
[Note]: Please read "Appendix C Error Code Descriptions" for descriptions of the relevant
error codes.

VE Controller Programming Manual

7.4.24 SMC_BacklashCompensation

The instruction function is: to compensate for the main shaft gap, for example, the virtual
axis in the belt transfer is the main axis, the axis is a virtual axis synchronization mirror, due to
external reasons, there is a gap between the position of the shaft and the spindle, the
instruction can be used to compensate for this gap.
This instruction function is similar to the phase offset instruction (MC_Phasing) and its phase
depends on the direction in which the spindle operates.

1) Instruction format

Instructions Name Graphical performance ST performance

SMC_

BacklashCom

pensation

Gap

compensation

2) Related variables
input and output variables

Enter the
output
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

Master Spindle AXIS_REF - -
Maps to the axis, AXIS_REF_SM3 instance of

the property

Slave
From

the axis
AXIS_REF - -

Maps to the axis, AXIS_REF_SM3 instance of

the property

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

bExecute Perform BOOL
TRUE,

FALSE
FALSE Rise edge, set offset

fBacklash LREAL 0 Compensate for the gap

fCompensationVe

l
LREAL 0

The speed at which compensation

is made

fCompensationAc

c
LREAL 0 Acceleration at compensation

fCompensationD LREAL 0 Reduce the speed when

VE Controller Programming Manual

ec compensating

eBacklashMode

SMC_

BACKLASH

_MODE

SMC_BL

_AUTO

Compensation mode:

SMC_BL_AUTO: Spindle direction

determines compensation

direction SMC_BL_POSITIVE:

Forward

compensation, independent of

spindle direction

SMC_BL_NEGATIVE: Reverse

compensation, independent of

spindle

direction SMC_BL_OFF: No

compensation

eBacklash

StartState

SMC_

BACKLASH_

STARTSTATE

SMC_BL_

START_

NEGATIVE

Describes the working state of the

axis at which the instruction works.

SMC_BL_START_NEGATIVE: The

motion from the axis is pulled in

the negative direction and does

not need compensation in the

negative direction, once the

forward motion is

called twice the fBacklash to

establish compensation

SMC_BL_START_POSITIVE: the

forward motion is pulled in the

positive direction, no

compensation is required in the

positive direction, and once the

reverse motion needs to be

compensated by twice

the fBacklash

SMC_BL_START_NONE: the

distance compensation of

the fBacklash value is generated in

the positive or opposite direction

movement.

The output variable

The output
variable

Name
The data

type
Effective range

The
initial
value

Describe

bBusy In action BOOL TRUE,FALSE FALSE True, in action

bCommandAborted
The

instruction is
BOOL TRUE,FALSE FALSE

True - interrupted by

other control

VE Controller Programming Manual

interrupted commands

bError Error BOOL TRUE,FALSE FALSE
True, exceptions are

generated

iErrorID
The error

code
SMC_ERROR

Reference

SMC_Error

bCompsating compensation BOOL TRUE,FALSE FALSE

3) Function Description
bEecute rising edge, no error, bBusy output is TURE, bCompsating output is true,
bCompsating output is false when compensation is complete.
The mode of operation is: eBacklashMode - the compensation direction is "positive",
eBacklashStartState is "positive", fBacklash is positive. Before the bBusy signal comes, it is
better that the master and slave axes are in the same position, otherwise the slave axes will
be adjusted to spindle phase synchronization after the bEecute rising edge comes, and if the
bBusy signal is already present then the bEecute rising edge is refreshed, please observe.
◆ Timing diagram sample procedure

◆ Sample program

4) Error description

VE Controller Programming Manual

bExecute on rising edge.
Axis error, Error output; Invalid axis input, Error output.
[Note]: Please read "Appendix C Error Code Descriptions" for the error code descriptions.

VE Controller Programming Manual

7.4.25 SMC3_PersistPositionSingleturn

This instruction is used to maintain the position of the recorded solid-axis single-turn
absolute value encoder (after the power-off restarts the controller, the pre-power-off
position record value is restored).

1) Instruction format

Instructions Name Graphical performance ST performance

SMC3_

PersistPosition

Singleturn

The axis

position is

maintained

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF - -
Maps to the axis, AXIS_REF_SM3 instance of

the property

PersistentData

Keep

the

data

SMC3_

PersistPosition

Singletrun_Data

A map to a recorded location structure

SMC3_ PersistPosition_Data of a

structure variable that must be power-off

hold

Enter variables

Enter the
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

bEnable Perform BOOL
TRUE,

FALSE
FALSE

True function block execution, false does not

perform function block

PLC restart after the need for true to restore

the pre-restart storage location.

usiNumberof

AbsoluteBites

The

number

of digits

UINT 16
How many bits of absolute value encoder

(e.g. 20 bits, 24 bit encoder, etc.)

The output variable

The output
variable

Name
The data

type
Effective
range

The initial value Describe

bPositionRestored Location BOOL TRUE, FALSE TRUE, position recovery

VE Controller Programming Manual

recovery FALSE completes after axis

restart

bPositionStored
Location

save
BOOL

TRUE,

FALSE
FALSE

TRUE, the call function is

done quickly after

saving the location

bBusy
FB in

action
BOOL

TRUE,

FALSE
FALSE

TRUE, the function block

is not executed

bError Error BOOL
TRUE,

FALSE
FALSE

TRUE, an exception

occurs

eErrorID
The error

code
SMC_ERROR

SMC_NO_

ERROR

When an exception

occurs, the error code is

output

eRestoringDiag
Restore

diagnostics

SMC3_PersistP

ositionDiag

SMC3_Persist

PositionDiag.

SMC3_PPD_

RESTORING_OK

Diagnostic information

in location recovery

3) Function description
The PLC restart bEnable signal is TRUE, the bPositionRestroed output is TRUE.
The dummy axis is not supported to follow the logic axis.
◆ Timing diagram

4) Error description
An input axis that is a virtual axis or a logical axis will result in an error output.
There is an error in the axis.
[Note]: Please read "Appendix C Error Code Descriptions" for error code descriptions.

VE Controller Programming Manual

7.4.26 SMC_CheckAxisCommunication

The instruction function is to check the current drive traffic status.
1) Instruction format

Instructions Name Graphical performance ST performance

SMC_
CheckLimits

Axis
limit
check

2) Related variables
input and output variables

Enter the
output
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF - -
Maps to the axis, AXIS_REF_SM3 instance of the

property

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

bEnable Perform BOOL TRUE,FALSE FALSE TRUE: In the execution of the check

The output variable

The
output
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

bValid In action BOOL
TRUE,

FALSE
FALSE True, the instruction execution is valid

bError Error BOOL
TRUE,

FALSE
FALSE True, exceptions are generated

eErrorID
The error

code

SMC_ER

ROR
Reference SMC_Error

bOpera

tional

Commu

nication

is normal

BOOL
TRUE,

FALSE
FALSE

True, communication is normal (code 100)

Operation

False, communication is not normal, not axis

operation

eComState

The

commun

ication

status

SMC_CO

MMUNI

CATION

STATE

Contains: SMC_COMSTATE_NOT_STARTED,

communication does not start
SMC_COMSTATE_VARIABLE_INITIALIZATION,

communication variable

VE Controller Programming Manual

initialization

SMC_COMSTATE_BASE_COM_INITIALIZATION,

basic port
initialization

SMC_COMSTATE_DRIVE_INITIALIZATION,

communication driver
initialization

SMC_COMSTATE_DRIVE_WAITING_FOR_SYNC,

synchronous

warning

SMC_COMSTATE_INITIALIZATION_DONE,

initialization complete

SMC_COMSTATE_OPERATIONAL, communication

can be used normally

SMC_COMSTATE_REINITIALIZATION,

communication re-initialization

SMC_COMSTATE_ERROR,

communication errors

SMC_COMSTATE_UNKNOWN the

communication status is unknown

wComState

The

commun

ication

code

WORD

Same as the axis structure variable in the input

and output: Axis

.wCommunicationState value, the code
that represents the current
communication state, refer to AXIS_REF_SM3

reference
1013

3) Function description
bEnable is TRUE, no error, bValid is TRUE.
When the bValid output is TRUE, the axis communication status is checked and the
bOperational output is TRUE when the eComState output is
SMC_COMSTATE_OPERATIONAL.
◆ Sample program

4) Error description
bExecute on rising edge: axis error reported, Error output.
Invalid axis input, Error output.

VE Controller Programming Manual

Note]: Please read "Appendix C Error Code Descriptions" for the relevant error code
descriptions.

VE Controller Programming Manual

7.4.27 SMC_FollowPosition

The instruction function is to set the position directly to the shaft without doing any checks.
This instruction differs from MC_MoveAbsolute in that each task cycle gives the axis position
command regardless of the axis's state after the up-edge model is executed. (The user can
write the cam function using the instruction instead of using MC_CamIn, etc.).

1) Instruction format

Instructions Name Graphical performance ST performance

SMC_

FollowPosition

The axis

position

is given

2) Related variables
input and output variables

Enter the
output
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF - -
Maps to the axis, AXIS_REF_SM3 instance of the

property

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

bExecute Perform BOOL TRUE,FALSE FALSE
The rising edge executes the function

block

fSetPosition
Set the

position
LREAL 0 The position set by the axis

The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

bBusy In action BOOL TRUE,FALSE FALSE

True - In the execution of the

instruction, the axis is synchronized

and, like the cam MC_CamIn

instruction runtime axis state, the

bBusy state can be cleared with the

MC_Camout instruction

bCommand

Aborted

The

instruction

is

BOOL TRUE,FALSE FALSE
True - The axis is interrupted by

other control commands

VE Controller Programming Manual

interrupted

bError Error BOOL TRUE,FALSE FALSE True, exceptions are generated

iErrorID
The error

code
SMC_ERROR Reference SMC_Error

3) Function description
After SMC_FollowPosition has been started by the rising edge of bExecute, the axis

sends position commands to the axis every task cycle. bBusy signal comes with the axis in the
same synchronous state as the MC_CamIn instruction and can be cleared with the
MC_CamOut instruction.

Axis velocity - calculated from the position increment of the difference between the two

task cycles of the axis, velocity: ∆L / ∆t , ∆L current task cycle

The difference between fSetVelocity and fSetVelocity of the previous task cycle, ∆ t is

the scan time.
When the bExecute signal is TRUE, bBusy changes from TRUE to FALSE when another

control command interrupts the instruction.
◆ Timing diagram

4) Error description
bExecute on rising edge.
Axis variable connected to a non-AXIS_REF_SM3 type structure variable, Error output.
If the axis is not enabled, Error is output.
The instruction is running, the axis is wrong, Error is output.
Note]: Please read "Appendix C Error Code Descriptions" for the description of the relevant
error codes.

5) Example
Use SMC_FollowPosition to implement the electronic cam function.

VE Controller Programming Manual

Function block variable definition section.
FUNCTION_BLOCK CAM_BUILD
VAR_INPUT// Input variable definition
Master_peridec:REAL; // master_cycle
bExcute:BOOL; // instruction execution
bPeriod:BOOL; // Cam period execution, false Single cycle execution
Slave_peridec:REAL; // Slave cycle
END_VAR
VAR_OUTPUT// Output variable definition
Mater_position:LREAL;// spindle position (spindle position calculated after the start of
command execution)
End_profile:BOOL; // curve completion output flag bit
bBusy:BOOL; // Execution in progress
END_VAR
VAR// Function block intermediate variable definition
SMC_FollowPosition_0: SMC_FollowPosition;
SET_POSITION: LREAL;
SET_POSITIONOLD: LREAL;
Mater_positionOLD:LREAL;
bExcute_old:BOOL;
INC:LREAL;
Y:LREAL;
X5:LREAL;
X4:LREAL;
X3:LREAL;
X2:LREAL;
X1:LREAL;
MC_Stop0: MC_Stop;
STOP:BOOL;
COUNTNUM:DINT;
SET_INC:LREAL;
YOLD:LREAL;
SMC_FollowPositionVelocity_0: SMC_FollowPositionVelocity;
K:REAL;
K_OUT:REAL;
MC_CamOut_0: MC_CamOut;

VE Controller Programming Manual

VAR_IN_OUT// Input and output variable definitions
Mater_Axis:AXIS_REF_SM3;
Slave_Axis:AXIS_REF_SM3;
END_VAR
Program section.
IF bExcute AND NOT bExcute_old THEN // Rising edge initialization parameter
Mater_position:=0;
Mater_positionOLD:=Mater_Axis.fActPosition;
End_profile:=FALSE;
SET_POSITION:=Slave_Axis.fActPosition;
SET_POSITIONOLD:=Slave_Axis.fActPosition;
COUNTNUM:=0;
YOLD:=0;
K:=0;
ELSE

IF bExcute_old THEN
INC:= Mater_Axis.fActPosition-Mater_positionOLD;// Spindle task cycle increment
IF INC<0 THEN // Spindle encoding position past zero (when axis is set to modulo- modulo
mode)
INC:= Mater_Axis.fActPosition-Mater_positionOLD+Mater_Axis.fPositionPeriod;
END_IF
Mater_position:=INC+Mater_position;// current spindle position
Mater_positionOLD:=Mater_Axis.fActPosition;
//******** judge curve completion *********//
IF Mater_position>=Master_peridec THEN
End_profile:=TRUE;
ELSE
End_profile:=FALSE;
END_IF
IF bPeriod THEN
IF Mater_position>=Master_peridec THEN
Mater_position:=Mater_position-Master_peridec;
END_IF
END_IF
END_IF
END_IF
IF bExcute_old THEN
X1:=(Mater_position/Master_peridec);
X2:=X1*X1;
X3:=X2*X1;
X4:=X3*X1;
X5:=X4*X1;
Y:=(6*X5-15*X4+10*X3)*Slave_peridec;// From axis position, curve

VE Controller Programming Manual

K:=(30*X4-60*X3+30*X2)*Slave_peridec/Master_peridec;// Slope of the curve
SET_INC:=Y-YOLD;
IF SET_INC<0 THEN
SET_INC:=Slave_peridec-YOLD+Y;
END_IF
YOLD:=Y;
IF bPeriod THEN
SET_POSITION:=SET_POSITION+SET_INC;
ELSE
IF End_profile THEN
SET_POSITION:=SET_POSITIONOLD+Slave_peridec;
ELSE
SET_POSITION:=SET_POSITION+SET_INC;
END_IF
END_IF
IF SET_POSITION>=Slave_Axis.fPositionPeriod THEN
SET_POSITION:=SET_POSITION-Slave_Axis.fPositionPeriod;
END_IF
END_IF
SMC_FollowPosition_0(
Axis:=Slave_Axis,
bExecute:=bExcute,
fSetPosition:=SET_POSITION ,
bBusy=>bBusy ,
bCommandAborted=> ,
bError=> ,
iErrorID=>);
IF NOT bExcute AND bExcute_old THEN
STOP:=TRUE;
END_IF
MC_CamOut_0(
Slave:=Slave_Axis,
Execute:= STOP,
Done=> ,
Busy=> ,
Error=> ,
ErrorID=>);
MC_Stop0(
Axis:=Slave_Axis,
Execute:= MC_CamOut_0.Done OR MC_CamOut_0.Error ,
Deceleration:=20000 ,
Jerk:= 20000,
Done=> ,
Busy=> ,

VE Controller Programming Manual

Error=> ,
ErrorID=>);
IF MC_Stop0.Done OR MC_Stop0.Error THEN
STOP:=FALSE;
END_IF
IF NOTbExcute_old THEN
End_profile:=FALSE;
END_IF
bExcute_old:=bExcute;

VE Controller Programming Manual

7.4.28 SMC_FollowPositionVelocity

The instruction function is the SMC_FollowPosition the same as the use function, but the
speed setting is increased. Note: The speed setting to meet the position setting change is:
the speed setting is set by setting a difference between the
task cycle position and a guide to the time. For example:
if the two inter-cycle positions are set consistently, the speed should be set to 0, otherwise
the motor will vibrate violently.

1) Instruction format

Instructions Name Graphical performance ST performance

SMC_
FollowPositionVelocit
y

The
axis
positio
n and
speed
are
given

2) Related variables
input and output variables

Enter the
output
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF - -
Maps to the axis, AXIS_REF_SM3 instance of

the property

Enter variables

Enter the
variable

Name
The
data
type

Effective
range

The initial value Describe

bExecute Perform BOOL TRUE,FALSE FALSE

The rising edge

executes the function

block

fSetPosition
Set the

position
LREAL 0

The position set by the

axis

fSetVelocity
Set the

speed
LREAL 0

The position set by the

axis

The output variable

The
output
variable

Name
The
data
type

Effective
range

The
initial
value

Describe

bBusy In action BOOL TRUE,FALSE FALSE True - In the execution of

VE Controller Programming Manual

instructions,

the bBusy state can be cleared with

MC_Camout instructions when the

axis is in sync, as is the status of the

cam MC_CamIn instruction when it is

run

bCommand

Aborted

The

instruction is

interrupted

BOOL TRUE,FALSE FALSE
True - The axis is interrupted by

other control commands

bError Error BOOL TRUE,FALSE FALSE True, exceptions are generated

iErrorID
The error

code

SMC_

ERROR
Reference SMC_Error

3) Function description
SMC_FollowPositionVelocity After starting by the rising edge of bExecute, the axis will send
set position and set velocity commands to the axis every task cycle.
When the bBusy signal comes in, the axis is in the same state as when the MC_CamIn
instruction is in effect and can be cleared with the MC_CamOut instruction.

The set speed of the axis must be the same as the set position: fSetVelocity= ∆L / ∆t , ∆L is

the difference between the fSetVelocity of the current task cycle and the fSetVelocity of the

previous task cycle, ∆t is the scan time.

When the bExecute signal is TRUE, bBusy changes from TRUE to FALSE when another control
command interrupts the instruction.
◆ Timing diagram

4) Error description
bExecute on rising edge.
Axis variable connected to a non-AXIS_REF_SM3 type structure variable, Error output.
Axis is not enabled, Error is output.
If the instruction is running and the axis is wrong, the error is output.
[Note]: Please read "Appendix C Error Code Descriptions" for related error code descriptions.

VE Controller Programming Manual

7.4.29 SMC_AxisDiagnosticLog

The instruction function is to periodically write a parameter of the axis to the file.

1) Instruction format

Instructions Name Graphical performance ST performance

SMC_

AxisDiagnosticLog

Axis

parameters

are written

to the file

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF - -
Maps to the axis, AXIS_REF_SM3 instance of

the property

Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

bExecute Perform BOOL TRUE,FALSE FALSE
Up the edge, perform the

function block

bClosefile
Close the

file
BOOL TRUE,FALSE FALSE

TRUE, the instruction

immediately closes the file

sFileName Filename STRING(80) ‘’
The stored file name (before

the path.)

bSetPosition
Record the

set position
BOOL TRUE,FALSE FALSE

TRUE, record the set position

when executing the

instruction

bActPosition

Record the

actual

location

BOOL TRUE,FALSE FALSE

TRUE, record the actual

location when executing the

instruction

bSetVelocity
Record the

set speed
BOOL TRUE,FALSE FALSE

TRUE, record the set speed

when executing the

instruction

VE Controller Programming Manual

bActVelocity

The actual

speed of

several

rounds

BOOL TRUE,FALSE FALSE

TRUE, the actual speed is

recorded when the

instruction is executed

bSetAcceleration

Record the

set

acceleration

BOOL TRUE,FALSE FALSE

TRUE, record the set

acceleration when executing

the instruction

bActAcceleration

Record the

actual

acceleration

BOOL TRUE,FALSE FALSE

TRUE, record the actual

acceleration when executing

the instruction

bySeparatorChar BYTE 9
ASCII code value, written

between two different values

sRecord

SeparatorString
'RN'

The string written at the end

of the date

eMode
SMC_

LOGGERMODE

LOG_

CONTINUOUS

log_continuous: Record to

file continuously

log_at_close: Record

continuously to the buffer

(10kbyte). When bclosefile is

true, the buffer's data is

written to the file

The output variable

The
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

bDone Complete BOOL TRUE,FALSE FALSE True, the save is complete

bBusy In action BOOL TRUE,FALSE FALSE True, in action

bError Error BOOL TRUE,FALSE FALSE
True, exceptions are

generated

ErrorID
The error

code
SMC_ERROR Reference SMC_Error

bRecording recorded BOOL TRUE,FALSE FALSE
True, the argument is being

saved in the record

3) Function description
This function block is used to write a set of parameter values belonging to an axis cyclically
to a file. This output file is ideally suited for diagnostic purposes. As it usually takes some
time to write data on the data media, this block stores the collected data in a buffer of
10kbyte size and the data is not written until the module action WriteToFile is called. To
prevent interference with the actual action task and the action itself, this action call should be
placed in a slower (~50 ms) lower priority task. Once the buffer has been exceeded, the
module will create an error output.
4) Error description

VE Controller Programming Manual

bExecute on rising edge: axis error reported, Error output.
Invalid axis input, Error output.
Note]: Please read "Appendix C Error Code Descriptions" for the error code descriptions.

VE Controller Programming Manual

7.4.30 SMC_ChangeGearingRatio

The instruction function is: to change the user-set electronic gear ratio (pulse-to-user unit
ratio) and drive type. Note: The function block rear axle needs to be restarted
SMC3_ReinitDrive to ensure that the variable
1) instruction format can be initialized correctly

Instructions Name Graphical performance ST performance

SMC_
ChangeGearingRati
o

Chang
e the
gear
ratio

2) Related variables
input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF - -

Maps to the axis, AXIS_REF_SM3 instance of

the . The gear ratio will be changed to the

shaft

Enter variables

Enter the variable Name
The data

type
Effective
range

The
initial
value

Describe

bExecute Perform BOOL TRUE,FALSE FALSE
Up the edge, perform the

function block

dwRatioTechUnitsDenom DWORD 0
Pulse units converted to

application units (eg:mm)

iRatioTechUnitsNum DINT 0

The

dwRatioTechUnitsDenom

value corresponds to the

desired application unit

fPositionPeriod LREAL

Position cycle (mould value)

is only valid for rotating

motors

iMovementType INT

0: modulo axis (module axis),

1: finite axis (limited long

axis).

The output variable

The
output

Name
The data

type
Effective
range

The initial
value

Describe

VE Controller Programming Manual

variable

bDone Complete BOOL TRUE,FALSE FALSE
True, the execution set is

complete

bBusy In action BOOL TRUE,FALSE FALSE True, in action

bError Error BOOL TRUE,FALSE FALSE True, exceptions are generated

nErrorID
The error

code
SMC_ERROR Reference SMC_Error

3) Function Description
bEecute rising edge, no error then, bBusy output is TURE, finish bDone output is true, bBusy
output is false.
For example, if a 20-bit encoder servo motor with a 10:1 reduction ratio drives a screw
(10mm pitch), the motor turns 10 revolutions and the screw moves 10mm, setting
dwRatioTechUnitsDenom 1048576*10 and iRatioTechUnitsNum to 10.
The function block serves to dynamically modify for the program the parts shown in the
following diagram：

4) Error description
bExecute On rising edge.
◆ The axis reports an error, Error output.
◆ Invalid input value, Error output , Error code SMC_CGR_ZERO_VALUES
◆ Axis in command-controlled operation, Error output , Error code
SMC_CGR_DRIVE_POWERED
◆ The input modulus value is invalid (eg: <0), Error output , Error code

VE Controller Programming Manual

SMC_CGR_INVALID_POSPERIOD
Note]: Please read "Appendix C Error Code Descriptions" for the error code descriptions.

VE Controller Programming Manual

7.4.31 SMC_ReadFBError

The instruction function is: MC, SMC function block error .
1) Instruction format

Instructions Name Graphical performance ST performance

SMC_

ReadFBError

Read

function

block

error

2) Related variables
. . . input and output variables

Enter the
output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

Axis Axis AXIS_REF - -
Maps to the axis, AXIS_REF_SM3 instance of

the property

Enter variables

Enter the
variable

Name
The data

type
Effective range

The initial
value

Describe

bEnable Perform BOOL TRUE,FALSE FALSE TRUE: Perform a read

The output variable

The output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

bValid Effective BOOL TRUE,FALSE FALSE True, read valid

bBusy In action BOOL TRUE,FALSE FALSE True, in action

bFBError Error BOOL TRUE,FALSE FALSE True, there is an FB error

nFBErrorID
The error

code
SMC_ERROR Reference SMC_Error

pbyErrorInstance
POINTER TO

BYTE

The function block of the

output point is misaled

strErrorInstance STRING

Point to error function blocks

(programs, sub-programs,

function blocks)

tTimeStamp TIME
The timestamp at which the

error occurred

3) Function description
Enable is TRUE, no error is Valid, Busy is TURE.
If there is a function block alarm, bFBError is true.

VE Controller Programming Manual

If Enable is FALSE, , then Valid, Busy output is FALSE.
◆ Timing diagram sample program

◆ Sample program

◆ Error ID

VE Controller Programming Manual

The function block where the error occurred

VE Controller Programming Manual

4) Error description
bExecute on rising edge.
Axis error reported, Error output.
Invalid axis input, Error output.
Note]: Please read "Appendix C Error Code Descriptions" for the relevant error code
descriptions.

VE Controller Programming Manual

7.4.32 SMC_ClearFBError

The instruction function is to clear FB errors from the function block.
1) Instruction format

Instructions Name Graphical performance ST performance

SMC_

ClearFBError

Clears the

function

block

error

TEST:=SMC_

ClearFBError(pDrive:=ADR(Axis));

2) Related variables
. . . input variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

pDrive Axis AXIS_REF - -
Maps to the axis, AXIS_REF_SM3 instance of

the property

The output variable

The output
variable

Name
The data

type
Effective
range

The initial
value

Describe

SMC_ClearFBError Clear the error BOOL TRUE,FALSE FALSE True, clear

VE Controller Programming Manual

7.5 Vector special instructions

7.5.1 VECNSMC. VecCheckHardware

The instruction function is: Check that the controller hardware ID is correct. (The library
NSMCLib needs to beinstalled.)
1) Instruction format

Instructions Name Graphical performance ST performance

VECNSMC.

VecCheckHardwar

e

Hardwar

e ID

detection

function

block

2) Related variables
Enter variables

Enter the
variable

Name
The data

type
Effective
range

The
initial
value

Describe

in_Enable
Enable function

blocks
BOOL TSTREET,FALSE FLASE

Enable hardware ID to detect

function blocks

The output variable

The output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

CheckOK
The detection was

successful
BOOL TRUE,FALSE FALSE

When hardwareI D is

detected to be correct, it

is placed asTRUE

VE Controller Programming Manual

7.5.2 VECNSMC.NS_MC_SpecialCamIn

The instruction function is: for establishing a special cam relationship between the two axes.
(Library NSMCLib1) instruction format needs to be installed

Instructions Name Graphical performance ST performance

VECNSMC.

NS_MC_

SpecialCamIn

Special

cam

function

block

2) Related variables
. . . input variables

Enter the variable Name
The
data
type

Effective
range

The
initial
value

Describe

in_Enable

Enable

function

blocks

BOOL TSTREET,FALSE FLASE
Enable special cam function

blocks

in_Execute

The

execution

condition

BOOL TSTREET,FALSE FLASE

An up-edge of the input will

initiate the processing of the

function block

in_Stop
Stop the

cam
BOOL TSTREET,FALSE FLASE

One of the rising edges of the

input will lift the cam and stop

from the axis after the current

cam cycle is complete

in_feedPulse
Spindle

position
LREAL

The range of

data
0

Associate the spindle and enter

the given position of the

spindle, which isf Setposition

in_feedVPulse
Spindle

speed
LREAL

The range of

data
0

Associate the spindle and enter

the given speed of the spindle,

whichis f Setvelocity

in_SlaveCurrentTargetPulse

From the

axis target

position

LREAL
The range of

data
0

From the target position of the

axis, that is, from the axis off

Setposition

VE Controller Programming Manual

in_MasterPPU

Spindle

electronic

gear

LREAL
The range of

data
0

Electronic gears for spindles

(default 1)

in_SlavePPU

Electronic

gear from

shaft

LREAL
The range of

data
0

Electronic gear from shaft

(default setting 1)

in_MasterOverflow

The number

of cam cycle

spindle units

LREAL
The range of

data
0

The module of the spindle is to

be paired with this value in the

user unit

in_DistanceOffset_Master_head
Spindle front

offset
LREAL

The range of

data
0

How many positions the spindle

moved before the cam action

was made from the axis

in_DistanceAdd

Accelerate

the distance

from the axis

LREAL
The range of

data
0

The acceleration distance from

the axis from rest to the

synchronization zone

in_DistanceSync

Synchronize

the distance

from the axis

LREAL
The range of

data
0

The synchronous running

distance from the axis to the

sync zone

in_DistanceDec

Slow down

the distance

from the

shaft

LREAL
The range of

data
0

The deceleration distance from

the axis from the

synchronization zone to rest

in_DistanceOffset_Master_tail
Spindle rear

offset
LREAL

The range of

data
0

How many more positional

offsets do the spindles take

after the cam action is made

from the axis?

in_Mode Mode INT
The range of

data
0 Working mode

Note：
（1）Modulus is used for both master and slave axis types in the cam module.
（2）No other motion control can be performed on the slave axes bound in the cam function
block.
（3）When modulus is used for both master and slave axes, the slave axis modulus =
in_DistanceAdd+ in_DistanceSync+ in_DistanceDec and the master axis modulus =
in_DistanceAdd*30/16+ in_DistanceSync+ in_DistanceDec*30/16；
The output variable

The output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

out_Execute_old
Execute signal

output
BOOL TRUE,FALSE FALSE

The function block

outputs TRUE when it

receives the Ex ecute

signal

out_Busy The instruction BOOL TRUE,FALSE FALSE The current instruction is

VE Controller Programming Manual

is being

executed

in execution and is set to

TRUE

out_InSync

Reach a uniform

speed from the

shaft

BOOL TRUE,FALSE FALSE

The constant speed is

reached from the shaft

and is set to TRUE

out_EndOfProfile

The cam action

completes the

signal

BOOL TRUE,FALSE FALSE

After each cam action is

completed, it is set to

TRUE

out_Stop_Done
Stop completing

the signal
BOOL TRUE,FALSE FALSE

When the stop is

complete, set to TRUE

out_Plan_VPulse
Speed from the

axis
LREAL

The range of

data
0

The speed from the axis,

in userunits/S

out_Plan_Pulse
From the axis

position
LREAL

The range of

data
0

Encoder position in

pulses

out_MasterFeedPulse

Feedback on the

number of cam

cycle spindle

units

LREAL
The range of

data
0

Feedback on the position

of the spindle once cam

cycle walk (in user units)

out_camPosition

Feedback cam

cycle from the

number of shaft

units

LREAL
The range of

data
0

The position (in user

units) where the feedback

1 cam cycle d'a walks

fromthe axis;

out_camPulse

The number of

pulses from the

shaft for the

feedback cam

cycle

LREAL
The range of

data
0

Feedback on the position

of one cam cycle walk

from the shaft (in pulses)

out_camSingle Cam output LREAL
The range of

data
0

Used to determine the

position relationship

between the cam and the

cut point, the initial

position is 0 before the

shaft passes through the

cutpoint, and after
the cut point the
cut point is0 (units:

units).

◆ Example: The imaginary axis (Axis_Master) is used as the main axis with the real axis
(Axis_Slave) running cam movement：
Cam spindle: Axis_Master (dummy axis).
Cam slave and gear spindle: Axis_Gear (dummy axis).
Gear slave: Axis_Slave (real axis)
Note：

VE Controller Programming Manual

(1) The special cam function block must be used in conjunction with the VecCheckHardware
function block. The special cam function block can only be used when the CheckOK output
of the VecCheckHardware function block is TRUE.
(2) Since we cannot assign a value to the fSetPosition of the real axis directly, but can assign
a value to the fSetPosition of the imaginary axis, we need to use the MC_GearIn function
block to establish the gear relationship, so that the imaginary axis Axis_Gear is the main axis
of the gear and the real axis Axis_Slave is the slave of the gear; as follows.

The cam function is then used as follows: The main axis Axis_Master and the imaginary axis
Axis_Gear are then allowed to establish a cam relationship so that the real axis Axis_Slave can
be cammed with the imaginary axis Axis_Gear via the gear.
The cam function is used by first enabling (in_Enable) the cam module and then triggering
(in_Execute) the cam
module

◆Timing diagram
The following diagram shows the timing diagram of the routine. When using the cam
function block, you need to set in_Enable to TRUE first, then give in_Execute a rising edge
trigger, and then trigger the spindle speed to carry out the cam action (triggering the spindle

VE Controller Programming Manual

speed first and then triggering in_Execute of the cam module is also feasible); when you need
to stop the cam, trigger in_Stop on the rising edge, and the slave cam action will stop after
completing the current cam cycle.；

VE Controller Programming Manual

7.5.3 VECNSMC.NS_MC_RotaryIn

The instruction function is: used to establish a wheel-cutting relationship between the two
axes. (Library NSMCLib1) instruction format needs to be installed

Instructions Name Graphical performance ST performance

VECNSMC.

NS_MC_RotaryIn

Wheel-c

ut

function

block

2) Related variables
. . . input variables

Enter the variable Name
The data

type
Effective
range

The
initial
value

Describe

in_Enable

Enable

function

blocks

BOOL
TSTREET,FAL

SE
FLASE

Enable special cam function

blocks

in_Execute

The

execution

condition

BOOL
TSTREET,FAL

SE
FLASE

An up-edge of the input will

initiate the processing of the

function block

in_Stop
Stop the

round cut
BOOL

TSTREET,FAL

SE
FLASE

One of the rising edges of the

input will lift the cam and stop

from the shaft at 180 degrees at

the cut point

in_feedPulse
Spindle

position
LREAL

The range of

data
0

Associate the spindle and enter

the actual position of the

spindle, which isf Setposition

in_feedVPulse
Spindle

speed
LREAL

The range of

data
0

Associate the spindle and enter

the given speed of the spindle,

whichis f Setvelocity

in_SlaveCurrentTargetP

ulse

From the axis

target

position

LREAL
The range

of data
0

From the target position of the

axis, that is, from the axis off

Setposition

VE Controller Programming Manual

in_MasterPPU

Spindle

electronic

gear

LREAL
The range

of data
0

The electronic gear of the

spindle, write 1 by default

in_SlavePPU

Electronic

gear from

shaft

LREAL
The range

of data
0

From the electronic gear of the

shaft, write 1 by default

in_MasterActivationPosi

tion

The spindle

start distance
LREAL

The range

of data
0

The first time the knife to the cut

point, the spindle walks the

distance, Mode 1 is available

(requires more than half of the

knife's perelong)

in_MasterOverflow

The number

of spindle

units for the

wheel-cuttin

g cycle

LREAL
The range

of data
0

The module of the spindle is to

be paired with this value in the

user unit

in_Cutter_Cir
Knife per per

se
LREAL

The range

of data
0

Knife perigle (corresponding to

the die from the shaft)

in_Cut_Length Cut long LREAL
The range

of data
0

Cut length (corresponding to

the die of the spindle)

in_Sync_Length

Synchronize

the distance

from the axis

LREAL
The range

of data
0

The synchronization distance

from the axle cut action

in_obj_h

The thickness

of the

material

LREAL
The range

of data
0

Material thickness, using the

initial value by default

in_Mode Mode INT
The range

of data
0，1 Working mode

Caution:
(1) Modulus is used for both master and slave axis types in the wheel-cutting block.
(2) No other motion control can be performed on the slave axes bound in the wheel-cutting
function block.
(3) When modulus is used for both master and slave axes, slave modulus = in_Cutter_Cir,
master modulus = in_Cut_Length；

The output variable

The output
variable

Name
The data

type
Effective
range

The
initial
value

Describe

out_Execute_old
Execute is a

valid output
BOOL TRUE,FALSE FALSE

The function block

outputs TRUE when it

receives the Ex ecute

signal

out_Busy The instruction BOOL TRUE,FALSE FALSE The current

VE Controller Programming Manual

is being

executed

instruction is in

execution and is set

to TRUE

out_InSync

Reach a uniform

speed from the

shaft

BOOL TRUE,FALSE FALSE

The constant speed

is reached from the

shaft and is set to

TRUE

out_EndOfProfile

The cam action

completes the

signal

BOOL TRUE,FALSE FALSE

After each cam

action is completed,

it is set to TRUE

out_Stop_Done
Stop completing

the signal
BOOL TRUE,FALSE FALSE

When the stop is

complete, set to

TRUE

out_Plan_VPulse
Speed from the

axis
LREAL

The range of

data
0

The speed from the

axis, in userunits/S

out_Plan_Pulse
From the axis

position
LREAL

The range of

data
0

Encoder position in

pulses

out_MasterFeedPulse

Feedback on the

number of cam

cycle spindle

units

LREAL
The range of

data
0

Feedback on the

position of the

spindle's one-wheel

cut cycle walk (units)

out_camPosition

Feedback cam

cycle from the

number of shaft

units

LREAL
The range of

data
0

Feedback is provided

on the position

(units) that go from

the axis to the

wheel-cutting cycle

at onetime;

out_camPulse

The number of

pulses from the

shaft for the

feedback cam

cycle

LREAL
The range of

data
0

Feedback on the

position of one

wheel-cutting cycle

from the axis (in

pulses)

out_camSingle Cam output LREAL
The range of

data
0

Used to determine

the position

relationship between

the cam and the cut

point, the initial

position is 0 before

the shaft passes

through the

cutpoint, and
after the cut
point the cut
point is0 (units:

VE Controller Programming Manual

units).

◆ Example procedure: Imaginary axis for spindle with real axis slave running wheel
tangent motion：
Cam spindle: Axis_Master (dummy axis).
Cam slave and gear spindle: Axis_Gear (dummy axis).
Gear slave: Axis_Slave (real axis)
Note：
(1) The wheel cut function block must be used in conjunction with the VecCheckHardware
function block and the special cam function block can only be used when the CheckOK
output of the VecCheckHardware function block is TRUE.
(2) Since we cannot assign a value to the fSetPosition of the real axis directly, but can assign
a value to the fSetPosition of the imaginary axis, we need to use the MC_GearIn function
block to establish the gear relationship, so that the imaginary axis Axis_Gear is the main axis
of the gear and the real axis Axis_Slave is the slave of the gear; as follows：

The cam's main axis Axis_Master and the imaginary axis Axis_Gear are then allowed to
establish a wheel-cutting relationship so that the real axis Axis_Slave can be wheel-cut with
the imaginary axis Axis_Gear by means of a gear.
To use the wheel-cutting function, first enable (in_Enable) the wheel-cutting module and
then trigger (in_Execute) the wheel-cutting module

VE Controller Programming Manual

◆ Model description
in_Mode Model description

0 Point 0 from axis in line with tangent point
1 Point 0 from axis at 180° from the tangent point

◆Timing diagram
The following diagram shows the timing diagram of the routine. When using the
wheel-cutting function block, you need to set in_Enable to TRUE first, then give in_Execute a
rising edge trigger, and then trigger the spindle speed to carry out the cam action (triggering
the spindle speed first and then triggering in_Execute of the wheel-cutting module is also
feasible); when you need to stop the cam, trigger in_Stop on the rising edge, and the slave
axis will stop at 180° of the tangent point；

VE Controller Programming Manual

7.6 CNC Instructions

7.6.1 SMC_ReadNCFile2

The instruction function is: Read and write C NC files withG code.
1) Instruction format

Instructions Name Graphical performance ST performance

SMC_ReadNCFile2

Read

theC NC

file

function

block

2) Related variables
input variables

Enter the variable Name
The data

type
Effective
range

The
initial
value

Describe

bExecute

The

execution

condition

BOOL TSTREET,FALSE FLASE

An up-edge of the

input will initiate the

processing of the

function block

sFileName Filename STRING(255)
The range of

data

The file path for the file

that contains the g

code

(e.g._cnc/CNC_3.cnc').

pvl
The list of

variables

POINTER

TO SMC_VARLIST
TSTREET,FALSE FLASE

The list of variables

defines the type and

address of each

variable that can be

used from the g code.

If there are no variables

in the g code, this input

is not used

fDefaultVel
The default

speed
LREAL

The range of

data
0

Use this input if speed

(F) is not specified in

VE Controller Programming Manual

the CNC file. Note:

Only for main

programs, not

sub-programs.

fDefaultAccel
The default

acceleration
LREAL

The range of

data
0

Use this input if

acceleration (E-plus) is

not specified in the

CNC file. Note: For

main programs only,

not for sub-programs

fDefaultDecel

The default

speed

reduction

LREAL
The range of

data
0

Use this input if you do

not specify speed

reduction (E -)in the

CNC file. Note: For

main programs only,

not for sub-programs

fDefaultVelFF
G0 default

speed
LREAL

The range of

data
0

The default speed of

G0(FF),which is used if

the speed is not

specified in the CNC

file. Note: For main

programs only, not for

sub-programs

fDefaultAccelFF

G0 the

default

acceleration

LREAL
The range of

data
0

G0 defaults to

acceleration degree EF

plus. Use this input if

acceleration is not

specified in the CNC

file. Note: For main

programs only, not for

sub-programs

fDefaultDecelFF

G0 slows

down by

default

LREAL
The range of

data
0

G0 Default Speed

Reduction EF -. Use

this input if the

reduction speed is not

specified in the CNC

file. Note: For main

programs only, not for

sub-programs

b3DMode 3D mode BOOL TSTREET,FALSE TSTREET

If true, the G17

command (activates 3D

mode) is implicitly

executed

bStepSuppress Comment BOOL TSTREET,FALSE FLASE When this input is

VE Controller Programming Manual

processing TRUE, the line that the

CNC program begins

with "/" is ignored.

For FALSE, it will be

processed

aSubProgramDirs Sub-program
ARRAY [0..4] OF

STRING(174)

Tasks that are

frequently repeated,

such as cavity milling,

hole drilling, and tool

changes, can be

replaced with G

code subp programs

and called from here;

For subprograms

named "SUB", start with

the directory

aSubProgramDirs, and

search for the file

"sub.cnc" (in small case)

in ascending order. The

first matching file is

used. The first empty

directory name ends

the search.

bParenthesesAsComments

Parenthesis is

a multi-line

comment

BOOL TSTREET,FALSE TSTREET

Set T RUE,which uses

parentheses in G code

to be considered

multi-line comments,

and FALSE, which can

be used in expressions

('a-b)*c') for

sub-program calls in g

code such as ('N10

sub(17)').

bDisableJumpBuffer Jump buffer BOOL TSTREET,FALSE FALSE

True, this input disables

the internal jump

buffer, which is used to

improve the

performance of g code

processing with jump

(G20).

The output variable

VE Controller Programming Manual

The output
variable

Name The data type
Effective
range

The
initial
value

Describe

bBusy

The

instruction

is being

executed

BOOL TRUE,FALSE FALSE

The current

instruction is in

execution and is set

to TRUE

bError Error BOOL TRUE,FALSE FALSE

When it isT RUE,

the function block

reports an error

ErrorID
The error

code
SMC_ERROR

The error code that

was output when

the function block

reported an error

errorPos
The wrong

location
SMC_NC_SourcePosition

The wrong source

location was

detected

ErrorProgramName

The name

of the

wrong

program

STRING

The wrong

program name was

detected

sentences
Sentence

queue
SMC_GSentenceQueue

You can enter

SMC_NCInterpreter

sentence queue in

the file

adwFileSize
The file

size

ARRAY[0..(NUM_PARSER_CHAI

NS - 1)] OF DWORD

The range of

data
File size, in bytes

adwPos
Read the

location

ARRAY[0..(NUM_PARSER_CHAI

NS - 1)] OF DWORD

The range of

data

The cursor is in its

current position in

the file

VE Controller Programming Manual

7.6.2 SMC_NCInterpreter

The instruction function is: the G code read to the read file function block is interpreted as a
list SMC_GEOINFO the file.
1) Instruction format

Instructions
Nam
e

Graphical performance ST performance

SMC_NCInterpreter

Decod

e the

functio

n

block

2) Related variables
input variables

Enter the
variable

Name The data type
Effective
range

The initial
value

Describe

sentences
Sentence

queue

SMC_GSentenceQu

eue

The input queue for the g

code statement

bExecute

The

execution

condition

BOOL
TSTREET,FA

LSE
FALSE

An up-edge of the input

will initiate the processing

of the function block

bAbort
Abort

processing
BOOL

TSTREET,FA

LSE
FLASE

If true, the current

processing of this feature

block is aborted

bAppend
Additional

data
BOOL

TSTREET,FA

LSE
FLASE

If true, triggering

bExecute does not result in

a reset of the queue.

Instead, the newly entered

data is written out of the

end of the queue

piStartPosition

The

starting

position

SMC_POSINFO
The range

of data
0

The starting position of the

path

vStartToolLength
The

starting
SMC_Vector3d

The range

of data
0 The starting tool length

VE Controller Programming Manual

tool length

nSizeOutQueue
The size of

the buffer
UDINT

The range

of data
0

This variable contains the

size of the data buffer and

is written to SMC_GEOINFO

list of structured objects.

The buffer must hold at

least five SMC_GEOINFO

objects. Otherwise, the

function block will not

perform any action at all. Its

size can be predefined, but

can only be modified later

during the reset. It is

recommended to create a

buffer asfollows: BUF:

Array .50 of SMC_GeoInfo;

The operator is then used

to retrieve the appropriate

buffer size, size size (BUF);

pbyBufferOutQueu

e

Point to the

store

POINTER TO ARRAY

[0..0]OF

SMC_GEOINFO

The range

of data
0

This input must point to the

SMC_OUTQUEUE assigned

to the store of the structure.

This area must be at least as

large as defined in

NSizeOutQueue

Asdefined: BUF: ARRAY

(1..50) OF SMC_GEOINFO

Then the ADR(BUF)points
to thisinput;

bEnableSyntaxChec

ks

Grammar

detection
BOOL

TSTREET,FA

LSE
TRUE

Turn on syntax detection,

which detects an invalid G

code and stops in this case

as an error.

eOriConv
Directional

explanation

SMC_ORI_CONVEN

TION

SMC_ORI_CO

NVENTION.

ADDAXES

Defines how the direction in

the A/B/C word is

interpreted.

dCircleTolerance

The

definition

of a circle

LREAL

Tolerances determine

whether the definition of a

circle makes sense.

Case is defined by the

target position and radius:

If the distance between the

start and end positions

(both projected onto the

VE Controller Programming Manual

circle plane) is greater than ,

the circle is converted to a

straight line. 2 s the radius

and MAX (fCircle Tolerance,

1e-06) case definition by

target position and center

position: the maximum

value of the distance

between the starting and

center position x and the

distance between the target

location and the center

position (projecting

everything onto the

circular plane). If these

distance differences are

greater than , the circle is

converted to a straight line.

MAX(fCircleTolerance, 0.1 *

x)

pInterpreterStack
Stack

buffer
POINTER TO BYTE

Provides a buffer for the

interpreter stack. If it is 0,

the default buffer with a

size of 10240 bytes is used.

A given buffer will be used

if the buffer is 0. This input

is read per cycle.

nInterpreterStackSiz

eBytes

The size of

the stack

buffer

UDINT

The size of the buffer that

pInterpreterStack points to.

Note that the size should

be at least 1024 bytes

The output variable

The output
variable

Name The data type
Effective
range

The
initial
value

Describe

bDone

The

execution

of the

instruction

is

complete

BOOL TRUE,FALSE FALSE

The current instruction

execution is complete

and is set toT RUE

bBusy

The

instruction

is being

BOOL TRUE,FALSE FALSE

The current instruction

is in execution and is

set to TRUE

VE Controller Programming Manual

executed

bError Error BOOL TRUE,FALSE FALSE

When the function

block is reported as an

error, it isT RUE

wErrorID
The error

code
SMC_ERROR

The error code that

was output when the

function block reported

an error

errorPos
The wrong

location
SMC_NC_SourcePosition

The wrong source

location was detected

poqDataOut

Position

data

output

POINTER

TO SMC_OUTQUEUE

A SMC_OUTQUEUE to

a structure that

manages decoded

SMC_GEOINFO objects

Status

The

current

state

SMC_DEC_STATUS The current state

iLineNumberDec

oded

The line

number
DINT

The range of

data

The currently decoded

G-line number

GCodeText
G code

text
SMC_GCODE_TEXT

The range of

data
G code text

CallstackInfo

Stack

informatio

n

SMC_NCCallstackInfo

aActivePrograms

Currently

active

programs

and

sub-progr

ams

ARRAY[0..(SoftMotion_NC2_

Constants.IPR_CALLSTACK_SI

ZE - 1)] OF STRING

aActivePrograms saves

the name of the (sub)

program that is

currently being

interpreted. If it is a

subprogram, then

aActivePrograms saves

the name of the calling

(sub) program, and so

on. The list of active

programs terminates

with an empty string.

VE Controller Programming Manual

7.6.3 SMC_Interpolator

The instruction function is: This function block is used to convert the continuous path
described by the SMC_GEOINFO object to a discrete path location point, taking into account
the defined speed curve and time pattern. These location points are then typically converted
through an IEC program (for example, converted to drive shaft positions) and sent to the
drive.
1) Instruction format

Instructions
Nam
e

Graphical performance ST performance

SMC_Interpolator

Interp

olation

functio

n

blocks

2) Related variables
input variables

Enter the
variable

Name The data type
Effective
range

The initial
value

Describe

bExecute

The

execution

condition

BOOL
TSTREET,FA

LSE
FALSE

An up-edge of the input

will initiate the processing

of the function block

poqDataIn
Location

data entry

POINTER

TO SMC_OUTQUEU

E

The variable points to

SMC_OUTQUEUE structure

object, which contains the

object of the

SMC_GEOINFO path.

Typically it points to the

VE Controller Programming Manual

poqDataOut of the

preprocessed function

block output

bSlow_Stop Stop slowly BOOL
TSTREET,FA

LSE
FLASE

If you set this variable to

FALSE, the path is passed

non-stop. Set to TRUE,

SMC_Interpolator will

reduce the speed to 0

based on the defined speed

curve (byVelMode) and

the maximum deceleration

(dDecel) of the current

SMC_GEOINFO object, and

wait until bSlow_Stop to

reset it to FALSE

bEmergency_Stop

Stop

immediatel

y

SMC_POSINFO
The range

of data
0

As soon as the input gets

TRUE, SMC_Interpolator

stop immediately, which

means that the current

location is preserved.

Therefore, the speed is

immediately set to 0

bWaitAtNextStop

Wait for

the next

stop point

SMC_Vector3d
The range

of data
0

As long as this variable is

FALSE(the default), thepath

ispassed non-stop.

Otherwise,

SMC_Interpolator stop at

the next regular point until

bWaitAtNextStop resets it

to FALSE

dOverride
Speed

factor
LREAL

The range

of data
1

This variable can be

overwritten online. Less

than 0.01 is not allowed.

The multiply used to

change the interpolation

speed, such as dOverride

plus 2, doubles the speed.

Note: The multiply can be

modified at any time, but

can only be applied if there

is currently no acceleration

or deceleration.

iVelMode
Speed

mode

SMC_INT_VELMOD

E
TRAPEZOID

This input defines the speed

SMC_INT_VELMODE

VE Controller Programming Manual

defined in the data set

dwIpoTime Cycle time DWORD
The range

of data
0

This variable must be set for

each call. It represents the

cycle time in microseconds

dLastWayPos

The last

extension

path

LREAL
The range

of data
0

This input allows the user to

measure the extension of

the path protruding from

the interpolator. The output

of this module, dWayPos, is

the same as the distance

covered by dLastWayPos

and the current period. If

dLastWayPos is set to

equal the output dWayPos,

dWayPos will always

increment in the current

path segment, resulting in

the total length of the travel

path. dLastWayPos can be

reset to 0 or other values at

any time.

bAbort
Abort

processing
BOOL

The range

of data
FALSE

If true, the current

processing of this feature

block is aborted

bSingleStep
Stop a

cycle
BOOL

The range

of data
FALSE

The purpose of this input is

that the interpolator stops a

cycle at the transition

between the two path

objects (also at the same

transition where the cut is

made). If you set its

bSingleStep to TRUE during

the move, the interpolator

stops at the end of the

object and can reach that

target without exceeding

the predetermined deslevel

value. If the interpolator

should stop at the next

possible stop position (i.e. a

point with a speed of 0),

bWaitAtNextStop must be

used.

bAcknM The M BOOL The range FALSE This input can be used to

VE Controller Programming Manual

function is

confirmed

of data confirm the M function. If

the input is TRUE, the

output wM is cleared and

path processing continues

bQuick_Stop
Stop

quickly
BOOL

The range

of data
FALSE

If this input is TRUE, the

interpolator reduces the

speed to zero until

bQuick_Stop reset it to

FALSE. Decelerates

according to the defined

speed curve (by VelMode)

and the deceleration given

in the(dQuickDeceleration)

path. If secondary speed

mode is used, the impact is

limited.

max(dJerkMax, dQuickStopJ

erk)

dQuickDeceleration

The

desdation

value of the

quick stop

THEREAL
The range

of data
0

The bQuick_Stop used to

reduce the value

dJerkMax

The

amplitude

of the

maximum

acceleratio

n

THEREAL
The range

of data
0

Only for secondary speed

mode. It must be positive

and cannot be changed

while the interpolator is

running

dQuickStopJerk

Fast-stoppi

ng

acceleratio

n

THEREAL
The range

of data
0

If one of the secondary

velocity modes is selected,

the emergency stop uses a

sharp amplitude to reduce

acceleration

bSuppressSystemM

Functions

Output wM

flag bit
BOOL

The range

of data
FALSE

If this option is set, the

output wM is not set for the

internal M feature created

by the G75 or G4

commands

The output variable

The output
variable

Name The data type
Effective
range

The
initial
value

Describe

bDone The BOOL TRUE,FALSE FALSE The current instruction

VE Controller Programming Manual

execution

of the

instruction

is

complete

execution is complete and is set

toT RUE

bBusy

The

instruction

is being

executed

BOOL TRUE,FALSE FALSE
The current instruction is in

execution and is set to TRUE

bError Error BOOL TRUE,FALSE FALSE
When the function block is

reported as an error, it isT RUE

wErrorID
The error

code
SMC_ERROR

The error code that was output

when the function block

reported an error

piSetPosition

Calculate

the set

position

SMC_NC_SourceP

osition

It reflects the calculated set

position and contains the

Descartes coordinates for the

next position and the status of

the attached axis

Status

The

current

state

SMC_INT_STATUS IPO_INIT

The enumeration variable

reflects the SMC_INT_STATUS

of the function blocks defined

in the database. Possible

state:IPO_UNKNOWN (0):

Internal state changes that may

not occur after

SMC_Interpolator. IPO_INIT

(1): Initialized state;

IPO_ACCEL (2): Acceleration

IPO_CONSTANT (3): Constant

motion IPO_DECEL (4):

Deceleration IPO_FINISHED (5):

Path complete. Any other

objects that SMC_GEOINFO will

not be processed by poqDataIn.

IPO_WAIT (6): Wait for one of

the following:bEmergency_Stop

sTRUEbSlow_Stop s TRUE and

dVel s true anddVels true

bWait_At_Next_Stop anddVels 0

IPO_INCREASING_ACCEL(7):

Increase acceleration

IPO_DECREASING_ACCEL (8):

Reduce acceleration

VE Controller Programming Manual

IPO_INCREASING_DECEL (9):

Increase deceleration

IPO_DECREASING_DECEL (10):

Lower Slow down

bWorking

The

current

state

BOOL
The range of

data
FALSE

T RUE only if list processing has

started but has notyet been

completed

iActObjectSource

No

The

current

interpolati

on line

number

DINT
The range of

data
-1

The runtime displays the line

number of the current

interpolation in real time, which

is -1 when bWorking is FALSE

dActObjectLengt

h

The

current

object

length

LREAL
The range of

data

The length of the current object

is output when bWorking is

TRUE

dActObjectLengt

hRemaining

The

remaining

length of

the

current

object

LREAL
The range of

data

When bWorking is TRUE, the

remaining length of the current

object is output

dVel

The

current

path

speed

LREAL
The range of

data
0

This variable contains the

current path speed

vecActTangent
The actual

path cut
SMC_VECTOR3D

This structure contains path

slices, or unit vectors

iLastSwitch
Last

switch
INT

The range of

data
0

This output contains the

number of the last passed

switch. Note: If more than one

switch passes in a cycle, only

the last one is mentioned

dwSwitches
Multi-swit

ch bit
DWORD

The range of

data
0

Describes the current switching

statusof all switches 1 - 32. Bit0

means switch1, Bit31 means

switch32. Compared to

iLastSwitch, this bit field also

contains multiple switches in a

cycle

dWayPos

The

extended

path

THEREAL
The range of

data
See Enter dLastWayPos

wM The M WORD The range of If the interpolator passes the M

VE Controller Programming Manual

function

associates

the value

data function, this output is set to

the value associated with the M

function. The interpolator will

stop until the M function

(bAcknM) is entered

adToolLength

Tool

length

compensa

tion

parameter

s

ARRAY [0..2] OF

LREAL

The range of

data

Parameters for tool length

compensation (set by G43 I

/J/K).

Act_Object

Point to

the

interpolati

on path

POINTER

TO SMC_GEOINFO

A pointer to the current

interpolation path element. It

could be 0

VE Controller Programming Manual

8 Comprehensive configuration debugging

8.1 Modbus Communications

8.1.1 ModBusRTU_Slave

The VE motion controller supports standard ModeBusRTU communication, connecting
to the touch screen serial port via a communication serial port. The following step touch
screen as an example, through the serial RS232/485, VE controller connected to two touch
screens, touch screen as the main station, VE controller as a startingstation, the wiring
diagram is as follows:

Foot position Defined

1 RS485 -

2 RS485 +

5 GND

Install ModbusRTU_Slave

To use the ModeBusRTU_Slave,first install the device by clicking onthe toolbar
"ToolsDevice Repository"

Then click "Install" to find the device description file"ModBusRTU_Slave.xml" andselect
and clickOpen

VE Controller Programming Manual

Displays that the installation was successful, which indicates that the device was installed
successfully and can be added for use.

Add an RTU device

After the new project is created, select "Right-click  Device Add Device
ModBUSRTU_SlaveAdd Device" to confirm that theRTUdevice isadded and that the VE
controller will be added to the project as a from the station.

VE Controller Programming Manual

When the addition is complete, double-click to open as follows.

Parameter settings

After double-clicking expands, the VE controller sets the parameters as shownbelow,
modBusRTU_Slaverelated parameter settings include: station number, baud rate, data bit,
parity, stop bit.

At the same time, the touch screen engineering also needs to set the corresponding
station number and related parameters

VE Controller Programming Manual

You also need to set up a data scan refresh cycle, as shown below, selecting Main_Task
as the task for the scan, allowing the user to select other tasks (non EtherCAT_Task) and set
the task cycle time.

Address-associated variables

In the ModBusRTU_Slave device, the mapping address is provided as follows:

Type Channel Description

input

(Address type:

4X).

input[0] ~ input[1023] Enter the register power-down

hold area

input[1024] ~ input[4095] The input register power-down

does not hold the zone

output

(Address type:

3X).

output[0] ~ output[4095]

input_bit

(Address type:

0X).

input_bit[0]~input_bit[1023] Enter the coil power-down hold

area

input_bit[1024]~input_bit[4095] Enter that the coil is powered

down and does not hold the zone

VE Controller Programming Manual

output_bit

(Address type:

1X).

ooutput_bit[0]~output_bit[4095]

Touch screen address types: 0X, 1X, 3X, 4X, corresponding to ModBusRTU_Slave
address channels are:input_bit,output_bit,output,input.

Variables determine the number of channels occupied according to their own data type,
such as INT variables occupy one WORD, REAL, DINT variables occupy two WORDS, LREAL,
LINT variables occupy 4 WORDS, and so on.

Attention:
1, when the variable type is 32 bits (such as REAL) or 64 bits (such as LREAL), the address

map should start from a double address mapping, such as REAL data can not be mapped to
the address %IW5, can only be mapped to %IW4 or %IW6 and other double address,
otherwise compilation will report errors.

2, the associated address should be associated according to the channel's starting
address, as shown below, the variable wants to associate to the channel input

In a device, io addresses are mapped to variables in two ways.

Method 1: Map addresses in variable declarations, as shown below.

Input type:

VE Controller Programming Manual

Table type:

Method 2: Select a variable in the io mapping list.

VE Controller Programming Manual

HMI settings

Taking the step touch screen as an example, the system parameters are set as follows:

The PLC parameters are set as follows:

The VE motion controller corresponds to the human ModBus address as follows:

VE Controller Programming Manual

Motion controller channel address - Human-machine address - 1

The channel type The controller address type The type of
human-machine address

inputbit input_bit[0] 0X 1

input_bit [1] 0X 2

input_bit [2] 0X 3

input input[3] 4X 4

input[500] 4X 501

outputbit ooutput_bit[0] 1X 1

output output[500] 3X 501

VE Controller Programming Manual

8.1.2 ModBusTCP_Slave

The VE motion controller supports standard ModeBusTCP communication, connected
to a touch screen or switch via the EtherNet communication port. The following is an
example of the Veronton touch screen, through the switch, VE controller EtherNet network
port to connect two touch screens, touch screen as the main station, VE controller as a
starting station, the specific operation steps are as follows:

Install ModBusTCP_Slave device

To use the ModeBusTCP_Slave,first install the device by clicking onthe toolbar
"ToolsDevice Repository"

Then click "Install" to find the device descriptionfileVEC_ModBusTCP".xml Slave"and
select and click Open

Displays that the installation was successful, which indicates that the device was installed
successfully and can be added for use.

VE Controller Programming Manual

Add a TCP device

After the new project is created, select Right-click  Device Add
DeviceModBusTCP_SlaveAdd Device to confirm that theTCPdevice is added and that the
VE controller isadded to the project as a from the station.

When the addition is complete,double-click on the following,ModBusTCP_Slave's
EtherNet default IP is 192.168.1.123, consistent with the host, and requires the touch screen
IP to be set in the same band, distinguished by port number.

VE Controller Programming Manual

In the same way, add a ModBusTCP_Slave device.

Parameter settings

Under the same network segment, the VE controller distinguishes between two touch
screen devices by port number. As shownbelow, the modBusTCP_Slave port number is set to
"502"andthe ModBusTCP_Slave-1 port number is set to 503

At the same time, the two touch screen projects also need to set the corresponding IP
address and port number

VE Controller Programming Manual

At the same time, you also need to set the data scan refresh cycle, as shown in the
figure below, select Main_Task as the scanning task, the user can choose other tasks and set
the task cycle.

Address-associated variables

In the ModBusTCP_Slave device, the mapping address is provided as follows:

Type Channel Description

input

(Address type:

4X).

input[0] ~ input[1023] Enter the register power-down

hold area

input[1024] ~ input[4095] The input register power-down

does not hold the zone

output

(Address type:

3X).

output[0] ~ output[4095]

input_bit

(Address type:

0X).

input_bit[0]~input_bit[1023] Enter the coil power-down hold

area

input_bit[1024]~input_bit[4095] Enter that the coil is powered

down and does not hold the zone

output_bit

(Address type:
ooutput_bit[0]~output_bit[4095]

VE Controller Programming Manual

1X).

Each channel data size is IN BOOL and WORD, and the address is expressed as %IX
and %QX, or %IW and %QW. Variables determine the number of channels occupied according
to their own data type, such as WORD variables occupy 16 BOOL-type positions, INT-type
variables occupy one WORD, REAL variables occupy two WORD, LREAL variables occupy 4
WORD,and so on.

Note：
1, when the variable type is 32 bits (such as REAL) or 64 bits (such as LREAL), the address

map should start from a double address mapping, such as REAL data can not be mapped to
the address %IW5, can only be mapped to %IW4 or %IW6 and other double address,
otherwise compilation will report errors.

2, the associated address should be associated according to the channel's starting
address, as shown below, the variable wants to associate to the channel input

In a device, io addresses are mapped to variables in two ways.

Method 1: Map addresses in variable declarations, as shown below.

Input type:

VE Controller Programming Manual

Table type:

Method 2: Select a variable in the io mapping list.

VE Controller Programming Manual

HMI settings

Taking the Willon pass touch screen as an example, the system parameters are set as
follows:

VE Controller Programming Manual

ModBusTCP device parameters are set as follows, note the IP address and port number
settings, reference parameter settings:

The corresponding relationship between the motion controller and the man-machine
ModBus address is as follows:

Motion controller channel address - Human-machine address -1

The channel type The controller address type The type of
human-machine address

inputbit %IX0. 0 0X 1

%IX1. 0 0X 2

%IX2. 0 0X 3

input %IW3 4X 4

%IW500 4X 501

outputbit %QX0.0 1X 1

output %QW500 3X 501

VE Controller Programming Manual

8.1.3 ModBusRTU_Master

The VE motion controller supports standard ModeBusRTU communication methods,
connecting individual stations via the communication serial RS232/485,with the VE
controlleras the primary station. The serial wiring diagram is as follows:

Foot position Defined

1 RS485 -

2 RS485 +

5 GND

Install ModBusRTU_Master device

(1) Click on the toolbar's "Tools" and click on "Device Store"

 Click "Install"
 Select the ModbusRTU_Master.xml file
 Click Open

VE Controller Programming Manual

(5) shows that the installation was successful, which indicates that the installation of the
device was successful and can be added for use.

Add ModBusRTU_Master device

After the new project is created, select Right-click Device Add Device 

ModBusRTU-MasterAdd Device to confirm that the RTUdevice is added and that the VE

controller will beadded to the project as the primary station.

VE Controller Programming Manual

When the addition is complete, double-click to open as follows.

VE Controller Programming Manual

Parameter settings ("Internal parameters" introduction)

After double-clicking expand, click "Internal parameters" and the VE controller sets the

parameters as follows:

ModBusRTU-Master-relatedparameter settings include Baud rate, data bit, check bit,

stop bit, communication channel.

Once the Modbus Channels are expanded, a total of 256 channels are available, with an
example of expanding the first channel here:

 Channel number: the channel currently in use is Channel 0;
 Slave_Add: from the station number;
 Reg_Add: from the station register address;
 Fun_Num: function code;
 Channel_Add: Transfer data using the first channels in the

output/outpu_bit or receive (input/input_bit) of the Internal I/O map;
 Length: Data length (how many channels are occupied);

Note: Every time you change the Internal parameter to download, you need to power it

up again to take effect, otherwise you will report an error.

VE Controller Programming Manual

Address Association Variables (Internal I/O Mapping Introduction)

Click "Internal I/O Map" to see 4 IO mapping channels and one error viewing channel
(error_bits);

 First, you need to select Enable 2 (always in the bus loop task);
 Then select the bus loop task to use, and the example here selects

MainTask;

Here's a look at the IO channel:

In the ModBusRTU_Masterdevice, the mapping address is provided as follows:

Type Channel

input input[0] ~ input[2047]

output output[0] ~ output[2047]

input_bit input_bit[0]~input_bit[2047]

output_bit ooutput_bit[0]~output_bit[2047]

VE Controller Programming Manual

Modbus function codes 1, 2 corresponding to the channel is:nput_bit;
Modbus function code 3, 4 corresponding channels are: input;
Modbus function codes 5, 15 corresponding channels are: output_bit;
Modbus function code 6, 16 corresponding channels are: output;

Attention:
1, variables according to their own data type to determine the number of occupied

channels, such as INT-type variables occupy a WORD, REAL, DINT-type variables occupy two
WORD, LREAL, LINT-type variables occupy 4 WORDS, and so on.

2, the associated address should be associated according to the channel's starting
address, as shown below, the variable wants to associate to the channel input

In a device, the io address is mapped to a variable in two ways:

Method 1: Map addresses in variable declarations, as shown below.

Input type:

Table type:

VE Controller Programming Manual

Method 2: Select a variable in the io mapping list.

Note: When writing multiple words (above 16 bits) or multiple single-word parameters,

be sure to define the variable address (i.e. method one) in your program, and you need

to empty the occupied multi-digit channel, otherwise you will report an error.

Example: As shown below, a WORD type (32-bit) variable C3 is established and associated

with channel 5;

VE Controller Programming Manual

After running the program, you can see that channel 5 can only put 16 bits of data, if you

store 32 bits of variables in this channel need to occupy two channels, that is, channel 6 also

occupied.

Here's how the Internal I/O map mis-views the channel (error_bits):

Expand the channel and you can see the communication status of each communication

channel (Modbus Channels):

As shown above, when the current value of the channel is 1, it indicates a channel

communication error, and when the current value is 0, it indicates normal communication；

VE Controller Programming Manual

Introduction to the use of function codes

The function codes (e.g.) available when the VE controller is the ModeBus Fun_Num are

described below:

Function code (de-order) Description of the function

1 Read the coil register

2 Read discrete input registers

3 Read hold register

4 Read the input register

5 Write a single coil register

6 Write a single hold register

15 Write multiple coil registers

16 Write multiple hold registers

 Function code 1 (read coil register):

Bit parameters used to read writeable (RW) in the master station, the master to the from

the station;

Read a single bit parameter example: When reading a single bit parameter, Length (data

length) is 1 because only 1 channel is used;

Read multiple bit parameter examples: When reading 10 bit parameters with consecutive

addresses in the station, Length (data length) is 10 because 10 channels are required;

VE Controller Programming Manual

 Function code 2 (read discrete input register):

Used to read bit parameters in the master to the station that can only be read (R) from

the master;

 Function code 3 (read hold register):

Used to read the word parameters that can be read and writeable (RW) in the master

station to the master station;

Read a single word example: when reading a 16-bit single-word parameter, Length (data

length) is 1, because only 1 channel is used;

Read multiple single-word parameters or multi-word parameter examples: read from the

station address consecutive 2 16-bit single-word parameters or 1 32-bit double-word

parameters, Length (data length) is 2, because the need to occupy 2 channels;

 Function code 4 (read input register):

Used to read word parameters that can only be read (R) from the master to the station

in the master station, and to read multiple consecutive or multi-word parameters in the

same way as function code 3.

 Function code 5 (write a single coil register):

A state write for a single bit parameter of a readable writeable (RW) from the master

station;

 Function code 6 (write a single hold register):

For the primary station to write data to a single single word parameter of the station

readable and writeable (RW);

 Function code 15 (write multiple coil registers):

VE Controller Programming Manual

Used for the primary station to state write to multiple address consecutive bit

parameters of the station readable writeable (RW);

 Function code 16 (write multiple hold registers):

For the main station to write data to multiple address consecutive single-word or

multi-word parameters of the readable and writeable (RW) from the station;

Example of use

The following example shows how a master can write a double word parameter

to the 7th register address of a slave with station number 1:

（1）Double-click to open the POU to be used.

（2）Define a double-word variable and assign it an unoccupied address (here

the example %QW5).；

（3）Double-click on "ModbusRTU_Master" to open it.

（4）Click on "Internal I/O mapping".

（5）Find the channel corresponding to the variable address just defined (%QW5) and learn

that the channel number is 5 (output[5])；

VE Controller Programming Manual

（6）Click on "Internal parameters".

（7）Expand a communication channel.

（8）The Slave_Add value is set to 1.

（9）The Reg_Add (slave register address) value is set to 7.

（10）The value of Fun_Num (function code) is set to 16, which means that multiple holding

registers are written.

（11）The value of Channel_Add is written to the channel number corresponding to the

variable address %QW5.0 queried in step (5): 5.

（12）The value of Length is written to 2, because the double word needs to occupy two

channels；

（13）Log in and run.

（14）Click on "Internal I/O Mapping".

VE Controller Programming Manual

（15）You can see that the data for variable C3 has been successfully sent；

（16）Turning on the slave you can see that the correct data has been received in the 7th

register of the slave's input；

VE Controller Programming Manual

8.1.4 ModbusTCP_Master

The VE motion controller supports standard ModeBusTCP communication, connected
to a touch screen or switch via the EtherNet communication port. The following two VE as an
example, through the switch, VE controller one for the host, one for the machine, from the
machine installation configurationreference: ModBusTCP_Slave,from the machineIP address
to: 192.168.1.122 (modification method reference: product configuration and module
instructions), the host installation configuration steps are as follows:

Install the device description file

To use ModBusTCP_Master,first install the device by clicking onthe toolbar
"ToolsDevice Repository"

Then click "Install" to find the device description file"VEC ModBusTCP.xml Master"and
select andclick Open

VE Controller Programming Manual

Displays that the installation was successful, which indicates that the device was installed
successfully and can be added for use.

Add a device

After the new project is created, select Right-click  Device Add Device
ModBusTCP_Master Add Device toconfirmthat theTCPdevice is added and that the VE
controller will beadded to the project as a fromstation.

VE Controller Programming Manual

Host parameter settings

When you're done, double-click to open asfollows,usTCP_the Mod B and Master
interfaces are as follows:

The communication parameters between the device and the from the station include:
(1) From the station port number, ModbusTCP_Slave default port number is 502;
(2) From the station IP address, ModbusTCP_Slave's IP address changed to:

192.168.1.122, if not changed will conflict with the host IP.

The host device consists of 256 Modbus channels, each of which can be set with a separate
Modbus function code, register address, channel address, and configuration length in
WORD, as shown below.

For feature codes, ModbusTCP_supported by Master are as follows:

The function code Describe Bit/word operation The number of

VE Controller Programming Manual

operations

1 Read the coil
register

Bit operation single or more

2 Read discrete input
registers

Bit operation single or more

3 Read hold register Word operation single or more

4 Read the input
register

Word operation single or more

5 Write a single coil
register

Bit operation Single

6 Write a single hold
register

Word operation Single

15 Write multiple coil
registers

Bit operation Multiple

16 Write multiple hold
registers

Word operation Multiple

This example configures the function code and other channel parameters as follows:

Inaddition, the description of the I/O mapping channel is consistent with the "address
association variable" ("Internal I/O mapping") description of 8.1.3

From the machine parameter settings

The from-machine parameters are set as follows, and the default port number for the
from-machine is: 502, which is not changed here.

file:///C:/Users/67024/Desktop/Internal_I/O映射

VE Controller Programming Manual

Online monitoring

(1) 4 function code

(2) 16 function code

(3) 2 function code

VE Controller Programming Manual

(4) 15 function code

VE Controller Programming Manual

8.1.5 OPCserver

OPC Server Architecture：

1、Add "symbols configuration" to "Applications" in the background of the program

VE Controller Programming Manual

2. Select as POCsever to communicate data with PLC

3. Click on the arrow under "Access Permissions" to select the permission

4、After the selection is complete, click "Compile"

VE Controller Programming Manual

5, after confirmation, click on the toolbar "compilegenerated code", the software
automatically in the engineering directory to establish the corresponding "project name."
Device.Application.xmlfile.

6, connect the VE controller Ethernet and touch screen network port, open the touch screen
(support OPCserver) software interface, here to Theron pass touch screen as an example
configuration, as follows, the construction project, equipment configuration as follows

VE Controller Programming Manual

7, click on the device, click on the "import label" to find the newly established file "project
name. Device.Application.xml,select Import

VE Controller Programming Manual

8, open the touch screen component properties, as follows, the device selects the
established "CODESYS", the label selects the corresponding variable, as shown in the
following image

VE Controller Programming Manual

After selecting the corresponding tab, the HMI components can be associated with
program variables.

VE Controller Programming Manual

8.2 Simulation and debugging

8.2.1 Simulate the VE controller

When the user is programming debugging, they may not have VE controller hardware
at hand, and codeSYS simulation can be used to debug the logic of the user program. The
method of turning on the simulation function is as follows, click on the online simulation,
in the simulation state, the simulation status prompt with red font under the programming
software.

In the simulation state, you can click "compile" the user program, "log in" to the controller,
and then click "start", the user program loaded into the COMPUTER emulator, you can
actually access the controller to monitor the user program, force modify the operation of
parameters, observe the user program performance, as shown in the following image:

Attention:
1, here can not be the operation of the network bus simulation, but can be forced on

VE Controller Programming Manual

the servo axis data structure parameters, you can still observe the execution logic of the
program, check the implementation of the program.
2,"login", you can click "run", "stop" to execute the user program, need to modify the user
program, to "exit" the login state.

8.2.2 Simulate servo drives

When writing a debugging MC operation application, the programmer has a VE
controller on hand, but no servo drive, or does not have a sufficient number of servo drives,
to debug debug the user program, you can use the "virtual axis" way to replace the servo
drive real axis, as shown in the following illustration:

In programming debugging, if the number of servo axes accessed and the number
configured in the user program is different, the system will alarm, can not be normal
debugging, if connected to this virtual axis, the system will not alarm, but in the software
simulation of the servo way of operation. You can visually see the "running" status of the axis
and verify the correctness of our MC control procedures.
The virtual axis is also an axis, although it is a "virtual axis", but the operation logic of the axis
state still needs to be programmed according to the state transfer logic in the PLCopen
specification, such as the need to run MC_Power before running, the error after the
MC_Reset and so on, so that we can debug and exclude logical errors in the user program.
If the actual servo axis is connected, you can simply cancel the "virtual axis mode" of the
corresponding axis in the figure above and you will be ready to function properly.

VE Controller Programming Manual

8.3 Security management and user rights settings

Codesys can effectively manage and set up security for engineering files and devices,
and this document focuses on the security settings for engineering files, security settings for
devices, and permission settings for POU.

8.3.1 Device login permissions settings

To minimize exposure to PLC and control networks onopen networks and the Internet
(letting someone else sign in to your PLC),Codesys can set the device's login password to
keep device data secure.

The following describes the device username and password settings, the method of
logging on to the device and the method of canceling the device login password.

Add the user and password

Mode 1:
(1) Scan the device that needs to set the password first, and click Sync to see the user

in the device by clicking "Sync" in the Device directory, as shown.

(2) Click Add to enter the username and password, as shown in the figure.

VE Controller Programming Manual

(3) When the user is added, the Everyone user needs to be deleted and click on the
"Following" so that the user and password set will take effect, as shown in the figure. Be sure
to remember one of the users' passwords before deleting Everyone, or you'll need to
re-swipe your machine to sign in to your device.

(4) After the download is complete, you can view the user information status of the
device by clicking Sync, as shown in the figure.

Mode 2:
(1) Log in to the device, in the menu bar "Security" select "Add online users" to set the

user name and password, as shown in the figure.

VE Controller Programming Manual

(2) Follow the prompt to log in again, the user password is effective, as shown in the
figure.

(3) At this point, sync the device userinformation in the same wayas (4) in Mode 1, you
can see that the Everyone user has been deleted, as shown in the figure.

Sign in to the device

After you add user information as described above, you can sign in to the device with any
of the added usernames and passwords, as shown in the figure.

Exit the current user

Once you're signed in to your device, you can opt out of the current user by selecting Sign
out of the current online user in the menu bar, Security

VE Controller Programming Manual

Cancel your account password login

Preferred to log in to your current device with your account password, and then do the
following:

(1), click "Change Communication Policy" under "Device" in the "Communication Settings"
tab of the device window, change to "Optional XXXXXXXXX" in the window thatappears, and
click "OK" to confirm.

2, in the left side of the software DeviceTree window to Device right-click, select "Reset
Origin Device", and so on the device program cleared and then reconnect the download

VE Controller Programming Manual

program will not need an account and password.

8.3.2 Project file security settings

The written engineering files can be encrypted, only to obtain the correct engineering
file password can open the project files, to ensure the security of the project files. The
following describes the setting of the project file password and how to cancel the password.

Note: Forgetting your password won't get it back!

(1) Password settings: click on the menu bar "Engineering" → "Engineering Settings" →
"Security" to set the project file password, as shown in the figure.

VE Controller Programming Manual

（2) Every time you open an encrypted file, you'll have a prompt like this.

(3) To cancel the password, only need to log in to the project, will (1) in the"enabling
engineering file encryption" check to remove it.

8.3.3 POU permission settings

User and group descriptions

A project file contains multiple OUUs that set different permissions for different users.
When setting permissions on a POU, you need to understand the difference between the
'Owner' group and the 'Everyone' group, first by describing the difference between the
'Owner' group and the 'Everyone' group, and then by using an instance of the POU access
settings to illustrate how the POU permissions are set.

(1) About 'Owner' and 'Everyone'
(1) Before setting up the access rights of the POU, the grouping settings are set in the

menu bar → Engineering Settings→ Users and Groups. The system brings two groups and
one user, the Everyone, Owner, and Owner users, as shown. The Owner group user is
granted all authorizations, and the figure shows that the Owner user is a member of the
group Owner.

VE Controller Programming Manual

Therefore, the password for the 'Owner' user should be set first (the initial password is
empty), as shown in the diagram. If no password is set for the 'Owner' user, the 'Owner' user
identity can access all POUs with an empty password.

②When a user opens a project file, it is opened by default as a user in the 'Everyone' group.
When the access control attribute of POU_1 in the project is set to "Deny", POU_1 cannot be
accessed when the project file is opened, and access rights can be obtained through the
'Owner' identity.

Example of POU permission settings

1 Assume there are three users, A, B and C. A project has three POUs, POUA, POUB and
POUC, and the relationship between users and POU access rights is shown in Table I.

用户 POU POUA POUB POUC

A √ × ×

B × √ ×

C × × √

VE Controller Programming Manual

Note: "√" means access is possible; "×" means no access

2 Add three users A, B and C. When adding them, you need to enter the Owner username
and password, as shown in the figure

3 Since the object of setting permissions is groups, you need to add three groups, GA, GB
and GC, which contain users A, B and C respectively

4 The settings for POUA, POUB and POUC respectively are shown in the figure. Since the
project files are opened by default by users in the 'Everyone' group, the access
properties of the 'Everyone' group in the POUA, POUB and POUC control properties are
set to "Deny "

VE Controller Programming Manual

The results are as follows:

User POU POUA POUB POUC

Everyone Refused Refused Refused

Ga Allow Refused Refused

GB Refused Allow Refused

GC Refused Refused Allow

5 After saving the project file, re-open the project file, then you need to enter the user
name and password to access the POUs, where the 'Owner' user has access to all POUs.

⑥ For other permissions set up in a similar way as for access permissions.

VE Controller Programming Manual

Appendix A VECServo supported origin regression

models

Zero return mode setting process
Note: If it is an absolute encoder and the Z point is used as the encoder zero point, please
first pre-set P03.79 - How many pulses the absolute encoder outputs per week.

（1） Set 6060 = 6 first
（2） Set the return to zero offset 607Ch, the unit of which is the user position unit.
（3） Set return to zero mode 6098h
（4） Set the speed of home switch finding 6099h_01, its unit is rpm
（5） Set the speed of finding the Z point 6099h_02, its unit is rpm
（6） Set the speed of return to zero plus or minus 609Ah, which is in user units/s/s
（7） Set control word 6040h to 6 -> 7 -> 15 -> 31 in order to perform zero return

（8） Read status word 6041h

Zero-back mode-related objects

Back to zero mode 6098h

Index 6098h

Name Back to zero

The object
type

Variable

The data
type

There are 8 bits of symbol

PDO
mapping

Mapable

Read and
write
properties

Readable and writeable

The default 0

Set the
range

0-35

A detailed
description

Set the back to zero mode

Back to zero speed 6099h

Index 6099h

Name Back to zero speed

The object type Array object

The data type Unsigned 32 bits

PDO mapping Mapable

Read and write
properties

Readable and writeable

VE Controller Programming Manual

Index_Child Index 6099h_00

Name The number of valid sub-indexes of 6099h

The data type Unsigned 32 bits

PDO mapping Cannot be mapped

Read and write
properties

Read-only

The default 2

Index_Child Index 6099h_01

Name Look for the speed rpm of the origin switch

The data type Unsigned 32 bits

PDO mapping Mapable

Read and write
properties

Readable and writeable

The default P03.53

Index_Child Index 6099h_02

Name Look for Z-point speed rpm

The data type Unsigned 32 bits

PDO mapping Mapable

Read and write
properties

Readable and writeable

The default P03.54

Back to zero acceleration 609Ah

Index 609Ah

Name Zero acceleration back

The object
type

Variable

The data
type

Unsigned 32 bits

PDO
mapping

Mapable

Read and
write
properties

Readable and writeable

The default 500000

Set the
range

0~4294967295

A detailed
description

Zero acceleration, unit user unit/s/s

VE Controller Programming Manual

Back to zero mode

Back to zero is the calibration of a mechanical zero point, after marking, all absolute
positions are used as a reference point to move. VEC bus-type servo has a variety of
back-zero mode, according to the zero-back mode of 6098h settings, the corresponding
back-zero action. Users can choose the appropriate origin back to zero mode according to
site conditions and process requirements.

 Origin back to zero mode 1: Depends on the origin regression of the reverse
operating limit switch and Z pulse

Scenario 1: When the user triggers the execution back to zero, if the reverse running limit
switch state is low, then the axis starts to move reverse at the first speed, when the reverse
run limit switch is at a high level, the direction of motion changes and the second speed
starts to move;
Scenario 2: When the user triggers the execution back to zero, if the reverse running limit
switch state is high, then the positive motion is started directly at the second speed, and the
position of the first Z pulse encountered when the reverse running limit switch state is low is
the origin.

 Origin back to zero mode 2: Dependson the origin regression of the positive
running limit switch and Z pulse

Scenario 1: When the user triggers execution back to zero, if the forward running limit switch
state is low, then the axis starts to move forward at the first speed, when the forward running
limit switch is at a high level, the direction of motion changes and the second speed starts to
move, when the forward running limit switch state is low, the position of the first Z pulse is
the original position.
Scenario 2: When the user triggers execution back to zero, if the positive running limit switch
state is high, then the axis starts the reverse movement directly at the second speed, and the
position of the first Z pulse encountered when the positive running limit switch state is low is

VE Controller Programming Manual

the origin position.

Mode 3 to Mode 6 depends on the origin switch and the origin zero of the Z pulse
 Origin zero model 3

Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
the axis begins to move forward at the first speed, when the origin switch is encountered at a
high level, the direction of motion changes and the second speed starts to move, the
position of the first Z pulse encountered when the origin switch state is low is the origin
position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts the reverse movement directly at the second speed, and the position of
the first Z pulse encountered when the origin switch state is low is the origin position.

 Origin zero model 4
Scenario 1: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move at the first speed, when the origin switch is at a high level, the
second speed is moving positively, the position of the first Z pulse is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts the reverse movement directly at the second speed, when the origin
switch is at a low level, the direction of motion changes and the second segment speed
starts to move, the position of the first Z pulse is the origin position.

VE Controller Programming Manual

 Origin zero model 5
Scenario 1: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts the positive motion directly at the second speed, and the position of the
first Z pulse encountered when the origin switch state is low is the origin position.
Scenario 2: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to reverse at the first speed, when the origin switch is at a high level, the
direction of motion changes and the second speed starts to move, when the origin switch
state is low, the position of the first Z pulse is the origin position.

 Origin zero model 6
Scenario 1: When the user triggers the execution back to zero, if the origin switch state is
high, then the axis starts forward motion directly at the second speed, when the origin switch
is at a low level, the direction of motion changes and the second speed starts to move, the
position of the first Z pulse is the origin position.
Scenario 2: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is at a high level,
the second speed starts to move, and the position where the first Z pulse is encountered is
the origin position.

VE Controller Programming Manual

Mode 7 to Mode 10 depends on the origin switch, the positive operating limit, and the
origin back zero of the Z pulse

 Origin zero model 7
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is at a high
level, the direction of motion changes and the second speed starts to move, when the origin
switch state is low, the position of the first Z pulse is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts to reverse at the second speed, and the position of the first Z pulse
encountered when the origin switch state is low is the origin position.
Scenario 3: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is low and the
forward running limit switch is at a high level, the direction of motion changes and the first
speed starts to move, when the origin switch is at a high level, the second speed starts to
move, the position of the first Z pulse is encountered when the origin switch state is low.

VE Controller Programming Manual

 Origin zero model 8
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move at the first speed, when the origin switch is at a high level, the
second speed starts to move, the position of the first Z pulse is the origin position.
Scenario 2: When the user triggers the execution back to zero, if the origin switch state is
high, then the axis directly at the second speed to start the reverse movement, when the
origin switch is at a low level, the direction of motion changes and the second segment
speed to start the movement, encountering the position of the first Z pulse is the origin
position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is low and the
forward running limit switch is high, the direction of motion changes and starts at the first
speed Motion, when the origin switch is at a high level, is still moving at the first speed, when
the origin switch state is low, the direction of motion changes and starts at the second speed,
when the origin switch is at a high level, the second speed starts to move, The position
where the first Z pulse is encountered is the origin position.

VE Controller Programming Manual

 Origin times zero model 9
Scenario 1: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is at a high
level, the second speed starts to move, when the origin switch is at a low level, the direction
of motion changes and the second speed starts to move, the position of the first Z pulse is
the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts to move forward at the second speed, when the origin switch is at a low
level, the direction of motion changes and the second speed starts to move, the position of
the first Z pulse is the origin position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is low and the
forward running limit switch is at a high level, the direction of motion changes and the first
speed to start the movement, when the origin switch is at a high level, the second speed to
start the movement, the position of the first Z pulse is the original position.

VE Controller Programming Manual

 Origin zero model 10
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move at the first speed, when the origin switch is at a high level, the
second speed is started, when the origin switch is at a low level, the position of the first Z
pulse is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis begins to move at the second speed, and when the origin switch is
encountered at a low level, the position of the first Z pulse is the origin position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is low and the
forward running limit switch is at a high level, the direction of motion changes and the first
speed starts to move, when the origin switch is at a high level, the direction of motion
changes again and starts at the second speed, when the origin switch is low, the first Z pulse
position is encountered.

VE Controller Programming Manual

Mode 11 to Mode 14 depends on the origin switch, the reverse operating limit, and the
origin zero of the Z pulse

 Origin zero model 11
Scenario 1: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is at a high level,
the direction of motion changes and the second speed starts to move, when the origin
switch state is low, the position of the first Z pulse is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts the positive motion directly at the second speed, and the position of the
first Z pulse encountered when the origin switch state is low is the origin position.
Scenario 3: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is low and the
reverse running limit switch is at a high level, the direction of motion changes and the first
speed starts to move, when the origin switch is at a high level, the second speed starts to
move, the position of the first Z pulse is encountered when the origin switch state is low.

VE Controller Programming Manual

 Origin zero model 12
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is at a high level,
the second speed is the starting point position, the position of the first Z pulse is the origin
position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts forward motion directly at the second speed, when the origin switch is at
a low level, the direction of motion changes and the second segment speed starts to move,
the position of the first Z pulse is the origin position.
Scenario 3: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is low and the
reverse run limit switch is high, the direction of motion changes and starts at the first speed
Motion, when the origin switch is at a high level, still at the first speed, in the origin switch
state is low, the direction of motion changes and the first speed to start the movement, when
the origin switch is at a high level, the second speed to start the movement, The position
where the first Z pulse is encountered is the origin position.

VE Controller Programming Manual

 Origin zero model 13
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is at a high level,
the second speed starts to move, when the origin switch is at a low level, the direction of
motion changes and the second speed starts to move, the position of the first Z pulse is the
origin position.
Scenario 2: When the user triggers the execution back to zero, if the origin switch state is
high, then the axis is directly reverse motion at the second speed, when the origin switch is at
a low level, the direction of motion changes and the second speed starts to move, the
position of the first Z pulse encountered is the origin position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is low and the
reverse running limit switch is at a high level, the direction of movement changes and the
first speed starts to move, when the origin switch is at a high level, the second segment
speed starts to move, the position of the first Z pulse is the original position.

VE Controller Programming Manual

 Origin zero model 14
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is at a high level,
when the second speed is encountered, when the origin switch is at a low level, the position
of the first Z pulse is the origin position.
Scenario 2: When the user triggers the execution back to zero, if the origin switch state is
high, then the axis starts to move reverse at the second speed, and when the origin switch is
encountered at a low level, the position of the first Z pulse is the origin position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is low and the
reverse running limit switch is at a high level, the direction of motion changes and starts at
the first speed, when the origin switch is at a high level, the direction of motion changes
again and starts at the second speed, when the original point switch is at a low position, the
first Z pulse is encountered.

Mode 15 - Mode 16 is reserved
 Patterns 15 and 16 are retained as origin regression patterns for later

development.
Mode 17 to Mode 30 requires the origin regression of the Z pulse
Mode 17to mode 30 is similar to mode 1 to mode 14 mentioned earlier, but the positioning
of their origin regression position no longer requires Z pulses, but only according to the
relevant origin switch and limit switch state changes to achieve. Mode 17 is similar to mode 1,
mode 18 is similar to mode 2, mode 19 and mode 20 are similar to the previous mode 3,
mode 21 and mode 22 are similar to the previous mode 5, mode 23 and mode 24 are similar
to the previous mode 7, mode 25 and mode 26 are similar to the previous mode 9. Modes
27 and 28 are similar to the previous mode 11, and modes 29 and 30 are similar to the
previous mode 13.

 Origin back to zero mode 17: Depends on the origin back zero of the reverse

VE Controller Programming Manual

operating limit switch
Scenario 1: When the user triggers execution back to zero, if the reverse running limit switch
state is low, then the axis starts to move reverse at the first speed, when the reverse run limit
switch is at a high level, the direction of motion changes and the second speed starts to
move;
Scenario 2: When the user triggers the execution back to zero, if the reverse running limit
switch state is high, then the axis starts the positive motion directly at the second speed, and
the position at the reverse running limit switch state is the origin position when the state of
the reverse running limit switch is low.

 Origin back to zero mode 18: Depends on the origin regression of the positive
running limit switch

Scenario 1: When the user triggers the execution back to zero, if the forward running limit
switch state is low, then the axis starts to move forward at the first speed, when the forward
running limit switch is at a high level, the direction of movement changes and the second
speed starts to move, the position at the forward running limit switch state is low when the
position is the original position.
Scenario 2: When the user triggers the execution back to zero, if the positive running limit
switch state is high, then the axis starts the reverse movement directly at the second speed,
and the position at the positive running limit switch state is the origin position when the state
of the positive running limit switch is low.

VE Controller Programming Manual

 Origin zero model 19
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is at a high
level, the direction of motion changes and the second speed starts to move, when the origin
switch is at a low position is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts the reverse movement directly at the second speed, and when the origin
switch is encountered at a low position, the position is the origin position.

 Origin zero model 20
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis begins to move positively at the first speed, and when the origin switch is
encountered at a high position, the position is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts the reverse movement directly at the second speed, when the origin
switch is at a low level, the direction of motion changes and the second speed starts to move,
when the origin switch is encountered at a high position is the origin position.

VE Controller Programming Manual

 Origin zero model 21
Scenario 1: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to reverse at the first speed, when the origin switch is encountered at a
high level, the direction of motion changes and the second speed starts to move, when the
origin switch is encountered at a low position is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts the positive motion directly at the second speed, and when the origin
switch is encountered at a low position, the position is the origin position.

 Origin zero model 22
Scenario 1: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts forward motion directly at the second speed, when the origin switch is at
a low level, the direction of motion changes and the second speed starts to move, when the
origin switch is encountered at a high position is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to reverse at the first speed, and when the origin switch is encountered at
a high level, the position is the origin position.

VE Controller Programming Manual

 Origin zero model 23
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is at a high
level, the direction of motion changes and the second speed starts to move, in the origin
switch state is low when the position is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts the reverse movement directly at the second speed, and the position at
the low level of the origin switch state is the origin position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is low and the
forward running limit switch is at a high level, the direction of motion changes and the first
speed starts to move, when the origin switch is at a high level, the second speed starts to
move, the position at the low level of the origin switch state is the original position.

 Origin zero model 24
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis begins to move positively at the first speed, and when the origin switch is
encountered at a high position, the position is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts the reverse movement directly at the second speed, when the origin
switch is at a low level, the direction of motion changes and the second speed starts to move,
the position when the origin switch is at a high level is the origin position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is low and the
forward running limit switch is high, the direction of motion changes and at the first speed
Start movement, when the origin switch is at a high level, still at the first speed, in the origin
switch state is low, the direction of motion changes and the first speed to start the
movement, when the origin switch is encountered at a high position is the origin position.

VE Controller Programming Manual

 Origin zero model 25
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is at a high
level, the second speed is started, when the origin switch is at a low level, the direction of
motion changes and the second speed starts to move, when the origin switch is at a high
position is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts to move forward at the second speed, when the origin switch is at a low
level, the direction of motion changes and the second speed starts to move, when the origin
switch is at a high position is the origin position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is low and the
forward running limit switch is at a high level, the direction of motion changes and the first
speed starts to move, when the origin switch is encountered at a high position is the origin
position.

VE Controller Programming Manual

 Origin zero model 26
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move at the first speed, when the origin switch is at a high level, the
second speed is started, when the origin switch is at a low position is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts to move at the second speed, and when the origin switch is encountered
at a low position, the position is the origin position.
Scenario 3: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move forward at the first speed, when the origin switch is low and the
forward running limit switch is at a high level, the direction of motion changes and the first
speed starts to move, when the origin switch is at a high level, the direction of motion
changes again and starts at the second speed, when the origin switch is at a low position.

VE Controller Programming Manual

 Origin zero model 27
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is encountered
at a high level, the direction of motion changes and the second speed starts to move, the
position at which the origin switch state is low is the origin position.
Scenario 2: When the user triggers the execution back to zero, if the origin switch state is
high, then the axis starts the positive motion directly at the second speed, and the position at
the low level of the origin switch state is the origin position.
Scenario 3: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is low and the
reverse running limit switch is at a high level, the direction of motion changes and the first
speed starts to move, when the origin switch is at a high level, the second speed starts to
move, the position at the origin switch state is low.

 Origin zero model 28
Scenario 1: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to reverse at the first speed, and when the origin switch is encountered at
a high position, the position is the origin position.
Scenario 2: When the user triggers the execution back to zero, if the origin switch state is
high, then the axis starts forward motion directly at the second speed, when the origin switch
is at a low level, the direction of motion changes and the second speed starts to move, when
the origin switch is encountered at a high position is the origin position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is low and the
reverse run limit switch is high, the direction of motion changes and at the first speed Start
movement, when the origin switch is at a high level, still at the first speed, in the origin switch
state is low, the direction of motion changes and the first speed to start the movement, when

VE Controller Programming Manual

the origin switch is encountered at a high position is the origin position.

 Origin zero model 29
Scenario 1: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is at a high level,
the second speed is started, when the origin switch is at a low level, the direction of motion
changes and the second speed starts to move, when the origin switch is encountered at a
high position is the origin position.
Scenario 2: When the user triggers the execution back to zero, if the origin switch state is
high, then the axis is completely reverse motion at the second speed, when the origin switch
is encountered at a low level, the direction of motion changes and the second speed starts to
move, when the origin switch is encountered at a high position is the origin position.
Scenario 3: When the user triggers execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is low and the
reverse running limit switch is at a high level, the direction of motion changes and the first
speed starts to move, when the origin switch is encountered at a high position is the origin
position.

VE Controller Programming Manual

 Origin zero model 30
Scenario 1: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is at a high level,
the second speed is started, when the origin switch is at a low position is the origin position.
Scenario 2: When the user triggers execution back to zero, if the origin switch state is high,
then the axis starts to move reverse at the second speed, and when the origin switch is
encountered at a low level, the position is the origin position.
Scenario 3: When the user triggers the execution back to zero, if the origin switch state is low,
then the axis starts to move reverse at the first speed, when the origin switch is low and the
reverse running limit switch is at a high level, the direction of motion changes and the
movement begins at the first speed, when the origin switch is at a high level, the direction of
motion changes again and the movement begins at the second speed, when the origin
switch is at a low position.

Mode 31 and mode 32 are reserved

VE Controller Programming Manual

 Patterns 31 and 32 are retained as the origin regression modes for
later development.

Mode 33 to Mode 34 depends on the origin regression of the Z pulse
 Origin zero model 33

In mode 33, when the user triggers execution back to zero, the axis begins to reverse at the
second speed, and when the first Z pulse is encountered, the position is the origin position.

 Origin zero model 34
In mode 34, when the user triggers execution back to zero, the axis begins to move
positively at the second speed, and when the first Z pulse is encountered, the position is the
origin position.

 Origin back to zero mode 35: Origin regression depending on the current
position

In mode 35, when the user triggers execution back to zero, the axis does not move and the
current position of the axis is considered the position of origin regression.

VE Controller Programming Manual

Appendix B Quick reference list of CiA402 common

objects supported by VECServo

Index
Sub-ind

exes
Name Access Size Unit Setting range

Default

value

PDO

Mappi

ng

603F 00 Error Code RO UINT16 - TPDO

This object gives the most recent fault code or warning code of the drive, corresponding to the lower 12 bits. To view the fault log,

you can use 200B:22 and 23 to view up to 10 latest fault log codes.

6040 00 Control words RW UINT16 - 0~65535 0 RPDO

Status guidance after servo power-up, command control in each servo mode

6041 00 Status word RO UINT16 - TPDO

Reacts to the servo drive operating status.

6050 00 Slow down time RW UDINT32 ms 0-U32MAX 5000

Servo slow stop time setting

6051 00 Fast downtime RW UDINT32 ms 0-U32MAX 50

Servo quick stop time setting

605A 00
Quick stop method

selection
RW INT8 0~7 2 -

0~7: Selects the drive quick stop method

605D 00
Suspension stop

method selection
RW INT8 1~3 1 -

Select drive pause method

605E 00
Fault response

options
RW INT16 - 0-4 0

0-4

0 - Direct break enable

1-Fast stop break enable

2-Slow stop break enable

3-Fast stop hold enable

4-Slow stop hold enable

6060 00
Servo mode

selection
RW INT8 - 0~10 0 RPDO

1- Contour position mode (pp)

3- Profile velocity mode (pv)

4- Contour torque mode (pt)

6- Zero return mode (hm)

8- Periodic synchronous position mode (csp)

9- Cyclic synchronous velocity mode (csv)

10- Periodic synchronous torque mode (cst)

6061 00
Servo operation

mode display
RO INT8 - TPDO

VE Controller Programming Manual

Index
Sub-ind

exes
Name Access Size Unit Setting range

Default

value

PDO

Mappi

ng

Actual mode of operation

6062 00
Location

commands
RO INT32

Command

unit
TPDO

Position command value per position loop cycle time, command units

6063 00 Location feedback RO INT32
Encoder

units
TPDO

The current position of the motor fed back by the motor encoder.

6064 00 Location feedback RO INT32
Command

unit
TPDO

Position feedback value after inverse gear ratio calculation. 6063=6064× Gear ratio

6065 00
Excessive position

deviation threshold
RW UINT32

Command

unit
0~232-1 3145728 RPDO

The drive reports an excessive position deviation (Er.B00) fault when the position deviation 60F4 is greater than ±6065. This fault

can be reset by bit 13=1 of 6041 in contour position mode at the same time.

6067 00
Position reaches

threshold
RW UINT32

Command

unit
0~65535 7 RPDO

When the position deviation 60F4 is less than this value and the time reaches 6068, the DO signal for positioning completion is

valid and bit 10 of 6041 = 1. If either of these conditions is not met, the position arrival is invalid.

6068 00
Location arrival

window time
RW UINT16 ms 0-65535 0 RPDO

When the position deviation 60F4 is less than this value and the time reaches 6068, the DO signal for positioning completion is

valid and bit 10 of 6041 = 1. If either of these conditions is not met, the position arrival is invalid.

606B 00
Speed command

value
RO DINT32 0.1RPM TPDO 0

Servo speed command value

606C 00 Actual speed RO INT32 s TPDO

This object displays the position feedback per second (command unit)

606D 00
Speed reaches

threshold
RW UINT32 rpm 0~65535 10 RPDO

When the difference between the motor speed feedback and the speed command is within ±606D and the time reaches 606E, the

DO signal for speed arrival is valid and bit10=1 of 6041. if either of these conditions is not met, speed arrival is invalid.

606E 00
Speed arrival

window time
RW UINT16 ms 0-65535 0 RPDO

When the difference between the speed feedback and the speed command is within ±606D and the time reaches 606E, the DO

signal for the speed arrival is valid and bit10=1 of 6041. if either of these conditions is not met, the speed arrival is invalid.

606F 00
Zero speed

threshold
RW UINT16 0.1rpm 0-65535 50 RPDO

Zero speed threshold for servo

6071 00 Target torque RW INT16 0.1% -5000~5000 0 RPDO

Target torque setting in torque mode

VE Controller Programming Manual

Index
Sub-ind

exes
Name Access Size Unit Setting range

Default

value

PDO

Mappi

ng

6072 00
Maximum torque

command
RW UINT16 0.1% 0~5000 0 RPDO

Maximum torque limit value.

6074 00 Torque command RO INT16 0.1% -5000~5000 0 TPDO

Torque output command after internal calculation of the drive

6075 00 Motor rated current RO UDINT32 mA - - TPDO

Motor rated current

6077 00 Actual torque RO INT16 0.1% -5000~5000 0 TPDO

Feedback torque value obtained by the drive

6078 00
Percentage of

actual drive torque
RO INT16 0.1% - - TPDO

Percentage of actual drive torque

607A 00 Target location RW INT32
Command

unit
-231-(231-1) 0 RPDO

The target position is given by the upper computer, and according to the position factor, i.e. the control word,

the servo motor travels in response to the displacement increment.

607C 00 Origin deviation RW INT32
Command

unit
-231-(231-1) 0 RPDO

Position of mechanical origin offset mechanical zero point

607D

Software absolute location restrictions

Sub-inde

xes

Number of

sub-indexes
RO UINT8 - 2 2 -

01

Minimum Position

Limit RW INT32

User

Location

Units

-231-(231-1) -231 RPDO

02

Maximum position

limit RW INT32

User

location

units

-231-(231-1) 231-1 RPDO

Once the home return to zero is complete, the minimum and maximum position limit values allowed to operate are set

by combining with the 607C. Position commands exceeding this value will stop when the limit is reached.

607E 00 Command polarity RW UINT8 - 0-255 0 RPDO

BIT7- Position command polarity :0- Maintain original polarity, 1- Reverse polarity

BIT6- Speed command polarity :0- Maintain original polarity, 1- Reverse polarity

BIT5- Torque command polarity :0- maintain original polarity, 1- polarity reversed

607F 00 Maximum speed RW UDINT32
Command

unit /s
0~232-1 104857600 RPDO

Maximum speed limit value allowed.

Setting method.

607F = maximum permissible motor speed (rpm) * encoder resolution /60

6080 00 Maximum motor RW UDINT32 0.1RPM - - RPDO

VE Controller Programming Manual

Index
Sub-ind

exes
Name Access Size Unit Setting range

Default

value

PDO

Mappi

ng

speed

Maximum motor speed

6081 00
Contour running

speed
RW UINT32 User Units 0~232-1 0 RPDO

In profile position mode, the motor is set to run at a constant speed within this displacement

6083 00
Contour

acceleration
RW UINT32

Command

unit /s2
1~232-1

17476266

67
RPDO

Acceleration in pp, csv, pv modes.

Default value 1747626667 Command unit /s2 means: acceleration from 0rpm to 1000rpm in 10ms.

6084 00
Contour

deceleration
RW UINT32

Command

unit /s2
1~232-1

174762666

7
RPDO

Deceleration in pp, csv, pv modes.

Default value 1747626667 Command unit /s2 means that it takes 10ms to accelerate from 0rpm to 1000rpm.

6085 00
Rapid stop

deceleration
RW UINT32

User

acceleration

units

1~232-1
174762666

7
RPDO

Acceleration of the deceleration section at 605A=2 when the upper unit issues a fast stop command (bit2=0 of 6040).

Default value 1747626667 Command unit /s2 means: 10ms for acceleration from 0rpm to 1000rpm.

6086 00
Operating curve

selection
RW INT16 - 0 0 RPDO

Set the motor running curve in profile position mode.

Currently only linear movements are supported.

6087 00 Torque ramp RW UINT32 0.1%/s 0
0xFFFFFF

FF
RPDO

Set the torque command increments per second in profile torque mode

6091

Gear ratio

00
Number of

sub-indexes
RO UINT8 2 2

01 Motor resolution RW UINT32 - 0~232-1 1 RPDO

02
Load axis

resolution
RW UINT32 - 1-232-1 1 RPDO

Establishing a proportional relationship between encoder units and command units.

6098 00
Origin reversion

method
RW INT8 - 0-35 0 RPDO

Supports 35 zero return methods as defined by the DS402 protocol

6099

01
High-speed search

for speed bumps
RW UINT32

Command

unit /s
0~232-1 1747626 RPDO

02
Search home low

speed
RW UINT32

Command

unit /s
0~232-1 174762 RPDO

609A 00 Return to zero RW UINT32 Command 1~232-1 1747 RPDO

VE Controller Programming Manual

Index
Sub-ind

exes
Name Access Size Unit Setting range

Default

value

PDO

Mappi

ng

acceleration unit /s2

The acceleration of the variable speed segment in home return to zero mode. Default value 1747 Command unit /s2 means:

acceleration from 0rpm to 1000rpm in 10ms.

60B0h 00
Position Offset

RW INT32
Command

units
-231-(231-1) 0 RPDO

60B1h 00
Speed bias

RW INT32
Command

unit /s
-231-(231-1) 0 RPDO

60B2h 00 Torque bias RW INT32 0.1% -5000-5000 0 RPDO

60B8h 00 Probe mode RW UINT16 - 0-65535 0 RPDO

60B9h 00 Probe state RW UINT16 - 0-65535 0 RPDO

60BAh 00

Probe 1 rising

edge position

value

RW INT32

Command

unit -231-(231-1) 0 RPDO

60BBh 00

Probe 1 falling

edge position

value

RW INT32

Command

unit -231-(231-1) 0 RPDO

60BCh 00

Probe 2 rising

edge position

value

RW INT32

Command

unit -231-(231-1) 0 RPDO

60BDh 00

Probe 2 falling

edge position

value

RW INT32

Command

unit -231-(231-1) 0 RPDO

60E0h 00
Forward torque

limiting
RW UINT16 0.1% 0-5000 2000 RPDO

60E1h 00
Reverse torque

limiting
RW UINT16 0.1% 0-5000 2000 RPDO

60E3h 00
Supported zero

return methods
RW UINT16 - - - -

60E6h 00

Position

calculation

method

RW UINT16 - 0-1 0 -

60F4h 00
Position

deviation
RO INT32

Command

unit
-231-(231-1) 0 TPDO

Position deviation, command units

60FDh 00 DI Status RO UINT32 - 0~232-1 0 RPDO

60FEh 00 DO status RO UINT32 - 0~232-1 0 RPDO

60FFh 00
Target speed

RW INT32
Command

unit /s
-231-(231-1) 0 RPDO

Set speed command in synchronous cycle speed mode

6502 00 Support for drive RO UINT32 0000 TPDO

VE Controller Programming Manual

Index
Sub-ind

exes
Name Access Size Unit Setting range

Default

value

PDO

Mappi

ng

modes 03ADhex

Displays the relevant modes supported by the drive.

VE Controller Programming Manual

Appendix C Error Code Descriptions

SMC_ERROR：Records the error sequence number returned by the motion control

function block.

Code Source of generation Variable name Description of the cause of the error

0 All SMC_NO_ERROR No errors

1
Drive interfaces SMC_DI_GENERAL_COMMUNICATION_

ERROR

Communication error (e.g. Sercos ring breakage)

2 Drive Interface SMC_DI_AXIS_ERROR Shaft error

10

Drive Interface

SMC_DI_SWLIMITS_EXCEEDED

The soft limit is activated.

When bSWLimitEnable is enabled, the current

position of the axis is not in the

fSWLimitPositive and fSWLimitNegative range

11 Drive Interface SMC_DI_HWLIMITS_EXCEEDED Hardware limit switch is activated

13
Drive Interface SMC_DI_HALT_OR_QUICKSTOP_NOT_

SUPPORTED

Drive status stopped or fast stop not supported

14 Drive interface SMC_DI_VOLTAGE_DISABLED Drive is not enabled

15
Drive interface

SMC_DI_IRREGULAR_ACTPOSITION
The drive is currently giving an incorrect position

format. Check communication.

16
Drive interfaces

SMC_DI_POSITIONLAGERROR
Position hysteresis error. Limit values exceeded in

set and current position

20
All modules created by

motion control
SMC_REGULATOR_OR_START_NOT_SET

The controller is not enabled or the holding brake

is not open

21
Axis in wrong control

mode
SMC_WRONG_CONTROLLER_MODE

Axis is not in a correct control mode

30
Drive interface

SMC_FB_WASNT_CALLED_DURING_MOTION
The module created by the motion control is not

called before the end of the motion

31
All modules

SMC_AXIS_IS_NO_AXIS_REF
The given AXIS_REF variable is not of type

AXIS_REF

32
Axis in wrong control

mode

SMC_AXIS_REF_CHANGED_DURING_

OPERATION

AXIS_REF- The return value of the variable is

processed before the module is activated

33
Drive interface

SMC_FB_ACTIVE_AXIS_DIABLED
Axis not activated when moving

(MC_Power.bRegulatorOn)

34
All modules created by

motion control
SMC_AXIS_NOT_READY_FOR_MOTION

The axis cannot process the current command in

the current state

40 Virtual drives SMC_VD_MAX_VELOCITY_EXCEEDED Maximum velocity reached (fMaxVelocity)

41
Virtual drives

SMC_VD_MAX_ACCELERATION_EXCEEDED
Maximum acceleration reached

(fMaxAcceleration)

42
Virtual drives

SMC_VD_MAX_DECELERATION_EXCEEDED
Maximum deceleration reached

(fMaxDeceleration)

50 SMC_Homing SMC_3SH_INVALID_VELACC_VALUES Invalid velocity or acceleration value

51 SMC_Homing SMC_3SH_MODE_NEEDS_HWLIMIT
Module requires end limit switch (for safety

purposes)

VE Controller Programming Manual

Code Source of generation Variable name Description of the cause of the error

70
SMC_

SetControllerMode
SMC_SCM_NOT_SUPPORTED

Mode not supported

71
SMC_

SetControllerMode
SMC_SCM_AXIS_IN_WRONG_STATE

The control mode used in the current mode is not

supported

75 SMC_SetTorque SMC_ST_WRONG_CONTROLLER_MODE
Axis is not a correct control mode and needs to be

in torque mode

80 SMC_ResetAxisGroup SMC_RAG_ERROR_DURING_STARTUP Error at start of axeset

90
SMC_

ChangeGearingRatio
SMC_CGR_ZERO_VALUES

Incorrect variables

91
SMC_

ChangeGearingRatio
SMC_CGR_DRIVE_POWERED

Drive ratio cannot be changed in drive control

mode

92
SMC_

ChangeGearingRatio
SMC_CGR_INVALID_POSPERIOD

Improper position cycle (<= 0)

110 MC_Power SMC_P_FTASKCYCLE_EMPTY
Axis does not contain any information during the

scan cycle (fTaskCycle = 0)

120 MC_Reset SMC_R_NO_ERROR_TO_RESET Axis does not have an error reset

121 MC_Reset SMC_R_DRIVE_DOESNT_ANSWER Axis does not perform an error reset

122 MC_Reset SMC_R_ERROR_NOT_RESETTABLE Error cannot be reset

123 MC_Reset SMC_R_DRIVE_DOESNT_ANSWER_IN_TIME Communication with the axis does not respond

130
MC_ReadParameter,

MC_ReadBoolParameter
SMC_RP_PARAM_UNKNOWN

Parameter serial number position

131
MC_ReadParameter,

MC_ReadBoolParameter
SMC_RP_REQUESTING_ERROR

An error occurred during the transfer of

parameters to the drive. See also

Function block example Error in

ReadDriveParameter (SM_

DriveBasic.lib)

140
MC_WriteParameter,

MC_WriteBoolParameter
SMC_WP_PARAM_INVALID

Parameter serial number position or no write

operation allowed

141
MC_WriteParameter,

MC_WriteBoolParameter
SMC_WP_SENDING_ERROR

Refer to the module example

WriteDriveParameter for errors

(Drive_Basic.lib)

170 MC_Home SMC_H_AXIS_WASNT_STANDSTILL Axis not in standard condition

171 MC_Home SMC_H_AXIS_DIDNT_START_HOMING An error occurred while performing a zero return

172 MC_Home SMC_H_AXIS_DIDNT_ANSWER Communication error

173 MC_Home SMC_H_ERROR_WHEN_STOPPING
Execution of zero return error stopped. Check to

see if deceleration is set.

180 MC_Stop SMC_MS_UNKNOWN_STOPPING_ERROR Unknown error at stop

181 MC_Stop SMC_MS_INVALID_ACCDEC_VALUES Unsuitable speed or acceleration value

182 MC_Stop SMC_MS_DIRECTION_NOT_APPLICABLE Direction=shortest not available

183 MC_Stop SMC_MS_AXIS_IN_ERRORSTOP
The axis is in an error stop state. Stop cannot be

processed.

184 MC_Stop SMC_BLOCKING_MC_STOP_WASNT_CALLED An instance of MC_Stop, locked axis

VE Controller Programming Manual

Code Source of generation Variable name Description of the cause of the error

(Execute=TRUE), cannot be called. Please call

MC_

Stop(Execute=FALSE).

201 MC_MoveAbsolute SMC_MA_INVALID_VELACC_VALUES Unsuitable speed or acceleration values

202 MC_MoveAbsolute SMC_MA_INVALID_DIRECTION Wrong direction

226 MC_MoveRelative SMC_MR_INVALID_VELACC_VALUES Unsuitable velocity or acceleration value

227 MC_MoveRelative SMC_MR_INVALID_DIRECTION Wrong direction

251 MC_MoveAdditive SMC_MAD_INVALID_VELACC_VALUES Unsuitable velocity or acceleration value

252 MC_MoveAdditive SMC_MAD_INVALID_DIRECTION Wrong direction

276 MC_MoveSuperImposed SMC_MSI_INVALID_VELACC_VALUES Unsuitable velocity or acceleration value

277 MC_MoveSuperImposed SMC_MSI_INVALID_DIRECTION Wrong direction

301 MC_MoveVelocity SMC_MV_INVALID_ACCDEC_VALUES Unsuitable velocity or acceleration value

302 MC_MoveVelocity SMC_MV_DIRECTION_NOT_APPLICABLE Direction=shortest/fastest not supported

325 MC_PositionProfile SMC_PP_ARRAYSIZE Wrong alignment size

326 MC_PositionProfile SMC_PP_STEP0MS Step time = t#0s

350 MC_VelocityProfile SMC_VP_ARRAYSIZE Wrong alignment size

351 MC_VelocityProfile SMC_VP_STEP0MS Step time = t#0s

375 MC_AccelerationProfile SMC_AP_ARRAYSIZE Wrong alignment size

376 MC_AccelerationProfile SMC_AP_STEP0MS Step time = t#0s

400 MC_TouchProbe SMC_TP_TRIGGEROCCUPIED Trigger condition has been activated

401 MC_TouchProbe SMC_TP_COULDNT_SET_WINDOW Drive interface does not support window function

402 MC_TouchProbe SMC_TP_COMM_ERROR Communication error

410 MC_AbortTrigger SMC_AT_TRIGGERNOTOCCUPIED Trigger condition has been terminated

426
SMC_

MoveContinuousRelative
SMC_MCR_INVALID_VELACC_VALUES

Unsuitable speed or acceleration values

427
SMC_

MoveContinuousRelative
SMC_MCR_INVALID_DIRECTION

Wrong direction

451
SMC_

MoveContinuousAbsolute
SMC_MCA_INVALID_VELACC_VALUES

Unsuitable velocity or acceleration value

452
SMC_

MoveContinuousAbsolute
SMC_MCA_INVALID_DIRECTION

Wrong direction

453
SMC_

MoveContinuousAbsolute
SMC_MCA_DIRECTION_NOT_APPLICABLE

Direction= fastest not available

600 SMC_CamRegister SMC_CR_NO_TAPPETS_IN_CAM CAM does not contain any tappets

601 SMC_CamRegister SMC_CR_TOO_MANY_TAPPETS Tappet group ID reaches MAX_NUM_TAPPETS

602 SMC_CamRegister SMC_CR_MORE_THAN_32_ACCESSES More than 32 interfaces in one CAM_REF

625 MC_CamIN SMC_CI_NO_CAM_SELECTED No CAM selected

626 MC_CamIN SMC_CI_MASTER_OUT_OF_SCALE Spindle out of range

627 MC_CamIN SMC_CI_RAMPIN_NEEDS_VELACC_VALUES
For ramp_in function block speed and acceleration

must be specified exactly

628 MC_CamIN SMC_CI_SCALING_INCORRECT
Scale variable fEditor/TableMasterMin/Max

incorrect

VE Controller Programming Manual

Code Source of generation Variable name Description of the cause of the error

640
SMC_CAMBounds,

SMC_CamBounds_Pos
SMC_CB_NOT_IMPLEMENTED

Function blocks in the given CAM format are not

supported

675 MC_GearIn SMC_GI_RATIO_DENOM RatioDenominator = 0

676 MC_GearIn SMC_GI_INVALID_ACC Acceleration is not suitable

677 MC_GearIn SMC_GI_INVALID_DEC Acceleration inappropriate

725 MC_Phase SMC_PH_INVALID_VELACCDEC Velocity, acceleration, deceleration inappropriate

726 MC_Phase SMC_PH_ROTARYAXIS_PERIOD0 Rotation axis fPositionPeriod = 0

750
All modules using MC_

CAM_REF as input
SMC_NO_CAM_REF_TYPE

Given CAM not type MC_CAM_REF

751 MC_CamTableSelect
SMC_CAM_TABLE_DOES_NOT_COVER_

MASTER_SCALE

If the data obtained from the CamTable is not the

spindle area (xStart and xEnd) obtained by data

transformation.

775 MC_GearInPos SMC_GIP_MASTER_DIRECTION_CHANGE
Spindle changes direction of rotation during slave

coupling

800
SMC_

BacklashCompensation
SMC_BC_BL_TOO_BIG

The gear return ratio (fBacklash) is too large

(>position

periode/2)

1000 CNC 需要授权的功能块 SMC_NO_LICENSE The target is not authorised for CNC.

1001 SMC_Interpolator SMC_INT_VEL_ZERO Path cannot be processed because velocity = 0.

1002 SMC_Interpolator SMC_INT_NO_STOP_AT_END Previous path object Vel_End > 0.

1003 SMC_Interpolator SMC_INT_DATA_UNDERRUN

Warning: GEOINFO- list is processed in DataIn,

but the list is not set at the end. Reason: Forgot to

set EndOfList in DataIn or SMC_Interpolator is

faster than path compiler module

1004 SMC_Interpolator SMC_INT_VEL_NONZERO_AT_STOP Stop speed > 0.

1005 SMC_Interpolator SMC_INT_TOO_MANY_RECURSIONS
Use too many SMC_Interpolator calls for

SoftMotion- errors.

1006 SMC_Interpolator SMC_INT_NO_CHECKVELOCITIES

Input-OutQueue DataIn is not used as the final

processing module for SMC_

Final processing module for CHeckVelocities

1007 SMC_Interpolator SMC_INT_PATH_EXCEEDED Internal / numerical error error

1008 SMC_Interpolator SMC_INT_VEL_ACC_DEC_ZERO
Velocity, acceleration or deceleration is null or too

low.

1009 SMC_Interpolator SMC_INT_DWIPOTIME_ZERO FB call dwIpoTime = 0

1050 SMC_Interpolator2Dir SMC_INT2DIR_BUFFER_TOO_SMALL Data buffer too small

1051 SMC_Interpolator2Dir SMC_INT2DIR_PATH_FITS_NOT_IN_QUEUE Path is not fully contained in the queue

1100 SMC_CheckVelocities SMC_CV_ACC_DEC_VEL_NONPOSITIVE
Velocity, deceleration or acceleration value is not

positive

1120 SMC_Controlaxisbypos SMC_CA_INVALID_ACCDEC_VALUES

The amount of change in

fGapVelocity/fGapAcceleration/fGap.

fGapDeceleration is not a positive value

1200 SMC_NCDecoder SMC_DEC_ACC_TOO_LITTLE Acceleration values are not allowed

VE Controller Programming Manual

Code Source of generation Variable name Description of the cause of the error

1201 SMC_NCDecoder SMC_DEC_RET_TOO_LITTLE Deceleration values are not allowed

1202 SMC_NCDecoder SMC_DEC_OUTQUEUE_RAN_EMPTY Data below Queue is read and is empty.

1203 SMC_NCDecoder SMC_DEC_JUMP_TO_UNKNOWN_LINE
Jumped line number cannot be executed because

the line number is unknown

1204 SMC_NCDecoder SMC_DEC_INVALID_SYNTAX Syntax error

1205 SMC_NCDecoder
SMC_DEC_3DMODE_OBJECT_NOT_

SUPPORTED

These objects do not support 3D mode

1300 SMC_GCodeViewer SMC_GCV_BUFFER_TOO_SMALL Buffer too small

1301 SMC_GCodeViewer SMC_GCV_BUFFER_WRONG_TYPE Buffer element type is wrong

1302 SMC_GCodeViewer SMC_GCV_UNKNOWN_IPO_LINE The current interpolation line cannot be found

1500
All function blocks using

SMC_CNC_REF
SMC_NO_CNC_REF_TYPE

The given CNC program is not of type

SMC_CNC_REF

1501

All function blocks that use

SMC_

OUTQUEUE function

blocks

SMC_NO_OUTQUEUE_TYPE

The given OutQueue is not of type

SMC_OUTQUEUE

1600 CNC function blocks SMC_3D_MODE_NOT_SUPPORTED This function block is only available in the 2D path

2000 SMC_ReadNCFile SMC_RNCF_FILE_DOESNT_EXIST File does not exist

2001 SMC_ReadNCFile SMC_RNCF_NO_BUFFER No buffer allocation

2002 SMC_ReadNCFile SMC_RNCF_BUFFER_TOO_SMALL Buffer is too small

2003 SMC_ReadNCFile SMC_RNCF_DATA_UNDERRUN
Low buffered data in the swap area is read and is

empty

2004 SMC_ReadNCFile SMC_RNCF_VAR_COULDNT_BE_REPLACED Placeholder variables cannot be replaced

2005 SMC_ReadNCFile SMC_RNCF_NOT_VARLIST input pvl cannot point to SMC_VARLIST object

2050 SMC_ReadNCQueue SMC_RNCQ_FILE_DOESNT_EXIST File cannot be opened

2051 SMC_ReadNCQueue SMC_RNCQ_NO_BUFFER No buffer definition

2052 SMC_ReadNCQueue SMC_RNCQ_BUFFER_TOO_SMALL Buffer too small

2053 SMC_ReadNCQueue SMC_RNCQ_UNEXPECTED_EOF Unknown file endings

2100 SMC_AxisDiagnosticLog SMC_ADL_FILE_CANNOT_BE_OPENED File cannot be opened

2101 SMC_AxisDiagnosticLog SMC_ADL_BUFFER_OVERRUN
Out of range buffering; WriteToFile must be called

more often

2200 SMC_ReadCAM SMC_RCAM_FILE_DOESNT_EXIST File cannot be opened

2201 SMC_ReadCAM SMC_RCAM_TOO_MUCH_DATA Too much data saved to CAM

2202 SMC_ReadCAM SMC_RCAM_WRONG_COMPILE_TYPE Wrong compile mode

2203 SMC_ReadCAM SMC_RCAM_WRONG_VERSION Wrong file version

2204 SMC_ReadCAM SMC_RCAM_UNEXPECTED_EOF Unknown document endings

3001
SMC_

WriteDriveParamsToFile
SMC_WDPF_CHANNEL_OCCUPIED SMC_WDPF_TIMEOUT_PREPARING_LIST

3002
SMC_

WriteDriveParamsToFile
SMC_WDPF_CANNOT_CREATE_FILE

File cannot be created

3003
SMC_

WriteDriveParamsToFile

SMC_WDPF_ERROR_WHEN_READING_

PARAMS

Error when reading file parameters

VE Controller Programming Manual

Code Source of generation Variable name Description of the cause of the error

3004
SMC_

WriteDriveParamsToFile
SMC_WDPF_TIMEOUT_PREPARING_LIST

Wrong time when preparing parameter list

5000 SMC_Encoder SMC_ENC_DENOM_ZERO
The conversion factor of the decoder reference

(dwRatioTechUnitsDenom) is 0.

5001 SMC_Encoder SMC_ENC_AXISUSEDBYOTHERFB Other modules are processing the decoding axis.

5002 Driver interface SMC_ENC_FILTER_DEPTH_INVALID Inappropriate filter selection

	1 PLCopen Introduction to the Code
	2 VEC-VE AND CODESYS
	2.1 VEC-VE controller
	2.1.1 Product overview
	2.1.2 Product configuration and module description

	2.2 CODESYS Software overview
	2.2.1 CODESYS Introduction to the software
	2.2.2 Software access and installation requirements
	2.2.3 The software installation procedure
	2.2.4 Install Package
	2.2.5 Install the device description file
	2.2.6 Uninstall CODESYS

	3 The motion control system is composed of procedure
	3.1 The motion control system of the VE controller con
	3.2 The VE controller motion control program consists
	3.2.1 The user program of the VE controller is composed
	3.2.2 The type of task in the VE controller
	3.2.3 The benefits of a user program consisting of multi
	3.2.4 How the user program can do both logical control a

	3.3 Typical steps to write a user program
	3.3.1 The configuration of the user system
	3.3.2 The writing of the user program
	3.3.3 The user program variable is associated with the p
	3.3.4 How the user program is executed and how it is con
	3.3.5 Program compilation and login download

	4 A simple user program
	4.1 Create a project and download debugging
	4.1.1 Create a new standard project
	4.1.2 System configuration and parameter setting
	 Add EtherCAT_Master_Softmotion
	 Add VECServo
	 Add CiA402 Axis

	4.1.3 The user controls the program writing
	 Create an object
	 Open the programming environment
	 Define variables
	 Program writing

	4.1.4 Bus and task cycle
	 Bus task cycle
	 The program task cycle

	4.1.5 Mission sub-core
	4.1.6 Sign in to the device
	 Connect the controller
	 Scan the network
	 Set the bus control gate
	 Sign in to download

	4.1.7 Start debugging
	4.1.8 Add a Trance trace
	 Add Trance
	 Configure Trance

	4.1.9 Stop debugging

	4.2 Common configuration instructions for devices
	4.2.1 Device tree and device editor
	 The device tree
	 The device editor

	4.2.2 Device device
	 CommunicationSetting communication settings
	Applications app
	 Backup and Restore backup restore
	 Files file
	 Log log
	PLC Settings PLC settings
	 Users and Groups users and groups
	 Access Rights access
	 Symbol Rights symbol permissions
	 Task deployment task deployment
	 Status status
	Information

	4.2.3 Library Manager Library Manager

	4.3 EtherCAT busses are commonly used
	4.3.1 EtherCAT_Master main station
	 General(General).
	 Sync Unit Assignment
	 Parameters

	4.3.2 EtherCAT_ slaveslave from the station
	 General(General).
	 Process Data（过程数据）
	 Expert Process Data（专家过程数据）
	 Startup Parameters（启动参数）
	 EtherCAT Parameters（EtherCAT参数）
	 EtherCAT I/O Mapping(EtherCAT Input and Output M
	 Online（在线）
	 CoE Online（CoE在线）

	4.3.3 SM_Drive_GenericDSP402 Shaft configurations
	 General（通用）
	 Scaling/Mapping（缩放/映射）
	 Commissioning（调试）
	 Parameters（参数）
	 I/O Mapping（I/O映射）
	 IEC Objects（IEC对象）
	 Status（状态）
	 Information（信息）

	4.3.4 EtherCAT bus cycle behavior
	4.3.5 Ether CAT specific variables
	4.3.6 EtherCAT Library
	 The primary instance
	 The from the station instance
	 Check the chained list of all slaves

	4.3.7 IODrvEtherCAT
	 ETC_CO_SdoRead
	 ETC_CO_SdoRead4
	 ETC_CO_SdoRreadDWord
	 ETC_CO_SdoWrite
	 ETC_CO_SdoWrite4
	 ETC_CO_SdoWriteDWord
	 ReadMemory
	 WriteMemory

	4.3.8 SoftMotion General Axis Pool
	 Position control drives
	 Free encoder
	 Virtual drives

	5 VE controller program execution mechanism
	5.1 User engineering tasks and configuration
	5.1.1 Key points of task configuration
	5.1.2 Prioritisation of tasks
	5.1.3 Execution cycle setting in task configuration

	5.2 Data flow analysis in EtherCAT bus networks
	5.2.1 Network overview of the EtherCAT bus
	5.2.2 Synchronous clocking of the EtherCAT bus

	5.3 Communication flow between VE controller and servo
	5.3.1 Step-by-step description of the control informatio
	5.3.2 CiA402 Data Object Dictionary and Servo Common Obj
	5.3.3 Configuration of servo shaft motor parameters
	5.3.4 EtherCAT network state initialization and manageme
	5.3.5 Detect the EherCAT communication status
	 EtherCAT main station status flag bit
	 EtherCAT from the station detection

	5.4 The MC motion controls the timing of the transmiss
	5.5 The processing mechanism of the MC function block
	5.5.1 Cycle synchronization position mode
	5.5.2 The data structure of the servo axis
	5.5.3 Servo axis status machine and transfer conditions
	5.5.4 The execution logic of the MC function block:
	5.5.5 Data interactions between different priority tasks

	6 Programming Languages and References
	6.1 Data types
	6.1.1 BOOL Boolean types
	6.1.2 Integer
	6.1.3 REAL/LREAL Floating point type
	6.1.4 STRING String type
	6.1.5 WSTRING
	6.1.6 TIME time type
	6.1.7 LTIME
	6.1.8 UNION Joint Statement
	6.1.9 BIT bit
	6.1.10 __UXIN and __XWORD are pseudo-data types
	6.1.11 POINTERS pointer
	 The syntax declaration of the pointer
	 A function pointer to an external function
	 The index access pointer

	6.1.12 REFERENCE Reference
	6.1.13 ARRAY array
	 An array of fixed lengths
	 An array of arrays

	6.1.14 Structure structure
	Initializing the structure
	Accessing structure members
	Bit access in structures

	6.1.15 Enumerations
	6.1.16 Subrange Types

	6.2 Variable
	6.2.1 Local variable -VAR
	6.2.2 Enter the variable - VAR_INPUT
	6.2.3 Output variable - VAR_OUTPUT
	6.2.4 Input and output variables -VAR_IN_OUT
	6.2.5 Global variable - VAR_GLOBAL
	6.2.6 Temporary variable - VAR_TEMP
	6.2.7 Static variable - VAR_STAT
	6.2.8 External variable - VAR_EXTERNAL
	6.2.9 Instance variable - VAR_INST
	6.2.10 Configuration variable - VAR_CONFIG
	6.2.11 Constant variable - VAR CONSTANT
	6.2.12 Persistence variable -PERSISTENT
	6.2.13 Reserved variable - RETAIN
	6.2.14 Special variables -SUPER

	6.3 Operators
	6.3.1 Arithmetic operator
	Add "ADD" to the operation
	“MUL” Multiplication operations
	“SUB” Subtraction operations
	“DIV” Division operations
	"MOD"take-out operation
	“MOVE” Assignment operations
	“SIZEOF“Byte operations

	6.3.2 Bit-Serial Operators
	“AND”
	“OR”
	“NOT”
	“XOR”
	“AND_THEN”
	“OR_ELSE”

	6.3.3 Shift operators
	“SHL” Left shif
	“SHR” Right shift
	“ROL” Cyclic left shift
	“ROR” Cyclic right shift

	6.3.4 Selection operators
	“SEL” Select
	“MAX” Maximum value
	“MIN” Minimum value
	“LIMIT” Limit values
	“MUX” Multiplexing

	6.3.5 Comparison operators
	“GT” greater than
	“LT” Less than
	“LE” Less than or equal to
	“GE” Greater than or equal to
	“EQ” equals
	“NE”Not equals

	6.3.6 Address operators
	“ADR”
	“Content Operator”
	“BITADR”

	6.3.7 Calling operators
	“CAL” Call

	6.3.8 Numerical operators
	“ABS” Absolute values
	“SQRT”
	“LN” Natural logarithm
	“LOG” Constant logarithm
	“EXP” Exponent of the natural number e
	“EXPT”（ Yth power of X）
	“SIN” Sine function
	“COS” The cosine function
	“TAN” tangent function
	“ASIN” Sine function anyway
	“ACOS” The inverse cosine function
	“ATAN” Anyway tangent function

	6.3.9 Type conversion operators
	“BOOL_TO”
	“TO_BOOL”
	“TO_ <xxx>”
	“<INT Type>_TO_<INT Type>”
	“REAL_TO- / LREAL_TO”
	“TIME_TO / TIME_OF_DAY_TO”
	“DATE_TO / DT_TO”
	“STRING_TO”
	“TRUNC”

	6.4 Structured text(ST).
	6.4.1 ST Editor
	6.4.2 The ST expression
	6.4.3 ST assignment method
	 The assignment expression
	 The ST assignment operator for the output
	 Extended ST assignments "S", "R""

	6.4.4 ST syntax
	 IF statement
	 The FOR statement
	 CASE statement
	 WHILE statement
	 REPEAT statement
	 RETURN
	 JMP
	 EXIT
	 CONTINUE
	 ST Function Block Call
	 ST COMMENTS

	6.5 Continuous function diagrams（CFC）
	6.5.1 CFC Editor
	6.5.2 The order in which the CFC data flow is executed
	6.5.3 CFC elements
	 Page page
	 Control Point control point
	 Input
	 Output
	 Box运算块
	 Jump
	 Label
	 Return
	 Composer
	 Selector
	 Comment
	 Connection Mark - Source/Sink
	 Input Pin
	 Output Pin

	6.6 Sequential functionmap (SFC).
	6.6.1 SFC Editor
	6.6.2 Theorder in which S FCs are processed
	6.6.3 SFC Action conditions
	6.6.4 SFC Implicit variables and flags
	SFC Implicit variables

	6.6.5 SFC Element
	 Step and Transition
	 Action
	 Branch
	 Jump
	 Macro

	6.7 CFC/LD/IL
	6.7.1 FBD / LD / IL Editor
	6.7.2 FBD/LD/IL Element
	 Network
	 Box
	 FBD/LD/IL Element ‘Box with EN/ENO’
	 Assignment
	 Input
	 Label
	 Jump
	 Return
	 Branch
	 Excute
	 Contact
	 Coil
	 Branch Start/End 分支开始/结束

	7 Motion control instructions
	7.1 Motion control programming for single-axis MC inst
	7.1.1 MC instruction programming points
	7.1.2 MC function blocks commonly used for single-axis c
	7.1.3 MC commands and PDO/SDO configuration

	7.2 Motion control programming for multi-axis CAM cam
	7.2.1 Characteristics of the cam table
	7.2.2 Cam table input
	7.2.3 The internal data structure and array of the CAM c
	7.2.4 Reference and dynamic switching of CAM table

	7.3 Single axis commands
	7.3.1 MC_Power
	7.3.2 MC_Stop
	7.3.3 MC_Halt
	7.3.4 MC_Home
	7.3.5 MC_MoveVelocity
	7.3.6 MC_MoveAbsolute
	7.3.7 MC_MoveAdditive
	7.3.8 MC_MoveRelative
	7.3.9 MC_MoveSuperImposed
	7.3.10 MC_PositionProfile
	7.3.11 MC_Reset
	7.3.12 MC_ReadActualPosition
	7.3.13 MC_ReadAxisError
	7.3.14 MC_ReadBoolParameter
	7.3.15 MC_ReadStatus
	7.3.16 MC_ReadParameter
	7.3.17 MC_AccelerationProfile
	7.3.18 MC_VelocityProfile
	7.3.19 MC_WriteBoolParameter
	7.3.20 MC_WriteParameter
	7.3.21 MC_AbortTrigger
	7.3.22 MC_ReadActualTorque
	7.3.23 MC_ReadActualVelocity
	7.3.24 MC_SetPosition
	7.3.25 MC_TouchProbe
	7.3.26 SMC_MoveContinuousAbsolute
	7.3.27 SMC_MoveContinuousRelative
	7.3.28 MC_Jog
	7.3.29 SMC_Inch
	7.3.30 SMC3_PersistPosition
	7.3.31 SMC3_PersistPositionSingleturn
	7.3.32 SMC3_PersistPositionLogical
	7.3.33 SMC_Homing

	7.4 Axis group instructions (primary/from-axis instruc
	7.4.1 SMC_CamRegister
	7.4.2 SMC_GetCamSlaveSetPosition
	7.4.3 SMC_GetTappetValue
	7.4.4 MC_CamTableSelect
	7.4.5 MC_CamIn
	7.4.6 MC_CamOut
	7.4.7 MC_GearIn
	7.4.8 MC_GearOut
	7.4.9 MC_GearInPos
	7.4.10 MC_Phasing
	7.4.11 SMC_CAMBounds
	7.4.12 SMC_CAMBounds_Pos
	7.4.13 SMC_WriteCAM
	7.4.14 SMC3_PersistPosition
	7.4.15 SMC_FollowVelocity
	7.4.16 SMC_FollowSetValues
	7.4.17 SMC_SetControllerMode
	7.4.18 SMC_CheckLimits
	7.4.19 SMC_GetMaxSetAccDec
	7.4.20 SMC_GetMaxSetVelocity
	7.4.21 SMC_InPosition
	7.4.22 SMC_ReadSetPosition
	7.4.23 SMC_SetTorque
	7.4.24 SMC_BacklashCompensation
	7.4.25 SMC3_PersistPositionSingleturn
	7.4.26 SMC_CheckAxisCommunication
	7.4.27 SMC_FollowPosition
	7.4.28 SMC_FollowPositionVelocity
	7.4.29 SMC_AxisDiagnosticLog
	7.4.30 SMC_ChangeGearingRatio
	7.4.31 SMC_ReadFBError
	7.4.32 SMC_ClearFBError

	7.5 Vector special instructions
	7.5.1 VECNSMC. VecCheckHardware
	7.5.2 VECNSMC.NS_MC_SpecialCamIn
	7.5.3 VECNSMC.NS_MC_RotaryIn

	7.6 CNC Instructions
	7.6.1 SMC_ReadNCFile2
	7.6.2 SMC_NCInterpreter
	7.6.3 SMC_Interpolator

	8 Comprehensive configuration debugging
	8.1 Modbus Communications
	8.1.1 ModBusRTU_Slave
	Install ModbusRTU_Slave
	Add an RTU device
	Parameter settings
	Address-associated variables
	HMI settings

	8.1.2 ModBusTCP_Slave
	Install ModBusTCP_Slave device
	Add a TCP device
	Parameter settings
	Address-associated variables
	HMI settings

	8.1.3 ModBusRTU_Master
	Install ModBusRTU_Master device
	Add ModBusRTU_Master device
	Parameter settings ("Internal parameters" introduc
	Address Association Variables (Internal I/O Mappin
	Introduction to the use of function codes
	Example of use

	8.1.4 ModbusTCP_Master
	Install the device description file
	Add a device
	Host parameter settings
	From the machine parameter settings
	Online monitoring

	8.1.5 OPCserver

	8.2 Simulation and debugging
	8.2.1 Simulate the VE controller
	8.2.2 Simulate servo drives

	8.3 Security management and user rights settings
	8.3.1 Device login permissions settings
	 Add the user and password
	 Sign in to the device
	 Exit the current user
	 Cancel your account password login

	8.3.2 Project file security settings
	8.3.3 POU permission settings
	 User and group descriptions
	 Example of POU permission settings

	Appendix A VECServo supported origin regression mo
	Appendix B Quick reference list of CiA402 common o
	Appendix C Error Code Descriptions

